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Abstract

In this paper we re-address the anisotropic recipe provided for the stability
coefficients in [13]. By comparing our approach with the residual-free bubbles
theory, we improve on our a priori analysis for both the advection-diffusion and
the Stokes problems. In particular, in the case of the advection-diffusion prob-
lem we derive a better interpolation error estimate by taking into account in
a more anisotropic way the contribution associated with the convective term.
Concerning the Stokes problem, we provide a numerical evidence that our
anisotropic approach is thoroughly comparable with the bubble stabilization,
which we study more in detail in our anisotropic framework.
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1 Introduction

Stabilized finite elements like the Galerkin Least-Squares method (GLS), first intro-
duced in [10] for solving the Stokes problem and in [3, 7, 11] for the approximation
of the scalar advection-diffusion problem, are used in the finite element community
in several application fields, such as viscoelastic flows, shells, magnetohydrodynam-
ics and semiconductors. One of the advantages of such an approach is that in the
case of the Stokes problem we can circumvent the classical inf-sup condition and
use equal order approximation spaces for both the velocity and the pressure, e.g.
continuous piecewise linear finite elements, while ensuring stability of the method
by adding consistent terms to the weak formulation.
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The critical issue in stabilized finite elements is the design of the so-called stabil-
ity coefficients weighting the extra terms added to the weak formulation. Typically,
these coefficients, one for each element K of the triangulation, depend on some di-
mensionless number usually tuned on benchmark problems, and on a local mesh
size, e.g. the triangle diameter hK . A theoretical estimation of these quantities is
proposed e.g. in [8, 9] for isotropic meshes.
Alternatively, the stabilization procedure based on residual-free bubbles relieves us of
tuning any parameter provided that the residual-free bubble is accurately computed
on each triangle (see e.g. [2, 17] and the references therein).

However, in the case of strongly anisotropic meshes the design of the stability
coefficients is still an open question. In [14] numerical experiments show that good
results can be obtained when using the minimum edge length of K instead of hK.
In [13] we propose a theoretical design of the stability coefficients suitable also for
anisotropic meshes. Our analysis provides a general recipe for the definition of these
coefficients valid for arbitrary shapes of the elements, taking into account a more
detailed description of the geometrical structure of the triangles. To obtain this new
definition we combine the a priori error analysis of [6, 7, 10] with the anisotropic
interpolation estimates of [5]. However, this analysis is still unsatisfactory in the
case of the advective dominated problem when the mesh is not well oriented with
respect to the boundary layers, as the numerical results in Sect. 5.1 show.

In this paper, after addressing the main results of the analysis carried out in [13],
we compare our anisotropic recipe with the definition of the stability coefficients
provided by the residual-free bubbles theory. The main result is twofold: we first
improve on the a priori analysis for the advection-diffusion problem carried out in [13]
by analyzing in a more anisotropic way the interpolation error estimate associated
with the convective term. Then we dwell on the Stokes problem and in particular
we provide a numerical evidence that the two approaches actually coincide up to the
tuning constant. Our numerical validation provides us with a practical numerical
value for such a constant to use in the simulations.

The outline of the paper is as follows. In Sect. 2 we recall the anisotropic frame-
work of [5, 13]. The a priori analysis leading to our definition of the stability coeffi-
cients for the advection-diffusion and Stokes problems is carried out in Sects. 3 and
4, respectively. Finally, in Sect. 5 we numerically compare our anisotropic recipes
with the residual-free bubble ones. This analysis allows us to derive a better recipe
than the one in [13] in the advective dominated case.

2 Anisotropic setting

In this section we summarize the leading ideas of the anisotropic analysis used for
the design of the new stability coefficients.
Let Ω ⊂ R2 be a polygonal domain and let {Th}h denote a family of conforming
triangulations of Ω into triangles K of diameter hK ≤ h, for any 0 < h ≤ 1. Let
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TK : K̂ → K be the invertible affine mapping from a reference triangle K̂ into the
general one K. The reference element K̂ can be indifferently chosen as, e.g., the unit
right triangle (0, 0), (1, 0), (0, 1) or the equilateral one (−1/2, 0), (1/2, 0), (0,

√
3/2).

Let MK ∈ R2×2 be the nonsingular Jacobian matrix of the mapping TK, i.e.

x = TK(x̂) = MKx̂ + tK for any x̂ = (x̂1, x̂2)
T ∈ K̂, (1)

with tK ∈ R2 and x = (x1, x2)
T ∈ K.

The distinguishing feature of our anisotropic approach consists in exploiting the
spectral properties of the mapping TK itself in order to describe the orientation
and the shape of each triangle K (see [5] for more details). With this aim, let us
factorize matrix MK via the polar decomposition as MK = BKZK, BK and ZK being
symmetric positive definite and orthogonal matrices, respectively. Furthermore, BK

can be written in terms of its eigenvalues λ1,K , λ2,K (with λ1,K ≥ λ2,K) and of its
eigenvectors r1,K, r2,K as BK = RT

KΛKRK , with

ΛK =

[
λ1,K 0

0 λ2,K

]
and RK =

[
rT
1,K

rT
2,K

]
.

Thus, the deformation of any K ∈ Th with respect to K̂ can be measured by the
so-called stretching factor sK = λ1,K/λ2,K(≥ 1).

Starting from the decompositions described above, new anisotropic interpolation
error estimates have been derived for the Lagrange and Clément like interpolation
operators. These estimates are an essential ingredient of the convergence analysis
in the sections below, for both the advection-diffusion and Stokes problems. We
refer to [5, 13] for the detailed derivation of these anisotropic interpolation error
estimates. Let us introduce some anisotropic quantities related to this interpolation
error analysis, which will be used in Sects. 3 and 4. Here and thereafter we use
standard notation for Sobolev spaces, norms, seminorms and inner product [12].
For any function v ∈ H2(Ω) and for any K ∈ Th, let

Li, j
K (v) =

∫

K

(
rT

i, K HK(v) rj,K

)2
dx for i, j = 1, 2, (2)

with
(
HK(v)

)
ij

= ∂2v/∂xi∂xj the Hessian matrix associated with the function v|K.

The quantities (2) can be interpreted as the square of the L2-norm of the second-
order directional derivatives of the function v with respect to the directions ri,K and
rj,K. Likewise, for any v ∈ H1(Ω) and for any K ∈ Th, let GK(v) be the symmetric
positive semi-definite matrix given by

GK(v) =
∑

T∈∆K




∫

T

(
∂v

∂x1

)2

dx

∫

T

∂v

∂x1

∂v

∂x2
dx

∫

T

∂v

∂x1

∂v

∂x2
dx

∫

T

(
∂v

∂x2

)2

dx


 , (3)
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where ∆K is the patch of elements associated with the triangle K, that is the union
of all the elements sharing a vertex with K. Throughout we assume the cardinality
of any patch ∆K as well as the diameter of the reference patch ∆ �

K = T−1
K (∆K) to be

uniformly bounded independently of the geometry of the mesh, i.e., for any K ∈ Th,

card(∆K) < Γ and diam(∆ �

K) = Ĉ ' O(1).

In particular, the latter hypothesis rules out some too distorted reference patches
(see Fig. 1.1 in [13]).

3 The advection-diffusion problem

In this section we re-address in the framework of anisotropic meshes the crucial
question of the choice of the stability coefficients for an advection-diffusion problem.
We limit our analysis to the case of affine finite elements.
More in detail, in [13] we generalize the analysis in [7], where an expression for the
stability coefficients is provided for both advective and diffusive dominated flows, to
the case of possibly highly stretched elements. Thus, while [7] can be considered as
the isotropic paradigm, our results can serve to design the stability coefficients in a
more detailed way in an anisotropic context. With this aim, the convergence of the
stabilized method is studied in a mesh dependent norm taking into account also the
stability coefficients by requiring that the convergence rate, in both the advective
and diffusive dominated regimes, be of maximal order. Theorem 3.1 provides the
final result of this analysis.

Let us consider the standard advection-diffusion problem for the scalar field
u = u(x) {

−µ ∆u + a · ∇u = f in Ω,
u = 0 on ∂Ω,

(4)

where µ = const > 0 is the diffusivity, a = a(x) ∈ (C1(Ω))2 is the given flow velocity
with ∇ · a = 0 in Ω, and f = f(x) ∈ L2(Ω) is the source term.

The variational formulation of problem (4) is: find a function u ∈ H1
0(Ω) such

that
B(u, v) = F (v) for any v ∈ H1

0 (Ω), (5)

where B(·, ·) and F (·) define the bilinear and linear forms

B(u, v) = (µ∇u, ∇v) + (a · ∇u, v) and F (v) = (f, v),

respectively, for any u and v ∈ H1
0 (Ω).

Let us discretize problem (5) by the GLS method as we are interested in advective
dominated problems. The discrete problem thus is: find uh ∈ Wh,0 which satisfies

Bh(uh, vh) = Fh(vh) for any vh ∈ Wh,0, (6)
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with
Bh(uh, vh) = B(uh, vh)

+
∑

K∈Th

(−µ ∆uh + a · ∇uh, τK(−µ ∆vh + a · ∇vh))K,

Fh(vh) = F (vh) +
∑

K∈Th

(f, τK(−µ ∆vh + a · ∇vh))K,

(7)

where we let Wh,0 = Wh ∩ H1
0 (Ω), Wh being the finite element space comprising

continuous affine elements. With this choice the terms ∆uh|K and ∆vh|K in (7) are
identically equal to zero. Finally, we define the stability coefficients τK according to
the theory in [7] as

τK =
δK

2

ξ(PeK)

‖a‖L∞(K)
, (8)

where δK is a characteristic dimension of element K and the function ξ is defined as

ξ(PeK) =

{
PeK if PeK < 1,
1 if PeK ≥ 1.

(9)

This choice corresponds to considering a locally advective dominated flow when the
element Péclet number

PeK = δK

‖a‖L∞(K)

6 µ
, (10)

is greater than or equal to one. Notice that, while in [7] the choice δK = hK is made
up-front, on the contrary, in the presence of anisotropic meshes, this choice turns
out not to be the optimal one. We provide below a more convenient choice of δK

based on the error analysis.

3.1 Error analysis

To begin with, let us recall that the stabilized scheme (6) is consistent in the sense
that if additional regularity is demanded for the solution u of the variational problem
(5), that is u ∈ H2(Ω) ∩ H1

0 (Ω), then the following relation holds

Bh(u, vh) = Fh(vh) for any vh ∈ Wh,0. (11)

As a trivial consequence, simply by subtracting the equalities (11) and (6), we get
the well-known Galerkin orthogonality property given by

Bh(u − uh, vh) = 0 for any vh ∈ Wh,0. (12)

The convergence analysis in the sequel is derived in terms of the discrete norm
‖ · ‖h defined, for any w ∈ H1

0 (Ω), by

‖w‖2
h = µ ‖∇w‖2

L2(Ω) +
∑

K∈Th

‖τ 1/2
K a · ∇w‖2

L2(K). (13)
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In order to prove the convergence result of Theorem 3.1, let us begin with analyzing
the stability and the continuity of the bilinear form Bh(·, ·). Concerning the stability,
the following result can be stated.

Lemma 3.1 For any vh ∈ Wh,0,

Bh(vh, vh) = ‖vh‖2
h. (14)

Thus (6) has a unique solution.

On the other hand, the continuity of the bilinear form Bh(·, ·) is provided by

Lemma 3.2 For any u ∈ H2(Ω) ∩ H1
0 (Ω) and for any vh ∈ Wh,0, there exists a

constant C such that

|Bh(u, vh)| ≤ C

[
µ‖∇u‖2

L2(Ω) +
∑

K∈Th

(
‖τ−1/2

K u‖2
L2(K)

+ ‖τ 1/2
K a · ∇u‖2

L2(K) + ‖τ 1/2
K µ∆u‖2

L2(K)

)]1/2

‖vh‖h.

(15)

The stability and the continuity results (14) and (15), suitably combined with
the anisotropic interpolation error estimates in [5, 13], are the basic ingredients to
prove the anisotropic a priori error estimate below with respect to the norm ‖ · ‖h

defined in (13).

Proposition 3.1 Let u ∈ H2(Ω) ∩ H1
0 (Ω) be the solution to (5) and let uh ∈ Wh,0

be the solution to (6). Then there exists a constant C such that the a priori estimate

‖u − uh‖2
h ≤ C

∑

K∈Th

{(
µH(1 − PeK)

[
1

δ2
K

+
1

λ2
2,K

+ δ2
K

(λ2
1,K + λ2

2,K)2

λ4
1,Kλ4

2,K

]
+ H(PeK − 1)

+

[
1

δK

+
δK

λ2
2,K

+ δ3
K

(λ2
1,K + λ2

2,K)2

λ4
1,K λ4

2,K

]
‖a‖L∞(K)

) [ 2∑

i, j=1

λ2
i,Kλ2

j,KLi, j
K (u)

]}

(16)

holds true, with Li, j
K (u) defined as in (2) and where H(·) is the Heaviside function

given by

H(s) =

{
0 if s < 0
1 if s > 0.

(17)
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Sketch of the proof. The intermediate result

‖u − uh‖2
h ≤ C

∑

K∈Th

[
‖τ 1/2

K a · ∇(u − rK(u))‖2
L2(K)

+ µ ‖∇(u− rK(u))‖2
L2(K) + ‖τ−1/2

K (u − rK(u))‖2
L2(K)

+ ‖τ 1/2
K µ ∆(u − rK(u))‖2

L2(K)

]

(18)

is a direct consequence of Lemmas 3.1 and 3.2, and of the Galerkin orthogonality
(12), where rK(v) denotes the Lagrange Wh-interpolant of v, for any v ∈ C0(Ω). The
final result (16) follows from (18) combined with the interpolation error estimates
of [5, 13].

We are now in position to state the main result of this section which represents
the anisotropic counterpart of Theorem 3.1 in [7] in the case of affine elements.

Theorem 3.1 Let u ∈ H2(Ω) ∩ H1
0 (Ω) be the solution to (5) and let uh ∈ Wh,0 be

the solution to (6). Then the new (anisotropic) definitions of the stability coefficient
and of the local Péclet number are

τK =
λ2,K

2

ξ(PeK)

‖a‖L∞(K)
, (19)

PeK = λ2,K

‖a‖L∞(K)

6 µ
, (20)

respectively, where ξ(·) is the same as in (9). Moreover, under this choice there
exists a constant C such that it holds

‖u − uh‖2
h ≤ C

∑

K∈Th

{
λ2

2,K

(
λ2,K‖a‖L∞(K)H(PeK − 1)

+ µH(1 − PeK)

)[
s4

KL1, 1
K (u) + L2, 2

K (u) + 2s2
KL1, 2

K (u)
]}

,

where the quantities Li, j
K (u) and the function H(·) are defined in (2) and (17), re-

spectively.

Sketch of the proof. Let us rewrite the a priori error estimate (16) by introducing
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the definition of the stretching factor sK as

‖u − uh‖2
h ≤ C

∑

K∈Th

{(
µH(1 − PeK)

[
λ4

2,K

δ2
K

+ λ2
2,K + δ2

K

(λ2
1,K + λ2

2,K)2

λ4
1,K

]

︸ ︷︷ ︸
(I)

+ H(PeK − 1)

[
λ4

2,K

δK
+ δKλ2

2,K + δ3
K

(λ2
1,K + λ2

2,K)2

λ4
1,K

]

︸ ︷︷ ︸
(II)

‖a‖L∞(K)

)

[
s4

K L1, 1
K (u) + L2, 2

K (u) + 2s2
K L1, 2

K (u)
]

︸ ︷︷ ︸
(III)

}

(21)

where the term (III) is now equivalent to the H2-norm of u on K, on recalling the
definition (2) and that sK is a dimensionless quantity. Moreover, no role is played
by the term (λ2

1,K + λ2
2,K)2/λ4

1,K since

1 <
(λ2

1,K + λ2
2,K)2

λ4
1,K

≤ 4.

Let us first analyze the term (I) of (21). It turns out that the maximal order of
convergence is obtained when all the three terms in (I) are of the same order. With
this aim, setting δK ' λm

1,Kλn
2,K for some m, n ∈ Q, we find these values by requiring

that all the three terms in (I) be of same order with respect to both λ1,K and λ2,K.
By doing so, we get m = 0 and n = 1, i.e. δK ' λ2,K. By a similar line of reasoning,
it can be checked that the same value for δK is obtained for the term (II). It also
turns out that, under the choice δK ' λ2,K, (I) behaves like λ2

2,K while (II) as λ3
2,K.

Having computed the value of δK , relations (19)-(20) follow immediately on recalling
(8) and (10).

Notice that in the above proof the parameter δK is determined up to a constant.
The definitions (19)-(20) are consistent with a choice of this constant equal to 1.

Remark 3.1 In Sect. 5.1 we propose an alternative recipe to (19)-(20) and (9)
starting from a more accurate interpolation error estimate.

4 The Stokes problem

The results obtained in Sect. 3 can be easily extended to the case of the Stokes
problem. In the very same spirit as in the advection-diffusion case, starting from
the stabilized (GLS) formulation presented in [6, 10], we extend the convergence
results obtained in Theorem 3.1 in [6] to the case of a general anisotropic mesh (see
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Theorem 4.1).

Given the viscosity µ = const > 0 and the source term f = f(x) ∈ (L2(Ω))2, we
are looking for u = u(x) and p = p(x) such that





−µ ∆u + ∇p = f in Ω,
∇ · u = 0 in Ω,
u = 0 on ∂Ω.

The corresponding variational formulation consists in finding (u, p) ∈ V × Q such
that

B(u, p;v, q) = F (v, q) for any (v, q) ∈ V × Q. (22)

Here V = (H1
0 (Ω))2, Q = L2

0(Ω) while B(· ; ·) and F (·) now are the symmetric
bilinear and linear forms

B(u, p;v, q) = µ(∇u,∇v) − (p,∇ · v) − (q,∇ · u)

F (v, q) = (f ,v)

respectively, for any (u, p), (v, q) ∈ V × Q.
As done in the advection-diffusion case, problem (22) is discretized by using the
GLS method. The discrete problem consequently is: find (uh, ph) ∈ Vh ×Qh which,
for any (vh, qh) ∈ Vh × Qh, satisfy

Bh(uh, ph;vh, qh) = Fh(vh, qh), (23)

where Vh×Qh ⊂ V ×Q is the approximation space for velocity and pressure compris-
ing continuous affine functions over Th. Here the symmetric bilinear form Bh(· ; ·)
and the linear form Fh(·) are defined by

Bh(uh, ph;vh, qh) = B(uh, ph;vh, qh)

−
∑

K∈Th

(−µ ∆uh + ∇ph, τK(−µ ∆vh + ∇qh))K,

Fh(vh, qh) = F (vh, qh) −
∑

K∈Th

(f , τK(−µ ∆vh + ∇qh))K,

(24)

with τK stability coefficients to be suitably chosen. Notice that the terms ∆uh|K
and ∆vh|K in (24) are identically equal to zero due to the choice made for the finite
element space Vh.

It is well-known that the GLS scheme (23) is consistent in the sense that if the
solution (u, p) ∈ V × Q of (22) is regular enough, i.e. if (u, p) ∈ (V ∩ (H2(Ω))2) ×
(Q ∩ H1(Ω)), then for any (vh, qh) ∈ Vh × Qh

Bh(u, p;vh, qh) = Fh(vh, qh).
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Consequently, if (uh, ph) ∈ Vh × Qh is the solution to (23) we obtain the Galerkin
orthogonality property, i.e. for any (vh, qh) ∈ Vh × Qh

Bh(u − uh, p − ph;vh, qh) = 0.

As in Sect. 3.1, we introduce the discrete norm ‖ · ‖h defined, for any (v, q) ∈
V × (Q ∩ H1(Ω)), by

‖(v, q)‖2
h = µ‖∇v‖2

L2(Ω) +
∑

K∈Th

‖τ 1/2
K ∇q‖2

L2(K). (25)

The convergence analysis has been carried out with respect to this norm. Fol-
lowing exactly the same steps as in Sect. 3.1 (see [13] for the details), we have:

Theorem 4.1 Let (u, p) ∈ (V ∩(H2(Ω))2)×(Q∩H1(Ω)) be the solution to (22) and
let (uh, ph) ∈ Vh ×Qh be the solution to (23). Then the new (anisotropic) definition
of the stability coefficients is

τK = α
λ2

2,K

µ
, (26)

where α ' O(1) is the tuning constant. Moreover, under this choice there exists a

constant C = C(Γ, Ĉ, K̂) such that it holds

‖(u − uh, p − ph)‖2
h ≤ C

∑

K∈Th

{
λ2

2,K

(
µ
[
s4

K L1, 1
K (u) + L2, 2

K (u) + 2s2
KL1, 2

K (u)
]

+
1

µ

[
s2

K(rT
1,KGK(p) r1,K) + (rT

2,KGK(p) r2,K)
])}

,

where the quantities Li, j
K (u) are a straightforward generalization of (2) to the vector

case and GK is the matrix defined in (3).

Theorem 4.1 represents the anisotropic counterpart of Theorem 3.1 in [6] re-
stricted to the case of (continuous) affine elements for both velocity and pressure.
Moreover, we provide estimates in a different norm, namely the discrete norm ‖ · ‖h

in (25), while in [6] the errors ‖u−uh‖(H1(Ω))2 , ‖u−uh‖(L2(Ω))2 and ‖p−ph‖L2(Ω) are
considered. Moreover, in Sect. 5.2 we suggest a practical value for α by comparing
(26) with the corresponding bubble stabilization.

Remark 4.1 The recipes (19) and (26) have been employed for an a posteriori error
analysis in [15] and [4], respectively. In both cases, the numerical results assess the
good behavior of the new anisotropic stability coefficients.

5 Comparison with bubble stabilization

In the two following sections we compare the recipes (19) for the advection diffusion
problem and (26) for the Stokes problem with their analogues provided by bubble
stabilization.
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5.1 The advection-diffusion problem

Let us address the more interesting advective dominated problem. The diffusive
dominated case will be covered when dealing with the Stokes problem.
Let us recall that the residual-free bubble method gives

τB
K ' ha

3 ‖a‖L∞(K)

(27)

where ha is the longest triangle length in the streamline direction assuming a to
be piecewise constant over the mesh (see e.g. [2, 17]). We have solved problem (4)
with µ = 10−2, a = (1, 0)T , f = 1, Ω = (0, 1)2, completed with homogeneous mixed
boundary conditions (i.e. Dirichlet and Neumann conditions on the vertical and
horizontal sides, respectively). Figure 1 shows the numerical solution on a 20×1000
mesh consisting of right triangles for the choice (19) (crosses) and (27) (diamonds),
and likewise Fig. 2 on a 40 × 1000 grid. Notice that in both cases the mesh is not
correctly chosen, being mostly refined along the boundary layer. The recipe (19) is
more unstable compared with (27), though the results improve when the mesh is
correctly refined across the boundary layer.

0
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Figure 1: Computations on a 20 × 1000 mesh. Diamonds : τK as in (27); crosses :
τK as in (19)

As a second test-case we have solved (4) with µ = 10−4, a = (2, 1)T , f = 0,
Ω = (0, 1)2, completed with Dirichlet boundary conditions (u = 1 on the left and
top sides and u = 0 on the remaining ones). In this case we have carried out an
adaptive iterative procedure based on the a posteriori analysis in [15] implementing
the recipe (19). Figure 3 shows on the top line the contour plot of the numerical
solution and the final adapted mesh. In the middle line two zooms of the boundary
layer are highlighted, 1000× and 10000×, respectively. On the bottom line we
display two details of the internal layer obtained with an enlargement 100× and
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Figure 2: Computations on a 40 × 1000 mesh. Diamonds : τK as in (27); crosses :
τK as in (19)

1000×. Notice in particular how both boundary layers are very well captured by
the final mesh whose triangles have a stretching factor as large as 10000.

These numerical tests show that our recipe and the free-residual bubbles one
differ especially when the mesh in not suited for correctly resolving the anisotropic
features of the solution, e.g. when the mesh is refined skew to a boundary layer
(see Figs. 1-2). On the other hand, both recipes perform well when the mesh has
the correct orientation, for example in the case of the internal layer in Fig. 3. In
this case we do not show the results obtained using the bubble recipe since they are
very similar to the ones shown in Fig. 3. Notice that in Figs. 1-2 the amount of
stabilization introduced by our recipe, being proportional to λ2,K, is much less than
the one associated with the bubble stabilization as τB

K ' ha ' λ1,K.
In Fig. 3 the mesh along the internal layer is very well oriented, being the narrowest
dimension of the triangles placed across the layer, and, as in the former case, our
recipe should introduce less stabilization with respect to the bubble stabilization.
However, because we are in the presence of an internal layer, the streamline stabi-
lization term (a · ∇uh, a · ∇vh)K in (7) is negligible, thus “killing” the effect of the
different values of the τK’s in the two cases. These considerations seem to indicate
that the bubble stabilization is, in general, more robust than ours but that when
the mesh is suited for the problem at hand both procedures give equally reasonable
results (see Fig. 4). We point out that this discussion deals essentially with the a
priori analysis or in general when one solves the problem at hand on a first guess
mesh, in general not suited to the problem. When carrying out an adaptive pro-
cedure based on an a posteriori analysis we expect that this issue should be of no
concern (see Fig. 3).

In the light of these numerical results we are prompted to looking for an improved
recipe for the coefficients τK ’s, and in particular for a better definition of the local
Péclet number. Actually, it is reasonable to expect that the Péclet number does

12



Figure 3: In top-down left-right order: contour plot, final adapted mesh, zoom
1000x, 10000x of the boundary layer, zoom 100x, 1000x of the internal layer for the
second test-case using τK as in (19)
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Figure 4: Computations with τK as in (19) on different anisotropic meshes. Squares:
10x10; diamonds: 100x10; crosses: 1000x10

depend on the direction of the convective field somehow. A possible remedy to this
state of affairs could be obtained by improving the estimate of the interpolation
error ||τ 1/2

K a · ∇(u − rK(u))||L2(K) in (18) since this is the only term depending on
convection. Let us now show how a more accurate estimate of this term can be
obtained. As a consequence, we shall introduce the definition of a new quantity
λa,K relating the orientation of the triangle to the direction of the field a.
We have

||τ 1/2
K a · ∇(u − rK(u))||2L2(K) =

∫

K

[τ
1/2
K a · ∇(u − rK(u))]2 dx

≤ τK ||a||2L∞(K)

∫

K

[ ∂

∂a

(
u − rK(u)

)]2

dx ,

(28)

where we let ∂v/∂a = 1a ·∇v, for any v ∈ H1(Ω), be the streamline derivative in the
direction of field a, 1a being its unit tangent vector. We are thus led to estimating
the interpolation error of the streamline derivative and we obtain

∫

K

[ ∂

∂a

(
u − rK(u)

)]2

dx =

∫

K

[
1a · ∇(u − rK(u))

]2
dx

= λ1,Kλ2,K

∫

�

K

[
1a · (MT

K)−1∇̂(û − r �

K(û))
]2

dx̂

= λ1,Kλ2,K

∫

�

K

[
1T

a RT
KΛ−1

K RKZK∇̂(û − r �

K(û))
]2

dx̂
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= λ1,Kλ2,K

∫

�

K

[
(ZT

KRT
KΛ−1

K RK1a)
T ∇̂(û − r �

K(û))
]2

dx̂

≤ λ1,Kλ2,K

∫

�

K

∣∣ZT
KRT

KΛ−1
K RK1a

∣∣2 ∣∣∇̂(û − r �

K(û))
∣∣2 dx̂

= λ1,Kλ2,K

∫

�

K

∣∣Λ−1
K RK1a

∣∣2 ∣∣∇̂(û − r �

K(û))
∣∣2 dx̂

≤ C �

K λ1,Kλ2,K ||Λ−1
K RK1a||2L∞(

�

K)
|û|2

H2(
�

K)

= C �

K ||Λ−1
K RK1a||2L∞(K)

2∑

i, j=1

λ2
i,Kλ2

j,KLi, j
K (u),

(29)

where we have essentially used the decompositions of the matrix MK in (1), the
invariance of the euclidean norm | · | with respect to orthogonal matrices plus the
identity

λ1,Kλ2,K |û|2
H2(

�

K)
=

2∑

i, j=1

λ2
i,Kλ2

j,KLi, j
K (u)

proved in [5]. Notice that C �

K denotes a constant depending only on the reference

triangle K̂. Let us delve into the quantity ||Λ−1
K RK1a||2L∞(K) in (29): we have

||Λ−1
K RK1a||2L∞(K) = max

x∈K
|Λ−1

K RK1a(x)|2 = max
x∈K

∣∣[λ−1
1,KrT

1,K1a(x), λ−1
2,KrT

2,K1a(x)]T
∣∣2

= max
x∈K

[
λ−2

1,K(rT
1,K1a(x))2 + λ−2

2,K(rT
2,K1a(x))2

]
.

Notice that the above quantity is nothing but an averaged inverse squared charac-
teristic length obtained by weighting λ−2

1,K and λ−2
2,K with the projection of r1,K and

r2,K, respectively in the direction of the convective field a. Thus, we define the new
quantity λa,K such as

λ−2
a,K = ||Λ−1

K RK1a||2L∞(K). (30)

Notice that we expect λa,K to be the analogue of ha in the case of the bubble
stabilization.

Let us summarize the final error estimate concerning the advective term: from
(28) and using definition (30) we obtain

||τ 1/2
K a · ∇(u − rK(u))||2L2(K)

≤ C �

KτK||a||2L∞(K) λ−2
a,K

2∑

i, j=1

λ2
i,Kλ2

j,KLi, j
K (u).

(31)
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Remark 5.1 We point out that in [13] we have obtained the analogue of estimate
(31) but with λa,K replaced by λ2,K. Thus (31) represents an improvement over the
old result because λ2,K is both independent of the convective field and always smaller
than λa,K.

In order to study the effect of this new estimate, let us first consider how the
quantity λa,K behaves in the two limiting cases when a is parallel to r1,K or r2,K.
It follows that λa,K ≡ λ1,K and λa,K ≡ λ2,K, respectively so that λa,K can always
be identified with the characteristic dimension of the triangle in the streamline
direction. Going back to the case of the problem exhibiting a boundary layer in
Figs. 1-2 and 4, we expect the stability coefficient τK to depend on λa,K when the
problem is advective dominated, analogously to (27), while τK should approach the
limiting value λ2

2,K/µ in the diffusive dominated case (see also Sect. 5.2). This
suggests defining the following modified recipe replacing (19) and (9) with

τK =
λa,K

2

ξ(PeK)

||a||L∞(K)

, (32)

ξ(PeK) =





λ2
2,K

λ2
a,K

PeK if PeK < 1 ,

1 if PeK ≥ 1 ,

where the definition (20) of the local Péclet number becomes

PeK = λa,K

||a||L∞(K)

6µ
,

the quantity λa,K being defined in (30). The limiting values of the τK’s from the
above definitions reproduce the advective dominated and diffusive dominated cases,
when τK ' λa,K/||a||L∞(K) and τK ' λ2

2,K/µ, respectively. Figure 5 collects the
results of solving the model convection diffusion problem (4) on the boundary layer
case with µ = 10−5. On the left column we show the numerical solutions obtained
with τK as in (19) (crosses), τK as in (27) (diamonds) and τK as in (32) (squares)
on a 20×1000 (top), 20×2000 (middle) and 20×4000 (bottom) mesh, respectively.
On the right column the solution obtained using (19) has been dropped with a
corresponding reduction of the vertical axes range. Notice that although the mesh
is refined in the wrong direction, the modified recipe based on λa,K performs better
than the old one (19).

Table 1: Test case 1: convergence rate of the error ‖u − uh‖h as a function of the
mesh spacing across the boundary layer

N 20 40 80 160 320 640

‖u − uh‖h 0.95 0.38 0.17 0.091 0.045 0.022
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Figure 5: Left column: τK as in (19) (crosses), τK as in (27) (diamonds) and τK as
in (32) (squares) on a 20 × 1000 (top), 20 × 2000 (middle) and 20 × 4000 (bottom)
mesh. Right column: the same as in the left column but without the solution with
τK as in (19)

To further prove this, we show in Table 1 the convergence behavior of the error
‖u−uh‖h as a function of the mesh dimension which is refined only in the horizontal
direction. Notice that mesh consists of right triangles, with N × 4 subdivisions in
the horizontal and vertical directions, respectively. It can be appreciated that the
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convergence rate is linear as happens in the case of the recipe based on (19) (see
also Table 4.1 in [13]).

5.2 The Stokes problem

In this section we start from the definition of the stabilization coefficients provided
e.g. in [2, 17] using the residual-free bubble approach in order to compare it with
our anisotropic recipe (26). In particular, we carry out an extensive numerical
assessment which shows that the two approaches actually coincide up to the constant
α in (26), i.e. the τK’s provided by the bubble recipe do exhibit the same dependence
on λ2

2,K and µ as the one in (26). Moreover, our numerical analysis confirms that
the constant α does not depend on the stretching factor sK, at least for sK & 10,
but only weakly on the stretching direction r1,K. This allows us to obtain a practical
numerical value for α to use in the numerical simulations. The numerical and/or
theoretical analysis of this constant has also been carried out e.g. in [1, 16, 18].

Let us recall that the residual-free bubble approach yields the choice

τB
K =

1

|K|

∫

K

bK(x) dx (33)

for the stability coefficients, where bK is the bubble solving the boundary value
problem {

−µ ∆bK = 1 in K

bK = 0 on ∂K.
(34)

In the isotropic case it is known that τB
K ' h2

K/µ. Hereafter we shall compute
τB
K in the case of an arbitrarily shaped element. For this purpose, we have carried

out two series of numerical experiments consisting in approximating the solution of
problem (34) by a finite element procedure using affine elements over K, and then
approximating (33) by the composite midpoint quadrature rule.

Table 2: θ = π
4
, α = 0.0647, a = 0.0204, b = 2.0000

τB
K 1 2 3 4 5 6

10 0.0638 0.2553 0.5744 1.0212 1.5956 2.2977
20 0.0700 0.2798 0.6297 1.1194 1.7491 2.5186
40 0.0722 0.2886 0.6494 1.1546 1.8040 2.5978
80 0.0728 0.2912 0.6551 1.1646 1.8197 2.6204
160 0.0730 0.2918 0.6566 1.1672 1.8238 2.6262
320 0.0730 0.2920 0.6569 1.1679 1.8248 2.6277
640 0.0730 0.2920 0.6570 1.1680 1.8251 2.6281
1280 0.0730 0.2920 0.6570 1.1681 1.8251 2.6282
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Table 3: θ = π
2
, α = 0.0365, a = 0.0105, b = 2.0000

τB
K 1 2 3 4 5 6

10 0.0362 0.1448 0.3257 0.5790 0.9047 1.3028
20 0.0380 0.1519 0.3418 0.6076 0.9494 1.3671
40 0.0386 0.1543 0.3472 0.6172 0.9644 1.3887
80 0.0387 0.1550 0.3487 0.6198 0.9685 1.3946
160 0.0388 0.1551 0.3490 0.6205 0.9696 1.3962
320 0.0388 0.1552 0.3491 0.6207 0.9698 1.3966
640 0.0388 0.1552 0.3492 0.6207 0.9699 1.3967
1280 0.0388 0.1552 0.3492 0.6208 0.9699 1.3967

Table 4: θ = π, α = 0.0366, a = 0.0121, b = 2.0000

τB
K 1 2 3 4 5 6

10 0.0364 0.1454 0.3272 0.5818 0.9090 1.3090
20 0.0383 0.1533 0.3450 0.6133 0.9582 1.3799
40 0.0391 0.1562 0.3515 0.6248 0.9763 1.4059
80 0.0393 0.1571 0.3534 0.6282 0.9816 1.4135
160 0.0393 0.1573 0.3539 0.6291 0.9829 1.4154
320 0.0393 0.1573 0.3540 0.6293 0.9833 1.4159
640 0.0393 0.1573 0.3540 0.6294 0.9834 1.4161
1280 0.0393 0.1573 0.3540 0.6294 0.9834 1.4161

Without loss of generality we assume µ = 1. The element K is obtained by
mapping the reference unit right triangle K̂ using a simplification of TK, i.e. MK =
RT

KΛKRK, that is neglecting the rotation associated with ZK. For the first series
of tests we have fixed the stretching direction of r1,K = [cos θ, sin θ]T (and thus of
r2,K) and we have varied independently λ2,K and sK. We summarize some of these
results in Tables 2-4 where the values θ = π/4, π/2 and π have been considered,
respectively. The three tables show the values of the τK ’s as a function of λ2,K

which varies across the columns and sK varying across the rows. Notice that the
computed values of τK seem to be independent of sK while they do vary as a function
of λ2,K. To give a more quantitative estimate of these dependences, we have carried
out a least-square procedure assuming a test function ϕK = αsa

Kλb
2,K with respect

to the parameters α, a and b. The computed values appear on top of the tables and
clearly suggest that the dependence of τK on λ2,K is quadratic while the dependence
on sK is almost negligible.
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Figure 6: Constant α versus θ ∈ [0, π] for K̂ unit equilateral triangle (top) and K̂
unit right triangle (bottom)

The second series of numerical experiments aims at establishing the dependence
of the constant α on the orientation of the triangle K given by r1,K. For this purpose,
we have fixed the values of sK and λ2,K and we have computed the values of α for
different choices of θ ∈ [0, π] as α = τB

K/λ2
2,K. We show in Figs. 6 the results of

this investigation for both the unit equilateral and right triangle K̂, respectively. In
both cases the range of the values of α is very narrow, being about 0.027-0.034 in
the first case and 0.02-0.07 in the second one. This suggests that one could pick an
average value α = α = 0.03 and α = α = 0.04, respectively. Preliminary results
prove that these values for α are reasonable ([4]).

6 Conclusions

We have dealt with the design of the stability coefficients of Galerkin Least-Squares
type FEM with emphasis on highly stretched meshes. We have studied the advection-
diffusion and the Stokes problems for which we have devised theoretically sound sta-
bility coefficients based on anisotropic interpolation error estimates. We have also
compared our recipes with their analogues from the residual-free bubbles approach.
This comparison allows us to improve our stability coefficients in the case of ad-
vective dominated problems, while in the case of the Stokes problem we show that
both approaches are identical up to the tuning constant. By a numerical assessment
we compute this constant and we also improve on the residual-free bubbles stability
coefficients for the Stokes problem highlighting their dependence on the shape of the
mesh elements.
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