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1 Summary

The fluctuation splitting schemes have been introduced by P.L.Roe at the beginning of the 80’s
and have been then developed until now, essentially thanks to H.Deconinck. In this paper, the
fluctuation splitting schemes formalism is recalled. Then, the hyperbolic elliptic decomposition
of the three dimensional Euler equations is presented. This decomposition leads to an acous-
tic subsystem and two scalar advection equations, one of them being the entropy advection.
Thanks to this decomposition, the two scalar equations are treated with the well known scalar
fluctuation splitting scheme, the PSI one, and the acoustic subsystem is treated with a matrix
fluctuation splitting scheme, the Lax Wendroff scheme. Moreover, an additional viscous term is
introduced in order to reduce the oscillatory behavior of the Lax Wendroff scheme. An impor-
tant work about the implicitation of this scheme allow then to obtain a robust scheme which
allows computations within a large range of validity, in terms of Mach number. This fluctuation
splitting scheme, called the Lax Wendroff - PSI scheme, allows to reduce the spurious entropy
and then to compute drags more precisely. At the end, numerical results obtained with this
Lax Wendroff PSI scheme are shown and compared to a reference Euler code, based on a Lax
Wendroff scheme.

2 Introduction

The computation of the non-viscous flow over an entire aircraft configuration with unstructured

meshes is a fairly routine task for Dassault Aviation.

Among the applications of the computations, we can mention definition of design loads and
flutter analysis. Another application is to check that the shocks are not dangerously located
for the stability of the aircraft or for the functionning of the engines. About this last point,
the position of the shocks are obtained by coupling the Euler computations with a boundary
layer code. For all these applications, numerical accuracy is needed, especially for aerodynamic
coefficients, locations of the shocks and, in a weaker way, for the pressure distribution along

the aircraft.

Our industrial constraints are first to have a large range of validity in terms of Mach number
because Dassault Aviation may compute both low subsonic flows and nearly hypersonic ones.
Another wish is to have a code which is not computation-case dependent. Of course, reliability,

robustness and reasonnable cpu cost are also needed.

Despite a lot of research and development activity that has led to accurate and robust formu-
lations during the 80’s, need for further progress is still identified. For instance, the absolute
value of the drag is still not always predicted with enough accuracy, due to spurious entropy

production.

In this context, Dassault Aviation is always trying to get more accurate or more robust for-
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mulations. Recently, around 95 [2], the development of the fluctuation splitting schemes have
shown that such formulations are now accessible. More precisely, the works dealing with the
fluctuation splitting schemes have shown that numerical schemes with a low numerical entropy

are possible.

In this paper, after a general presentation of the fluctuation splitting schemes, we present
the fluctuation splitting scheme we have implemented in the industrial Euler code of Dassault

Aviation and the numerical results we have got with this scheme.

3 The fluctuation splitting schemes
3.1 The fluctuation splitting formalism

These new kind of numerical schemes have been initiated by Roe in 1982 and have been de-
veloped by many others. The fluctuation splitting schemes, also called residual distribution
schemes, have been largely presented in the litterature, for instance in Deconinck and al. 93 [1]
or in Paillére 95 [2].

We recall here the fluctuation splitting methodology for solving the scalar conservation law

problem on an arbitrary triangulation of a domain ).

We consider the problem

du
ot

Boundary conditions

+V-F=0 V(z,y,2) €Q, Vt>0

Cauchy conditions

Just like in linear finite element methods, the solution is approximated by a continuous function,

varying linearly over each tetrahedra,
w(@,y,2,t) = Zuz wi(,y, 2) (2)

where u;(t) is the value of u at node i, and w; the linear shape function equal to unity at

(xi, yi, 2;) and equal to zero outside the support of all tetrahedra meeting at node i.

The integration over an element T leads to

// —dV_ //TX-vudv (3)

—

- O0F
1= )

where we have noted
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With a first order in time approximation, we can write the left hand side of the equation 3 in

the local element numering as

/I Qu o Ve [ultt —up wpt - gt it — g )
T Ot 4 At At At At

where V7 denotes the volume of the element T'.

For the right hand side, we choose an approximation in order to compute the residual & =
IR X - Vu dV. The idea of the fluctuation splitting schemes is then to split the residual in

o7 = o7 + o7 + o + @F (6)

The fluctuation splitting method consists of distributing fractions of the residual. This leads

to the explicit scheme
VT ’LLT-H—l —ul

D P I g

T tq i€T T tq i€T

or, in an equivalent way,

At
upth =uf — = @ (8)
Vi 7
o Vp oo
after having introduced V; = Z — which is no more than the volume of the dual cell at
T tq i€T

node 3.

It is often useful to introduce the 3] defined by ® = /' ®". We require that »_ 3; =1 for
i€T
consistency.

Fluctuation splitting schemes were usually first developped for the scalar advection equation.

Then, the problem of the extension of the scalar schemes to systems has to be solved.

This problem is easily solved when the system is diagonalisable. In this case, scalar schemes
can be used for each scalar equations of the diagonalised system. But, here, our aim is to solve
Euler equations, which are not diagonalisable.

For such not diagonalisable systems, two main orientations are identified. One consists of a
formal extension of the scalar scheme. An application of this idea is done for the N-scheme
(Narrow scheme) in Bonfiglioli and al. 96 [3]. The other orientation, first introduced by Roe

in 1986 [4], is to decompose the initial residual ®; as a sum of simple wave solutions.

3.2 The properties of the distributions

We recall here the main properties of the fluctuation splitting schemes and the conditions they

impose on the distributions ®7.
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Before listing these properties, we need to introduce, for each node 7 of an element T, k; = ~X 11

with 77; the interior normals to the tetrahedra T, pomted toward the node i, scaled by their

respective surfaces. Thus, one has Zn, = ( and Z ki = 0.

=1 =1

First, a fluctuation splitting scheme is said to be upwind when the distributions ®; satisfy
U) BFr=0ifk; <0 (9)

This property is called upwinding because it is the exact extension of the upwinding notion for

the resolution of the one dimensional convection equation.

Another property is positivity. A fluctuation splitting scheme is said to be positive if the value

at the new time-step can be written as a convex sum of values at the previous time-step,

(P) ult! = chuk with ¢, > 0 Vk (10)

together with the consistency condition Z cp = 1.
k

The last important property is linearity preserving. This property is strongly tied to second

order accuracy. A fluctuation splitting scheme is said to be linearity preserving when
(LP) @] — 0 when ®" — 0 (11)

a sufficient condition to guaranty this property being that 57 is bounded.
Before going on, we have to precise how we take into account the boundary conditions.

3.3 The boundary conditions

We choose a treatment of the boundary conditions which allow us to use all the subroutines

which have been written for our finite volume schemes, for instance those of our reference code.

The finite volume schemes lead to the decomposition
fQ¢Wt = _IQV'FQS
=JoFVo— [oq0F -1t

where ¢ is a test function. Then a weak formulation of boundary conditions is used to compute
Joq 6F - 7

(12)

In the fluctuation splitting formalism, f, V - F¢ is directly computed. In order to make the

same treatment as in the finite volume case, we write

fQ oWy =— fQ -AVW¢

13
= —Jo AVW G + [oq ¢F -7t — [oq ¢F - 11 (13)
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Thus, we compute in a first time

—//QAVWqﬁ + //mqb}"-ﬁ (14)

—_———
fluctuation splitting centered treatment
and then we add [yn ¢F - 7, which we compute with a weak formulation of the boundary

conditions.

4 A crucial decomposition of the Euler equations

In this section, we recall the hyperbolic elliptic decomposition of the Euler equations. This
decomposition, which is inspired by the Deconinck-Hirsch decomposition [5], has been exposed
in Paillére 95 [2| in the two dimensional case and in Bonfiglioli and al. 96 [3]| in the three
dimensional case. This decomposition is a crucial point for the scheme we are going to deal

with in the next section.

The Euler equations are usually written with a conservative form using the variable

p
pu
W=| pv (15)
pw
pe

where p represents the gas density, v, v and w are the x—, y— and z— components of the

velocity vector u, e is the specific total energy and h the specific total enthalpy.

This conservative form is

with
pu pv pw
pu? +p puv puw
F= PUV ,G=| p*+p | ,H= pUW (17)
puw poW pw?* + p
puh pvh pwh
and we note
F=FI,+Gl, + HI, (18)

In the fluctuation splitting context, it is useful to consider the quasi linear form of the Euler

equations

ow ow ow
A B = 1
£ + ay +C % 0 (19)
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with OF oG OH
A=aw B=agw “=ow (20)
and we note

A=Al +Bl, +CI, (21)

Although we want to solve the steady Euler equations, we will consider the unsteady Euler
equations because we use a pseudo unsteady process with local time-stepping to reach steady
states. Thus, we consider

ow ow ow ow

A B = 22
ot " Aar TP TV (22)

Two changes of variables have to be made in order to obtain the hyperbolic elliptic decompo-

sition.

In a first step, we use the symmetrizing variables:

% P [0 00 0 1/pa]
9 u 0 100 0
0Q = 50 =MV withV=| v |[andM=| 0 010 0 (23)
. w 0 001 0
O — a?0p P > 000 1 |

where we note a the velocity of sound and p the pressure.
With the variable ), the Euler equations become

LA+ B4+ 0-2=0 (24)

with
(v a 0 0 0] (v 0 a 0 0] (w0 0 a 0]

a u 0 0 0 0 v 000 0w 0 0 0
A={00uvw 00|,B=|a 0v00|andC=|0 0 w 0 0 (25)
000 u 0 000 v 0 a 00 w 0
(000 0 u| (0000 v| 000 0 w|

After this symmetrization of the Euler equations, we introduce the second change of variables

B op+ Mz o i ]
pﬁa 6 Ms, Ms, Ms, 0
%329— Ms-ou B —Ms, —Ms, —Ms, 0
oW = M7- 0 =LoQwith L=|0 Mt, Mt, Mt, 0 (26)
9 1 Mn, M Mn, 0
L+ Mii-od n ny  Mn
pa 0 0 0 0 1
dOp — a?0p - -
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—

— u - = .
where we have noted 77 = W and we have taken (n, s,f) as an orthonormal direct base.
U

This change of variables leads to

ow oW | . 0W ow ow
A BR— —
i anRx-l—Ray-kCRaZ] 0

(27)

with R = L.

In order to obtain the hyperbolic elliptic decomposition, we have to use the preconditionning
matrix which Van Leer and al. introduced in 91 [6] and which was extended to the 3D case by
Bonfiglioli and al. in 96 [3]

[ xM? —xMu —xMv —xMuw O-
p? B%q B*q P*q
—xMu  u? U uw
g Tt e el
. 1| —xMv uw v? vw
Pzg g Tg TptX T 0 (28)
—xMw uw vw w?
pg e T T X0
0 0 0 0 1
with ¢ =|| @ || and 3, x and 7 defined as
X+ B
= 2 M2 -1 = = — 2
B = \/max (2, | )s x max (M. 1) and 7 @ X (29)
with € = 0.05, like in Paillére 95 [2].
With this matrix, we write equation 27 in an equivalent form
8W ow oW _OW ow
= +—-—P 'R|LPAR=— + LPBR— + LPCR—| =
90 Rl R(9 + Ray+ CRaZ] 0 (30)
This new form leads to oW oW
e %P 'RR (W) =0 (31)
with
xvTi+ %5’ XV 1 %t_' 0 0|
XV n XI/"W’L—X_' X0 0
g B
i) — Xp X7 S . L MEP—1+p2
R(W) = 26" 25 xit 0 0 |.VIW and v =7 (32)
0 0 0 7 0
0 0 0 0 7|
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Thus, we have obtained an equivalent form of the Euler equations (eq 31), at least locally over

each element 7.

In this new form, two different parts can be distinguished. The three first equations of the
equation 32 constitute a subsystem which is independent of the two last equations and is called

the acoustic subsystem. The two last ones are entirely decoupled scalar advection equations.

Upon this decompostion, we can treat the two parts in different ways. This is the object of the

next section, where we introduce the Lax Wendroff - PSI scheme.

5 The Lax Wendroff - PSI scheme

We present here the Lax Wendroff - PSI scheme. This scheme is based upon the matrix-scalar
decompostion of the residual. Indeed, the divergence of the fluxes can be written as the sum
of the residual of the acoustic subsystem and of the residuals of the last two scalar advection

equations:

wt
oF 0G OH . oy s o e
= () o V| W || X 3 W (33)
or 0Oy 0z . ~ ~

W3 (I)enthal q>entrop

[\ /
~~

choupled

. . oW .o .
where we have noted 7’ the vectors of the matrix a—P_lR, A the advection vectors of the

last two scalar equations (in practise, \* = X3 = ) and

[ i+ %5’ vt %f'
XV n xv'n—=s =t
a= BB = (ag, ay, a,) (34)
X7 X 7 .
— —
28 28" X

The strategy of the Lax Wendroff - PSI scheme (LW-PSI scheme) is to split the acoustic residual,
@ coupled, With a matrix fluctuation splitting and the two scalar residuals, ®epinar and Pepirop With

a scalar fluctuation splitting scheme.

In the LW-PSI scheme, the matrix Lax Wendroff scheme is used to split ®.sypieq and the PSI

scheme is used to split @cpiper and Peptrop-
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5.1 The matrix Lax Wendroff scheme

The Lax Wendroff scheme can be formulated as a fluctuation splitting scheme, as shown by Roe
in 87 [7]. Thus, in the scalar case, the Lax Wendroff scheme corresponds to the distribution

‘.LW’T _ 1 At

The matrix Lax Wendroff scheme is obtained with a formal generalisation of equation 35. Thus,

we have ) At
LW,T
e —K; 36
where K; is a matrix generalisation of the scalar k;
1
Ki = g [(J,z n;, —+ ay niy —+ a, n;, (37)

The Rudgyard extension of the time-step [8] [9] allows us to get a matrix Lax Wendroff scheme

where At does not appear any longer:

2

-1

1 Vee

BT = JId+ UK, (Z K I) (38)
J

where v is a constant taken to 1 and | K; | is the matrix which has the same eigenvectors as

K; but whose eigenvalues are the absolute value of those of K.

5.2 The PSI scheme

The PSI (Positive Streamwise Invariant) scheme has been introduced by Strujis and al. in 91
[10]. In 95, Sidilkover and al. [11] showed that this PSI scheme can be obtained by applying
the Min Mod limiter function to the N-scheme. The Min Mod limiter function is exposed in
[12], and the N-scheme is a very popular fluctuation splitting scheme to which Sildikover gave
its name in 89 [13|. This former scheme has been well extended to the three dimensional case
by Bonfiglioli and al. in 96 [3].

This scheme is a scalar upwinding fluctuation splitting scheme which is positive and linearity
preserving. These properties make this scheme one of the most performant one to solve the
scalar advection problem. The handicap of this scheme is that it can not be extended to the

system case in a satisfactory way.

This scheme could be replaced, in two dimensions, by the N-SUPG scheme of R.Abgrall (private
communication). As far as numerical results are concerned, all the two dimensions test cases

give same results whether the PSI scheme or the N-SUPG scheme is used.

5.3 An additional viscous term

The first uses of the LW-PSI scheme showed an oscillatory behavior in two dimensions. In

three dimensions, this behavior became a main obstacle for computations. For instance, a pure
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subsonic computational case over a wing could not be realized with this scheme as soon as
Mach number was higher than 0.5.

As a matter of fact, this behavior is not surprising because we use a Lax Wendroff scheme to
split the acoustic residual, and it is well known that the Lax Wendroff scheme is not monotone

and generates oscillations near the shocks.

In order to reduce this oscillatory behavior, we add a viscous term to the LW-PSI scheme. This
term is based on the second order term which can be found in the Peraire’s scheme [14] [15]
[16]. This viscous term is nearly a laplacian, which is decomposed over each element. Then,

we compute the viscosity of this term in order to dump the fastest wave.

In order to limit the degradation of the LW-PSI scheme, we use the pressure sensor designed
by Jameson in 85 [14]

| p; — pi — Vi - N;Nj |

(39)
| pj +pi — Vpi - N;N; |

psij = min (ps;, ps;) with ps; =

This pressure sensor helps us to add viscosity only near the shocks. In practise, the viscous

term we add is

q)znsc: (7"1,7"2 r ) 9 Z VT ( Z ZAZJ €ij (VW]W])) (40)

T/ieT j#i
T/ieT
with N
Ai:ma$[|xl'ﬁi|a|X2'ﬁi‘a|X3'ﬁi|]:)‘i,j:% (41)
Y - X V2 _Xg s Xy
M= yit 4+ 25, \2 25 N =24 42
ﬂ B g 42)
and

5.4 The Roe linearization

Until now, it has been proceeded as if the Euler equations were linear. The extension of the
fluctuation splitting method to non linear conservation laws is largely discussed in Paillére 95
[2] and the conclusion is that the linearisation £ (2) [17] [18] has to be used as far as we have

to get a constant approximation of whatever quantity.

We just recall here that this linearization is a generalisation of the Roe average. This linearisa-
tion is based on the assumption that the parameter vector Z = /p (1, u, v, w, h) varies linearly
over each element. This choice of Z is such that W and the fluxes F', G, H are quadratic in
the components of Z and so the jacobians of these four quantities are linear in the components
of Z.
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6 The time-integration to the steady state

The explicit scheme used to compute Euler steady states has been presented. But our industrial
constraints are such that explicit schemes are not fast enough. This is the reason why implicit

schemes have to be used.
The way, chosen to obtain an implicit scheme, is discussed here.

The explicit scheme can be written as

At

V;i Res; (W) (44)

VVin_H — Wzn _

where Res; (U™) is the residual which is affected to node i at the iteration n.

Any implicit scheme can be written as

At;

wnrtl — wr —
2 2 ‘/;

Res; (W) (45)

As far as we are concerned, a linearised implicit scheme is used. Thus, we write

ORes;
. n+1l\ ~ . n ¢ ny . n+l n
Res; (W™*") = Res; (W") + i (V) (w w) (46)
€S; . . . .
where is the jacobian matrix of Res;
oU
Finally, we use
At dRes At
n+l _ n Id =" n . (_ n ) 4
w W+< +V6W (W)> —VRes(W) (47)

At;
1d.
v d

where oA is a block diagonal matrix, whose each block is —

Once more, we have to face our industrial constraints. As a matter of fact, we cannot store the

brix 1d 4+ SF Oftes
maitrix V aW

low storage, we have to solve

(W"™) and inverse it for each iteration. Because we have to guaranty a

y = (m + % afmis (W”)) . (—%Res (W”)) (48)

at each iteration of the unsteady process.

The resolution of this linear system is the issue of the next section.

6.1 The resolution of the linear system of the implicit scheme

In order to solve this linear system, we use a GMRES iterative solver [19].
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At ORes
Until th d of thi ti te A = Id + —
nti e end o 1s section, we note + vV oW

(W"™) and thus we note the linear

system Az = b.

The use of GMRES solver requires computations of Ax and a preconditioner.

ORes

The difficult point in the computations of Az are those of (W™) z. In order to realize
these computations, we use a software, designed by INRIA: Odyssee [20]. This software is able

to perform automatic differentiation of FORTRAN subroutines: it generates the subroutine for
ORes . . .
(W"™) z from the subroutine of Res (W™). With this software, we

ORes
ow

Concerning the other point, we use a left block diagonal preconditionner and the computation

the computation of

have been able to compute the

(W™) x in a very precise way.

of this preconditionning matrix is also realised with Odyssee.
The last point we have to precise is the way we compute time-steps.

6.2 The time-stepping

Because our objective is to get an Euler steady state, we are allowed to use a local time-stepping.

We discuss here the choice of At; we made.

First of all, the PSI-scheme is positive under the CFL condition [2]

Si

At; < mlin - (49)
> maz (O, A ﬁz>
T/ieT
with
2! -
A =a X (50)

This gives a first constraint for the choice of the time-step. But, for reasons of robustness, we

choose a more restrictive time-step

At = £(9 > 1 (1)
Z (@4 a) || 7; || max (1,X<1+—>>
T/ieT B
where
1 €; 4 -+ €k + €1
€ = Z ST o . : (52)
35 T/ieT 3
and
Vd+z22 -1z
fl@) = ——F— (53)

2
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We have used this function f after having studied the stability of the one dimensional Lax
Wendroff scheme with our additionnal viscosity. This scheme can be written as

up ™t —uf Uiy — Uiy , At a
— D (u™) — D" =0 54
“a T oA YAl W) — R, D) (54)
Laz Wzndroff vichsity
with
D (u") = uiy — 2ui +ug (55)

and where we have called in the two former equations € the coefficient based upon the Jameson

pressure sensor.

A classical method gives the following stability criterium

aAt< V4+e?—e€
Ax — 2

(56)

and so f.

Indeed, At; is the time-step we use with the explicit version of the code. In the implicit one,

we multiply this time step by a factor which is taken between 1 and 100.

The work we have made about the implicitation of the Lax Wendroff - PSI scheme was a very
necessary one in order to obtain a robust code, and thus to envisage an industrial use of this
scheme. Moreover, each of the components of this work are crucial in order to obtain such a

code.

At this point of the paper, all the different aspects of our scheme have been exposed. We now

focus our attention on the results we get with this scheme.
7 Numerical results

Several results are presented here, in order to show the capabilities of the code.

In order to be able to validate our results, we compare them to these we obtain with the Lax
Wendroff scheme of Dassault Aviation. Until the end of this paper, we note LW-PSI the Lax
Wendroff - PSI scheme and LX the reference Lax Wendroff scheme.

The scheme LX is not a matrix Lax Wendroff scheme as in the scheme LW-PSI. This scheme
LX has been first introduced by Billey in 84 [21]| and is a predictor - corrector scheme which

can be written in two steps

- 1 -
Step 1 (prediction): W(T) = o7 [ J[ W av = oty //a Fwmy.ids|  (57)
T T

and

Step 2 (correction): ®; = f; ///;F CE(W) - VO, + b ///T T REOV) Ve — AV, (58)
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where [* and [ represent two different approximation to compute the integrals.
In the equation 58, the term A.V. is an additionnal viscosity term, which looks like the term
we have introduced in section 5.3.

Before going on, we have to precise that the scheme LX is considered validated.

7.1 Subsonic wing

In this test case, we compute a subsonic flow over the ONERA M6 wing, at a free stream Mach

number equal to My, = 0.2, and with no incidence.

The mesh (figure 1) has 27499 nodes and 152096 tetrahedras.

N 7
DI .
uummﬁﬁﬁﬂm%%%’é%!
RKPNAA T st s 28
) NNAVAN gl A
"" VA MH)(//

oo ey
‘V(AVA A A A
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’)’) ) ﬂﬂ“’#‘f’v

il

AN

NN

NI

AN
NN

NN

AN\
AN

NN

D

AN
N

AN
ANAN
N

AN

N
N

AN

AN
AN

N

NN
X

Fig. 1 : Partial view of the mesh of the ONERA M6 wing

First, we plot entropy deviation ¥ along a profile, located at 60% on the wing span (figure 2).

This ¥ is defined by
P/Po

¥ = (0/Pos)”

1 (59)

We recall that ¥ is equal to zero in subsonic Euler computations.

We can notice that the scheme LW-PSI generates quite less numerical entropy than the scheme
LX. This is illustrated by figure 3 where absolute value of ¥ is plotted over the wing. We point

out the difference of numerical entropy at the stagnation point (figure 2).

These more accurate entropy deviation allow to compute drags more precisely. In deed, in this
test case, the drag is theoretically null and the computed drag is ten times less important with
the scheme LW-PSI than with the scheme LX.

February 1999



0.01

Schéme LW-PSI —
Scheme LX ----

0.008

0.006

}
‘
0.004 -}

Entropy deviation

0.002

-0.002
0

0.2 0.4 0.6 0.8 1

Fig. 2 : Comparison of ¥ along a profile
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Fig. 3 : Comparison of absolute entropy deviation

7.2 'Transonic wing

After having computed a subsonic flow over the ONERA M6 wing (section 7.1), we now inves-

tigate the capacities of the scheme LW-PSI to compute a transonic flow.
We use the same mesh as in section 7.1, and we take M., = 0.88 and 6° for the incidence.

We choose to plot two quantities along the wing at the profile located at 60% of the span from
the symmetry plane. These two quantities are the pressure coefficient C}, and entropy deviation
Y.
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Fig. 4 : Comparison of C, along a profile

The C, distributions (figure 4) show that the scheme LW-PSI allow a more precise location of
the shock than the scheme LX. Besides, we can notice that oscillations have been reduced near

the shock, thanks to the additionnal viscous term we have introduced at section 5.3.

Comparison Entropy Deviation 0.8 incidence 6 deg

LW-PS|
Lax Wendroff ----

Entropy deviation
g o o
9 9
5 @
—

Fig. 5 : Comparison of ¥ along a profile

The ¥ distributions (figure 5) show that entropy distributions are significantly more precise
with the scheme LW-PSI than with the scheme LX. This accuracy is certainly provided by the
formulation of the scheme LW-PSI because this formulation takes into account the conservation

of the entropy along streamlines.
We plot now the Mach number distributions along the same profile.

The Mach number distributions (figure 6) show that the scheme LW-PSI has a less viscous
behavior than the scheme LX since Mach numbers are more important for the scheme LW-PSI
than the scheme LX.

We can notice that the schock wave is stronger for the LW-PSI scheme. The C}, and Mach num-

ber distributions show no oscillations around the schock, but non physical spurious oscillations
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Fig. 6 : Comparison of Mach number along a profile

can be observed on the ¥ distribution of the LX scheme although the expectable behavior is
obtained with the LW-PSI scheme.

7.3 Low Mach cylinder

In this test case, we compute a flow over a cylinder with a very low Mach number, M., = 0.01.

Our aim is to show the ability of the scheme LW-PSI to compute nearly uncompressible flows.

We use a two dimensional mesh, with 11880 nodes and 23572 elements.

In figure 7, we plot pressure iso-lines for the flows computed by the two different schemes
(LW-PSI and LX). We compare these iso-lines with those of the analytical incompressible flow
for the same Mach number. Indeed, for such a low Mach number flow, the solution is nearly

incompressible.

Pressure iso-lines Pressure iso-lines

Mach = 0.01 e Mach = 0.01

rrrrrr Potential flow
__ Scheme LW-PSI

Fig. 7 : Pressure iso-lines for schemes LW-PSI (left) and LX (right)
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This comparison (figure 7) show that the behavior of the scheme LW-PSI is quite good for low
Mach number flows although the scheme LX has a poor behavior for such flows. This is likely

due to the use of the van Leer-Lee-Roe matrix in the hyperbolic elliptic decomposition.

Moreover, the two symmetry planes are captured for the LW-PSI flow.

7.4 Subsonic zero-lift aircraft

In this last test case, we compute the flow over a generic aircraft. We take M., = 0.3, in order
to have a subsonic flow and thus no wave drag. Besides, we select the incidence of the flow
such that the lift is null and therefore the vortex drag. Thus, the total drag computed with
this inviscid code has to be null.

We use a mesh with 45387 nodes and 255944 tetrahedras. The simulation includes the fuselage,
wings, stabilizers, nacelles and pylones.

Scheme LW-PSI Scheme LX
z
X
‘ DEV
™ v 0.0015
\ 0.0014
4 0.0013
0.0012
0.0011
P 6.0009
5 0.0008
0.0007
0.0006
0.0005
0.0004
0.0003
N 0.0002
0.0001 N\
0 ‘3
Drag=0.010 Drag=0.018

Fig. 8 : Absolute ¥ over a trimmed aircraft

We plot the absolute entropy deviation over the aircraft (figure 8). As in section 7.1, we can
confirm that the scheme LW-PSI generates quite less entropy than the scheme LX. However,
the computed drag is only 40% lower with the scheme LW-PSI than with the scheme LX. This
is due to the poor quality of the mesh in the neighbourhood of the nacelles.

8 Concluding remarks

We have obtained a code which allows Euler computations over a large Mach number range
since it is good for M, = 0.01 and we have made correct three dimensional computations for
My, = 2. In order to compute nearly hypersonic flows, it will be necessary to extend this

scheme to the Euler equations with chemistery, as it has been done by Descamps and al. [22]
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for the Osher scheme of Dassault Aviation.

The accuracy of the code allows more precise drag computations and more accurate shocks

locations, as it has been shown in sections 7.1 and 7.4.

At this stage, we are satisfied of the additionnal viscous term (section 5.3) we have added to
the initial scheme of Paillére [2]. However we think that this term is not optimal because no
theoritical study have been realised upon this term and thus the added viscosity may not be

optimal.

This code is precise and robust enough to allow an industrial use of this code although we have
to acknowledge that this robustness and this accuracy is achieved at the expense of a higher
cpu cost: at this step of the development of fluctuation splitting methods, we still have to make

a choice between accuracy (scheme LW-PSI) and speed (scheme LX).
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