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Abstract

We consider Discontinuous Galerkin approximations of advection-diffusion
equations with anisotropic and discontinuous diffusivity, and propose the sym-
metric weighted interior penalty (SWIP) method for better coping with locally
vanishing diffusivity. The analysis yields convergence results for the natural en-
ergy norm that are optimal (with respect to mesh-size) and robust (fully indepen-
dent of the diffusivity). The convergence results for the advective derivative are
optimal with respect to mesh-size and robust for isotropic diffusivity, as well as for
anisotropic diffusivity in the dominant advection regime. In the dominant diffu-
sivity regime, an optimal convergence result for the the L2-norm is also recovered.
Numerical results are presented to illustrate the performance of the scheme.

1 Introduction

Since their introduction over thirty years ago [19, 16], Discontinuous Galerkin (DG)
methods have emerged as an attractive tool to approximate numerous PDEs in the en-
gineering sciences. Here we are primarily interested in advection—diffusion equations
with anisotropic (e.g., tensor-valued) and heterogeneous (e.g., non-smooth) diffusiv-
ity. Such equations are encountered, for instance, in groundwater flow models which
constitute the motivation for the present work.



The analysis of DG methods to approximate advection—diffusion equations is ex-
tensively covered in [15]. This work already addresses anisotropic and heterogeneous
diffusivity. However, one particular aspect that deserves further attention is the lo-
cally vanishing diffusivity case, i.e., the limiting case where the diffusivity becomes
arbitrarily small in some parts of the computational domain. Indeed, in this case it is
well-known that the presence of an advective field can trigger internal layers. Specif-
ically, in the locally vanishing diffusivity limit, the solution becomes discontinuous
on the interfaces where the normal component of the advective field measured from the
vanishing-diffusivity region towards the nonvanishing-diffusivity region is nonnegative.
This situation has been analyzed in [10] and, more recently, in [5]. In the presence of
internal layers resulting from vanishing diffusivity, all the usual DG methods meet with
difficulties since they have been designed to weakly enforce continuity of the discrete
solution across mesh interfaces. One possible remedy is to modify the DG method at
the interfaces affected by internal layers, as already proposed in [15] and, more recently,
in [9]. However, this approach is not fully satisfactory since it requires a priori knowl-
edge of the interface in question. For simple problems the interface is easy to locate, but
it can become difficult whenever nonlinear models with solution-dependent diffusivity
are used, or in the presence of free-boundary problems.

The aim of the present work is to design a DG method that can handle internal
layers resulting from locally vanishing diffusion in an automated fashion. The key in-
gredient is the use of weighted instead of arithmetic averages in the design of certain
terms in the DG method. The idea of utilizing weighted averages stems from the mortar
finite-element method originally proposed by Nitsche [17, 18]. This method imposes
weakly the continuity of fluxes between different regions. Various authors have high-
lighted the possibility of using an average with weights that differ from one half; see
[21, 14, 12, 13] where several mortaring techniques are presented to match conform-
ing finite elements on possibly nonconforming computational meshes. The weighted
averages are introduced as a generalization of the standard average and the analysis
is carried out in the general framework. However, the cited works do not consider
any connection between the weights and the coefficients of the problem. This depen-
dency was investigated recently in [3] for isotropic advection—diffusion problems, using
a weighted interior penalty technique with mortars which, when applied elementwise,
yields a DG method. It was shown in [3] that a specific choice of weights improves
the stability of the numerical scheme in the locally vanishing diffusivity limit. The rea-
son why weighted averages are needed to properly handle internal layers is rooted in
the dissipative structure of the underlying Friedrichs’s system. The design of the cor-
responding DG bilinear form, where dissipation at the discrete level is enforced by a
consistency term involving averages, has been recently proposed in [8] for the general
case, and in [6] for advection—diffusion equations in the locally vanishing diffusivity
limit.

In the present work, we extend the DG method implicitly derived in [3] for isotropic
diffusivity to anisotropic problems. This task is not as simple as it may appear on first
sight since the presence of internal layers now depends on the spectral structure of the
diffusion tensor on both sides of each mesh interface. The spectral structure also raises



the question of the appropriate choice of the penalty term at each mesh interface. The
analysis presented below will tackle these issues.

We design and analyze one specific DG method with weighted averages, namely
the Symmetric Weighted Interior Penalty (SWIP) method, obtained by modifying the
well-known (Symmetric) Interior Penalty (IP) method [2, 1]. Many other well-known
DG methods, including the Local Discontinuous Galerkin method [4] and the Nonsym-
metric Interior Penalty Galerkin method [20], can also be modified to fit the present
scope; for brevity, these developments are omitted herein.

This paper is organized as follows: Section 2 presents the setting under scrutiny
and formulates the SWIP method, while Section 3 contains the error analysis in the
natural energy norm for the problem. The error estimate is robust, with respect to
both locally vanishing and anisotropic diffusivity. Section 4 is concerned with the error
analysis of the advective derivative. The estimate is again robust with respect to locally
vanishing diffusivity, but the constant can in some cases depend on local anisotropies.
Numerical results are presented in Section 5 and illustrate the benefits of using weighted
interior penalties to approximate advection—diffusion equations with locally vanishing
and anisotropic diffusivity. Finally, Section 6 contains some concluding remarks.

2 The SWIP method

Let  be a domain in R¢ with boundary 9f2 in space dimension d € {2,3}. We con-
sider the following advection-diffusion equation with homogeneous Dirichlet boundary
conditions:

{—V-(KVU) +BVu+pu=f in Q, 0

u=20 on 0f).

Here p € L®(Q), B € [Wh**(Q)]4, the diffusion tensor K is a symmetric, positive
definite field in [L>°(2)]% and f € L?(Q2). The regularity assumption on 3 can be
relaxed, but is sufficient for the present purpose. The weak formulation of (1) consists
of finding u € H}(£2) such that

(KVu, Vo)oo + (6-Vu,v)o0 + (uu,v)o0 = (f,v)o0 Vo€ Hy(Q) ()
where (-, -)o . denotes the L?-scalar product on (2. Henceforth, we assume that
p—3V-B>p>0 aeinQ. (3)

Furthermore, we assume that the smallest eigenvalue of K is bounded from below by a
positive (but possibly very small) constant. Then, owing to the Lax—Milgram Lemma,
(2) is well—posed.

Let {7}, }1~0 be a shape-regular family of affine triangulations of the domain (.
The meshes 7, may possess hanging nodes. For simplicity we assume that the meshes
cover () exactly, i.e., {2 is a polyhedron. A generic element in 7} is denoted by T, hr
denotes the diameter of 7" and nr its outward unit normal. Set h = maxreg;, hr. We



assume without loss of generality that h < 1. Let p > 1. We define the classical DG
approximation space

Vi, = {vp, € L*(Q);VT € Ty, vp|r € Py} 4)

where [P, is the set of polynomials of total degree less than or equal to p. Henceforth,
we assume that the diffusivity tensor K is piecewise constant on 7. This assumption,
which is reasonable in the context of groundwater flow models, can be generalized by
assuming a smooth enough behaviour of K inside each mesh element. For the sake of
simplicity, these technicalities are avoided.

We say that F is an interior face of the mesh if there are 7~ (F') and 7" (F) in
Tnsuchthat F = T (F)NT*(F). Weset 7(F) = {T~(F),T"(F)} and let np
be the unit normal vector to F' pointing from 7"~ (F) towards T (F'). The analysis
hereafter does not depend on the arbitrariness of this choice. Similarly, we say that F'
is a boundary face of the mesh if there is T'(F') € 7}, such that F' = T'(F') N 0. We set
T(F) = {T(F)} and let nr coincide with the outward normal to 0€2. All the interior
(resp., boundary) faces of the mesh are collected into the set JF }l (resp., F; ;?Q) and we let
Fp = F} UF?. Henceforth, we shall often deal with functions that are double-valued
on fi and single-valued on F; ;? € This is the case, for instance, of functions in V. On
interior faces, when the two branches of the function in question, say v, are associated
with restrictions to the neighboring elements 7'+ ('), these branches are denoted by v
and the jump of v across F’ is defined as

[v]p = v~ —o™. 5)

On a boundary face F' € F%, we set [vlF = v|F. Furthermore, on an interior face
F € F}, we define the standard (arithmetic) average as {v}p = 5(v™ 4+ v™). The
subscript F' in the above jumps and averages is omitted if there is no ambiguity.

The L2-scalar product and its associated norm on a region R C §) are indicated by
the subscript 0, R. For s > 1, a norm (seminorm) with the subscript s, R designates
the usual norm (seminorm) in H*(R). When the region R is the boundary of a mesh
element 07 and the arguments in the scalar product or the norm are double-valued
functions, it is implicitly assumed that the value considered is that of the branch asso-
ciated with the restriction to 7. For s > 1, H*(7},) denotes the usual broken Sobolev
space on 7;, and for v € H'(T},), Vv denotes the piecewise gradient of v, that is,
Vv € [L2(Q)]? and for all T € Ty, (Vpv)|7 = V(v|r). It is also convenient to set
V(h) = H*(T,) + Vj.

The formulation of the SWIP method requires two parameters. As in the formula-
tion of the usual IP method we introduce a single- and scalar-valued function ~y defined
on F},. The purpose of this function is to penalize jumps across interior faces and val-
ues at boundary faces. Additionally, we define a scalar- and double-valued function w
on fi. This function, which is not present in the usual IP method, is used to evaluate
weighted averages of diffusive fluxes. On an interior face F' € F}, the values taken by
the two branches of w are denoted by (w|r)T, or simply wT if there is no ambiguity.



Henceforth, it is assumed that for all F' € F7,
wT+wt =1 (6)

Forv € V(h), we define the weighted average of the diffusive flux KV v on an interior
face F' € .7-";; as

{KV v}y = w (KVpv)~ 4w (KVyo)T. (7)

For convenience, we extend the above definitions to boundary faces as follows: on
F € F99, w is single-valued and equal to 1, and we set { KV}, = KVo.
The SWIP bilinear form By, (-, -) is defined on V' (k) x V' (h) as follows

By (v,w) = (KVpv, Viyw)oa + ((p — V-B)v,w)o0 — (v, 3-Viyw)on
+ > (] [who.r — (A KVav}w, [wl)or — (e {KViw}e, [v])o,F)

FeFy,
+ > Bnp{o} [whor+ D $(Bnpv,w)or. ®)
FeF; FeFd%

The SWIP bilinear form can equivalently be expressed, after integrating the advective
derivative by parts, as

Bp(v,w) = (KVpv, Viyw)o.o + (pv,w)on + (8-Viv,w)o 0
+ > (O] [whor — (e {KViv}e, [w])o.r — (ne{EVhw}e, [v])o.r)

FeF;,
= > Bnp{w}, hor = D, 3(Bnrv,wor. ©)
FeF] FeFd%

Both (8) and (9) will be used in the analysis. The discrete problem consists of finding
uy, € Vj, such that

By (un,vn) = (f,vn)o,0 Yoy, € V. (10)

The penalty parameter vy is defined as
VF € Fp, 'y:ay—K + s, (11)
hr

where « is a positive scalar (« can also vary from face to face) and where

VF € .7-7;, YK = (w_)25;{n + (w+)25;gn (12)
VE € FP% k= 0k, (13)
VF € Fp, V5 = |Bnrl, (14)

with 0%, = nt.KTnpif F € F} and 6k, = nhKnp if F € F?9. Note that the
choice for 43 amounts to the usual upwind scheme to stabilize the advective derivative.



For the error analysis in the energy norm (see Section 3), no other assumption than
(6) is made for the weights. In particular, it is possible to choose w T = %, in which case
the SWIP bilinear form Bj, reduces to the standard IP bilinear form with the penalty
parameter scaling as the standard average of the diffusion in the normal direction; this
method has been analyzed in [11]. Note also that the choice made in [15] for the penalty
parameter is different since it involves the maximum eigenvalue of K.

For the error analysis in the advective derivative (see Section 4), a specific choice
of the weights differing from w™ = % has to be made to yield robust error estimates

with respect to the diffusivity. Specifically, we shall set

ok .
=0 wh =, (15)
5Kn+5Kn 5Kn+5Kn
and thus
. of 67
VE € F, = Hn Kn 16

Note that with this choice 7x = W™, = w+(5}n, and that 2y is the harmonic
average of the normal component of the diffusion tensor across the interface. Observe
also that yx < inf(0,,, 5}n), a point that becomes important to ensure even the con-
sistency of the method when the diffusivity is actually allowed to vanish locally, see

[6].

3 Error analysis in the energy norm

The goal of this section is to establish an error estimate for the SWIP method in the
energy norm, the estimate being robust with respect to both locally vanishing and
anisotropic diffusion. The analysis is performed by establishing coercivity, consistency
and continuity properties for the SWIP bilinear form in the spirit of Strang’s Second
Lemma [7].

Without loss of generality, we assume that the problem data have been normalized
so that [|3|jyy1.00 ()¢ is of order unity. We also assume that ||| po(q) < 1 since we
are not interested in strong reaction regimes. In the sequel, the symbol < indicates an
inequality involving a positive constant C' independent of the size of the mesh family
and of the diffusion tensor. The constant may depend on the advection field 3, the
reaction term p, and the shape-regularity parameter of the mesh family. In the analysis
we will make use of the following inverse trace and inverse inequalities: For all T' € 7},
and for all vy, € V},,

1
lonlloor < hp? llvallor, (17)

IVhonllor < bz lonllo.r, (18)

which result from the shape regularity of the mesh family {7}, },~0.



For a function v € V' (h), we consider the following jump seminorms
1z = D e l5r = (o[l [D)o.r, (19)
FeFy,

with 0 := 73, 0 := g or o := ~. The natural energy norm with which to equip V'(h)
is

[olln.8 = llvllo.0 + 1KVavllo0 + ([l (20)

where x denotes the (unique) symmetric positive definite tensor-valued field such that
k?> = K a.e. in Q.

Lemma 3.1. (Coercivity) Assume that « in (11) is large enough. Then, the bilinear
form By, is |||, -coercive, i.e., for all vy, € V},

By (vn,vn) 2 ”UhHiQL,B' 2D

Proof. Let vy, € V},. Taking v = w = vy, in (8) yields

Bp(vn,vp) = KV Ronll§.0 + (1on, va)og — (V-B)vn, vr)o — (Vhs B-Vava)og

Hlonll2 = D 2(E{K Vo, [val)o.r
FeF,

+ Z (B-np{vn}, [vn])o,r + Z L(Bnpvp,vp)o,F- (22)

FeF} FeFP?

Integrating by parts the fourth term on the right hand side of (22) and owing to hypoth-
esis (3), we obtain

(top,vp)o,o — ((V-B)vp,vn)oo — (Vn, B-Vivw)oa + Z (B-np{vn}, [vn])o,r
FeF}
+ Z s(Bnpon,vp)o,r = (10— 3V-B)vn, va)oo 2 lonllg.q- (23)

FeFp%

Consider now the sixth term in the right-hand side of (22). Let F' € F},. First, observe
that owing to Young’s inequality
2(nfpw T (KVon) T, [on])o,r| = 12((kVhvn) T, wT kT np[op])o,r|

(Y g o)

< hrool|(5Vpvn) TG £ +
0,F

where op > 0 can be chosen as small as needed. Using the trace inverse inequality (17)
and the definition of v (12)-(13) yields

1
2(n5{ KV oo, [vn])o.r| S aoll&Vaonllg 7 ) + m“[“h]”gm,p-

7



Choosing « in (11) to be large enough yields

15V honllg o + 1vnll2 = D 200k {E Vionta, [on)o.r 2 116Vavalga + [[oal 2
FeF,

(24)

Combining (24) with (23) we obtain (21). |

Lemma 3.2. (Consistency) Let u solve (2) and let up, solve (10). Assume that u €
H?(T},). Then

Vo, € Vi, Bp(u — up,vp) =0 (25)
Proof. Let vy, € Vj. Since u is continuous by assumption and vanishes on 0f2, using
(9) yields

By (u,vp) = (KVu, Viop)oa + (pu, vp)oa + (8:-Vu,vp)o.0
— Y (e {KVuly, [on])o,r-

FeFy,

Using the fact that n. K Vu is continuous on interior faces yields n}.{ KVu}, = (w™+
wT)nt. KVu = n K Vu owing to (6). Hence, integrating by parts leads to

(KVu, Vivp)oa — > (nk{KVuly, [voa)or == Y (V-(KVu),vp)o1.
FeFy, TeT),

As a result,

Bu(u,vn) = Y (=V-(KVu) + 8-Vu+ pu, vn)or = (f,0n)0.0 = Bu(un, vn),
TeT,

yielding (25). O

We now establish a continuity property for the SWIP bilinear form Bj. To this
purpose, we introduce on V' (h) the norm

(o]
D=

HUH 1 Hth,B ||U||?)78T hFH’{ y hU||(2)7F : (26)
h
'2 TeT, FeFy,

Let V- = {v € V(h),Vos € Vi, (v,v1)0,0 = 0}.
Lemma 3.3. (Continuity) The following holds:

(v, wn) € Vi X Vi, [Bu(v,wi)| S [loll, %Hwhllh,B' 27)



Proof. Let (v,wp) € Vhl x V},. The first two terms in (8) are easily bounded as
|(K Vi, Vwn)o.al + [((1 = V-B)v,wn)oal < 1vlln5lwhlln,B-

To bound the third term, let 3 be the piecewise constant, vector-valued field equal to
the mean value of 3 on each T' € 7},. Then,

(v, B-Viwp)on = (v, 3-Viws)oa + (v, (8 — B)-Vawn)oo
= (v, (8 — B)-Vawn)on

since 3-Vywy, € Vi, and v € V- Moreover, since 8 € [IW1°°(Q)]4,
VT € T, 18 = Bllizeerye S hr

so that the inverse inequality (18) yields

(v, B-Vawn)ool S lvllogllwalloo < lvllnsllwalns-

Furthermore, proceeding as in the proof of Lemma 3.1 yields, for all F' € F,,

1 1
|(nE{ KV pv}e, [wal)o.r| S hEIVav]lo,php? [Twh] |y, F

and

1
|(n{ KV hwp Yo, [0])o,p| S Bp? [[0] |y, £ 16V hwn o7 ()

so that

> (e {EV o}, [wal)o,r| + |(nE{ K Vwn}e, []o,rl) S 11, 1liwnlln, -
FEF,

For the remaining terms, we obtain

Z |(v[v], [wal)o, | + Z |(B-nr{v}, [wi])o,r| + Z |3 (Bnpv,wp)o,r|

FeFp FeFi FeFd®
Sl londly + D I{wHop lwnllyg.r < lloll, 1 llwnlln,5-
FeF} 2
This completes the proof since |||,z < HHh 1. O
2

Theorem 3.1. Let I, u be the L?-projection of u onto Vy,. Then,

[ = unllnz S Hu—HhUHh%- (28)



Proof. Owing to Lemmata 3.1, 3.2 and 3.3,
By (up, — Hpu, up, — Mpu) < Bp(u — pu, up — Mpu)
|un — pulln,B ~ |un — Mpulln,B
Sl —puf, 1 (29)
2

lup, — Hpullpp <

We complete the proof by applying the triangle inequality and using the fact that ||-||, g <
I, 1. o
2

Corollary 3.1. Set \ys i := max(1, A\ ), where A\ indicates the maximum eigenvalue
of K on Q. Then, if the exact solution u is in HPH(’Z}L),

1
lu = unllng S A WP 1wl o () - (30)

Proof. Use Theorem 3.1 and standard approximation properties for the L2-orthogonal
projector IIj. U

We now prove that when the domain (2 has elliptic regularity and the diffusion is
not too small, the error estimate in the L?-norm can be improved by using the Aubin-
Nitsche duality argument. To this purpose, we introduce the following dual problem:
seek 1) € H}(2) such that

(KVv, VY)oa + (BVv, )00 + (v, ¥)oo = (v,u —up)oe Yo € Hi(Q). 31)
We assume that elliptic regularity holds in the broken H ?-norm, namely that
19l z2(7) S A e = unllo.0 (32)
where ), i denotes the lowest eigenvalue of K on §2.

Theorem 3.2. In the above framework,

M |
o= wnllo < 30 (lu =l + jnf = widne, )G9
where for all v € V (h),
P P
[vllns, = lolns+ | D W2IVaoller | + | D hellsVavllir | - 34
TeT), FeF;,

Proof. Step (i): observe that for all v € V' (h), using (8) yields

Bp(v,¢) = (KVpv,Vi)oa + (1 — V-B)v,¥)o0 — (v, 8:-V)o
= Y (0 {EVY L, [W)or = D (0, =V-(KEVY) — VY + (u = V-B)¢)or

FeF, TeT;,

= (v,u —up)o,n. (35)

10



Step (ii): define on V'(h) the norm

3
lollna =il 1+ > hllolgr (36)
TeT,
and let us prove that for all (v,w) € V(h) x V(h),
[ Bn (v, w)| < [[vlln,y wlin,- (37)

Indeed, indicating by 73, 1 < i < 8 the eight terms on the right-hand side of (9), and
proceeding as in the proof of Lemma 3.3, it is clear that ), 5 |Ti| < [|v|n,5, Hw”h 1
2

Moreover,

T3] = (8-Vav,whool S D IVavllorlwlor
TET),

= > bl Vaonlorhzt lwllor < [olln,e. wllai-
TeT),
Hence, (37) holds.
Step (iii): taking v = u — uy, in (35), applying Lemma 3.2 and using (37) yields for all
Yn € Vh,
lu — unllg.o = Ba(u — up, ¥) = By(u — w0 — ¥n) S llu—wplln,p 1 — plln,i-
Using standard interpolation results leads to
2
wlfg/ [ = ¥nlln1 S Ajr e hllVlE2(2)
and taking into account (32) yields

l\’)

)\
lu —uplloo S ™ hHU_UhHh B - (38)

Using the inverse inequalities (17) and (18), we infer that for all vy, € V},
lvnlln,By < llvnllns + [vellog + 16V honlloo S lvalln,B- (39)
Applying the triangle inequality together with (39) leads to
lu—unllnB, < llw—wnllnp, + lun —whlln5,

Slw—wpl|n,By + lun — wallnB

S llu—wnlln,y + lluw—unlln,5. (40)
where wy, is arbitrary in V},. Substituting (40) into (38) yields (33). O
Corollary 3.2. If the exact solution v is in HP*1(T},), then

<)\MK

lu—unlloq S N fﬂ’“llUlle1 (Th)- (41)
Proof. Use Theorem 3.2, Corollary 3.1 and standard approximation properties of V.

O

11



4 Error analysis for the advective derivative

For vanishing diffusion it is no longer possible to control the advective derivative by
means of Theorem 3.1. The goal of this section is to obtain a control of the error
in the advective derivative that is robust with respect to the diffusivity. We will see
that this goal can be achieved in the isotropic case. Moreover, in the anisotropic case
we establish an estimate that is fully independent of the diffusivity in the advection-
dominant regime.

We introduce the following norm on V'(h),

[0lln.85 = [0lln.B + [v]lns (42)

where

lollng = | > hrllB-Vavllsr | - (43)
TeTy

The aim of this section is to obtain a convergence result in the |||/ g-norm. To this
purpose, the first step is to derive a stability property for the SWIP bilinear form By, in
this norm.

Lemma 4.1. (Stability) Define

1 i 118l oo gy > 24T
VT € Ty, Agr = {,\MT P llzcr hr

. (44)
- otherwise

m, T
where Ay and A\, T are respectively the maximum and the minimum eigenvalue of
K‘T. Set A = mMaxreT, AK,T- Then,

inf sup Bn(on,won) AL 45)

vn€Vi M0} wyevi\{o} I[Vnlln,BallwnllnBs ™

Remark 4.1. We stress the fact that the inf-sup condition is robust in the isotropic case
and in the anisotropic case for dominant advection. Note also that the anisotropies are
local to the mesh element, i.e., ratios of eigenvalues between adjacent elements are not
considered. To achieve this result, the key point (see the control of |[7] |3K in the proof
below) is that the choice (15) for the weights yields v < inf(d,, (5}71)

(vn,wn)

Proof. Step (i): letvy, € Vj, and set S = sup,, cv;\ {0} ﬁz}hﬁh"m . Owing to Lemma 3.1,

we infer that

lonll35 < Sllvnlln,Bs (46)

so it only remains to control the advective derivative.

12



Step (ii): let 7, € V}, be such that for all T’ € 7y, | = hr3-V vy, where (3 is defined
in the proof of Lemma 3.3. Let us prove that
1
17 llnBs S Ak llvalln,zs- (47)

The inverse inequality (18) and the regularity of 3 yield for all 7' € 7},

I7rllor S hrllB-Vavallor + hrllvllor, (48)

while the inverse inequality (17) yields for all F' € F,

a2, e S Y Imallbor S D (hellB-Vavallsr + hrllvalldr) -
TET(F) TET(F)

Hence,

Imnlloe + [7nllys < llonlln.zs-

1
Let us estimate h .2 |[7}] |, F for all ¥ € F,. Observe first that v = w5, < 0%,

if I € ]-",i and vxg = Ogn if I € f,‘?g. Hence, if there is T' € 7,(F) such that
A
18Nl [Loe ()2 2 “h- then

W llmnl Brer < R A llmnd 15 r < D (el B-Vaonllg.r + hrllonlld.r) -
TET(F)

Otherwise, for all F' € F?,
he' v Imal? S heve ((B-Vion) ) + ((B-Vion)T)?)
S hr (5%,n((3'vhvh)_)2 + 5}n((3'vhvh)+)2) ;

and similarly for F' € F, ;? €. Hence, using the trace inverse inequality (17),

_ Am,T
helllmnl e r S D0 Azl Vawnl§r S0 \ 16V B on|§ 7
TeT(F) rer(r) "™t

1
Hence, |[71]]y < AZ||vp||n,Bs. Furthermore, since  is piecewise constant,

16V amnllor = hrllB-Vi(eVion)llor S [16Vavnllor,

implying that |V, m4]l0.0 S [|vsl|n,g- Finally, the advective derivative of 7y, is con-
trolled by

Imallhg S D bt lmallir S lonlli s,
TeT,

13



owing to (48). This proves (47).
Step (iii): we can now examine the term ||vy, H% 5 by making use of (9):

lonll 5 = Ba(vn, mh) — (KVon, Vims)o.o — (Bon, T)o.0

+ > (B-Vavn, hpB-Vyon —m)or + Y (Bnp{ma}, [onl)or

TeT,, FeF}

+ Y sBnron,m)or — Y (v[wal, [ra)o.r
FeFd% FeFp

+ Z (A KV avp}os [ma])o,r + (0 { KV amh o, [va])o,r)
FeFy

= Bp(vp,mh) +T1 +To+ T3+ Ty +T5 + T+ Tr + Ts.

‘We observe that

1
| By (vn, m1)| < Slimalln,ps < SAZ|vnln,Bs-

It is also clear that
3
T | + |T2| + |T6| + |T7] + |T5] < Nlvnlln,sllmnllns S 32A2 wllonll7 pa-

Furthermore, using the inverse inequality (17) together with (48) yields

2 2
Tl +1T5) S Hlonlls | D Ilmnldor | S Monlls | D2 At lmnl3r
TeT), TeT,
3
S onlln,sllvsllnes S S2 lvnlli s

Finally,

T < hel(B-Vaon, (8= B)-Vaon)orl S Y hll8-Vavnlor||Vavallor
TeT), Te€T,

3
SO hrllB-Vavnllozllvallor < lowllnssllvnlloe < SQH”thL
TeT,

Hence,

lonlls ms S lonlls 5+ D BrllB-Vavalld 7
TeT,
1 3
< Sllvrlln,s + SA wllvnllnBs + S1A7 wllvnll; g + s2 H’UhHh BB"
Applying Young’s inequality yields ||vy||n, 53 S SAk, and thus (45).

Proceeding as above, the following result is readily inferred:

14



Theorem 4.1. In the above framework,

_ < i _
le = unllnpp S Axc ik flu—=val, 15, (49)
where, for all v € V (h),
2 2
foll, 1, = ols + | S 0lBor | + [ 3 arlaviolior ] - G0)
'2 TET, TeT,

A

In particular, if the exact solution w is in HP™(Ty,) and || B[ 1y 2
then

M, T
oo VT € T,

1
lu—unllf g S BPT2 |l o (75, (51)

5 Numerical tests

5.1 A test case with discontinuous coefficients

To verify the convergence of the SWIP method and to make quantitative comparisons
between this and other IP methods, we consider the test problem proposed in [3], fea-
turing discontinuous coefficients and where the exact solution is known analytically.
We split the domain © = [0,1] x [0,1] into two subregions: €1 = [0, 3] x [0,1],
Qy = [4,1] x [0,1]. The diffusivity tensor K is constant within each subregion, and

3
K(wy) = < e(g) 1(.)0 >

defined as

where €(x) is a discontinuous function across the interface x = % Indicating with the
subscript 1 (resp. 2) the restriction to the subdomain 1 (resp. {25), we will consider
different values of €1, while €9 is set equal to 1. Setting 5 = (1, O)t, w=0and f =0,
the exact solution is independent of the y-coordinate, and is exponential with respect to
the x-coordinate. The following conditions must be satisfied at the interface between
the two subdomains:

lim wu(x,y) = lim+u(;v,y), and lim —e0u(z,y) = lim+ —0yu(x,y).
_ 1 - 1

:c—»% T—5 z—3 z—3

Setting u(0,y) = 1, u(1,y) = 0 and applying the matching conditions, we obtain the
value of the exact solution at the interface:

—1
exp(gg exp (5 1
u(3:9) - ( s 1B

11— exp(%) 1— exp(%) 1 —exp(3
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As a result, the exact solution in each subdomain can be expressed as

u(3,y) —exp(ge) + (1 — u(3,y)) exp(£)

1-— exp(i)
—exp(3)ulz,y) +u(zy) exp(@ — 3)

1 —exp(%)

u1($7y) =

9

u2($7y) =

5.2 Accuracy of the SWIP method

Just like any discontinuous Galerkin method based on interior penalties, the precise
setting of the SWIP method depends on the definition of the penalty parameter o which
has to be large enough in order to obtain a well posed discrete formulation. In the
following numerical tests we have used o = 1.0 for IP; elements and « = 4.0 for Ps.

We apply the SWIP method to the test case presented in the previous section. In
order to assess the accuracy of the SWIP method with respect to the mesh-size h, we
consider a family of uniform triangulations {7} },~¢ which are conforming with re-
spect to the interface between {21 and {2o. These triangulations are obtained starting
from a uniform partition of 92 in sub-intervals of length A~ = 0.1, h = 0.05, h = 0.025
and h = 0.0125 respectively. The numerical results obtaied with ¢; = 0.1 are found in
Tables 1 and 2. Since the exact solution u is sufficiently smooth locally, and the compu-
tational mesh is conforming with respect to the interface where e(x) is discontinuous,
we expect that our method satisfies the order of convergence in the norms || - |1 B,
|- |1, and || - ||o,o provided by the theory (see (30), (51) and (41)). These properties
are clearly verified by the numerical experiments, where the order of convergence is
computed with respect to the last two rows of each table.

5.3 SWIP versus IP

We compare the performance of the SWIP method with respect to two IP methods
differing in their choice of the penalty parameter. The first method, indicated by IP-A,
corresponds to the SWIP method with weights w¥ = % The penalty parameter vx is
thus the arithmetic average of the diffusion in the direction normal to the face. This

method was analyzed in [11]. The second method (IP-B), proposed in [15], differs

Table 1: Convergence rates of the SWIP method (p = 1)

h | llu—wnllns  llv—unlns |v—unlon
0.1000 1.62e-01 1.49e-01 6.94e-03
0.0500 7.96e-02 5.45e-02 2.11e-03
0.0250 3.67e-02 1.87e-02 4.80e-04
0.0125 1.70e-02 6.37e-03 1.21e-04

order 1.11 1.55 1.98
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from IP-A in the choice of penalty parameter: here yx is the arithmetic average of the
maximum eigenvalue of K on the triangles sharing the face F'.

We consider the test case proposed in Section 5.1 on a uniform triangulation 7p
characterized by h = 0.05. The quantitative analysis is based on the norms ||| 4 5,
|-In,35 |||lo,o and the indicator

M = max(| max(un) — max ()], | min () — min ()] (52)

which quantifies overshoots and undershoots of the calculated solution. The numeri-
cal results are found in Tables 3 and 4 and in Figure 1. These results show that the
SWIP scheme performs better than the considered IP methods, particularly when the
computational mesh is not completely adequate to capture the singularities of the exact
solution. This is evident in the case of €; = 5e-3 where the weights permit sharper
discontinuities in the calculated solution, leading to smaller oscillations in the internal
layer. Indeed, the indicator M shows that the maximal and the minimal values of the
exact solution are closely respected. This is not the case for the other IP methods, where
the solution is forced to be almost continuous. As can be observed in Figure 1, this lim-
itation promotes the instability of the approximate solution in the neighborhood of the
internal layer. The spurious oscillations generated in this case lead to an overshoot of
about 40%.

The robustness of the SWIP method with respect to standard IP schemes is also
confirmed by further numerical tests concerning vanishing values of ¢;. In Figure 2
we see that as the diffusivity decreases the difference between the IP methods and the
SWIP method augments. Comparing the error measures, the SWIP method performs
favourably with respect to the IP methods as the internal layer becomes sharper. These
observations are confirmed by figure 3, where we compare SWIP and IP methods in the
case €] = le-6. The solution computed by the SWIP method is very close to the exact
solution, whereas the IP-A and IP-B methods become unstable.

5.4 A test case with genuine anisotropic properties

To conclude the sequence of numerical tests, we consider a test case with genuine
anisotropic properties. Because of the complexity of the problem, it is not possible

Table 2: Convergence rates of the SWIP method (p = 2)

h | llu—wnllns  llv—unlns lv—unlon
0.1000 2.31e-02 2.15e-02 6.80e-04
0.0500 4.63e-03 3.31e-03 4.29e-05
0.0250 1.17e-03 5.93e-04 5.20e-06
0.0125 2.95¢e-04 1.05e-04 6.41e-07

order 1.99 2.49 3.02
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to compute analytically the exact solution. Consequently, the comparison between the
SWIP and the IP methods will only be qualitative.

We consider the unit square € = [0, 1] x [0, 1] split into four subdomains: Q; =
[0,2] x [0,1], Q2 = [$,1] x [0,1], Q3 = [3,1] x [3,1] and Q4 = [0, 5] x [3,1]. The
diffusion tensor K takes different values in each subregion:

le—6 O
K= (150 ) forlen <o

1.0 0
K(.I‘,y) = < 0 le—6 > for («T,y) € Q27 Q.

For the advection term we consider a solenoidal field 8 = (8, 3,)" with 3, = —10(2y—
1)(1—(22—1)?) and 3, = —40y(2x—1)(y—1). We note that the field is oriented along
the normal of the interfaces z = % and y = % where K (z,y) is discontinuous, in the
direction of increasing diffusion. Examining the variations along a radius originated in
the center of €2, the forcing term f(z,y) = 10~ 2 exp(—(y/(z — 0.5)2 + (y — 0.5)% —
0.35)2/0.005) is a Gaussian hill with center at r = 0.35. Finally, we choose i = 1. For
the simulations, we consider a uniform mesh characterized by A = 0.025. This mesh is
conforming with respect to the discontinuity of K.

A qualitative representation of the data is found in Figure 4. Similarly to what hap-
pens for the test case described in Section 5.1, the orientation of the advection field at
the interfaces where K is discontinuous in combination with a change from a dominant
advective to a dominant diffusive regime, induces quite steep internal layers.

In Figure 5 we compare the solutions obtained with the SWIP and the IP meth-
ods. The contour plots of the numerical solutions confirm that the methods at hand
behave differently in the neighborhood of the interfaces where the tensor K is discon-
tinuous. We observe that the SWIP scheme approximates the internal layers by means

Table 3: The accuracy of the SWIP and the IP methods: €; = 5e-2

method | |lu —unlnp  |[u—unllng [lu—unlog M
SWIP 1.583e-01 1.505e-01 4.586e-03  9.555e-04
IP-A 1.483e-01 1.403e-01 5.153e-03 5.882¢-03
IP-B 1.338e-01 1.378e-01 5.903e-03 5.882¢-03

Table 4: The accuracy of the SWIP and the IP methods: €; = 5e-3

method | [lu —upllnp  llu—unllng u—unfoo M
SWIP 4.917e-01 1.280 1.474e-02  6.594e-02
1IP-A 5.886e-01 1.303 4973e-02  4.373e-01
IP-B 6.625¢e-01 1.634 7.553e-02  4.173e-01
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Figure 4: The test case with genuine anisotropic properties. At the top, an illustration
of the domain and its subregions together with a synoptic description of the diffusivity
tensor. The advection field § and the forcing term f are shown bottom left and right
respectively.
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Figure 5: The test cases of section 5.4. The rotating field is counterclockwise on the left
(see figure 4) and clockwise on the right. The solution obtained by the SWIP scheme
is reported on the top while the ones relative to the interior penalty methods IP-A and
IP-B are depicted below.

0.000406 0000449
0.000365 0000403
0.000324 0000358
0.000284 0000312
0.000243 0.000266
0.000202 000022

0.000161 0000175
0.00012 0000129
7.96e-05 8.34e-05
3.88e-05 3.77e-05
~2e-06 —8e-06

0.000404 0000454
0.000363 0000408
0.000323 0000362
0.000282 0000316
0.000242 000027

0.000201 0.000223
0.000161 0000177
0.000121 0000131
8e-05 8.52¢-05
3.95¢-05 3.91e-05
~1e-06 ~7e-06

0.000407 0000436
0.000366 0000388
0.000325 000034

0.000285 0000292
0.000244 0000244
0.000203 0.000197
0.000162 0000149
0.000121 0000101
8.06e-05 5.28¢-05
3.98¢-05 4.9¢-06

~1e-06 —4.3e-05
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of jumps, while the IP schemes attempt to recover a numerical solution which is almost
continuous. Since the computational mesh is insufficiently refined, the scheme IP-A
generates some slight undershoots near the interfaces where K is discontinuous. For
the IP-B method the oscillations generated by the approximation of the internal layer
are much more evident and propagate quite far from the interfaces. This behavior can
be explained by observing that this type of penalty does not distinguish between the
principal directions of diffusion. Consequently, an excessive penalty is applied along
the direction of low diffusivity.

To strengthen these conclusions, we also consider a numerical test where the ad-
vection field is the opposite of the one reported in Figure 4, i.e. it rotates clockwise.
Following this advection field along the interfaces between subregions, the diffusivity
decreases. These conditions lead to an exact solution which is continuous in the neigh-
borhood of the interfaces. In this case, we expect that the SWIP, the IP-A and IP-B
methods behave similarly. Indeed, this is confirmed by the numerical results reported
in Figure 5, on the right hand side. Although the SWIP method enforces the continuity
between elements in a weaker way with respect to IP-A and IP-B, it provides a solution
that is comparable with the others.

6 Concluding remarks

The SWIP method analyzed in this paper is a DG method with weighted averages de-
signed to approximate satisfactorily advection-diffusion equations with anisotropic and
possibly locally vanishing diffusivity. A thorough a priori analysis has been carried
out, yielding robust and optimal error estimates that have been supported by numer-
ical evidence. The SWIP method is an interesting alternative to other IP methods in
the presence of internal layers caused by locally vanishing diffusivity, since these are
approximated more sharply without increasing the computational complexity.
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