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Abstract

This paper illustrates asymptotic properties for a response-adaptive de-
sign generated by a two-color, randomly reinforced urn model. The design
considered is optimal in the sense that it assigns patients to the best treat-
ment with probability converging to one. An approach to show the joint
asymptotic normality of the estimators of the mean responses to the treat-
ments is provided in spite of the fact that allocation proportions converge
to zero and one. Results on the rate of convergence of the number of pa-
tients assigned to each treatment are also obtained. Finally, we study the
asymptotic behavior of a suitable test statistic.
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1 Introduction

The present paper is devoted to studying asymptotic properties of sequential,
response-adaptive designs generated by a two-color, generalized Pólya urn that
is reinforced every time it is sampled with a random number of balls that are the
same color as the ball that was extracted. The model is based on the the two-
color randomly reinforced urn studied in Muliere, Paganoni and Secchi (2006a)
and for conciseness we will denote it by the acronym RRU . A RRU generalizes
to discrete or continuous responses the urn models proposed initially in Durham
and Yu (1990) and Li, Durham and Flournoy (1996) for dichotoumus responses,
and which was also applied to select an optimal dosage in Durham, Flournoy
and Li (1998). This work has been stimulated by the fact that a design driven
by a RRU allocates units to the best response with a probability that converges
to one. In the context of a response-adaptive design used to allocate patients in
a clinical trial, this property is desirable from an ethical point of view; for this
reason, the results obtained in this work will be illustrated within a clinical trial
framework. However, the reader should note that response-adaptive designs
are of fundamental importance in many areas of applications, for instance in
industrial problems.

The experimenter has two simultaneous goals: collecting evidence to de-
termine the superior treatment, and biasing the allocations toward the better
treatment in order to reduce the proportion of subjects in the experiment that
receive the inferior treatment. Patients enter the experiment sequentially and
are allocated randomly to a treatment, according to a rule that depends on
the previous allocations and the previous observed responses. A vast number of
adaptive designs have been proposed in recent years; an informed review is found
in Rosenberger and Lachin (2002). Many of them are based on generalized urn
models; see, for instance, Rosenberger (2002), who traces an historical develop-
ment of generalized urn models, their properties and applications in sequential
designs. Although in the past many response-adaptive designs have been fo-
cused on binary responses, more attention recently has been given to continuous
outcomes: among others, we note the procedures proposed by Hu and Zhang
(2004), Atkinson and Biswas (2005) and Zhang and Rosenberger (2006).

Consider a clinical trial conducted to compare two competing treatments,
say B and W , and a response-adaptive design. Indicate with NB(n) and NW (n)
the number of patients allocated through the n-th patient to treatment B and
W , respectively. Many of these designs allocate patients targeting a certain pro-
portion ρ ∈ (0, 1); the proportions of patients NB(n)/n and NW (n)/n allocated
to each treatment converge almost surely to ρ and 1 − ρ, respectively, where
ρ may be ad hoc or may be determined by some optimality criteria which are
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usually a function of the unknown parameters of the outcomes. The adaptive
design considered in this paper is different, since its optimality property is to
assign patients to the best treatment with a proportion that converges almost
surely to 1, while the proportion of patients allocated to the inferior treatment
converges to 0. When the two treatments are equivalent, the design allocates
the proportion of patients with a random limit in [0, 1].

After the specification of the model and the provision of preliminary results
in Section 2, the first part of this work, included in Section 3, is dedicated to the
study of the exact rate of convergence to infinity of the sample sizes NB(n) and
NW (n). Because the treatment given corresponds to the color of the ball that is
drawn, NB(n) and NW (n) also correspond to the number of balls of each color
sampled from a RRU through the n-th draw. Moreover we obtain the order of
convergence of the process representing the proportion of black balls contained
in the urn at every stage.

The asymptotic properties of response-adaptive designs studied in literature
are usually based on the hypothesis that the target allocation ρ is a determined
value (0, 1). In some of those procedures, despite the randomness of the number
of patients NB(n) and NW (n) allocated to treatment B and W , respectively, and
the complex dependence structure of the random variables involved, it has been
proved that joint normality of the estimators of the mean responses based on
the observed responses still holds. An important contribution is given in Melfi
and Page (2000), where they provide a general method to prove consistency and
an easy, general, non-martingale approach to prove asymptotic normality of es-
timators based on adaptively observed allocations. As they show, their method
can be applied to a wide class of adaptive designs targeting an allocation pro-
portion ρ ∈ (0, 1). Although their basic framework covers the adaptive design
considered in this paper, and strong consistency of the adaptive estimators of
the parameters involved is derived from it, their method can’t work for proving
asymptotic normality when ρ is exactly equal to one or has a random behavior
as in our procedure. Therefore, in Section 4, we prove that the joint asymptotic
normality of the estimators of the mean responses still holds, both when the two
treatments are equivalent and when one treatment is superior. The argument
used resorts to a martingale technique that involves the concept of stable con-
vergence; stable convergence is required to obtain the distribution of our test
statistic.

In Section 5, we consider the following hypothesis test: the experimenter
wants to test the null hypothesis that the two treatments are equivalent, in the
sense that the mean responses µB and µW are equal, against the alternative
hypothesis that µB > µW . For this reason, we are interested in the distribution
of the usual test statistic ζ0 for comparing the difference of the means, based
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on the observed responses, both under the null and the alternative hypothesis.
When the target allocation is a value ρ in (0, 1), from the joint normality of
the estimators of the means, it can be deduced using Slutsky’s Theorem, that
the test statistic ζ0 still has an asymptotic normal distribution. Also under the
alternative hypothesis, ζ0 has the same asymptotic noncentrality parameter as
in the classical case in which the sample sizes nB and nW are deterministic. For
a review of the approach to these situations see Hu and Rosenberger (2003) and
Zhang and Rosenberger (2006).

In the response-adaptive procedure considered in this paper, since the limit
allocation is a random variable under the null hypothesis, we can’t apply Slut-
sky’s Theorem to derive the asymptotic normality of the test statistic ζ0 from
the joint normality result of estimators. Notwithstanding this, it is proved that
under the null hypothesis the asymptotic normality of ζ0 holds in this procedure.
The proof uses the stability of the convergence showed in Section 4. Moreover,
under the alternative hypothesis, it is showed that ζ0 is a specific mixture of
normal distributions. A final discussion concludes the paper.

2 Model specification and preliminary results

Let {(YB(n), YW (n)) : n ≥ 1} be a sequence of independent and identically
distributed random response vectors with marginal distributions LB and LW ,
discrete or continuous on R. Consider an urn containing initially b black balls
and w white balls, where b and w are two strictly positive real numbers. With
the arrival of the first patient (n = 1), a ball is drawn at random from the urn
and its color is observed: we define a random variable δ1 that we assume to be
independent of the potential response vector (YB(i), YW (i)) for every i ≥ 1 such
that δ1 = 1 if the extracted ball is black; while δ1 = 0 if the extracted ball is
white. So δ1 is a Bernoulli random variable with parameter Z0 = b/(b + w).
After the ball is extracted, if it is black, it is replaced in the urn together with
u(YB(1)) black balls. Otherwise, if it is white, is replaced in the urn together
with u(YW (1)) white balls, where u is an arbitrary measurable function such that
u(YB(1)) and u(YW (1)) have distribution on a nonnegative and bounded real set.
(Note that u may be chosen as the identity function when the distributions LB

and LW have nonnegative and bounded support).
This process is then reiterated at every instant n+1, n ≥ 1: a ball is extracted

and we define a random variable δn+1 indicating its color: δn+1 = 1 if the ball
extracted is black, while δn+1 = 0 if the ball extracted is white. We always
assume that δn+1 is independent of the potential response vector (YB(i), YW (i))
for every i ≥ n + 1. After the ball is extracted, it is replaced in the urn together
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with
δn+1u(YB(n + 1)) + (1− δn+1)u(YW (n + 1))

balls of the same color. So, given the σ-algebra

Fn = σ (δ1, δ1YB(1) + (1− δ1)YW (1), . . . , δn, δnYB(n) + (1− δn)YW (n)) , (2.1)

δn+1 is Bernoulli distributed with parameter

Zn =
Bn

Bn + Wn
,

where {
Bn = b +

∑n
i=1 δiu(YB(i))

Wn = w +
∑n

i=1(1− δi)u(YW (i)).

We thus generate the following processes: the sequence {δn : n ≥ 1} of Bernoulli
random variables and the sequence {Zn : n ≥ 0} of random variables in [0, 1]
representing the proportion of black balls present in the urn at every stage. Now
the number of black balls and white balls that have been extracted from the urn
through the nth treatment allocation can be written as NB(n) =

∑n
i=1 δi and

NW (n) =
∑n

i=1(1−δi), respectively; clearly NB(n)+NW (n) = n. Also note that
Bn and Wn are the cumulative (transformed) observed responses to treatment
B and W , respectively, adjusted by the initial numbers of balls in the urn. We
call Bn and Wn cumulative responses for short.

Let mB =
∫

u(y)LB(dy) and mW =
∫

u(y)LW (dy). Then from Beggs (2005)
and Muliere, Paganoni and Secchi (2006a), we have the following limit for the
proportion of black balls in the urn:

2.2 Theorem. If mB > mW , then limn→∞ Zn = 1, almost surely.

The RRU model can be used to drive the allocations of a sequential experiment
that is conducted, for instance, to compare two competing treatments in a clin-
ical trial. The allocation procedure is given by the sequence {δn}: when δn is
1, allocate the n-th patient to the first treatment, say treatment B, and let the
random variable YB(n) be the potential response of n-th patient to treatment B;
when δn is 0, allocate the n-th patient to the second treatment, say treatment
W , and let YW (n) be the potential response of n-th patient to treatment W .
Only one response will be actually observed, so we write the response Y (n) of
n-th patient as δnYB(n) + (1− δn)YW (n).
Suppose now that the sequences of responses {YB(n)} and {YW (n)} have finite
means µB =

∫
yLB(dy) and µW =

∫
yLW (dy) and that, for instance, the treat-

ment B is preferred to the treatment W if µB > µW . Then, choosing a function
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u such that µB > µW if and only if mB > mW and µB = µW if and only if
mB = mW , Theorem 2.2 ensures that a RRU -design allocates patients to the
superior treatment with probability converging to one as n goes to infinity.

2.3 Remark. As suggested in Muliere, Paganoni and Secchi (2006b), the
existence of a bounded function u such that∫

yLB(dy) >

∫
yLW (dy) ⇔

∫
u(y)LB(dy) >

∫
u(y)LW (dy)

and ∫
yLB(dy) =

∫
yLW (dy) ⇔

∫
u(y)LB(dy) =

∫
u(y)LW (dy)

is guaranteed by the theory of utility. In the situation illustrated in this paper,
the experimenter expresses a preference among the distributions of responses in
terms of the ordering of their means. Indeed, he may express also a different
preference between LB and LW : the theory of utility gives conditions which
guarantee the existence of a bounded utility function u such that the expected
utilities of the elements of a class of probability distributions on R are ordered
in the same way as a certain preference among the probability distributions; see,
for instance, Berger (1980).

2.1 Preliminary results

The process {Zn : n ≥ 0} of the proportions of black balls is of primary interest
for the study of stochastic processes generated by this particular generalization of
Pólya urn. Moreover, in a RRU -design, Zn represents the conditional probability
of allocating the nth patient to treatment B; the asymptotic behavior of this
process is also essential for analyzing the asymptotic normality of estimators for
these designs, as it will be made clear in the next sections.

Muliere, Paganoni and Secchi (2006a) provide the following general result:

2.4 Proposition. The sequence of proportions {Zn : n ≥ 0} is eventually
a bounded super or sub-martingale; therefore, it converges almost surely to a
random limit Z∞ in [0, 1].

When the the urn is reinforced by the random variables u(YB(n)) and u(YW (n))
with means mB and mW such that mB > mW , then, as given by Theorem 2.2,
the limit Z∞ is equal to 1 almost surely.

Consider the case in which LB = LW so that the urn reinforcements u(YB(n))
and u(YW (n)) have the same distribution, say µ. In May, Paganoni and Secchi
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(2005), it is showed that in this situation P (Z∞ = x) = 0 for every x ∈ [0, 1];
however, the exact distribution of Z∞ is unknown except in a few particular
cases. When µ is a point mass at a non-negative real number m, the RRU de-
generates to Polya’s urn, in which case Z∞ has a Beta(b/m, w/m) distribution.
For the general RRU with LB = LW , Aletti, May and Secchi (2006), charac-
terize the distribution of Z∞ as the unique continuous solution, satisfying some
boundary conditions, of a specific functional equation in which the unknowns
are distribution functions on [0, 1].

When mB = mW , it may happen that
∫

u(y)kLB(dy) 6=
∫

u(y)kLW (dy) for
some k ≥ 2 and then u(YB(n)) and u(YW (n)) may have different distributions;
this is of particular interest in this paper, since it corresponds to a situation
in which the two treatments are considered equivalent. In the next section, we
prove a fundamental property of Z∞ when mB = mW , that is, P (Z∞ = 1) =
P (Z∞ = 0) = 0 in this case.

The following preliminary result regarding the limiting sample sizes on B and
W is important for showing the asymptotic normality of the common statistic
for testing differences in mean responses:

2.5 Proposition. NB(n) and NW (n) converge to infinity almost surely as
n →∞.

Proof. Following Theorem 2 in Muliere, Paganoni and Secchi (2006a), if τ =
inf{n ≥ 1 : δn = 0}, then, for k ≥ 1,

P (τ > k) ≤ b

b + w

b + β

b + w + β
. . .

b + (k − 1)β
b + w + (k − 1)β

= exp

(
k−1∑
n=0

log
(

b + nβ

b + w + nβ

))
.

Since
∑∞

n=0 log[(b + nβ)/(b + w + nβ)] = −∞, it follows that limk→∞ P (τ >

k) = 0, and hence P (τ < ∞) = 1. From the strong Markov property we obtain
that

P (δn = 0, i.o.) = 1,

and then NW (n) →∞, a.s. The proof for NB(n) is similar.

Now let

τn = inf{k :
k∑

i=1

δi = n} and νn = inf{k :
k∑

i=1

(1− δi) = n};

thus, τn = j indicates that the nth observed response to treatment B occurs for
patient j, and {YB(τn)} is the subsequence of the potential responses {YB(n)}
that is given by the observed responses to B; similarly, νn = j indicates that the
nth observed response to treatment W occurs for patient j, and the subsequence
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of potential responses {YW (n)} to W that are given by the observed responses is
{YW (νn)}. Melfi and Page (2000) prove independence properties of the sequences
of observed responses, so that the strong consistency of estimators based on those
sequences can be deduced:

2.6 Proposition. The sequences {YB(τn)} and {YW (νn)} are i.i.d. with
distributions LB and LW , respectively, and are independent one of each other.

As a consequence of this proposition, we can model the observed responses of
random sizes NB(n) and NW (n) to treatments B and W as samples from two
i.i.d. populations generated by LB and LW , respectively. Assume that LB and
LW depend on unknown parameters θB and θW . We have the following

2.7 Corollary. Suppose that θ̃B and θ̃W are estimators of θB and θB based
on n-dimensional samples from two independent i.i.d. sequences generated by LB

and LW , respectively. Let θ̂B and θ̂W be the correspondent estimators computed
on observed responses through time n in the RRU -design (which have random
sample sizes NB(n) and NW (n), respectively). If θ̃B and θ̃W converges a.s. to
θB and θW , respectively, then also θ̂B and θ̂W converge a.s. to θB and θW .

3 Rates of convergence of NB(n) and NW (n)

The aim of this section is to study the rate of convergence to infinity of the
sample size sequences NB(n) =

∑n
i=1 δi and NW (n) =

∑n
i=1(1 − δi) defined in

Section 2. We will also obtain the rate of the convergence of the process Zn

given in Theorem 2.2. First we have the following result:

3.8 Proposition.

lim
n→∞

NB(n)
n

= Z∞, a.s. and lim
n→∞

NW (n)
n

= 1− Z∞, a.s., (3.9)

where Z∞ is the limit of the process {Zn} representing the proportion of black
balls in the urn.

Proof. Since E(δi| Fi−1) = Zi−1 and (from Proposition 2.5)
∑n

i=1 δi → ∞ al-
most surely, it follows from from Levy’s extension of the Borel-Cantelli Lemma
that, almost surely,

n∑
i=1

Zi−1 →∞ and
∑n

i=1 δi∑n
i=1 Zi−1

→ 1.

Using Cesaro’s Lemma, limn→∞ Zn = Z∞, almost surely, implies that (
∑n

i=1 Zi−1)/n

converges to Z∞; hence also (
∑n

i=1 δi)/n converges almost surely to Z∞.
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The next theorem gives the exact rate of convergence to infinity of NB(n) and
NW (n).

3.10 Theorem. If mB > mW , then

(i) limn→+∞
NB(n)

n
= 1, a.s.;

(ii) there exist a random variable η2 with P (0 < η2 < ∞) = 1 such that

lim
n→+∞

NW (n)
nmW /mB

= η2, a.s.

If mB = mW , then P (Z∞ = 0) = P (Z∞ = 1) = 0 and there exist two random
variables λi

2, i = 1, 2, with P (0 < λi
2 < 1) = 1, such that

(iii) limn→+∞
NB(n)

n
= λ2

1, a.s.;

(iv) limn→+∞
NW (n)

n
= λ2

2, a.s..

Part (i) of Theorem 3.10 follows immediately from Theorem 2.2 and Proposition
3.8, since when mB > mW , then Z∞ = 1 almost surely and NB(n)/n converges
to Z∞. To obtain the rest of the Theorem, that is the main result of this section,
we will first prove an auxiliary result concerning the relative convergence rates
of the cumulative responses to treatments B and W which holds both when
mB = mW and mB > mW .

3.11 Theorem. Bn/(Wn
mB/mW ) converges almost surely to a random vari-

able with support in (0,∞).

In order to prove Theorem 3.11 we need the following two Lemmas.

3.12 Lemma. If mB > mW , then

(i) the rate of convergence of Bn is n, almost surely;

(ii) the rate of convergence of Wn is greater then nγ for some real costant
γ > 0, almost surely.

If mB = mW , then

(iii) the rate of convergence of Bn + Wn is n, almost surely;

(iv) the rates of convergence of both Bn and Wn are greater than nγ, almost
surely, for some real costant γ > 0.
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Proof.

(i) This is an immediate consequence of Corollary 2.7 and of the fact that
when mB > mW then NB(n)/n → 1 (using Proposition 3.8 and Theorem
2.2):

lim
n→+∞

Bn

n
= lim

n→+∞

b

n
+
∑n

i=1 δiu(YB(i))
n

= lim
n→+∞

b

n
+
∑n

i=1 δiu(YB(i))
NB(n)

NB

n
= mB,

almost surely.

(ii) Let’s consider the conditional increments of the process Bn/Wn
κ, for some

κ > mB/mW .

E
(

Bn+1

Wn+1
κ −

Bn

Wn
κ |Fn

)
=

Bn

Bn + Wn
E
(

Bn + u(YB(n + 1))
Wn

κ − Bn

Wn
κ |Fn

)
+

Wn

Bn + Wn
E
(

Bn

(Wn + u(YW (n + 1)))κ
− Bn

Wn
κ |Fn

)
=

Bn

Bn + Wn

E(u(YB))
Wn

κ +

+
WnBn

Bn + Wn
E
(

1
(Wn + u(YW (n + 1)))κ

− 1
Wn

κ |Fn

)
.

By a Taylor expansion of the function f(x) = 1/(a+x)κ with x = u(YW (n+
1)) and a = Wn, we can choose a constant c such that whenever Wn ≥ 1

E
(

1
(Wn + u(YW (n + 1)))κ

|Fn

)
≤ 1

Wn
κ −

κ

Wn
κ+1

(
E(u(YW ))− c

Wn

)
.

Thus we obtain that

E
(

Bn+1

Wn+1
κ −

Bn

Wn
κ |Fn

)
≤ Bn

Bn + Wn

1
Wn

κ

(
E(u(YB))− κE(u(YW )) +

κc

Wn

)
.

(3.13)

From inequality (3.13), note that if κ > E(u(YB))/E(u(YW )), then the
process Bn/Wn

κ is (eventually) a positive supermartingale, and then it
converge almost surely to a finite limit. Since from part (i) of the Lemma
Bn/n → mB a.s., it follows that also n/Wn

κ converges almost surely to a
finite limit. Hence, for every ε > 0, n/Wn

κ+ε converges a.s. to 0. This
means that Wn

κ+ε > n eventually, that is, Wn > n
1

κ+ε a.s., eventually.
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(iii) If mB = mW , we have that limn→+∞
Bn + Wn

n
= mB almost surely be-

cause

Bn + Wn

n
= lim

n→+∞

b + w

n
+
∑n

i=1 δiu(YB(i))
n

+
∑n

i=1(1− δi)u(YW (i))
n

= lim
n→+∞

b + w

n
+
∑n

i=1 δiu(YB(i))
NB(n)

NB(n)
n

+

+
∑n

i=1(1− δi)u(YW (i))
NW (n)

NW (n)
n

.

Using Corollary 2.7 and Proposition 3.8, this converges almost surely to
mBZ∞ + mW (1− Z∞). Since mB = mW , this is equal to mB.

(iv) From the part (iii) of the Lemma, it follows that, eventually, Bn + Wn >

n ·mB/2 on a set of probability one. Consequently, at least Bn or Wn are
greater then n ·mB/4; without loss of generality, suppose

Bn > n ·mB/4, a.s., eventually. (3.14)

Further, using the same argument as in the proof of part (ii) of this Lemma,
we can obtain from equation (3.13) that for k > 1 the process Bn/Wn

κ

is (eventually) a positive supermartingale, and then it converges almost
surely to a finite limit. This implies that, for every ε > 0, Bn/Wn

κ+ε

converges to 0 and then

Bn/Wn
κ+ε < 1, a.s., eventually. (3.15)

Combining (3.14) and (3.15) we deduce that n/Wn
κ+ε · mB/4 < 1, a.s.,

that is, Wn > n
1

κ+ε · (mB/4)
1

κ+ε a.s., eventually.

The second Lemma is a general fact about convergence of random sequences; for
lack of a better reference, see Lemma 3.2 in Pemantle and Volkov (1999).

3.16 Lemma. Let {ξn : n ≥ 0} be a random sequence that is measurable
with respect to a filtration {Fn}. Define

∆n = E(ξn+1 − ξn|Fn); Qn = E((ξn+1 − ξn)2|Fn).

If
∑

n ∆n < +∞ and
∑

n Qn < +∞ on a set of probability one, then ξn converges
to a finite random variable almost surely as n goes to infinity.

Proof of Theorem 3.11. We apply Lemma 3.16 to the process

ξn = log
Bn

Wn
mB/mW
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in order to prove that it converges almost surely to a finite random variable.
This implies that Bn/(Wn

mB/mW ) converges almost surely to a strictly positive
and finite random variable.

∆n = E (ξn+1 − ξn|Fn) = E (log Bn+1 − log Bn|Fn)− mB

mW
E (log Wn+1 − log Wn|Fn)

=
Bn

Bn + Wn
E (log(Bn + u(YB(n + 1)))− log Bn|Fn)

− mB

mW

Wn

Bn + Wn
E (log(Wn + u(YW (n + 1)))− log Wn|Fn)

=
Bn

Bn + Wn
E

(∫ u(YB(n+1))

0

1
Bn + t

dt|Fn

)

− mB

mW

Wn

Bn + Wn
E

(∫ u(YW (n+1))

0

1
Wn + t

dt|Fn

)
.

By a Taylor expansion of the function f(x) = 1/(x + t) we have that, for Bn

sufficiently large, there exist constants c1 and c2 such that for every t

1
Bn

− c2
t

B2
n

≤ 1
Bn + t

≤ 1
Bn

− t

B2
n

+ c1
t2

B3
n

, (3.17)

and similarly for 1/(Wn + t). Hence we obtain

− 1
Bn + Wn

(
h1

Bn
+

h2

W 2
n

)
≤ ∆n ≤

1
Bn + Wn

(
k1

B2
n

+
k2

Wn

)
(3.18)

for some constant k1, k2, h1, h2. Thanks to the rates of convergence of Bn and
Wn shown in Lemma 3.12, we obtain that

∑
n ∆n < +∞, a.s.

Qn = E
(
(ξn+1 − ξn)2|Fn

)
=

Bn

Bn + Wn
E
(
(log(Bn + u(YB(n + 1)))− log Bn)2|Fn

)
+

Wn

Bn + Wn
E
(
(log(Wn + u(YW (n + 1)))− log Wn)2|Fn

)
=

Bn

Bn + Wn
E

(∫ u(YB(n+1))

0

1
Bn + t

dt

)2

|Fn


+

(
mB

mW

)2 Wn

Bn + Wn
E

(∫ u(YW (n+1))

0

1
Wn + t

dt

)2

|Fn

 .

Since, for positive t,
1

Bn + t
≤ 1

Bn
and

1
Wn + t

≤ 1
Wn

, we obtain

12



Qn ≤ E
Bn

Bn + Wn

(
E(u(YB)2)

Bn
2

)
+
(

µB

mW

)2 Wn

Bn + Wn

(
E(u(YW )2)

Wn
2

)
;

hence
∑

n Qn < +∞, a.s.

Proof of Theorem 3.10. Let mB > mW . Observe that

lim
n→+∞

Bn

Wn
mB/mW

= lim
n→+∞

b +
∑n

i=1 δiu(YB(i))

(w +
∑n

i=1(1− δi)u(YW (i)))mB/mW

= lim
n→+∞

∑n
i=1 δiu(YB(i))/NB(n)

(
∑n

i=1(1− δi)u(YW (i))/NW (n))mB/mW

NB(n)

NW (n)mB/mW
.

From Theorem 3.11, we know that this limit is in (0,∞). From Corollary 2.7, we
have that

∑n
i=1 δiu(YB(i))/NB(n) and

∑n
i=1(1 − δi)u(YW (i))/NW (n) converge

a.s. to mB and mW , respectively, and NB(n)/n converges a.s. to 1. So it follows
that also NW (n)mB/mW /n converges a.s. to a random variable in (0,∞). Hence
we obtain part (ii) of the theorem.

Let mB = mW . From Proposition 3.8 we know that, almost surely, NB(n)/n →
Z∞ and NW (n)/n → 1−Z∞. Since, from Theorem 3.11, Bn/Wn converges a.s.
to a limit in (0,+∞), it follows that

Zn =
Bn

Bn + Wn
=

Bn/Wn

Bn/Wn + 1

converges a.s. to a limit in (0, 1), that is,

P (Z∞ = 0) = P (Z∞ = 1) = 0; (3.19)

setting λ1
2 = Z∞ and λ2

2 = 1 − Z∞, we obtain also part (iii) and (iv) of the
Theorem.

Finally we prove a relevant consequence of Theorem 3.10, that is, when
mB > mW , we find the exact order of convergence of the proportion of white
balls in the urn to be the same as was obtained for the proportion of patients
allocated to treatment W in Theorem 3.10(ii).

3.20 Corollary. Let η2 be the random variable given by Theorem 3.10. If
mB > mW , then

lim
n→+∞

1− Zn

nmW /mB−1
=

mW

mB
η2, a.s.

13



Proof.

1− Zn

nmW /mB−1
=

1
nmW /mB−1

Wn

Bn + Wn

=
1

nmW /mB−1

w +
∑n

i=1(1− δi)u(YW (i))
b + w +

∑n
i=1 δiu(YB(i)) +

∑n
i=1(1− δi)u(YW (i))

=
1

nmW /mB−1

·
w + (

∑n
i=1(1− δi)u(YW (i))/NW (n))NW (n)

b + w + (
∑n

i=1 δiu(YB(i))/NB(n))NB(n) + (
∑n

i=1(1− δi)u(YW (i))/NW (n))NW (n)

=
w/nmW /mB +

∑n
i=1(1− δi)u(YW (i))/NW (n) ·NW (n))/nmW /mB

(b + w)/n +
∑n

i=1 δiu(YB(i))/NB(n) ·NB(n)/n +
∑n

i=1(1− δi)u(YW (i))/NW (n) ·NW (n)/n
.

Now, using Corollary 2.7 and Theorem 3.10, the numerator of the last equal-
ity converges almost surely to η2 mW , while the denominator converges almost
surely to mB.

3.21 Remark. Theorem 3.11 has been inspired by some ideas contained in
Pemantle and Volkov (1999). Actually, even when mB > mW , Theorem 3.11
doesn’t follow from their Lemma 3.5 readapted to our case, which would assert
that log Wn/ log Bn → mW /mB as n → +∞, almost surely. As a counterexam-
ple consider the case in which the rate of convergence of Bn is n, while the rate
of convergence of Wn is nmW /mB log n. (This is also a counterexample to the
fact that their true Theorem 2.2 is not a consequence of their Lemma 3.5.)

4 Asymptotic normality

Consider estimation of the means µB and µW of the responses to treatments. We
define the following estimators based on the observed responses through patient
n, with random sample sizes NB(n) and NW (n), respectively:

ŶB(n) =
∑n

i=1 δiYB(i)
NB(n)

and ŶW (n) =
∑n

i=1(1− δi)YW (i)
NW (n)

. (4.22)

Corollary 2.7 and the strong law of large numbers ensure that the (4.22) are
strongly consistent. In this section we will show that these estimators, appropri-
ately standardized, are jointly asymptotically normal, despite the randomness

14



of NB(n) and NW (n), their dependence, and the fact that they don’t satisfy the
classical assumption, as also is required in Theorem 3.2 of Melfi and Page (2000),
that NB(n)/n and NW (n)/n converge in probability to a constant in (0, 1).

Before proceeding, we need to recall the concept of stable convergence, which
was introduced by Renyi (1963) and provides a particularly elegant approach
to martingale central limit theory (see Hall and Heyde, 1980 and Heyde, 1997).
The stability of the convergence in the next result will be essential to our study
of the asymptotic distribution of the test statistic in the next section.

4.23 Definition. Consider a sequences of random vectors Yn = (Y1(n), ..., Yp(n))
on a probability space (Ω,F , P ) that converges in distribution to Y = (Y1, ..., Yp);
we say that the convergence is stable if for every point y of continuity for the
distribution function of Y and for every event E ∈ F , the limit

lim
n→∞

P{Y1(n) ≤ y1, ..., Yp(n) ≤ yp, E} = Qy(E)

exists and Qy(E) → P (E) as yi →∞ for i = 1, ..., p.

During this section and the next one, we will assume that the distributions of the
responses LB and LW have finite variances, which we indicate by σB

2 and σW
2.

In the following theorem, we now obtain asymptotic distributions for the two-
dimensional potential response process using three different standardizations.

4.24 Theorem.

(a) Assume H0 : µB = µW is true; then the standardized two-dimensional
process of potential responses

Qn =
(

1
σB

∑n
i=1 δi(YB(i)− µB)√

n
,

1
σW

∑n
i=1(1− δi)(YW (i)− µW )√

n

)
(4.25)

converges stably in distribution to the normal mixture vector (N1

√
Z∞, N2

√
1− Z∞),

where N1 and N2 are independent standard normal variables, independent
of the limit of the proportion of black balls Z∞.

(b) Assume H1 : µB > µW is true; then the standardized two-dimensional
process of potential responses

Qn =
(

1
σB

∑n
i=1 δi(YB(i)− µB)√

n
,

1
σW

∑n
i=1(1− δi)(YW (i)− µW )√

nµW /µB

)
(4.26)

converges stably in distribution to the normal mixture vector (N1, η
2N2),

where η2 is the random variable defined in Theorem 3.10 and N1 and N2

are independent standard normal variables, independent of η2.
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(c) Under both the null and the alternative hypothesis, the standardized two-
dimensional process of potential responses ∑n

i=1 δi(YB(i)− µB)√∑n
i=1 δi

2(YB(i)− µB)2
,

∑n
i=1(1− δi)(YW (i)− µW )√∑n
i=1(1− δi)2(YW (i)− µW )2


converges in distribution to a standard Gaussian vector N (0, I2).

Proof. Consider the filtration {Fn} given by equation (2.1), with F0 being the
trivial σ-field. The components of processes (4.25) and (4.26) are martingales,
since YB(i) and YW (i) are independent of Fi−1 and of δi:

E (δi(YB(i)− µB)|Fi−1) = E(YB(i)− µB)E (δi|Fi−1) = 0, (4.27)

E ((1− δi)(YW (i)− µW )|Fi−1) = E(YW (i)− µW )E ((1− δi)|Fi−1) = 0,

for every i ≥ 1.
Assume first that µB = µW . We apply Theorem 12.6 of Heyde (1997) to the

two-dimensional martingale of potential responses

Sn =

(
1

σB

n∑
i=1

δi(YB(i)− µB),
1

σW

n∑
i=1

(1− δi)(YW (i)− µW )

)

with non-random normalizing vector kn = (
√

n,
√

n). Because δi(1 − δi) = 0,
the quadratic variation matrix [S]n is diagonal:

[S]n = diag

(
1

σB
2

n∑
i=1

δi
2(YB(i)− µB)2,

1
σW

2

n∑
i=1

(1− δi)2(YW (i)− µW )2
)

.

We need to verify the following three conditions:

(i)
1√
n

maxi≤n |δi(YB(i)−µB)| →P 0 and
1√
n

maxi≤n |(1−δi)(YW (i)−µW )| →P

0;

(ii) diag
(

1
σB

2

∑n
i=1 δi

2(YB(i)− µB)2

n
,

1
σW

2

∑n
i=1(1− δi)2(YW (i)− µW )2

n

)
→P

s2,

where s2 is a random nonnegative definite matrix;

(iii) E
(

diag
(

1
σB

2

∑n
i=1 δi

2(YB(i)− µB)2

n
,

1
σW

2

∑n
i=1(1− δi)2(YW (i)− µW )2

n

))
→

Σ , where Σ is a positive definite matrix.
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Condition (i) can be verified using the Chebycev inequality. Condition (ii)
is a consequence of Corollary 2.7 and of Proposition 3.8:

diag
(

1
σB

2

∑n
i=1 δi

2(YB(i)− µB)2

n
,

1
σW

2

∑n
i=1(1− δi)2(YW (i)− µW )2

n

)
= diag

(
1

σB
2

∑n
i=1 δi(YB(i)− µB)2

NB(n)
NB(n)

n
,

1
σW

2

∑n
i=1(1− δi)(YW (i)− µW )2

NW (n)
NW (n)

n

)
−→ s2 = diag (Z∞, 1− Z∞) , a.s.

Condition (iii) is verified observing that the process {Zn} converges also in mean
and then, using Cesaro Lemma,

∑n
i=1 E(Zi−1)/n → E(Z∞) and

∑n
i=1 E(1− Zi−1)/n →

E(1− Z∞); hence

E
(

diag
(

1
σB

2

∑n
i=1 δi

2(YB(i)− µB)2

n
,

1
σW

2

∑n
i=1(1− δi)2(YW (i)− µW )2

n

))
= diag

(∑n
i=1 E(δi)

n
,

∑n
i=1 E(1− δi)

n

)
= diag

(∑n
i=1 E(Zi−1)

n
,

∑n
i=1 E(1− Zi−1)

n

)
−→ Σ := diag (E(Z∞),E(1− Z∞)) .

We can then conclude from Theorem 12.6 of Heyde that the normalized martin-
gale kn · Sn = Qn converges stably in distribution to the normal mixture with
joint characteristic function

ϕ(t1, t2) = E exp
(
−1

2
(t1, t2) s2 (t1, t2)

T

)
= E exp

(
−1

2
(
t1

2Z∞ + t2
2(1− Z∞)

))
,

that is assertion (a). Since, from Theorem 3.10, P{Z∞ = 0} = P{Z∞ = 1} = 0,
we have that det(s2) > 0 a.s., and so we also obtain assertion (c) under the null
hypothesis.

Assume now that µB > µW . Condition (iii) of Theorem 12.6 of Heyde is not
easy to verify in this case; for this reason we use the Cramer-Wold device. Let
c = (c1, c2)′ be a vector of real constants, and consider

Sc(n) = c1
1

σB

∑n
i=1 δi(YB(i)− µB)√

n
+ c2

1
σW

∑n
i=1(1− δi)(YW (i)− µW )√

nmW /mB

.

Since equation (4.27) holds, Sc(n) is a martingale; consider the martingale array
differences:

Xni
c = c1

1
σB

δi(YB(i)− µB)√
n

+ c2
1

σW

(1− δi)(YW (i)− µB)√
nmW /mB

, i = 1, . . . , n

and the σ-fields Fni = σ(δ1, δ1YB(1) + (1 − δ1)YW (1), . . . , δi, δiYB(i) + (1 −
δi)YW (i)). In order to apply Theorem 3.2 of Hall and Heyde (1980), we need to
verify the following three conditions:
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(i) max1≤i≤n|Xni
c| →P 0;

(ii)
∑n

i=1(Xni
c)2 converges a.s. to a strictly positive random variable;

(iii) E
(
max1≤i≤n(Xni

c)2
)

is bounded in n.

Condition (i) can be verified by observing that

max1≤i≤n|Xni
c| ≤ c1

1
σB

max1≤i≤n |
(YB(i)− µB)√

n
| +c2

1
σW

max1≤i≤n|
(YW (i)− µW )√

nmW /mB

| ;

using the Chebycev inequality for both members of the sum, we obtain that they
converge to zero in probability. Since δi(1− δ1) = 0, we have that

n∑
i=1

(Xni
c)2 =

n∑
i=1

(
c1

2 1
σB

2

δi
2(YB(i)− µB)2

n
+ c2

2 1
σW

2

(1− δi)2(YW (i)− µB)2

nmW /mB

)
= c1

2 1
σB

2

∑n
i=1 δi(YB(i)− µB)2

NB(n)
NB(n)

n
+ c2

2 1
σW

2

∑n
i=1(1− δi)(YW (i)− µW )2

NW (n)
NW (n)

nmW /mB
;

using Proposition 2.7 and Theorem 3.10, this converges to c1
2 + c2

2η2, proving
condition (ii).

Finally we observe that

E(max1≤i≤n(Xni
c)2) ≤ c1

2 1
σB

2
E
(

max1≤i≤n
(YB(i)− µB)2

n

)
+ c2

2 1
σW

2
E
(

max1≤i≤n
(YW (i)− µW )2

nmW /mB

)
,

and it can be proved that both terms converge to 0 for n → +∞, yielding also
condition (iii). In fact, if LB and LW are distributions with bounded support,
this is immediate; otherwise we can compute the distribution function and then
the density of YT = max1≤i≤n(YT (i) − µT )2, T = B,W ; inverting the order
of limit and expectation, we obtain the convergence to 0 since the distribution
functions of LB and LW are in [0, 1).

Now, from Theorem 3.2 of Hall and Heyde, it follows that

Sc(n) −→d Zc (stably), (4.28)

where Zc has characteristic function ϕZc(t) = E exp(−1
2(c1

2 + c2
2η2)t2). This

means that Zc = c1N1 + c2N2η, where N1 and N2 are independent standard
normal variables, independent of η. Using the Cramer-Wold device, the proof of
part (b) of the Theorem is concluded. The remaining part (c) follows from the
definition of stable convergence as in Theorem 12.6 of Heyde (1997).
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4.29 Remark. It is interesting to note that when the distributions of the
sequences {YB(n)} and {YW (n)} belong to exponential families, it follows that
the components of the martingale Sn are the score functions, that is, the par-
tial derivatives, on µB and µW respectively, of the logarithm of the likelihood
function Ln(µB, µW ) associated with all the observations until time n. In this
interpretation the quadratic variation matrix [S]n represents the observed Fisher
information.

We can now prove the joint asymptotic normality of estimators (4.22).

4.30 Theorem. Under the null and the alternative hypotesis, the joint vector(√
NB(n)

(
ŶB(n)− µB

)
,
√

NW (n)
(
ŶW (n)− µW

))
converges in distribution to a Gaussian vector N (0,Ξ), with Ξ = diag (σB

2, σW
2).

Proof. Observe that ∑n
i=1 δi(YB(i)− µB)√∑n
i=1 δi

2(YB(i)− µB)2
,

∑n
i=1(1− δi)(YW (i)− µW )√∑n
i=1(1− δi)2(YW (i)− µW )2


=


(
ŶB(n)− µB

)
NB(n)√∑n

i=1 δi(YB(i)− µB)2
,

(
ŶW (n)− µW

)
NW (n)√∑n

i=1(1− δi)(YW (i)− µW )2


=

 √
NB(n)

(
ŶB(n)− µB

)
√∑n

i=1 δi(YB(i)− µB)2/NB(n)
,

√
NW (n)

(
ŶW (n)− µW

)
√∑n

i=1(1− δi)(YW (i)− µW )2/NW (n)

 .

From Theorem 4.24 (c), this vector converges to a standard Gaussian vector
N (0, I2). Using Corollary 2.7, the denominators of the last equation converge
almost surely to σB

2 and σW
2, respectively. Then, from Slutsky’s Theorem, we

obtain the thesis.

5 Testing hypothesis

In this section we consider the hypothesis test

H0 : µB = µB versus H1 : µB > µW .

We characterize the classical statistic for two samples {YB(n)} and {YW (n)},
i.i.d. and with law LB and LW , respectively, when applied to the response-
adaptive design that motivates this paper.
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First consider the usual test statistic observed in a fixed design with sample
sizes nB and nW , respectively:

ζ0 =
ȲB(nB)− ȲW (nW )√

σB
2

nB
+

σW
2

nW

, (5.31)

where ȲB(nB) and ȲW (nW ) are the sample means. Suppose that, for some
ρ ∈ (0, 1), nB/(nB + nW ) → ρ, nW /(nB + nW ) → 1 − ρ as nB and nW → ∞;
then from the classical central limit theorem:(√

nB

σB

(
ȲB(nB)− µB

)
,

√
nW

σW

(
ȲW (n)− µW

))
−→d N (0, I). (5.32)

We can deduce that ζ0 converges in distribution to a standard normal random
variable under the null hypothesis, while it is asymptotically normal with non-
centrality parameter

φ =
µB − µW√
σB

2

nB
+

σW
2

nW

≈
√

n
µB − µW√
σB

2

ρ
+

σW
2

1− ρ

(5.33)

under the alternative hypothesis.
Now consider a response-adaptive procedure with random sample sizes such

that NB(n)/n → ρ and NW (n)/n → (1 − ρ), where ρ is a determined value in
(0, 1), even if unknown a priori. If the result (5.32), with NB(n) and NW (n)
replacing nB and nW , still holds, it can be deduced, similarly to the classical
case and using Slutsky’s Theorem, that the test statistic ζ0 (with NB(n) and
NW (n) replacing nB and nW ), still has asymptotic normal distribution, and the
same asymptotic noncentrality parameter under the alternative hypothesis.

Examine now the RRU -design considered in this paper: under the null hy-
pothesis NB(n)/n and NW (n)/n converge to random limits: Z∞ and (1− Z∞),
respectively. So we can’t apply Slutsky’s Theorem and we can’t derive the
asymptotic normality of the test statistic ζ0 from the joint normality result
proved in Theorem 4.30. Notwithstanding this, the asymptotic normality of ζ0

holds in this procedure, as it will be proved in Theorem 5.34.
Also, under the alternative hypothesis we find a different situation: NB(n)/n →

1 and NW (n)/n → 0, almost surely. This implies that, asymptotically, ζ0(n) car-
ries information about the value of the mean of one only treatment. Notwith-
standing this loss of balance, the use of the test statistic ζ0 is still reasonable
because the rates of NB(n) and NW (n) carry information about the difference
between µB and µW .
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5.34 Theorem. The random process

ζ(n) =
ŶB(n)− ŶW (n)− (µB − µW )√

σB
2

NB(n)
+

σW
2

NW (n)

(5.35)

converges in distribution to a standard normal variable, both under the null and
under the alternative hypothesis.

Proof. First case: assume H0 true. Suppose first σB
2 = σW

2 = σ2. We shall
prove preliminary that ŶB(n)− µB

σ

√
1

NB(n)
+

1
NW (n)

,
ŶW (n)− µW

σ

√
1

NB(n)
+

1
NW (n)

 −→d
(
N1

√
1− Z∞, N2

√
Z∞

)
,

(5.36)
where N1, N2 and Z∞ are as in the assertion (a) of Proposition 4.24. Rewrite
the first component as follows:

ŶB(n)− µB

σ

√
1

NB(n)
+

1
NW (n)

=
1
σ

∑n
i=1 δi(YB(i)− µB)

NB(n)

√
NB(n)NW (n)

n

=
1
σ

∑n
i=1 δi(YB(i)− µB)√

n

√
n

NB(n)
− 1.

From Proposition 4.24 (a), we have that

S1(n) =
1
σ

∑n
i=1 δi(YB(i)− µB)√

n
−→d N1

√
Z∞ (stably);

using Theorem 3.1 of Hall and Heyde (1980), this implies that for any bounded
r.v. X, E (exp(itS1(n))X) −→ E(exp(−1

2Z∞t2)X), for any real t. Let X =

exp(iu
√

1−Z∞
Z∞

); it follows that the joint characteristic function of
(
S1(n),

√
1−Z∞

Z∞

)
converges to that of

(
N1

√
Z∞,

√
1−Z∞

Z∞

)
. Since

√
n

NB(n)
− 1 converges a.s. to√

1−Z∞
Z∞

, using Slutsky’s Theorem we obtain that

S1(n)
√

n

NB(n)
− 1 =

1
σ

∑n
i=1 δi(YB(i)− µB)√

n

√
n

NB(n)
− 1 −→d N1

√
1− Z∞,

completing the assertion (5.36) for the first component. Similarly, we can ob-
tain convergence of the second component in assertion (5.36) and their joint
convergence stably in distribution then follows from Proposition 4.24 (a).
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Thus, (5.36) ensures that

ζ(n) =
ŶB(n)− µB

σ

√
1

NB(n)
+

1
NW (n)

− ŶW (n)− µW

σ

√
1

NB(n)
+

1
NW (n)

−→d N1

√
1− Z∞−N2

√
Z∞.

The thesis then is obtained, since N1 and N2 are independent standard normal
r.v., independent of Z∞:

P{N1

√
1− Z∞−N2

√
Z∞ ≤ x} = E(P{N1

√
1− Z∞−N2

√
Z∞ ≤ x|Z∞}) = E(Φ(x)) = Φ(x).

The case σB
2 6= σW

2 is only slightly different. Similarly to (5.36) it can be
proved that ŶB(n)− µB√

σB
2

NB(n)
+

σW
2

NW (n)

,
ŶW (n)− µW√
σB

2

NB(n)
+

σW
2

NW (n)

 (5.37)

−→d

N1

√
σB

2(1− Z∞)
σB

2(1− Z∞) + σW
2Z∞

, N2

√
σW

2Z∞
σW

2Z∞ + σB
2(1− Z∞)

 ,

with N1, N2 and Z∞ as in the assertion (a) of Proposition 4.24, ensuring that
ζ(n) converges in distribution to a standard normal. This complete the proof of
the Theorem under the null hypothesis.

Second case: assume H1 true.

ζ(n) =
ŶB(n)− µB√
σB

2

NB(n)
+

σW
2

NW (n)

− ŶW (n)− µW√
σB

2

NB(n)
+

σW
2

NW (n)

=

=
√

NB(n)
(
ŶB(n)− µB

) 1√
σB

2 + σW
2
NB(n)
NW (n)

−
√

NW (n)
(
ŶW (n)− µW

) 1√
σB

2
NW (n)
NB(n)

+ σW
2

;

since NB(n)/NW (n) → +∞ a.s., from Slutsky’s Theorem the first member of
the sum in the last equation converges to 0 in distribution, while the second
term converges to the limit distribution of

√
NW (n)(ŶW (n) − µW )/σW . Using

again Slutsky’s Theorem and Theorem 4.30, it follows that ζ(n) converges to a
standard normal variable.
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Let us examine the distribution of the test statistic

ζ0(n) =
ŶB(n)− ŶW (n)√

σB
2

NB(n)
+

σW
2

NW (n)

.

When H0 is true, ζ0(n) is equal to ζ(n) and hence, from Theorem 5.34, it is
asymptotically normal. So one can then construct the following critical region
with asymptotic level of significance α:

Cα = {ζ0(n) > z1−α}.

When the alternative hypothesis is true, µB > µW and we have that ζ0(n) =
ζ(n) + φ(n), where

φ(n) =
µB − µW√

σB
2

NB(n)
+

σW
2

NW (n)

(5.38)

is the noncentrality parameter. Let η be the positive square root of η2. The
following Theorem establishes that, in this case, the test statistic ζ0(n) is a
mixture of normal distributions and characterizes its representation.

5.39 Theorem. Under the alternative hypothesis, the conditional distribu-
tion of ζ0(n) given the random variable η2 defined in Theorem 3.10, is asymp-

totically normal with mean equal to
√

nmB/mW η
µB − µW

σW
and unit variance.

Proof. When µB > µW , for Theorem 3.10 we have that NB(n)/nmW /mB →
∞ and NW (n)/nmW /mB → η2 almost surely, and then, for n large, we can
approximate the noncentrality parameter as follows:

φ(n) =
µB − µW√

σB
2

NB(n)
+

σW
2

NW (n)

≈
√

nmW /mB

√
η2

µB − µW

σW
.

We then prove a fact that reinforces the statement of Theorem 5.34, that is:
if µB > µW , then ζ(n) converges in distribution to a normal random variable
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independent of η2. In fact,

ζ(n) =
ŶB(n)− µB√
σB

2

NB(n)
+

σW
2

NW (n)

− ŶW (n)− µW√
σB

2

NB(n)
+

σW
2

NW (n)

=

=
∑n

i=1 δi(YB(i)− µB)

NB(n)

√
σB

2

NB(n)
+

σW
2

NW (n)

−
∑n

i=1(1− δi)(YW (i)− µW )

NW (n)

√
σB

2

NB(n)
+

σW
2

NW (n)

=
∑n

i=1 δi(YB(i)− µB)
σB
√

n

√
n

NB(n)

(√
1 +

σ2
W

σ2
B

NB(n)
NW (n)

)−1

−
∑n

i=1(1− δi)(YW (i)− µW )

σW

√
nmW /mB

√
nmW /mB

NW (n)

(√
1 +

σ2
B

σ2
W

NW (n)
NB(n)

)−1

.

Consider now the two terms of the sum in the last equality above. Applying
Slutsky’s theorem, the first one converges to zero, in fact: using part (b) of The-

orem 4.24, Q1(n) =
∑n

i=1 δi(YB(i)− µB)
σB
√

n
converges in distribution to a normal

random variable, while from Theorem 3.10,
√

n/NB(n) converges a.s. to 1 and(√
1 +

σ2
W

σ2
B

NB(n)
NW (n)

)−1

converges a.s. to zero.
We claim that the second term of the sum converges to a normal random

variable independent of η2. In fact, Q2(n) =
∑n

i=1(1− δi)(YW (i)− µW )

σW

√
nmW /mB

con-

verges stably in distribution to the normal mixture ηN2, where N2 is a standard
normal random variable independent of η2. It follows, using Theorem 3.1 of Hall
and Heyde (1980), that for any bounded random variable X, E(eitQ2(n)X) con-
verges to E(e−1/2η2t)X). If we choose X = eiuη, u ∈ R, we can deduce that the
joint characteristic function of (Q2(n), η) converges to that of (ηN2, η), where
N2 is a standard normal r.v. independent of η. This implies that

η−1Q2(n) −→d N2,

and, since from Theorem 3.10√
nmW /mB

NW (n)

(√
1 +

σ2
B

σ2
W

NW (n)
NB(n)

)−1

converge a.s. to η−1, using Slutsky’s Theorem we have proved the claim. Since
ζ0(n) = ζ(n) + φ(n), this completes the proof.
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5.40 Remark. We conjecture that the random variable η2 is not a constant.
This would prove, for Theorem 5.39, that the test statistic ζ0(n) is not asymptot-
ically normal under the alternative hypothesis. An open problem, also in order
to evaluate theoretically the power the test considered, is the distribution of η2.
The power of the test considered in this section has been studied via simulations
in Paganoni and Secchi (2007).

6 Conclusions

The results obtained lead us to some considerations. In Section 3, we have
proved that the rate of convergence of the number of patients assigned to the
worst treatment is determined by the ratio of mW and mB: the smaller the value
of this quantity, the more slowly NW (n) increases. However for smaller values of
mW /mB, the probability of assigning patients to the best treatment converges
to one faster. On the other hand, the study of the noncentrality parameter in
Section 5 shows that small values of mW /mB cause a lost of the power of the test
for treatment mean differences. This observation generates interesting research
questions regarding the best choice for the function u that determines the values
of mB and mW .

Paganoni and Secchi (2007) and Muliere, Paganoni and Secchi (2006b) have
studied the performance of the response-adaptive urn designs considered in this
paper through numerical simulations, when responses to treatments have normal
distributions. Their results show that such designs look to be a viable alterna-
tive to a standard, randomized, non-adaptive design only when the difference
∆ = µB−µW between the mean responses to treatments have moderate or large
values. In our work we have solved some problems of asymptotic theory gener-
ated by the fact that a RRU -design has a very desirable property that can’t be
approached with the usual methods presented in literature. We wish that this
study may offer a contribution to development of research in response-adaptive,
optimal designs.
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