One dimensional models for blood flow in arteries*

Luca Formaggia®, Daniele Lamponi?, Alfio Quarteroni®®

¢ Institut de Mathématiques (FSB/IMA), Ecole Polytecnique Fédérale de Lausanne
CH-1015 Lausanne, Switzerland

b MOX, Dipartimento di Matematica, Politecnico di Milano
P.zza Leonardo da Vinci 32, 20133 Milano, Italy

July 2002

Abstract

We investigate a family of one dimensional nonlinear systems which model the blood pulse propagation in
compliant arteries. They are obtained by averaging the Navier-Stokes equation on each section of an arterial
vessel and using simplified models for the vessel compliance. Different differential operators arise depending
on the simplifications made on the structural model. Starting from the most basic assumption of pure elastic
instantaneous equilibrium, which provides a well known algebraic relation between intramural pressure and
vessel section area, we analyse in turn the effects of terms accounting for inertia, longitudinal pre-stress and
viscoelasticity.

We also consider the problem of how to account for branching and possible discontinuous wall properties,
the latter aspect is relevant in the presence of prosthesis and stents. To this purpose we employ a domain
decomposition approach and we provide conditions which ensure the stability of the coupling.

We propose a humerical method based on a finite element Taylor-Galerkin scheme combined with operator
splitting techniques, and carry out several test cases for the assessment of the proposed models.

1 Introduction

In this work we will introduce one dimensional models [18, 17, 24] to compute the blood flow and pressure wave
propagation in the human arterial system. These models can be used as an alternative to the more complex three
dimensional fluid-structure models or in conjunction with them in a geometrical multiscale fashion, as explained
in [9]. Their computational complexity is several orders of magnitude lower than that of multidimensional models
based on the coupling of the Navier-Stokes equations for the flow field in the arterial lumen and a mechanical
model for the vessel wall displacement, at the price of providing just averaged information.

However, they give a good description of the propagation of pressure waves in arteries [33, 19], hence they
can be successfully used to investigate the effects on pulse waves of the geometrical and mechanical arterial
modification, due e.g. to the presence of stenoses, or to the placement of stents or prostheses [8, 35, 29]. Their low
computational cost makes it possible not only to study pressure wave propagation on isolated arterial segment,
like in [21, 22, 15, 16], but also the global circulation [30, 14, 15] system, here represented by a network of
one-dimensional models.

In the framework of a multiscale approach, one dimensional models may be coupled on one hand with lumped
parameter models [9, 25] based on system of ordinary differential equations [28, 36] or, on the other hand, to
three dimensional fluid-structure models, as discussed in [6] and in [7]. In the latter case they may also provide
a way of implementing more realistic boundary conditions for 3D calculations. Or, they can be used for the
numerical acceleration of a three dimensional Navier-Stokes solver in a multilevel-multiscale scheme [5].
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In this paper we first recall the basic 1D model for a single artery approximated as a straight cylinder. This model
is represented by a system of two partial differential equations describing the evolution of the section area A and
the mass flux @ along the vessel axis, and, as a consequence, that of the mean pressure p.

The mean pressure is indeed liked to A by a relation derived by the mechanics of the vessel wall structure. In this
paper we will consider two possibilities (among the various presented in the literature, see e.g. [24, 21]). The first
choice corresponds to assuming an instantaneous static equilibrium for the vessel wall and leads to a hyperbolic
system of equations of the type already discussed and analysed in [9, 6, 8] and [24]. In this work we will recall
the main results and further develop the method adopted for the numerical approximation.

When we account for inertia or other mechanical properties such viscoelasticity or longitudinal pre-stress, the
relation between pressure and vessel area is given by a differential equation. However, it is still possible, at
a price of some simplifications in the model, to recover a system of two partial differential equations for the
vessel section area A and the flux @, as already illustrated in [9]. By doing so, it may be easily recognised
that the wall inertia introduces an additional dispersive term, while viscoelasticity contributes with a diffusive
operator. Here, we treat these additional terms by an operator splitting technique and carry out numerical tests to
exemplify their effect on the pressure and flow pattern and to understand their relevance for practical application.
It has been found that for physiological situations inertia and viscoelastic effects are practically negligible, while
accounting for longitudinal pre-stress may have a marked regularising effect when there are abrupt variations in
the mechanical characteristics of the vessel walls.

As a consequence of some vascular pathologies, a tract of an artery has either to be replaced by a prosthesis or
reinforced by the application of a stent (a metallic wire-mesh). In both cases the elastic properties of the vessel
changes abruptly. The problem may be treated by regularising the transition region between the healthy artery and
the prosthesis, as described in [8]. Here we investigate an alternative approach based on domain decomposition
(DD) methods. However, for the problem at hand the interface conditions which might be imposed at the interface
is not unique. We will present several alternatives, justified by physical arguments, and we will show how for a
particular choice it is possible to obtain an energy inequality for the coupled system.

The human arterial system is formed by a network of vessels: even if we approximate each arterial segment by
using a one-dimensional description, we need to find a proper way to account for branching. A DD technique has
been developed also to treat this situation.

The paper layout is as follows. In section 2 we recall the basic 1D nonlinear hyperbolic model for a single
cylindrical straight arterial element. Then we illustrate the Taylor-Galerkin scheme that we use for the numerical
approximation, and analyse how to impose the conditions (physical and numerical) that need to be provided
at the proximal and distal boundaries. In section 3 we present a domain decomposition strategy applied to the
simulation of a stent implant and branching. Interface conditions, which satisfy an energy inequality, are proposed
and the problem of bifurcation with specific angles is treated. In section 4 we consider more complex vessel law
by adding inertia, viscoelastic, longitudinal pre-stress terms at the basic algebraic law. We present a numerical
framework where these additional terms are treated by an operator splitting approach. Finally we present several
numerical results.

2 Thederivation of the basic one dimensional model

One dimensional models provide a simplified description of the flow motion in arteries and its interaction with the
vessel wall displacement. Although being inappropriate to provide details on the flow field (such as recirculation
or oscillating shear stresses), they can however effectively describe the propagative phenomena due to the wall
compliance. They are derived from the Navier Stokes equations

ou

— t(u-V)ju+ %VP —div [p(Vu+ (Vu)")] =0

ot 1)

divu=20

posed on a cylindrical domain £2; which changes in time because of the flow induced wall movement. Here
u = (ug, uy, u) is the fluid velocity, P the pressure, v the kinematic viscosity and p the blood density; (z, y, z)
is a system of Cartesian coordinates.
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Figure 1: The cylindrical domain ;. The cylinder axis is aligned with the coordinate z. The axial sections
z =const. remain circular at all times.

A straightforward derivation of one dimensional models can be found in [24] and is not repeated here. We just
recall the main assumptions behind this derivation.

The domain, €2, is a straight cylinder (with axis oriented along the coordinate 2), as depicted in Fig. 1. Itis
comprised between z = 0 and z = L, L being the vessel length, which is assumed time invariant. We will
also employ cylindrical coordinates, denoted by (r,8, z). We make the assumption of axial symmetry for all
the quantities involved. Furthermore a wall displacement along the radial direction is considered. This has the
implication that each axial section S remains circular at all times, i.e., for z € [0, L] and ¢t > 0 we have

S =5(z,t) ={(r,6,2) : 0<r <R(z,t),0<6< 27},

where R = R(z,t) is the vessel radius. The pressure is taken to be constant on each axial section and we assume
that viscous effects are relevant only near the wall boundary. The component u, is dominant with respect to u,
and u, and furthermore we assume that it may be described in cylindrical coordinates as

r

uz(r,z,t) =u(z,t)s (m) ,

where @ is the mean velocity on each axial section and s : R — R is a velocity profile (also called profile law).

The vessel wall is supposed to be impermeable (although seepage of fluid through the wall may be accounted at
the expense of a slight modification of the equations). By integrating (1) over a generic axial section S(z,t) and
taking advantage of the above assumptions, one obtains the following system
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forall z € (0,L) and ¢ > 0, where the unknowns A, @ and P (in the following we will also use the notation
p= %) denote the section area, averaged volume flux and mean pressure, respectively, and they are defined as

Az, t) = / dz, Q1) = / ws(2,y, 2 t)de dy,
S(Z,t) S(Z,t)

P(z,t) = (A(z, 1)~ P(z,y,z,t)dz dy
S(z,t)

(4)

Note that ) = Au. The coefficient « is the momentum correction coefficient (also called Coriolis coefficient),
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o fs“z‘h:fss dry
Au? A




while K is a resistance parameter related to the viscosity of blood. For a profile law of the form
s(x) = (¢ +2)(1 - 29),

with ¢ > 0, we have a = (¢ + 2)(¢ + 1) L. In particular, for a parabolic profile (Poiseuille flow) one has ¢ = 2
and hence a = %. In blood flow problems a flatter profile (¢ = 9) is more in accordance with experimental
findings. For instance, in [31] the value o = 1.1 is suggested. Also the choice a = 1 is often used since it leads
to considerable mathematical simplifications. As for the resistance parameter, a parabolic profile would provide

K g = 8mv, which is the value normally used.

To close our problem it is necessary to provide an additional relation. This is usually derived from a mechanical
model for the vessel wall displacement. Here we have considered the generalised string model [25], which is
written in the following form
0? .0 _0? _0®
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Here n = R — Ry is the displacement of the vessel wall with respect to a reference configuration, at the initial
time t=0:

+bn=(P = Pwy), z€(0,L),t>0. (5)

Qo ={(r,0,2): 0<r <Ro(2),0<0<2m,0<2< L}

which corresponds to that taken by the vessel when filled by a still fluid a pressure equal to the external pressure
P,,; (here taken constant).

We may identify the physical significance of the various terms. The first one is the inertia term, proportional to
the acceleration of the vessel wall. The second term is a Voigt-type, viscoelastic term, proportional to the radial
displacement velocity. The third term is related to the longitudinal pre-stress state of the vessel. It is indeed well
known that in physiological conditions an artery is subjected to a longitudinal tension. The fourth term is an
another viscoelastic term while the last term is the elastic response function.

We have Vi
A—+/Ao .

puw is the vessel density, ho the wall thickness at the reference configuration, @,b and & three positive coefficients.
In particular,
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where E is the Young modulus of elasticity and « may take the value 1 or 3/4 depending whether the assumption
of uni-axial of plane stresses is made in the derivation of the generalised string model. More details are found in
the cited reference. In this work, we have taken k = 1.

The partial differential equation (5) may be used to link the pressure with the vessel area and its time and spatial
derivatives. However, its direct use in the context of our one dimensional model is rather problematic. The
system formed by (2), (3) and (5) (after having expressed the latter in terms of A by using (6)) would contain two
evolution equations for the same unknowns, the area A.

A 0Q
ate, =0
0Q 0 ([ Q*\  AoP Q
6t+3z(aA +p8z+KRA_O (8)
%y _on _&n _On - _
puho e = Vo1 ~ 9% ~ oo T = (P Fee)

Moreover, it is known that for the problem at hand the elastic response is the dominating effect, while the other
terms are less important. Consequently, a first model is obtained by neglecting all derivatives in (5). Pressure and
area will then be related by an algebraic law of the type

P_Pewt:Bn:/B\/Z;io\/A_o (9)

I



where

B = Ehov/m (10)
is in general a function of z trough the Young modulus E.
In a more general setting, the algebraic relationship may be expressed as

P = Peyy +¢(A;A07:3) (ll)

where we have outlined that the pressure will also depend parametrically on Ay and on a set of coefficients
B = {p1, B2, ---Bn} Which account for physical and mechanical characteristics of the vessel. Both A, and 3 are
given functions of z, while it is assumed that they do not vary in time. It is required that 1 be (at least) a C'!
function of its arguments and be defined for all positive values of A and 4,, whereas the range of variation of 3
will depend on the particular mechanical model chosen. In addition we must have, for all allowable values of A,
Ag and 3, that

0

9% 0, andthat ¥(Ao; Ao, B) = 0.
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Various algebraic relations of the form (11) may be found in the literature for one dimensional models of blood
flow. The interested reader may refer, for instance, to [24] and the references therein. In this work we will adopt
the relation (9), i.e. ¢ = ﬂﬂ;ig/*‘_“, and A reduces to a single parameter 5 = ;. Furthermore, for the sake of
simplicity, and without loss of generality, we will assume P,.,; = 0. We also introduce the quantity
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We will now focus on the differential problem obtained by substituting (9) into (3), and on its numerical solution,
leaving to a later section a discussion on how to implement the other terms in (5) into the model.

which in our case may be readily computed as

2.1 Onedimensional model with algebraic pressure law

By replacing (9) into (3), after some simple manipulations we obtain a system of differential equations for the
evolution of A and () which may be written in conservation form as
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where U = [A, Q]7 are the conservative variables, F = [F4, F]” the corresponding fluxes and B = [B4, Bg|”
a source term. Details may be found in [24]. More precisely, by choosing (9) we obtain
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Both the spatial variation of the reference area Ag and that of the Young’s modulus 3 contribute to the source
term. We also point out that the derivation of the conservative form may be carried out if 5 and A are smooth
functions of z. The flux Jacobian H may be readily computed as



H(U) = — = 1
—aﬁ + mx‘lz ZCKZ

0 1
2B Q]- (16)

The characteristic analysis, whose details may be found in [24], shows that for all allowable U (that is for A > 0)
the system is strictly hyperbolic and the eigenvalues of H are

2
A2 = a% +4/ +ala— 1)% (17)

Where a = 1 the computation of global characteristic variables W (U) = [Wy(U), W2 (U)]? is straightforward

and yields
W, =@ B4
1,2 = A +4 2pA0A4, (18)

see [24]. These relations can be inverted to express the primitive variables in terms of the characteristic ones,
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allowing, in particular, the implementation of boundary and compatibility conditions, as will be briefly discussed
later.

2.2 Numerical Discretisation

We discretize system (13) by a second order Taylor-Galerkin scheme [3]. The derivation here is made sightly
more involved than for the classical systems of conservation laws due to the presence of the source term.

From (13) we may write
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where we have denoted By = ——. We now consider the time intervals (t",¢"*+1), for n = 0,1,..., with

t" = nAt, At being the time step, and we discretize in time using a Taylor series truncated at the second order,
to obtain the following semi-discrete system for the approximation U™ of U(t")

0 At At? OF" 0 OF™
n+l _ n _ -~ n i = 15 » 1 n-> _ X n
U = U Ataz[F+2HB] 2[BU8Z 6z(H 6z)]
At
+At(B"+ BEB" ), n=0,1,..., (22)

where U is provided by the initial conditions and F™ stands for F(U™) (a similar notation holds for H”, B"
and BY).

The space discretisation is carried out using the Galerkin finite elements method. The interval [0, L] is subdivided
into N elements [2;,2;11], with s = 0,...,N and ziy1 = 2z + hs, with Y o' h; = L, where h; is the
local element size. Let V3, be the space of piecewise linear finite element functions and V,, = [V}]?, while
V2 ={vy, € Vi |vy =0atz =0and z = L}. Further, we indicate by

L
(u,v) =/ u-vdz
0
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the L2(0, L) scalar product.

Using the abridged notations

Frw(U) = F(U) + S H(U)B(U)

and At
Brw(U) =B(U) + 7BU(U)B(U);

the finite element formulation of (22) is :

forn > 0, find U;f“ € V, which satisfies the following “interior” equations

At? 5
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A 2
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together with the boundary and compatibility conditions to be discussed in the next section.

A third-order scheme (in time) may be derived following the indications in [1]. However, in our case this would
imply the coupling of the equations for A, and @, that are completely decoupled in (23) . For this reason, we
have considered only the second-order scheme. However, many of the considerations that we develop in this note
will apply also to the third-order version.

The second order Taylor-Galerkin scheme (23) entails a time step limitation. A linear stability analysis [23]
indicates that the following condition should be satisfied

v3 min # ) 24)
<i<N [max(Aq,i, M,it1)

where A ; here indicates the value of A; at mesh node z;. This condition corresponds to a CFL number of ﬁ,
typical of a second order Taylor-Galerkin scheme in one dimension [23].

2.3 Boundary and compatibility conditions

For the flow regimes we are interested in, the two eigenvalues A, and A, have opposite sign, hence the differential
problem needs exactly one boundary condition at z = 0 and one at z = L. Whenever an explicit formulation of
the characteristic variables is available, boundary conditions may be expressed directly in terms of the entering
characteristic variable. For instance, at the boundary z = 0, an admissible boundary condition is

Wi(t) = o1(t), atz=0,t>0, (25)

91 being a given function. If we do not have an explicit expression for the characteristic variables, we might use
instead the pseudo-characteristic approach (see e.g. [26]).

However, (25) is seldom applied directly as the available data is usually given in terms of the physical variables.
For instance, at the inlet (or proximal section) we may wish to impose the pressure or the mass flux (maybe
obtained from measurements). The issue of admissibility of a boundary condition for a general non-linear hyper-
bolic system has been addressed in [4], other references may be found in [11]. In our specific case, the imposition
of average pressure at the inlet z = 0 is admissible.

At the outlet or, better said, distal section, in absence of a specific information on pressure or flux variation,
an important class of boundary conditions, called non-reflecting, are those that allow the simple wave solution
associated to the outgoing characteristic to leave the domain. Following [34] they may be written as

17 (%—?—B(U)):O, 2=L,t>0 (26)



forall ¢ > 0. Here, 1; and 1, are the left eigenvectors associated to A; and A», respectively. When B(U) = 0 they
are equivalent to impose a constant value (typically set to zero) to the incoming characteristic variable. When
B = 0 they account for the variation of the characteristic variables due to the presence of the source term.

Although the differential problem requires only one (physical) boundary condition at each end of the tube, the
solution of the numerical problem requires to prescribe a full set of values for A and @ at the first and last node.
We need two extra relations, which are provided by the differential equations “projected’ along the direction of
the outgoing characteristics, i.e.

oU OF
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These compatibility relations could be discretized by adopting the same basic scheme as the differential problem.
However, this would result in relations that couple the values of A7+" and Q7+ at the vessel ends. Since it is
preferable for computational reasons to maintain two decoupled discrete systems for the evolution of area and
mass flow, we have here resorted to a different set of compatibility relations called “characteristic extrapolation”.
It is based on the well known fact that the characteristic variables satisfy a system of ordinary differential equa-
tions along the characteristic path. Indeed, when B(U) = 0 the characteristic variables are constant along the
characteristics, so a first order approximation of the outgoing characteristic variables at time #+! and z = 0 and
z = L, respectively, is provided by

W HH(0) = W (=A5(0)At), WD) = W(L = A (L)Ab).

A second order approximation might be obtained by following the technique described in [2]. When B(U) # 0
the values of W™ (0) and W' (L) will have to be computed by numerically solving the associated ODE
system. The value of W+ (0) and W*+! (L) together with the boundary conditions effectively complements the
discrete system provided by (23). Again, if the characteristic variables are not available the pseudo-characteristics
may be used instead. Since from now on we assume « = 1, the characteristic variables are given by (18).

3 Domain decomposition approach for prosthesis and bifurcations

When a stent or a prosthesis such as the one depicted in Fig. 2 is implanted to alleviate severe vascular patholo-
gies, it causes an abrupt variation of the elastic properties along the artery. In principle this could be taken
into account by allowing 8 to have a discontinuity at the interfaces between the “healthy” and the prosthetic
artery, while being a smooth function otherwise. Here we will first consider the case of a single discontinuity at
z =T € (0, L). By following the arguments in [35] we may derive that in this situation A (and consequently p)
is (in general) discontinuous at z = T and, consequently, the product A% in equation (3) is not well defined at
this location.

A possibility to overcome this problem is to perform a regularisation of 3, as done in [8]. However, this requires
the use of a fine mesh around I" to properly represent the transition, with a consequent loss of efficiency of the nu-
merical scheme because of condition (24). Furthermore, if the solution is very steep, the Taylor-Galerkin scheme
should be stabilised to avoid spurious oscillations, with the inevitable addition of extra numerical dissipation.

We will here investigate instead an alternative solution provided by the domain decomposition approach (see
[27]). In Fig. 3 we show the vessel  partitioned into two subdomains Q; = (0,T') and Q2 = (T, L). For a
standard system in conservation form, the interface condition would entail the continuity of the fluxes, which
corresponds to the Rankine-Huguenot condition for a discontinuity that does not propagate. Unfortunately, in
view of the previous considerations, it is arguable whether the interface conditions can be derived from the
equations in form (13) since they have been obtained under the requirement that the solution be smooth. Clearly,
the problem concerns only the momentum equation as the continuity equation is originally in conservation form
and, by standard arguments, this yields mass flux continuity across the interface (a fact that agrees with the
physical intuition):

Q] = Qlr+ — Qlr- =0. (28)



Figure 2: Endograft
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Figure 3: Domain decomposition of an artery featuring a discontinuous Young modulus



The jump condition for the momentum equation has to be driven instead by other considerations. A possibility,
investigated in [35], is to consider the limit of a regularised problem. Yet, this procedure is not completely
satisfactory, since the limit will in general depend on the way the regularisation procedure is carried out. Another
possibility often encountered in the literature for similar situations [15] is to impose the continuity of pressure.
Yet, this condition would imply a possible increase of the energy of the system through the discontinuity, a
condition hardly justifiable by physical means. Here we have followed the route of searching for a condition
which would guarantee an energy inequality for the coupled problem.

In Lemma 2.1 of [6] it has been shown that our problem, in the case of a = 1, satisfies the following energy
inequality

t pL t
e(t) + K /0 /0 @dzdt + /0 [Qpi” dt < (0) (29)

where

L A(z,t)
(0= [ GAGOEGD+ [ w00

P J 4,
while p, = p + 3@ is the total pressure and [f]§ = f(L) — £(0).

In the domain decomposition case of Fig. (3), indicating quantities in £2; with the subscript = 1,2, we obtain,
by summing inequality (29) applied to the problem in each subdomain,

t pl t pL t
El(t) + KR/ / ﬂ%dzdt + Ez(t) + KR/ / ﬂgdzdt + / (szt,2|L - Q1pt,1|0)dt+
0J0 0JIT 0

t (30)
/ (Qipe1 — Q2pr2)|rdt < e1(0) +e2(0), t>0.
0

Should we require that
Q1pe,1 > Qapr2 (31)

at the interface point I we would obtain an energy inequality equivalent to that of the single domain case. Then,
by imposing suitable restrictions on the boundary data following the same arguments given in [6], we obtain a
global energy estimate in the form

er(t) +ea(t) + Kn Vot </0Fﬂfdz+/;ﬂgdz) dt] < £1(0) + £2(0) + £(1) (32)

where £ is a quantity which depends only on the boundary data and on ¢. Thanks to (28) condition (31) is in
particular satisfied by the choice p,1 = p¢,2; in view of this results we have chosen the following interface
conditions

{Q1=Q2 onz=T, t>0. (33)

DPt,1 = Pe,2

Therefore the coupled problem reads, in each domain Q;, ¢ = 1, 2.

0Qi | 0 (Q0) | 4%, 1,9 e &
ot | 0z \ A; oz Ba, —

together with the interface condition (33) and appropriate boundary conditions at z = 0 and z = L.

To solve the problems in £2; and €2, separately, we have devised a decoupling technique which, at each time step
from ¢™ to ¢"+1, provides the Taylor-Galerkin algorithm with the values Q;’“ and A?“ of the unknowns at the
interface T, for s = 1, 2. We need to use (33) together with the compatibility conditions, for instance in the form
of the extrapolation of the characteristic variables exiting Q; and Q5 at I'. We indicate with W{ffl and Wz’fjl
the values at z = " and ¢ = "t of the (outgoing) characteristic variables W, and W5, relative to domain €,

10



and -, respectively, obtained by extrapolation from the data at ¢ = ¢™. Using relation (18) we finally obtain a
non linear system for the interface variable, namely

( n+1 n+l _
1 - QZ =0

n+ly 2 n+ly 2

¢(A?+1;A0,1,ﬂ1)+(_1 ) _¢(Ag+1;Ao,2,ﬁz)+(ﬁ> =0
2

n+1

1

A?‘H
b1 1
Yz A /2pA0 - (AP+)e - W{fjl =0
1 ,
gt B2 +1\ % +1
mn 4 n
An+1_ 2pA02(A2 ) _W2,2 =0
\ 2 ’

which is solved by a Newton iteration. Here, 8; and Ao ; indicate the values of § and Ay in ©; and, for the sake
of generality, we have assumed that the reference section area Ao might be discontinuous at z = T". It has been
verified that the determinant of the Jacobian of system (35) is different from zero for all allowable values of the
parameters, thus guaranteeing that the Newton iteration is well-posed. It has also been found that, by using as
starting values the unknowns at time ¢, the method converges in few iterations with a tolerance of 102 on the
relative increment.

atz=T (35)

+4
4

For values of pressure and velocities typical of blood flow the value of pressure is much greater than the kinetic
energy $u?. This explains why many practitioners in the field use continuity of pressure (instead of total pressure)
at the interface without encountering stability problems. This is also true for the interface condition proposed in
[35], which does not satisfy the energy inequality (32) a-priori. Indeed, we have performed some numerical
studies and found that, for conditions akin to the physiological ones, the results obtained by imposing continuity
of pressure, continuity of total pressure or the condition reported in [35] differ less than one percent and do not
affect stability.

A physical argument suggests that the total pressure decreases along the flow direction at ', as a function of the
flow rate. To account for this, one could impose a relation of the type

P2 = P —sign(Q)f(Q), atz=T,t>0

being f a positive monotone function satisfying f(0) = 0. Clearly this condition, coupled with the continuity of
Q, satisfies (28). However, the difficulties of finding an appropriate “dissipation function” f for the problem at
hand has brought us to consider only the continuity of total pressure, which correspondsto f = 0.

3.1 Branching

The arterial and venous systems are characterised by the presence of branching. The flow in a bifurcation is
intrinsically three dimensional; yet it may still be represented by means of a 1D model, following a domain
decomposition approach, if one is not interested in the flow details. Figure 4 shows a model for a bifurcation. In
a first stage we simplify the real geometric structure by imposing that the bifurcation is located exactly on one
point and neglecting the effect of the bifurcation angles. This approach has been followed also by other authors,
like [16]. An alternative technique is reported in [32], where a separate tract containing the branch is introduced.

In order to solve the three problems in ©2; (main branch), Q5 and Q3 we need to find appropriate interface
conditions. The hyperbolic nature of the problem tells us that we need three conditions. The first one states the
conservation of mass across the bifurcation, i.e.

Q1 =Q2+Qs3, atz=T,t>0. (36)

We note that the orientation of the axis in the three branches is such that a positive value of ); indicates that
blood is flowing from the main branch €2 into the other two. By performing an energy analysis similar to that of
the previous section on the three branches separately we reach the conclusion that we can obtain a global energy
inequality for the coupled problem whenever p; 1 Q1 — pr.2Q2 — pr,3Q3 > 0. If we impose the continuity of total
pressure across the bifurcation together with (36) we have p; 1 Q1 — pt,2Q2 — pr,3@s = 0. In this situation it is

11
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Figure 4: One dimensional model of bifurcation by domain decomposition technique

also expected that the complex flow in the bifurcation will cause a decrease in total pressure in the direction of
the flow field across the bifurcation, and this loss should be related to the fluid velocity (or flow rate) and to the
bifurcation angles.

A possibility to account for this, derived from the analysis of [12], is to impose, at z = T, that

De,1 — sign(uy) fi(ur) = pe2 + sign(uz) fo(u2, az), (37)
pea — sign(@n) f1 (1) = pe3 + sign(us) f3(u3, a3z),

where o and as are the angles of the branches Q2 and Q3 with respect to the main one (see fig. 5); £, f2 and
f3 are positive functions and equal to zero when the first argument is zero. These can be chosen to be:

fl(u) = 71“27 fz'(uaa) = 71'“2 2(1 — COos (J{), 1 =2,3, (38)

where the ~; are positive coefficients.

In the numerical scheme, (36) and (37) will be complemented by three compatibility relations, which can be
expressed again by the extrapolation of the outgoing characteristic variables. We have thus a non linear system
for the six unknowns Ai"“, Q?“, i = 1,2, 3, at the interface location T', which is solved by a Newton iteration.

Some numerical tests have been made to investigate the effect of the bifurcation angles using relations (37) and
(38) (v1 = 0, 2 and 3 = 2). The length of the three domains has been taken equal to 10 em. The following
parameters have been chosen: E =3 106 dyne/cm?, hg =0.05 cm, Ry = 0.5 cm, p =1 gr/em?, a = 1,
v =0.035 em? /s, equal in all three vessels. At the inlet of £2; we have imposed a half sine input pressure wave
of period 0.1 s and amplitude 20000 dyne/cm?, while a non-reflecting condition has been imposed at the outlet
sections of 25 and Q3. In Figures 6, 7 and 8 we show the time variation of the area A and the two characteristic
variables W, and W, at a location placed at the midpoint of ©;, Q2 and €23, respectively, for different values
of ay and ay. In particular, a1 = a2 = 0 corresponds to the case where we impose just the continuity of the
total pressure, ignoring the dissipative effects caused by the kinks. We may note that accounting for the angles
increase the amplitude of the wave reflected by the bifurcation (increase in the amplitude of W5 in Fig 6), with
also an increase of area and, consequently, the pressure level in 2;. On the contrary, there is a reduction in the
strength of the wave transmitted into Q22 and Q3 (as expected). The result of this simple experiment shows that
indeed the dissipation caused by the flow deviation at bifurcations could be relevant.

Also in this case, due to the difficulty of finding suitable values of the “dissipation functions” f for the problem at
hand, we have preferred to put them to zero and impose the continuity of the total pressure across the bifurcation,

12



Figure 5: A sketch of a branching.
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Figure 6: Solution dependence on bifurcation angles: area and characteristic variables at the middle point of
domain €2, are reported.

ie.,
DPi,1 =Pi2 =Pi3, atz=T. (39)

Thence, in the remaining part of this work we will neglect this effect.

3.2 Bifurcated channel with endogr aft

Here we show an application of the one dimensional model to a real-life problem. Abdominal aortic aneurysms
(AAA) represent a significant and relatively common vascular problem. They are characterised by an abnormal
dilatation of a portion of the aorta. This swollen region would enlarge with time and, without a surgical treatment,
it will eventually break with fatal consequences. Even if open surgical repair is still the standard treatment for
AAA, endografts and endovascular stent grafts begin to play a major role as they allow a less invasive treatment
(fig. 9).

The presence of an endograft may be treated by our one-dimensional model as a bifurcated channel with varying
mechanical properties, as shown in Fig. 10. The domain is decomposed into 6 regions, Q;,7 = 1,...,6 and the
interface conditions of type (33) or (36)-(39) are used where appropriate.
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Figure 9: Endograft placement in the surgical treatment of abdominal aortic aneurysms.

A preliminary numerical test has been carried out by selecting all 2; to be of equal length L=5 ¢m. We considered
everywhere p =1 gr/cm?, v = 0.035 em?/s, a = 1, hg =0.05 em; while the Young’s moduli have been taken
to be equal t0 E,,dograst = 60 108 dyne/cm? for the endografted part (Q;, i = 2,3,5) and Eyesser = 10 109
dyne/cm? for the remaining subdomains. The vessel reference radii have been taken to be Ro;1 = Ro2 = 0.6
cm, R073 = R0’4 = 0.4 ¢m and R075 = RO’G =05¢em.

At inlet we have imposed a half sine pressure wave of period 0.1 s and amplitude 20000 dyne/cm?.
The spatial grid was uniform with a total of 546 nodes. The computations were carried out with a time step A¢
0.00001 s.

Figures 11, 12, 13 report the time evolution for the area A and the two characteristic variables W, and W5 at three

given points, respectively at the middle of 21, and of Q5 and of Qg. By inspecting figure 11 we remark that in T/}

we find the input wave imposed at inlet, while in 115 we find the composition of two effects, the wave reflected
from the beginning of the endograft and the wave reflected from the branching point. These modify the sinusoidal

shape of the area A. On Figure 12 we find in 115 only the wave reflected from the branching point. Finally, in

figure 13 we do not find reflected waves (being the outlet boundary condition an absorbing one); moreover, in
W1 we can observe the part of the wave passing through the branches.

4 Morecomplex wall models

The mechanical model used to describe the vessel wall dynamics was based on the assumption of an instanta-
neously elastic equilibrium, according to which the vessel wall responds to a change in the fluid pressure by
adapting its section area, following a perfectly elastic law.

In reality, the mechanical behaviour of arterial wall is much more complex (see e.g. [13]). Although it is arguable
whether there is a need for a sophisticated mechanical modelling when so many simplifications have already been
made both at the geometrical and at fluid-dynamics level, improving the structural description may serve several
purposes:

o to study the overall effects on the flow field of the different physical terms that might be included, such as
wall inertia, viscoelasticity, pre-stress state;
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Endograft

Figure 10: Modelling (left) and domain decomposition (right) of a bifurcation with an endograft.
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Time evolution at z=12.5 cm (artery 2)
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Figure 12: Bifurcation with endograft: time evolution for the area and the characteristic variables in the middle
of domain Q5.
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o to verify the relevance of these terms for the problem at hand on the basis of realistic physiological or
pathological values of the various coefficients.

The structural model will be obtained from the general equilibrium laws by imposing geometrical simplifications
consistent with those used to derive the flow equations. In particular, we still consider displacements 7 in the
radial direction only. This is a reasonable assumption since some recent results ( [21]) using membrane models
for the wall structure which account for the effects of transversal displacements show that these are negligible.

The differential equation we will consider is in fact the generalised string model (5), where we neglect the second
viscoelastic term, i.e & = 0. To obtain an equation of the form 4 = A, + 752, we linearise the time derivatives,

following [9], as follows
on _ 1 0A

R S ek 40
Ot 2¢/Ag\/m Ot (40)
8%n 1 92 0%A
56 = Jrom (VA- V) = Tl (1)
Therefore, the adopted model may be written as
%A 0A \/Z -4
™o " Vot 62\/_ VAo + i =Pb (42)
where we have taken, as before, P,,; = 0 and
_ pule Y &
2/m/Ay’ 2/ Ay’ N

while 3 is still given by (10).

This model should be integrated with the fluid equations (2) and (3). The objective is to retain the basic two-
equations structure of the model. Furthermore, we will assume that the additional terms are of less importance

than the basic elastic response function ,B‘F V4o considered in the derivation of the previous model. This
assumption permits the use of an operator spllttlng procedure for the numerical approximation.

. . A . .
The coupling between (2, 3) and (42) is through the pressure term —%(P — P.,¢) in the momentum equation.

Therefore, the continuity equation (2) will remain unaltered and, following [9], we will use it to replace the time
derivatives of A with the space derivative of Q.

We are mainly interested in identifying the effects of the extra terms on the vessel mechanics. The next sections
will systematically analyse the effect of each of the added in turn.

41 Wallinertiaterm

The inertia term accounts for the wall mass and its acceleration: using physical arguments we can argue that it
will be important only in case of large vessel mass and/or high frequency wave (big acceleration). In these cases
we expect oscillations to occur at a frequency dependent on the wave length.

The contribution of this term in the momentum equation can be written, using the continuity equation, as

Ao 0%A _Am 82Q
p 0z < ot2 > T p 0t (“43)
System (13), augmented by the inertia term would then read
0A  0Q
T
, (44)

0Q Am 0°Q
o T 6_F2(A Q) — ) oto2 Bs(4,Q),
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where F>(A, Q) and By (A, Q) denote the second component of the flux F and of the source term B, respectively.

The differential system (44) may be written in an equivalent way by splitting the flow rate Q) = @ + @ where @
and @ are implicitly defined through the set of equations

DA 0Q
ot "

o o 3

0Q _ Am 9°Q _

ot p Otdz?

This allows us to devise the following operator splitting strategy. On each time interval [t™, t"+1], n > 0, system
(45)1 2 by the Taylor-Galerkin scheme described in Sec. 2.2 and we correct the mass flux by employing Eq. (45)s.

More precisely, the adopted finite element formulation for the latter equation reads: given Aﬁ“ and @ZH, find
Qn € V2 such that

P m (0Qp 9gn) _m (0Qp* 9y 0
(AZ“Qh ’¢h>+p< 0z 0z | p 0z 0z )’ Yn € Vi

This corresponds to having imposed a homogeneous boundary condition for the correction term Q.
An alternative approach can be found in [1].

In the following numerical experiments we have set p = 1 gr/em?, v =0.035m? /s, Ro has been taken constant
and equal to 0.5 ¢m, hg =0.05 cm and E = 3 10% dyne/cm?. The simulations have been carried out using a
time step At =1107% s.

Figure 14 shows the results for a realistic test problem where the vessel wall density is set to p,, = 1gr/em? and
we take a wave of length 32 ¢m (picture on the top-left of Figure 14). It may be noted that the inertia term yields
a relative variation in the vessel area of the order of 10=3. We may also note the high frequency oscillations
induced by the inertia term. Clearly, in real conditions these oscillations are damped out by the viscoelastic term.
As high frequency are solicited, the variation in the flow rate behaviour is more important. We also report some
numerical experiments carried out in the same geometrical configuration using a pressure wave pulse of length 4.
cm (pictures on the top-left of Figures 15 and 16) and a wall density of 1 and 100 gr/cm3, respectively. These
tests have been carried out to enhance the inertia effects and are reported in Figures 15 and 16. Note, in particular,
that the value 100 gr/em? is unrealistic in physiological conditions. These tests show that the inertia term play a
major role when the mass or the vessel acceleration are important.

A qualitative comparison with the result obtained by a two dimensional fluid-structure interaction code has been
carried out only for the test case of Figure 15; a good agreement has been found.

4.2 \Viscodasticterm

In the generalised string model there are two possible viscous effects. Here, we have considered only the term in

the form 7%, since the term (é%) will produce a fourth order spatial derivative in the momentum equation

that makes its numerical treatment more difficult.
After introducing the term in the momentum equation and using the continuity equation, the modified system

reads 94 8Q
L
0Q O0F(A,Q) Ayd%Q 8
2(A, _ _7_ _
EjL 0z p 022 B2(4, Q).

This system has been solve by an operator splitting procedure similar to that introduced before and an implicit
Euler discretisation for the correction term Q.
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Initial configuration (t=0. s) Solution without inertia effects (t=0.05 s)
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Figure 14: Inertia effects on the solution; on the top-left the initial configuration is reported: a half sine wave of
length 35 ¢m. The solutions without inertia term (top-right), with inertia term (bottom-left) and the difference
between the two (bottom-right) for a fixed time (0.05 s) are reported too.
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Initial configuration (t=0. s) Inertia effects (t=0.005 s)
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Figure 15: Inertia effects on the solution; on the top-left the initial configuration is reported: a half sine wave of
length 4 cm. The solutions without inertia term (dotted line) and with inertia term, wall density set to 1 gr/cm?,
(continuous line) for different time steps are also reported.
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Figure 16: Inertia effects on the solution; on the top-left the initial configuration is reported: a half sine wave
of length 4 ¢m. The solutions without inertia term (dotted line) and with inertia term, wall density set to 100
gr/em?, (continuous line) for different time steps are also reported.
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Effect of the viscoelastic term on the solution at time t=0.02 s

Effect of the viscoelastic term on the solution at timet=0.2's
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Figure 17: Viscoelasticity effects on the solution at two given time steps: solution of the problem without vis-
coelasticity term (top) and difference between the solutions with and without viscoelastic term (bottom).

Tests have been carried out to investigate the effects of the viscoelastic term. We set p = 1 gr/cm?, v =0.035
m?/s, Ry = 0.5 cm, hg =0.05cm and E = 3 10° dyne/cm?. The simulations have been carried out with a time
step At =110~* s and a space discretization Az = 0.1 cm.

In Figure 17 we report the results of a short half sine pressure wave (period 0.015 s, amplitude 20000 dyne /cm?)
and a longer one (period 0.3 s, amplitude 20000 dyne/cm?) imposed at inlet. We should note that the solutions
with (y = 3 gr/em?s) and without the viscoelastic term have a relative difference in the area of less than 1 %.

4.3 Longitudinal easticity term

Experimental findings show that vessel walls are longitudinally pre-stressed [10]. This originates the second z
derivative term in the generalised string model [24]. Accounting for this term by using the techniques previously
illustrated would produce a modified system of the type

DA 0Q

5 T, =0

0Q  OF(A,Q) Aa & “n)
2 ) a

E_F 0z p63(\/— \/_) B»(4,Q).

Solving this system by an operator splitting technique like that presented in Sec. 4.1 would require the solution
of a differential equation for the correction term @ given by

00  Aa 0°
5~ o (VA= V) =0 e)

The correction Q"Jr1 € V2 has been computed by a collocation procedure and using a finite difference ap-
proximation for the third derivative term of AZ“ (which is computed in the first step of the operator splitting
procedure).

The effect of the longitudinal pre-stress is more important when strong area gradients are present. To analyse
thus, we considered a stented artery of total length L = 15 ¢m with a stent of length 5 ¢m placed in the middle.
The vessel has a radius Ry = 0.5 cm and hg = 0.05 cm. The Young’s modulus is E = 3 10¢ dyne/cm? for the
healthy portion of the artery and E; = 30 108 dyne/cm? for the stented part. At z =5 em and 2z = 10 em the
Young’s modulus has been regularised by a fifth-order function (as done in [8]); the length of the variation zone

was 0.1 em. The coefficient @ was set to 10* gr/s2. Finally, we have taken p = 1 gr/em?, v = 0.035 em? /s
and o = 1.

At inlet we imposed a half sine pressure wave of period 7' = 0.4 s and amplitude of 20000 dyne/cm?.
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Longitudinal elasticity effects (time t=0.1s) Longitudinal elasticity effects (time t=0.2 s)
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Figure 18: Longitudinal elasticity effects on the solution at two different time steps (the dotted line represents the
solution with the longitudinal pre-stress term).

Figure 18 shows that, without the longitudinal elasticity term (solution represented by a continuous line), there
is an abrupt variation in the area. Clearly this solution is not physiological as we cannot have, in the limit,
a discontinuous area. Taking in account the effect of the longitudinal elasticity term, that "discontinuity™ is
smoothed with a jump between the values of the area on the left and the right of the same magnitude.

5 Conclusions

In the numerical simulation of blood flow one dimensional models may play an important role, in particular
when one is not interested in the details of the flow field but just to the evolution of averaged quantities along
the arterial tree. To that respect, they allow a good description of pressure waves propagation in arteries at a
reasonable computational cost. The wave propagation phenomenon is due to the fluid-structure interaction. The
description of the mechanical behaviour of the vessel wall thus plays a fundamental role.

We have here considered how the model may be modified to account for different terms in the mechanical relation,
yet with the aim of maintaining a simple two-equation structure.

We have analysed these terms in turn and we reached the conclusion that for physiological values of pressure
and flow velocity they are not particularly relevant, thus the use of the simpler model based on an algebraic
relation between pressure and section area is justified. They however may have a more marked effect when, in
pathological situations or because of the implant of a prosthesis, there are strong gradients in the solution. In
particular, longitudinal pre-stress has an important regularising effect.

However, the case of a prosthesis implant may also be tackled by using a domain decomposition approach. We
have shown how the continuity of total pressure is a sound interface condition in this case, together with the
continuity of the mass flux.

A domain decomposition approach is also necessary for the treatment of branching. Here again the continuity
of total pressure guarantee a mathematically sound coupling. Bifurcation angle may also be accounted for with
empirical relations.

A natural continuation of this work is the simulation of the global cardiovascular system. This task will be
accomplished by coupling a network of one dimensional models for the arterial tree with lumped parameter
models describing the action of heart, the capillary bed, the venous system and the pulmonary circulation.
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