(will be inserted by the editor)

Computing and Visualization in Science manuscript No.

A fast preconditioner for the incompressible Navier Stokes Equations

Alain Gauthier, Fausto Saleri, and Alessandro Veneziani

1%

MOX (Modeling and Scientific Computing), Department of Mathematics “F. Brioschi”, Politecnico di Milano Piazza L. da

Vinci 32, 1-20133 MILAN, Italy

Received: date / Revised version: date

Abstract. The pressure matriz method is a well known
scheme for the solution of the incompressible Navier-
Stokes equations by splitting the computation of the ve-
locity and the pressure fields (see, e.g., [13]). However,
the set-up of effective preconditioners for the pressure
matrix is mandatory in order to have an acceptable com-
putational cost. Different strategies can be pursued (see,
e.g., [4], [18]). Inexact block LU factorizations of the
matrix obtained after the discretization and lineariza-
tion of the problem, originally proposed as fractional
step solvers, provide also a strategy for building effec-
tive preconditioners of the pressure matrix (see [19]). In
this paper, we present numerical results about a new
preconditioner, based on an inexact factorization. The
new preconditioner applies to the case of the generalized
Stokes problem and to the Navier-Stokes one, as well.
In the former case, it improves the performances of the
well known Cahouet-Chabard preconditioner (see [2]).
In the latter one, numerical results presented here show
an almost optimal behavior (with respect to the space
discretization) and suggest that the new preconditioner
is well suited also for “flexible” or “inexact” strategies,
in which the systems for the preconditioner are solved
inaccurately.

Key words Incompressible Navier-Stokes Equations,
Fractional Step Schemes, Preconditioned Pressure Ma-
trix Method

1 Introduction

Numerical solution of the unsteady Navier-Stokes equa-
tions for incompressible flows in real applications re-
quires the solution of linear systems of large dimensions.
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Many numerical methods in this field lead to systems
which are neither definite nor well conditioned. The set-
up of efficient methods for solving such systems is there-
fore mandatory. A possible successful approach is pro-
vided by the pressure matrix method (PMM in the sequel
- see e.g. [13]). This method (see [11]) can be regarded at
an algebraic level as a suitable block LU factorization of
the discretized and linearized problem, which implies the
splitting of the velocity and pressure computation. The
solution of the pressure matrix system at each time step
is however very expensive. A possible way of reducing
the computational cost is to resort to inexact factoriza-
tion methods (see [9], [11], [12]). These schemes compute
velocity and pressure separately: (i) by computing an
auziliary (or intermediate) velocity; (ii) by solving an
approximate problem for the pressure; (iii) by correcting
the velocity (end-of-step velocity). The three steps stem
from an approximation of the block LU -factorization un-
derlying the PMM. In [12] we have introduced a general
class of algebraic splitting methods that can be consid-
ered in this framework. We recall, in particular, the Al-
gebraic Chorin-Temam (ACT) scheme, which is an alge-
braic formulation of the well-known Chorin-Temam pro-
jection method ([9]) and the Yosida (YOS) one ([11]).
The computational cost is reduced, even if the inexact-
ness of the factorization introduces a splitting error. A
relevant point, in this respect, is to ensure that the split-
ting error does not affect significantly the global accuracy
of the solution (see [11], [12], [15]).

Another way for reducing the computational cost re-
lies on building effective preconditioners of the pressure
matrix in the PMM. In this context many approaches
have been investigated (see [2], [7], [16], [4], [18] and the
references quoted there). Our starting point is that inex-
act factorizations can be considered not only for building
approximate Navier-Stokes solvers, but also for the set-
up of preconditioners of the pressure matrix. In [19] it
is proven, for example, that the ACT and YOS inex-
act factorizations amount to use the so called “compat-
ible Laplacian discretization” as a preconditioner of the
pressure matrix. Such preconditioner leads to accurate



results in time with a small number of iterations, even if
it is not optimal with respect to the space discretization.

In this paper, we introduce a new preconditioner based
on a modified ACT method, featuring a fourth step cor-
responding to a final “pressure correction” (see [15]).
Numerical results show that the new preconditioner im-
proves the results of the well known Cahouet-Chabard
one (see [2] and [1]) in the case of the generalized Stokes
problem. On the other hand, in the case of the Navier-
Stokes problem, it still features an almost optimal be-
havior. Moreover, it seems also to be well suited for in-
exact or “flexible” strategies, ensuring the convergence
in a small number of iterations even if it is solved inac-
curately.

The outline of the paper is the following. In Sect. 2 we
introduce some basic notations about the incompressible
Navier-Stokes equations and their numerical solutions.
The “pressure-correction” factorization and the set-up of
the corresponding preconditioner are illustrated in Sect.
3. Numerical results are presented in Sect. 4, both for
2D and 3D computations.

2 Definition of the problem and its
discretization

Consider an open and bounded domain 2 C R? for d =
2,3 with boundary 02 for a time ¢ > 0. The Navier-
Stokes equations for an incompressible flow in terms of
the velocity, u = u(x,t), and the pressure, p = p(x,1),
read:

Ou
E—F(u-V)u—VAu%—Vp—f, 1)
V-u=0(,

for any (x,t) € 2% (0,T], with T' > 0. This system must
be completed with the initial condition u(x,0) = u°(x)
(where u°(x) is a given function) and suitable boundary
conditions on 9f2. For example, we split 92 in two parts,
I'p and 'y, such that:

FDUFN=8Q, FDﬂFNZQ

and

ul|rp,=g, —-pn+vVu-n|p,=s, (2)

where g and s are given functions defined on I'p and I'y
respectively, and n is the normal outward unit vector to
o12.

In order to have a quantitative evaluation of the flow
field, a numerical approximation has to be carried out.
This aim is achieved discretizing the problem with re-
spect to time and space variables.

Concerning the space discretization, we will basically
refer to the Galerkin method and, in particular, to the
finite element method (FEM) (see, e.g., [13]). In fact,
we choose functional spaces for the approximate veloc-
ity and pressure fields which satisfy the inf-sup or BB
condition. In the sequel, we will denote by N, and by N,
the number of degrees of freedom for the velocity and the
pressure, respectively.
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Table 1. Coefficients of the BDF schemes and of the extrap-
olation for the linearization of the convective term, up to the
order 3 of accuracy.

pll ao [ar] e | as [[Bi]B]Bs
1] 1 |1 - - 1] - | -
2| 3/2 | -2 |1/2| - 2 |1 -
3| 11/6 | -3 |3/2|-1/3| 3 |-3]| 1

For what concerns the time discretization, we will
refer to classic backward difference methods (BDF - see
e.g. [10]). We consider a decomposition of the time inter-
val into N subintervals (¢7,t"t!) with t" = nAt, where
At = T/N is the uniform positive time step and collo-
cates the equation in the instants t* = nAt. The time
derivative will be therefore approximated as:

ot "= At rar S

where the coeflicients a; up to the third order of accuracy
are given in Tab. 1.

The discretization with respect both to time and space
variables leads to a non linear (typically large) algebraic
system:

F(wtl) =0,

where w1 = [uft! pi*|T denotes the vector of the

nodal values of the discrete velocity and pressure. Dif-
ferent approaches can be pursued for the solution of
this system. A first possibility is the classical Newton
method. Another strategy is based on a semi-implicit
linearization of the convective term. In the first case, at
each time step we have to carry out an inner loop whose
generic kt" iteration reads:

Ak (wn+1,k+1 _ wn+1,k) — _]:(wn+1,k),

where A, denotes the Jacobian matrix associated to
F(w) evaluated in w"1:*_ In the latter case, we set:

/4

(un+1 . V) un+1 ~ (ll* X V) un—i—l’ with u* = Z ﬂiun+1_i,

i=1

where the coefficients 3; up to the third order of accuracy
are given in Tab. 1.

Both approaches lead to solve linear systems of the
form:

Av = b, 3)

where the vector b is given by the forcing term, the
boundary conditions and terms coming from the time
discretization and, possibly, the Newton iterations. Ma-
trix A reads:

Cc DT
A= . 4)
DO

Here D7 denotes the discrete gradient operator, D the
discrete divergence operator and C collects contributions
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from the time derivative, advection and diffusion opera-
tors. More specifically, we denote:

(o))
At

where M is the velocity mass matrix and K corresponds
to the discretization of the Laplace operator and of the
convective term. In the case of the Stokes problem, the
algebraic system obtained after the discretization is lin-
ear (it means that Newton method converges after one
iteration), K corresponds just to the laplacian of the ve-
locity and it is therefore symmetric and positive definite
(s.p-d.). In this case system (3) is symmetric and however
it is not definite. In any case, it typically features large
dimensions and bad conditioning properties. The PMM
is a way for reducing the computational effort, facing sys-
tems of lower dimension. In fact, it is based on a block
Gaussian elimination. More precisely, it is equivalent to
compute the following “exact” LU-block factorization:

o C 0 In, c-ipT
A= [D —Dc—lDT] [ 0" Iy, ] 5)

where Iy, and I N, denote the Ny x Ny, and N, x N, iden-
tity matrices, respectively. Then, system (3) is solved by
computing the two block triangular systems obtained,
that amounts to compute a first intermediate velocity
field, then the pressure and the end-of-step velocity. How-
ever, the scheme is expensive due to the presence of the
matrix ¥ = DC™'D7 for the pressure computation. In-
deed, such matrix can be faced only with an iterative
approach, since it cannot be computed explicitly. On the
other hand, in an iterative frame the residual computa-
tion is extremely costly due to the presence of the inverse
of C (see [13]). Moreover, the condition number of X' in-
creases when At decreases. Therefore, the set-up of good
preconditioners for X' is mandatory.

C=-M+K,

3 The new preconditioner
3.1 Approzimate Algebraic Factorizations

The computational cost of PMM can be reduced resort-
ing to approximate, or inezact formulation of the block
factorization (5) (see [12], [9], [11]) where C ! is replaced
by matrices easier to be computed. In [15], we propose
the following inexact factorization:

A= C 0 I, HDTZ| _[C CHD?Z (6)
~|D —DHDT 0 Z ~|D 0 ’
where At
H==—"M"1
(ey]

is an approximation of C~! based on the first-term trun-
cation of the Neumann expansion:

-1

o= (INu + ﬁM*K) M-t =
Qg [0

3 (—AMTIE) ML

=0

gk

Approximate factorization (6) provides effective solvers
for the original system, whenever A replaces A. In partic-
ular, if Z = I, the resulting scheme is the ACT method
(see [9]). In this case, the intermediate and the end-of-
step pressure fields actually coincide. In the general case,
for Z # In,, the final pressure field is a correction of
the intermediate one. For this reason, the corresponding
factorization method is called Algebraic Chorin Temam
- Pressure Corrected (ACT-PC). The features of ACT-
PC are investigated in [15]. The preconditioner we are
going to introduce is based on the matrix A of (6) used
as a preconditioner for A.

3.2 The pressure corrected preconditioner

Let us compute explicitly the inverse of A:

., [ -HD” ct 0
B l 0o z! S-'DC! —sll B
C-! —HD?S-'DC! HD7s-!
[ Z-'s-'DC-! —(SZ)—ll

where
S = DHDY.

is the “compatible Laplacian discretization” (see [2]).

When using the matrix A as preconditioner for the
system (3), we have:

-~ I C'DT —HDTS '%
AT A= | 71§71y ' (7)

From (7) it is evident that the convergence analysis of
an iterative scheme where A is preconditioned by A ac-
tually reduces to consider SZ as a preconditioner for the
pressure matrix Y. Block LU inexact factorization can
be, in fact, regarded as a way for the set-up of PMM
preconditioners ([19]). In the present case, we would like
to find out Z in such a way that the condition num-
ber of (SZ)"'X is minimal. This specific choice seems
to be quite difficult to be pursued and will be investi-
gated elsewhere. Here, we follow a different approach.
Consider again the original inexact factorization and se-
lect Z in order to minimize (in some sense) the splitting

error matrix A — A. Since:

[0 DT -CHD?Z
A—A=
0 0

the splitting error matrix vanishes if:
CHD'Z = DT. (8)

Matrix equation (8) represents an overdetermined prob-
lem for Z. In order to obtain a solution, multiply both
the sides of (8) by the matrix DH, yielding:

BZ =S

where
B = DHCHD”. (9)



This means that the matrix equation (8) is solved up to
matrix X on the right hand side such that DHX = 0. If
the inf-sup condition is fulfilled, matrix B is non singular,
so we finally get:

Z =B7'S, (10)
and therefore the new preconditioner reads:

Prew = SB7!S. (11)

A rigorous analysis of P, is in order, but it is be-
yond the scope of the present work. It is however worth-
while pointing out some interesting features. The first
one refers to the computational cost associated to Ppeq -
In any iterative method we have to compute the precon-
ditioned residual. In our case this amounts to solve:

SB~!Sq =f — Tp,

where q, f and p are generic vectors with the dimension
of a (discrete) pressure field. In practice, this computa-
tion reduces to:

{Sy:f—Ep (12)

Sq = By.

A system in S is, therefore, solved twice for each com-
putation of the preconditioned residual. This could be
computationally expensive, in particular if an iterative
method is adopted. However, systems for S can be faced
also by means of direct methods (see [19]). Indeed, since
H is a s.p.d. matrix, we can consider the QR factoriza-
tion:
H'/?D” = QR

where Q is an orthogonal square (N, X N,) matrix and,

if the inf-sup condition holds, R is a triangular full-rank
Ny x N, matrix such that:

— |Ro
R= [ X ] |
Here Ry is a non-singular N, x N,, triangular matrix. In
practice, effective algorithms for the QR factorization of
large sparse matrices are available (see [8] and the QR27

library; or in Matlab6, this factorization is obtained with
the command qr). Thanks to this factorization, we have:

In this way, the computational cost of the iterated solu-
tion of systems for S can be strongly reduced. Observe
that the cost of the ) R factorization in unsteady compu-
tations is limited at the beginning of the time loop, since
matrix S is constant (at least in fixed computational do-
mains). An alternative approach that we will investigate
in Sect. 4.4 for the effective solution of (12) is based on
the use of iterative solvers in a “flexible” sense (see [14]).

Another aspect we would like to point out is a rela-
tion between the new preconditioner and the well known
Cahouet-Chabard one for the generalized Stokes prob-
lem. Since C = H™! + K, from (11) it folows:

SB—'S =S (DH(H"! + K)HD”) 'S =

1 (13)
S (S+DHKHD”) " S.
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Fig. 1. Eigenvalues of the preconditioned matrix P;,2,, X for
a square domain with h = 1/32, v = 1/80 and v = 1/320.
We consider the Navier-Stokes problem with a semi-implicit
treatment of the convective term (Test case: Kim and Moin
solution at the first time step). The red line is the circle
centred in (1,0) with radius 0.5.

In the Stokes problem, K is the discretization of the ve-
locity Laplace operator. Now, suppose that:

KHD" = vD"M, 'DHD”. (14)

This assumption, in the context of Finite Difference space
discretization, has been advocated in [7] as a compatibil-
ity condition holding for special set of velocity boundary
conditions in rectangular domains. In the general case,
it does not hold, so we exploit it as a further “degree of
inexactness” in the set-up of the preconditioner. In this
way, we obtain from (13):

SB~S =$ (S + vDHDM, 'DHD?) 'S 15)
=S (S+vSM,'S) 'S =(St+uM, 1) .

The matrix on the right hand side represents the al-
gebraic version of the Cahouet-Chabard preconditioner,
where S plays the role of the velocity Laplacian matrix.
The Cahouet-Chabard preconditioner can be considered
therefore an approximation of the present one. If the
mass matrix M, is lumped, the preconditioned residual
computation of the Cahouet-Chabard preconditioner is
actually cheaper than the one of P,.,,. However, the nu-
merical results of next Section show that P,,.,, in the case
of the generalized Stokes problem requires a number of
iterations significantly lower than the iterations required
by the Cahouet-Chabard. Moreover, our preconditioner
is naturally suited to account also for the non symmet-
ric case, being based on a block factorization of the more
general Navier-Stokes problem.

4 Numerical Results

We present numerical results! concerning the performances
of P,ew. We adopted a FEM discretization P2-P!, where

! The 2D code has been implemented by the authors in
Matlab. The 3D code has been implemented by the authors



A fast preconditioner for the incompressible Navier Stokes Equations 5

P2 elements are a modification of the usual P? one which
allows a correct velocity mass lumping (see [3]) coupled
with BDF time discretization schemes up to the order 3.

In the 2D case, we solved the pressure matrix system
preconditioned by P ¢, both with GMRes and BiCGStab
schemes. We actually found similar results. In 3D we
used only the GMRes method.

We also used both an implicit treatment of the con-
vective term (Newton method) and a semi-implicit lin-
earization. The linear systems were solved with a stop-
ping criterion based on the residual (normalized with the
right hand side) and a tolerance of 10719 for 2D compu-
tations and 10~° for 3D cases.

We considered the following test cases: (i) 2D Kim
and Moin test case (see [6]) both for the Stokes and
Navier-Stokes case; (ii) 2D Timmermans test case (see
[17]) for the Navier-Stokes problem; (iii) 3D Lid driven
cavity both for the Stokes and Navier-Stokes problems.

For what concerns the aims of the present work, the
performances of the preconditioner were satisfactory in

both the cases, and much better than the Cahouet Chabard

preconditioner.

4.1 2D Kim and Moin test case

We start solving the Stokes problem on a unit square {2
with the following boundary conditions:

uy = — cos(2rz) sin(2my)e 87 V¢,

,y € 012, 16
uy = sin(2rz) cos(2my)e 87 vt Y (16)

where we set ¥ = 0.01 and the final time T} = 1. The
forcing term f is null. In Tab. 2 we compare the results
of the Cahouet-Chabard preconditioner and the new one
in terms of mean number of iterations (in the brackets
the max number of iterations is reported) for different
values of h and At. The new preconditioner performs
better and seems to be less sensitive with respect to the
mesh size.

When solving the Navier-Stokes problem, (16) for
z,y € {2 represents the exact solution for the velocity

field, while the exact pressure reads (Kim and Moin so-
lution [6]):

1
pP=-—7 (cos(4mz) + cos(4my)) e~ 167 ¥t (17)

For this problem, we compare the performances of the
two preconditioners in Tab. 3. As expected, the presence
of the nonlinear convective term strongly affects the per-
formances of the Cahouet-Chabard preconditioner, while
P,ew features good performances.

4.1.1 Eigenvalues of the preconditioned matrix

For this test case, we consider the behavior of the eigen-

values {A} of the preconditioned matrix P, ¥ in the

in C++ in the framework of the LifeV Project (joining MOX-
PoliMi, INRIA-Paris and EPF Lausanne). The linear algebra
package adopted in this framework is Aztec by R.S. Tumi-
naro, J.N. Shadid, M.Heroux, Sandia Nat. Lab.

Table 2. Mean (Max) number of iterations required for the
convergence with the Cahouet-Chabard and P for the gen-
eralized Stokes problem (Sect. 4.1).

At =0.1
h 1/16 | 1/32 [  1/64
Poc || 87(9) [ 105 (12) | 11.2 (14)
Poew || 5.2 (6) 7.9 (8) 8.1(9)
At =0.05
h 1/16 | 1/32 [ 1/64
Poc [ 715 (8) | 9.6 (11) 11.7 (13)
Poew || 45 (5) 6.15 (7) 7.25 (8)
At = 0.025
h 1/16 | 1/32 |  1/64
Poc || 6.085 (7) | 8.175 (10) [ 11.475 (13)
Prew | 37(4) | 5175 (6) | 6.775 (8)

Table 3. Mean (Max) number of iterations required for the
convergence with the Cahouet-Chabard and the new precon-
ditioner for the Navier-Stokes problem (Kim and Moin test
case Sect. 4.1).

At =0.1
h 1/16 ] 1/32 | 1/64
Poc ] 174 (20) | 24.3 (30) 30.5 (36)
Pocw || 74(9) 9 (11) 10.9 (13)
At = 0.05
h 1/16 ] 1/32 | 1/64
Poc [ 133 (18) | 182 (22) [ 24.35 (32)
Prcw || 55 (7) 7.45 (9) 9.55 (11)
At = 0.025
h 1/16 | 1/32 | 1/64
Pcc | 9.1 (12) [ 13.425 (18) [ 19.375 (23)
Poew || 41 (5) | 6.075 (7) 8.25 (10)

case of the 2D Navier-Stokes problem, for different val-
ues of the mesh size h and of the viscosity v. More pre-
cisely, we build the matrices at the first time step, with
a semi-implicit treatment of the non-linear term (for a
first order of accuracy in time). We carried out the com-
putation with the command eig in Matlab for different
values of the mesh size h and the viscosity v. The re-
sults are summarized in Tab. 4, where we report the
extrema of the real part R(A) of the eigenvalues and the
largest imaginary part $(\). Moreover, in the last col-
umn we indicate the number n of the eigenvalues featur-
ing a distance from the point (1,0) lower than 0.5, over
the total number of eigenvalues N. In Fig. 1 we illus-
trate the whole set of eigenvalues in the complex plane
for h = 1/32 and two values of viscosity.

The table shows that the spectrum of the precondi-
tioned matrix is clustered around the real value 1. It can
be deduced from the third column that in any case the
largest part of the eigenvalues is indeed at a distance
lower than 0.5 from (1,0). In fact, we verified that in
all cases considered in the table the eigenvalues were at
a distance lower than 1 from (1,0) with the exception
of the case v = 1/40 for h = 1/32. Another interest-
ing point is that the max(S(\)) of the eigenvalues does



Table 4. Real and imaginary parts of the eigenvalues of the
preconditioned matrix for different values of A and v. The
last column denotes the number n of eigenvalues which are
at a distance from (1,0) lower than 0.5 over the total number
of eigenvalues V.

h=1/8
v min(R) [ max(RQ)) [ max(S(N) | n/N
1740 0.9019 1.1569 0.1041 80/80
1/80 0.7310 1.0172 0.0789 80/80
1/160 0.5781 0.9963 0.0564 80/80
1/320 0.4693 0.9889 0.0565 79/80
1/640 0.4040 0.9852 0.0540 74/80
1/1280 0.3679 0.9835 0.0573 72/80
h=1/16
1740 0.9595 1.4924 0.3424 276/288
1/80 0.7690 1.2512 0.2903 288/288
1/160 0.5668 1.0854 0.1747 288/288
1/320 0.3524 1.0023 0.1323 244/288
1/640 0.2300 0.9931 0.1430 215/288
1/1280 0.1685 0.9895 0.1404 204/288
h=1/32
1740 0.9644 2.0411 0.5342 896/1088
1/80 0.9135 1.7143 0.6098 969,/1088
1/160 0.6408 1.4456 0.4837 | 1088/1088
1/320 0.4100 1.2453 0.2510 | 1038/1088
1/640 0.2276 1.0794 0.1726 826/1088
1/1280 0.1078 1.0006 0.1596 728/1088

not increase when the viscosity decreases, as it happens
for other preconditioners present in literature (see [5]).
On the contrary, it decreases and it seems to assume a
constant value for very small viscosities. This suggests
that the preconditioner captures correctly the complex
part of the spectrum induced by the convective term.
Moreover, both the smallest and the greatest real parts
of the eigenvalues shift to 0 when the viscosity decreases.
However, since min(R(\)) decreases more rapidly than
max(R(A)), the spectrum spreads over the real axis when
the viscosity decreases (see Fig. 1), in the sense that
max(R(A)) —min(R(N)) increases when v decreases, even
if this happens quite slowly (with respect to v).

The conclusions that can be drawn from these com-
putations, limited to quite coarse grids, is that the new
preconditioner should require a number of iterations mod-
eratley increasing when h decreases and almost constant
with v. This conjecture is confirmed by the numerical
results of the present Section.

4.2 2D Timmermans test case

For the Navier-Stokes equations, we consider the test
case proposed in [17], in which the right hand side is
modified in order to ensure that the exact solution is:

uy = sin(z + 5¢) sin(y + 5t),

ug = cos(z + 5t) cos(y + 5t),

p = sin(z + y + 5t).

Let us consider firstly the results obtained with a semi-
implicit BDF time discretization of order 1. In Fig. 2

Alain Gauthier et al.
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Fig. 2. Mean number of iterations required by the Cahouet-
Chabard and the new preconditioners for different values of
the mesh size h. On the abscissa — log;,(At). We used a time
discretization scheme BDF of order 1 and set Re= 100.

0 . .
1 15 2 25

Fig. 3. Mean number of iterations required by the Cahouet-
Chabard and the new preconditioners for different values of
the mesh size h. On the abscissa — log;,(At). We used a time
discretization scheme BDF of order 3 and set Re= 100

the mean number of iterations required by the Cahouet-
Chabard and P, for different values of the mesh size
h are illustrated as a function of the time step. The ef-
ficiency of the new preconditioner is obviously better in
comparison with the Cahouet-Chabard one. Similar re-
sults are obtained when we used a BDF time discretiza-
tion scheme of order 3 (see Fig. 3).

We have also compared the effect of different values
of the Reynolds number (Re) on the performances of
the two preconditioners. The results are illustrated in
Fig. 4. The new preconditioner is weakly affected by the
Reynolds number, at least for a time step sufficiently
small.

4.8 Lid Driven Cavity test case
We considered the domain [0 x 1]3, where we solved both

the Stokes and the Navier-Stokes problems for the lid
driven cavity test case.
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Fig. 4. Performances of the Cahouet-Chabard and the new
preconditioners for different values of the Reynolds number.
On the abscissa, —log,o(At) (h = 1/20).

Table 5. Mean (Max) number of iterations required for the
convergence with the Cahouet-Chabard and P, for the 3D
Stokes problem.

h
1/4 1/5 1/10 time step
Poc || 8 (21) |82 (21) | 7.7 (22) h
Pee || 7.1 (19) | 6.9 (19) | 4.2 (18) B’
Prew || 5.4 (14) [ 5.8 (15) [ 7.1 (20) h
Poew || 4 (10) |44 (11) | 2.6 (11) h?

In Tab. 5 we show the results obtained by the Cahouet-

Chabard preconditioner and the new one for different
values of the mesh size and the time step, in a 3D compu-
tation. We considered three meshes with 384 (h = 1/4),
750 (h = 1/5) and 6000 (h = 1/10) volumes respectively
and solved the Stokes problem, considering a time step
equal to h and h? respectively. Also in this case, Prew
performs clearly better than the Cahouet-Chabard pre-
conditioner.

For the Navier-Stokes problem, we considered both
the Cahouet-Chabard and P,,.,, for different values of h
and of the Reynolds number. In Fig. 5 we illustrate the
velocity field for h = 1/5 and Re=40.

Fig. 6 and 7 confirm that P, performs better than
the Cahouet-Chabard preconditioner also for 3D compu-
tations. In particular, Fig. 6 shows that both the precon-
ditioners are robust with respect to the Reynolds num-
ber. More specifically, for large values of the time step
the number of iterations required in the case Re = 160
is, in fact, lower than for Re = 40.

Fig. 7 confirms that P, is robust also with respect
to the mesh size.

4.4 "Flexible” strategy

In Sect. 3 we pointed out that systems (12) can be solved
effectively through a QR factorization. Another cheap
strategy relies on the use of iterative methods but in a
“flexible” sense (see [14]). This means that we solve the
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Fig. 5. Velocity field for the lid driven cavity, Re=40, h =
0.2.

Fig. 6. Mean number of iterations required by the Cahouet-
Chabard preconditioner and by Ppeq for A = 0.2 and different
values of Re. On the abscissa we report —log,(At).
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Fig. 7. Mean number of iterations required by the Cahouet-
Chabard preconditioner and by P, for Re = 160 and dif-
ferent values of h. On the abscissa we report — log, (At).



Table 6. Mean number of iterations required for the conver-
gence with the Cahouet-Chabard and P, when the toler-
ance of the inner loops is increased.

h
1/8 | 1/16 | 1/32 | inner toll
Poc || 174 | 207 | 22.3 | Le(-id)
Poo |[ 178 | 20.7 | 223 | Le(-7)
Pocc || 17.8 | 20.7 | 227 | Le(-5)
Poc || 207 | 246 | 839 | Le(3)
Prew || 83 | 11 | 142 | le(-14)
Prew || 83 | 11 | 147 | Le(-7)
Prew || 83 | 11 | 15 | Le(-h)
Prew || 94 | 126 | 37.9 | Le(-3)

preconditioned system iteratively, but with a low accu-
racy and, in particular, with a tolerance for the precon-
ditioner systems (inner loops) greater than the tolerance
for the pressure matrix systems (outer loops). A robust
preconditioner is such that the inaccurate solution of the
preconditioner systems does not affect the convergence.
In this case, the CPU time is strongly reduced.

In Tab. 6, we compare the number of iterations re-
quired for the convergence, when the tolerance for the
solution of the preconditioner system is increased, both
for the Cahouet-Chabard and the new preconditioner.
The results refer to the solution of the Timmermans test
case, with a semi-implicit Euler time discretization and
Re= 1. We have fixed At = 0.1 and used different values
of h.

Each entry of the table corresponds to the mean
number of iterations required for the convergence of the
Navier-Stokes system. Both the preconditioners are ro-
bust with respect to the accuracy of the preconditioner
system. Actually, a modification of the tolerance from
10714 to 10~7 and to 10~° does not modify significantly
the number of iterations required for the convergence for
every value of h. The number of external iterations re-
quired by both the preconditioners is really affected for
h small when the tolerance is furtherly increased (10~3).

Conclusions

The preconditioner (11) presented here provides promis-

ing results for the effective solution of the unsteady Navier-

Stokes problem. QR factorization or a flexible strategy,
on the other hand, ensure the computational effective-
ness of Peq. A thorough convergence analysis, with par-
ticular emphasis on the dependence of the performances
on the Reynolds number needs therefore to be carried
out.

References

1. J. BrRAMBLE AND J. E. PASCIACK, Iterative tech-
niques for time dependent stokes problems, Math. Comp.,
(1997).

2. J. CAHOUET AND J.-P. CHABARD, Some fast 8d finite
element solvers for the gemeralized Stokes problem, Int.
Jou. Num. Meth. Fluids, 8 (1988), pp. 869-895.

3

10.

11.

12.

13.

15.

16.

17.

18.

19.

Alain Gauthier et al.

. G. CoHEN, P. Jory, J. ROBERTS, AND N. TORDIMAN,
Higher order triangular finite elements with mass lump-
ing for the wave equation, SIAM J. Numer. Anal., 38
(2001), pp. 2047—2078.

H. C. ELMAN, Preconditioners for saddle point problems
arising in computational fluid dynamics, Tech. Report
UMCP-CSD:CS-TRA4311, Univ. Maryland, College Park,
2001.

H. C. ELmAN, D. J. SILVESTER, AND A. J. WATHEN,
Performance and analysis of saddle poin precondition-
ers for the discrete steady-state Navier-stokes equations.,
Tech. Report UMCP-CSD:CS-TR4164, Univ. Maryland,
College Park, 2000.

J. Kim AND P. MOIN, Application of a fractional step
method to incompressible Navier-Stokes equations, J.
Comp. Phys., 59 (1985), pp. 308-323.

G. M. KOBELKOW AND M. OLSHANSKII, Effective pre-
conditioning of uzawa type schemes for a generalized
stokes problem,; Num. Mat., 86 (2000), pp. 443-470.

P. MaATsTOoMS, Sparse QR Factorization with Applica-
tions to Linear Least Squares Problems, PhD thesis,
Dept. of Mathematics, Linkoping University, Sweden,
1994.

B. PEROT, An analysis of the fractional step method, J.
Comp. Phys., 108 (1993), pp. 51-58.

A. QUARTERONI, R. SACCO, AND F. SALERI, Numerical
Mathematics, Springer-Verlag, NY, 2000.

A. QUARTERONI, F. SALERI, AND A. VENEZIANI, Anal-
ysis of the Yosida method for the incompressible Navier-
Stokes equations, J. Math. Pures Appl., 78 (1999),
pp. 473-503.

, Factorization methods for the numerical approz-
imation of Navier-Stokes equations, Comput. Methods
Appl. Mech. Engrg., 188 (2000), pp. 505-526.

A. QUARTERONI AND A. VALLI, Numerical approzima-
tion of partial differential equations, no. 23 in Springer
Series in Computational Mathematics, Springer-Verlag,
Berlin, 1994.

. Y. SAAD, [terative Methods for Sparse Linear Systems,
PWS Publishing Company, Boston, 1996.

F. SALERI AND A. VENEZIANI, Pressure-correction meth-
ods for the incompressible Navier-Stokes equations. in
preparation.

D. SiLvVESTER, H. ELMAN, D. KAy, AND A. WATHEN,
Efficient preconditioning of the linearized Navier-stokes
equations for incompressible flow, J. Comp. Appl. Math.,
128 (2001), pp. 261-279.

L. TIMMERMANS, P. MINEV, AND F. V. DE VOSSE, An
approzimate projection scheme for incompressible flow
using spectral methods, Int. Jou. Num. Meth. Fluids, 22
(1996), pp. 673-688.

S. Turek, Efficient Solvers for Incompressible Flow
Problems, Springer-Verlag, Berlin, 1999.

A. VENEZIANI, Block factorized solvers and precondition-
ers for the incompressible Navier-Stokes equations. sub-
mitted to Num. Meth. Part. Diff. Eqns.




