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Abstract

In this paper we present some recent studies on fluid-structure interac-
tion problems in the presence of free surface flow. We consider the dynamics
of boats simulated as rigid bodies. Several hydrodynamic models are pre-
sented, ranging from full Reynolds Averaged Navier-Stokes equations down
to reduced models based on potential flow theory.

1 Introduction

The use of computational fluid dynamics (CFD) in boat design is traditionally
based on potential flow theory, even if in the last years the use of Reynolds
Averaged Navier-Stokes (RANS) codes has become increasingly more common.
The role of CFD is of particular importance whenever performance optimisation
is critical, such as in competition boat, where even a small advantage may be

∗This work has been supported by a joint project with Filippi Lido s.r.l.
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crucial. An overview on the numerical techniques for ship hydrodynamics may
be found in [4, 3] and, more specifically, their relevance for high performance
sailing boat in [14].

In this field, most of the numerical investigations aim to assess the boat char-
acteristics at a given fixed configuration. Furthermore, they usually compute a
steady state solution, even if sometimes this is reached through pseudo time
stepping. Yet, simulating the full dynamics of a boat may be of great impor-
tance [1, 15]. We mention two cases: high performance sailing boats and rowing
sculls. In the former, the accurate simulation of the dynamics may allow for a
better trimming of the boat [1, 16], better evaluating wave resistance [13] and in
perspective the assessment of its performance during manoeuvring. For a compe-
tition rowing scull, accounting for the dynamics effects is even more important.
Indeed, because of the periodic action at the oars and the movement of the
oarsmen on the boat the motions of the scull is very complex and characterised
by horizontal accelerations/decelerations, sinking and dipping. These secondary
movements generate waves which dissipate part of rowers energy, which could
be better spent to move the boat forward.

In this paper, we will give an account of our research in this class of problems.
We give first a general framework to describe the dynamics of a boat under
the action of the hydrodynamic and other external forces, describing also its
integration with RANS codes.

Transient computations using RANS models are computationally demand-
ing, while in the design process there is the need of having tools for fast predic-
tions to compare different design configurations. In the case of the rowing scull,
the same tools may also be used to study the effect of different oarsmen layout
or rowing style. We describe a reduced model for the scull dynamics, where
the energy dissipation effects induced by the secondary motions are simulated
by computing a suitable potential problem for wave radiation. Despite its sim-
plicity, the approach has proved to be highly effective. Finally, we describe an
intermediate model based on the solution of quasi-3D Navier-Stokes equations
with free surface [10], where the presence of the boat is modelled through an
inequality constraint. We show how the method is able to reproduce the general
wave patterns of a moving scull.

2 The mathematical models

The simulation of the fluid dynamic field around a moving boat requires to
account different aspects of the physics of the problem: the viscous effects (in-
cluding those related to the turbulent nature of the flow) as well as the wave
generation on the water free-surface. In this work, the structural deformations
are not considered (since for the problems at hand their impact on the boat
dynamics is negligible) and only the rigid body motion of the boat in the six
degrees of freedom is modelled.
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2.1 The Reynolds Averaged Navier-Stokes equations with free-

surface

The hydrodynamic flow around the boat can be described by the so-called
Reynolds Averaged Navier-Stokes Equations. In this approach, the turbulence
effects are suitably modelled and enter the equations through an additional eddy
viscosity term, avoiding the need of resolving the small scales (in time and space)
which characterise turbulent flows. The presence of the free surface is accounted
for by using a multiphase model, where the air flow in the vicinity of the boat
is also computed.

Since we want to model the boat dynamics, we need to consider the problem
defined on a computational domain Ω = Ω(t) (and therefore a computational
grid) that changes in time. In this situation, a convenient frame to cast the
problem is the so-called Arbitrary Lagrangian Eulerian (ALE) approach [5, 6].
The equations to be solved are

∂ρ

∂t |A
+ (v − vs) · ∇ρ = 0 (1a)

ρ
∂v

∂t |A
+ ρ(v − vs) · ∇v + divT = f b (1b)

div v = 0. (1c)

where ρ is the fluid density, p and v are the flow pressure and velocity, T =
(µ + µt)(∇v + ∇T v) − pI is the Cauchy stress tensor (with µt the turbulent
viscosity) and f b = ρg is the forcing term due to gravity. The term vs is the
domain velocity associated with the domain motion and the time derivatives are
understood to be ALE time derivatives (we have used the special subscript A
to indicate them). Density and viscosity are constant on the two subdomains
containing air and water, respectively.

Boundary conditions are usually set by imposing a given velocity profile at
the inflow, zero normal stresses at the outflow, symmetry condition on the far-
field lateral boundaries and by forcing the velocity of the fluid to be equal to the
velocity of the boat at the boat surface.

For the turbulence we adopt the k− ε model [11] which requires the solution
of two additional equations describing the evolution of the turbulent kinetic
energy k and the turbulence dissipation rate ε.

The free-surface dynamics is tracked by using the Volume of Fluid (VOF)
method, where the volume fraction c is used to identify the water (c = 1) from
the air (c = 0) subdomain. A transport equation for c effectively replaces (1a)
and reads

∂c

∂t |A
+ (v − vs) · ∇c = 0,

so that the variable density and viscosity can be defined based on the local value
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of c as follows:

ρ(x) = c(x)ρw + (1 − c(x))ρa, µ(x) = c(x)µw + (1 − c(x))µa,

where the suffixes w and a identify the water and the air, respectively. For
details about the method the reader may refer to [7].

For the solution of system (1), a finite volume discretisation is adopted. It
requires to solve for any cell V of the computational grid the following equations,

d

dt

∫

V

ρ(x)dV +

∫

∂V

ρ(x)(v − vs) · dγ = 0,

d

dt

∫

V

ρ(x)vdV +

∫

∂V

ρ(x)v(v − vs) · dγ =

∫

∂V

T · dγ +

∫

V

f bdV,

Similar finite volume discretisation can be obtained for the transport equa-
tions defining the turbulence model as well as for the volume fraction equation.

2.2 Modelling the boat rigid motion

A numerical method able to simulate the boat dynamics in calm water and
waves requires the coupling between the fluid solver and a code for the structural
dynamics.

Following the approach adopted in [1, 2], we consider two orthogonal Carte-
sian reference frames: an inertial reference system (O,X, Y, Z) which moves for-
ward with the mean boat speed and a body-fixed reference system (X , x, y, z),
whose origin is the boat centre of mass X, which translates and rotates with
the boat. The XY plane in the inertial reference system is parallel to the undis-
turbed water surface and the Z − axis points upward. The body-fixed x-axis is
directed from bow to stern and y is positive starboard.

The dynamics of the boat in the 6 degrees of freedom is described by the
equations of linear and angular momentum, set in the inertial reference frame,
and given by

MẌ = F (3)

and
RIR−1Ω̇ + Ω×RIR−1Ω = MG, (4)

respectively. Here, M is the boat mass, Ẍ is the linear acceleration of the centre
of mass, F are the force acting on the boat, Ω̇ and Ω are the angular acceleration
and velocity, respectively. Finally, MG is the moment with respect to G acting
on the boat, I is the tensor of inertia of the boat about the body-fixed reference
system axes and R is the transformation matrix between the body-fixed and the
inertial reference system (see [1] for details).
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The forces and moments acting on the boat can be expressed as

F = F Flow +Mg +

m
∑

i=1

F ei

MG = MFlow +
m

∑

i=1

(Xei
− X) × F ei

,

where F Flow and MFlow are the force and angular moment due to the interaction
with the flow, F ei

are external forcing terms (which may model, e.g., the wind
force on sails or the inertial and traction forces due to the rowers action) while
Xei

are their application points.
To integrate in time the equations of motion, the second order ordinary

differential equations (3-4) are formulated as systems of first order ODEs. If we
consider, for example, the linear momentum equation (3), it can be rewritten as

M V̇ = F , Ẋ = V ,

where V denotes the linear velocity of the centre of mass. This system is solved
using an explicit 2-step Adam-Bashforth scheme for the velocity

V n+1 = V n +
∆t

2M
(3F n − F n−1),

and a Crank-Nicholson scheme for the position of the centre of mass

Xn+1 = Xn +
∆t

2
(V n+1 + V n).

For a convergence analysis of the scheme (as well as for a detailed description
of the integration scheme for the angular momentum equation), we refer to [8],
where it is shown that second-order accuracy in time is obtained, and that the
restriction on time step linked to numerical stability is less demanding than that
required to capture the time evolution of this class of problems correctly.

In the fluid-structure interaction (FSI) problem the equilibrium configura-
tions of the structure depends on the configurations of the fluid and vice-versa.
In the coupling with the flow solver, the 6-DOF dynamical system receives at
each time step the value of the forces and moments acting on the boat and re-
turns values of new position as well as linear and angular velocity. In the flow
solver, these data are used to update the computational grid (by a mesh motion
strategy based on elastic analogy) and the flow equations (1) in ALE form are
solved in the new domain.

2.3 The dynamics of a rowing boat

We now specialise the model for the case of a rowing boat. Due to the presence
of rowers exerting on the hull intermittent traction and inertial forces, the main
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surging motion of a rowing boat is inevitably associated with some secondary
motions. The latter cause a consistent additional drag component, mainly by
wave radiation, and must therefore be considered to get accurate performance
predictions.

Equations (3) and (4) in the case of a rowing boat driven by n rowers may
be summarised as

MẌ =
n

∑

j=1

F oj
+

n
∑

j=1

F sj
+

n
∑

j=1

F fj
+Mg + F Flow (5a)

RIR−1Ω̇ + Ω ×RIR−1Ω =

n
∑

j=1

(

Xoj
− X

)

× F oj
+

n
∑

j=1

(

Xsj
− X

)

× F sj

+

n
∑

j=1

(

Xfj
− X

)

× F fj
+ MFlow. (5b)

where the angular momentum is computed around the hull barycentre. Here,
F oj

, F sj
, F fj

indicate the external forces exerted by each rower on oarlocks,
seats and foot-boards, respectively. They can be obtained by the equations
governing the dynamics of the rowers, as it follows.

We represent the mass distribution of an athlete of given characteristics
(weight, height, sex) by subdividing the body into p parts of which we infer the
mass mij from anatomical tables. We then write the momentum equations for
the j-th rower as

p
∑

i=1

mij

(

Ẍ ij − g
)

= F hj
+ F sj

+ F fj
(6a)

p
∑

i=1

mij

(

Xij − Xfj

)

×
(

Ẍ ij − g
)

=
(

Xhj
− Xfj

)

× F hj

+
(

Xcj
− Xfj

)

× F cj
. (6b)

Here, F hj
is the force at the hand of the j-th athlete, while Xhj

, Xsj
and Xfj

are the positions of the hands, seat and foot-board respectively. Xij and Ẍij

indicate the position and acceleration of the barycentre of the i-th body part
of the j-th rower, in the global reference frame. Finally, Xfj

is the position of
the j-th foot-board. Writing equation (6b) we have neglected the contribution
to the angular momentum due to each mass rotation around its own centre of
mass.
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Introducing into (5) the values for F f and F s obtained from (6), we get

M(Ẍ − g) =

n
∑

j=1

F oj
+

n
∑

j=1

F hj
−

n
∑

j=1

p
∑

i=1

mij

(

Ẍij − g
)

+ F Flow (7a)

RIR−1Ω̇ + Ω ×RIR−1Ω =
n

∑

j=1

(

Xoj
− X

)

× F oj
+

n
∑

j=1

(

Xhj
− X

)

× F hj

−

n
∑

j=1

p
∑

i=1

(Xij − X) ×mij

(

Ẍij − g
)

+ MFlow. (7b)

We now assume that the motion of the boat lies in its symmetry plane (i.e.:
only surge, heave and pitch motions are considered). This approximation is
indeed valid for sculls, where each rower acts synchronously on both oars and
we can reasonable assume that experienced rowers would minimise movements
out of the symmetry plane. Indicating with lower case letters points in the
relative reference frame we may write relations

Xij = X + R(φ)xij (8a)

Ẍij = Ẍ + R(φ)ẍij + 2φ̇O(φ)ẋij + φ̈O(φ)xij − φ̇2R(φ)xij (8b)

to link positions, velocities and accelerations in the two reference frames. Here,
φ is the angle of rotation w.r.t. the y-axis while R and O are 2 × 2 rotation
matrices, namely

R =

[

cosφ − sinφ
sinφ cosφ

]

, O =

[

− sinφ − cosφ
cosφ − sinφ

]

.

Substituting equations (8) in equations (7) we have finally that

(M +
∑

i,j

mij)Ẍ + O(
∑

i,j

mijxij)φ̈ = −R
∑

j,j

mijẍij − 2O(
∑

i,j

mijẋij)φ̇

+ R(
∑

i,j

mijxij)φ̇
2 +

n
∑

j=1

F oj
+

n
∑

j=1

F hj
+ (M +

∑

i,j

mij)g + F Flow (9a)

and

R(
∑

i,j

mijxij) × Ẍ + (IY Y +
∑

i,j

mij|xij |
2)φ̈ = (9b)

−R
∑

i,j

mijxij ×Rẍij − 2(
∑

i,j

mijRxij ×Oẋij)φ̇+
∑

i,j

mij

+ R

n
∑

j=1

xsj
× F sj

+ R

n
∑

j=1

xmj
× F mj

R
∑

i,j

mijxij × g + MFlow,
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where in
∑

i,j the indexes i and j run from 1 to p and 1 to n, respectively.
Values for oarlock and hand forces (respectively Foj

and Fhj
) are provided by

measurements on rowing machines, while the motion laws xij(t) for the rower
body parts are measured by means of motion capture techniques [12].

Hence, equations (9) are a system of three nonlinear second order ordinary
differential equations in the variables (X, φ), that must be complemented by a
suitable fluid dynamic model in order to compute F Flow and MFlow and close
the problem. For instance, the RANS model just presented.

3 Reduced models for the FSI problem

An alternative to RANS simulations is to use simplified models to reduce the
computational cost, while maintaining an acceptable accuracy.

3.1 Potential model for the calculation of the effects of sec-

ondary motions

In the first reduced model we present, forces and moments exerted on the hull
by the surrounding fluid (F Flow and MFlow in equation (9)) are decomposed as
follows,

F Flow = LSeZ −DSeX + F D, MFlow = MS +MD. (10)

Here LS and MS are the hydrostatic lift and moment which can be readily
approximated from the instantaneous position of the hull. The total drag due
to the primary surging motion DS is computed by the formula

DS =
1

2
ρSRefCdX(ĠX)2,

where SRef is the wet surface, which again depends on the instantaneous position
of the boat, and CdX a drag coefficient, estimated for each boat by performing
one (or more) Navier–Stokes simulations of the stationary motion.

The forces and moments due to the secondary motions of the boat, here
indicated by F D and MD, respectively, are computed by solving in the compu-
tational domain Ω depicted in Fig. 1 the following Laplace problem [9] for the
complex velocity potential ψα

∆ψα = 0 on Ω,

∂ψα

∂z
−
ω2

g
ψα = 0 on Γfs,

∂ψα

∂n
− i

ω2

g
ψα = 0 on Γ∞,

∂ψα

∂n
= 0 on Γb,

∂ψα

∂n
= Nα on Γc.

α = 1, 2, 3. (11)
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Γ∞

Γfs

Γc

Γb

Figure 1: The computational domain for the potential problem (11)

From a physical point of view, it corresponds to solve three problems where a
periodic motion of frequency f = ω/2π in the direction of the three degrees
of freedom considered is imposed to the boat surface . The non-homogeneous
Neumann conditions applied on the boat surface for each problem are therefore
the components of the generalised normal vector N = (nx, nz, znx −xnz), being
(nx, ny, nz) the normal to the boat surface. A few simplifications were necessary
to obtain the potential problem. In particular, a linearised form of the free
surface interface conditions have been adopted and the equations are in fact
solved in the reference configuration.

The forces due to secondary motions are finally computed by integrating the
pressure on the boat surface. It turns out that these forces present a component
proportional to the acceleration vector (Ẍ, φ̈), giving rise to an added mass
matrix M, and a component proportional to the velocity vector (Ẋ , φ̇), leading
to a damping matrix S. As for the angular velocity ω, we have taken the one
which corresponds to the principal frequency of the motion of the rowers.

3.2 Models based on variational inequalities

Another possibility, alternative and of intermediate complexity with respect to
RANS and the potential models, is to enforce the presence of a floating body
in the context of the quasi-3D shallow water (3D-SW) formulation described in
[10]. To illustrate the technique we consider a simplified system based on the
hydrostatic approximation. This approximation reduces the vertical momentum
equation to the static relation ∂p

∂z
= −ρg. We also assume that the position of

the free surface η can be described by a single-valued function of x and y, i.e
η = η(x, y, t) and that the water domain is given by Ω = Ω2D × (−h, η), being h
the quota of the water bottom (here taken constant) and Ω2D a two-dimensional
domain.

Under these hypotheses, the motion of the fluid can be described by the
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following system of equations

∂u

∂t
+ (v · ∇xy)u − divσxy + g∇xyη = −∇xy

(

ps

ρ

)

,

∂η

∂t
+ div

∫ η

−h

udz = 0,

div u +
∂w

∂z
= 0,

(12)

where the unknowns are the horizontal components of the velocity u = (vx, vy),
the vertical component w = vz and the elevation η. Here, ∇xy is the nabla
operator in the (x, y) plane, σxy contains the viscous contribution to the first
two rows of the Cauchy stress tensor T and ps = ps(x, y, t) is a pressure pattern
acting on the free surface.

The key idea to account for the boat presence is to reformulate the problem
as a constrained one. We assume that the position of the external surface of the
boat at each time t can be described by a single-valued function Ψ = Ψ(x, y, t),
suitably extended to cover all Ω2D. The constraint then reads, for all t,

η ≤ Ψ, in Ω2D, (13)

where the equality applies in the region where the free surface is in contact with
the body. To enforce the previous inequality we introduce a Lagrange multiplier
λ = λ(x, y, t). By inspection, it can be found that λ can be interpreted as a
perturbation to pressure applied to the surface, that is we may write

ps(x, y, t) = pa + λ(x, y, t) (14)

where pa is the constant atmospheric pressure (often taken equal to zero). In-
troducing this last expression into (12) and adding the constraint (13) to the
system gives rise to a saddle point problem. It is solved by an Uzawa iterative
method where the constrained problem is reduced to a sequence of unconstrained
problems of the form (12).

When considering the dynamics of the scull, the value of Ψ at each time step
is given by solving equations (9), where the hydrodynamic forces are computed
by integrating the surface stress provided by the 3D-SW model.

From the numerical point of view, problem (12) leads to very efficient com-
puter implementations. For the space discretisation we have adopted a finite
element scheme which employs Raviart-Thomas RT0 triangular elements in the
(x, y) plane for u and standard P 1 elements for w. The elevation η, as well as
the multiplier λ, is approximated by a piecewise constant function.

It is also possible to account efficiently for non-hydrostatic effects by a change
in the formulation, which we have omitted to illustrate for the sake of space. In
any case, the model rely on the assumptions made on the domain shape as well as
on the hypothesis that the horizontal components of water velocity are dominant
w.r.t. the vertical one. This is not so limitative for rowing boats.
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Amax T δ

Ixx 0.098L 1.21 s 0.8

2Ixx 0.080L 1.64 s 0.5

Table 1: Damped oscillation parameters for different moments of inertia

4 Results

4.1 RANS simulations

Several numerical simulations have been carried out to assess the accuracy of the
model introduced in Section 2.1. The coupling between the RANS flow solver
and the 6-DOF dynamical system was used to predict the ship’s running attitude
for a Series 60 hull in different sea conditions (see [8]).

Here we present the results concerning the stabilisation behaviour of the
hull subjected to a roll forcing moment. We start from a steady symmetric
solution and we impose a time dependent rolling moment given by Mx,ext =
20H(0.5 − t)(sin(2t))2, where H is the Heaviside function. Under this external
moment the boat reaches a maximum roll angle of about 15 degrees and then
stabilises to the symmetric equilibrium state. The position of the hull and the
free surface around it at different time instants during the stabilisation process
are reported in Figure 2.

Figure 2: Bow wave around the hull at different time instants during the roll
stabilisation.

The time evolution of the roll angle for two different values of the moment of
inertia around the roll axis is given in Figure 3. As expected, the hull with the
smaller moment of inertia reaches a larger maximal roll angle and then stabilises
more quickly. In Table 1, we report the maximal amplitude of the roll angle
oscillation Amax, its period T and the damping factor defined as δ = ln(φj/φj+1)
where φj is the value of the roll angle at the j-th maximum. This kind of analysis
can be very useful to characterise the dynamic behaviour of a boat.
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4.2 Potential model

The fluid dynamic model described in Section 3.1 has been used to compute the
dynamics of a real rowing boat, a single scull, starting from the boat geometrical
data, physical characteristics and kinematics of the rowers.

The output is depicted in Fig. 4, which shows the positions and velocities
along X and Z directions, as well as pitch angle and angular velocity, comparing
two configuration with the same scull and rowers of different weight.

As expected, the heavier rower’s boat proceeds with a deeper sinkage, deter-
mining a larger wet surface and hence higher drag, which obviously reduces his
speed with respect to the lighter rower. To obtain the same performance he has
to change rowing style and possibly push harder. Being able to assess rapidly the
performance changes due to a modification of the rower characteristics makes
this model useful also for trainers and athletes.

4.3 3D-SW model

We have considered a coaxless quad scull. The first picture in Fig. 5 illustrates
the wave pattern generated by the boat moving at the constant mean velocity,
computed using the model given in Section 3.2. The second and third pictures
illustrate that obtained at the instant of the catch and at the release, when the
full dynamics of the boat is considered. We have assumed a stroke period of 1.5
seconds.

The alteration to the wave pattern caused by the secondary motions is ev-
ident. Comparison with experimental data is currently under way. So far, we
have carried out only qualitative assessment comparing the wave pattern with
that obtained from video recording, with good agreements.
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Figure 3: Time evolution of the roll angle with different moments of inertia.
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5 Conclusions

We have illustrated a hierarchy of models recently developed to simulate the
dynamics of boats. Each model has its own advantages and limitations. The
RANS based models are in principle capable to capture the complete physics,
yet they are rather costly, both in terms of the time needed to prepare of a good
mesh and in terms of the computational cost of a simulation.

Reduced models are better suited in the preliminary design phase. For the
case of scull dynamics we have presented two possibilities. In the simplest one
the hydrodynamic forces by the mean motion are expressed by simple formula,
while the effect of the secondary motions are accounted for by solving a potential
problem for wave radiation. This greatly reduce the computational complexity
allowing to obtain a result in a matter of minutes. Despite the simplifications
made, the model is capable of giving useful indications on the boat performance.
For this reason it has been implemented in a software currently used for prelim-
inary design by a boat manufacturer.

The 3D-SW model we presented last leads to rather efficient algorithms un-
der reasonable assumptions and has shown rather encouraging results. A full
validation against experimental data is under way.

A natural further development of this study is the use of these tools for
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Figure 5: The surface wave pattern for the mean motion (left) and at two
different time instants obtained using the full boat dynamics

automatic shape optimization.
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