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Abstract

A model for mobile–bed river hydraulics based on the conservation equa-
tions of liquid mass, solid sediment mass and momentum is presented and
analysed. The equations are reduced to one dimension by averaging over
the cross section. These equations differ from the classical one–dimensional
equations for mobile–bed, free–surface flows, since they take into account
the effect of non–uniformities in velocity distribution along cross sections
of arbitrary shape. By using appropriate closure formulae for sediment
transport and for bottom friction, a system of three non–linear hyperbolic
equations is obtained. Its eigenstructure is studied and its dependency on
the closure formulae and on the non–dimensional parameters determining
the flow and transport regimes is investigated. The existence and unique-
ness of classical solutions of this hyperbolic system are discussed and an
energy inequality for the frozen coefficient problem is derived.
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1 Introduction

Sediment transport modelling plays a key role in realistic river hydraulic
simulations. The morphology of large rivers can change substantially due
to sediment transport in areas where accurate prediction of minimum dis-
charge values is essential for environmental planning. For the relevant phys-
ical regimes, the inertia and concentration associated to the solid phase is
negligible, so that the momentum equation for the solid mass can be dis-
regarded and the solid mass flux assumed to be in local equilibrium with
the liquid mass flux. More specifically, the ratio between liquid and solid
discharges is assumed to be computable on the basis of various parame-
ters that characterise the flow and the transport regime. This approach is
widely used in modelling river flow (see e.g. [1]) and is a key component of
state–of–the–art, realistic river flow modelling packages (see e.g. [21]). The
resulting equations have been analysed in [4], [12], [19], in the simplified
case of sediment transport in a rectangular channel. Modern numerical
methods to solve these equations have been proposed e.g. in [3], [5], [8].

The aim of the present work is to extend these analyses to cover the
more general case of a section averaged mobile–bed model that allows for
sections of arbitrary shape, as for example in [21]. This should provide a
sound mathematical background for the derivation of advanced numerical
methods that can be useful for realistic applications. In particular, the
present work is motivated by a research project aimed at the development of
a multi–scale model of the river Adige (Italy), to be used for environmental
management purposes. The aim of the project is the development of a
mobile–bed, free–surface model based on the 1D–2D coupling technique
proposed in [14], [15] that allows for long time range and high resolution
realistic simulations at the lowest possible computational cost. A key step
in performing this extension is to ensure that the classical results available
for the fixed–bed, rectangular section channel flow equations are also valid
in the mobile–bed, variable cross section case.

In this paper, the hyperbolic system of the section averaged model will
be fully analysed. Its eigenvalues and eigenvectors will be derived, high-
lighting their dependency on non–dimensional parameters related to the
section shape and to the sediment transport regime. The choice of the
primitive variables is different from the purely one–dimensional case and
is consistent with the need of equation averaging over arbitrary cross sec-
tion geometries. By doing so and by exploiting a properly defined Froude
number, the study of the eigenstructure is applicable to a realistic setting,
while recovering the classical results relevant to simple channel geometries.
The novel findings provide further insights on the important issue of pos-
sible decoupling between hydro– and morphodynamics. Finally, the ap-
propriate boundary conditions will be derived in order to achieve existence
and uniqueness of classical solutions for small perturbations of steady state
flows and to guarantee the validity of an energy inequality for the linearised,
frozen coefficient problem.

The paper is organised as it follows. In section 2, the conservation
equations for liquid mass, solid mass and momentum, valid for relatively
small sediment concentration, are described, as formulated in most sedi-
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ment transport models used in hydraulic engineering. In section 3, some
closure formulae widely used to parameterise the solid discharge in local
equilibrium are briefly reviewed and presented in a coherent framework,
as convenient for a comprehensive mathematical analysis. In section 4 the
structure of the eigenvalues of the associated hyperbolic systems is anal-
ysed as a function of the different flow and transport regimes. In section
5, the corresponding eigenvector structure is described. In both cases, the
differences with the much better known rectangular cross section case are
highlighted. A qualitative analysis of the solution behaviour in the different
flow and transport regimes is carried out in section 6. The full derivation
of the eigenstructure is reported in the appendix. In section 7, boundary
conditions are discussed, that guarantee existence and uniqueness of classi-
cal solutions and an energy inequality for the linearised, frozen coefficient
problem is presented.

2 The section–averaged equations for mobile–

bed, free–surface channel flow

The section–averaged equations for mobile–bed, free–surface channel
flow (see e.g. [1]) can be written

∂Al

∂t
+

∂Ql

∂x
= 0, (1)

∂Ql

∂t
+

∂

∂x

(
β

Q2
l

Al

)
+ gAl

∂η

∂x
= − τ̄0

ρ
Cw, (2)

∂As

∂t
+

∂Qs

∂x
= 0. (3)

Here, Al denotes the liquid area of the cross section (i.e., the area occupied
by water), As denotes the area of the cross section occupied by sediment
in a frame of reference, η is the height of the water surface above a fixed
reference level, g is the gravity acceleration, Ql the liquid discharge, Qs the
solid discharge divided by (1 − p), p being the sediment porosity, τ̄0 the
average bottom friction, ρ the water density, and Cw the length of the wet
contour (see figure 1 for a sketch of the generic cross section). In this work,
arbitrarily shaped cross sections are considered, that can have geometries
like those found in nature. The only assumptions are that multiple channels
are not considered and that the liquid area of the cross section is a mono-
tonic function of the surface elevation so that ∂Al/∂η ≥ 0. The Coriolis
averaging coefficient β in the momentum conservation equation (2), takes
into account the effects due to the two dimensional variability of the axial
velocity u across the section and is defined by

β =
1

Al

∫

Al

u2

U2
dAl. (4)

where U is the averaged velocity.
Equations (1)–(3) express the conservation of liquid mass, momentum

and solid mass. These equations are valid for Qs ≪ Ql [19]. In general, the
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Figure 1: Sketch of a generic cross section and of the main model variables.

liquid area and the Coriolis coefficient can be expressed as functions Al =
Al(η, As), β = β (η, As) depending on the free surface height and on the
solid area. If a local equilibrium assumption is made (see the discussion in
section 3), the ratio between the solid and liquid discharge can be expressed
as a function of bulk properties of the flow and sediment as

Ψ =
Qs

Ql
= Ψ(U, d, ∆, ρ, ρs, η, Ql, As). (5)

Here d is the sediment diameter, ρ and ρs water and sediment density
respectively, ∆ = (ρ−ρs)/ρ the sediment relative density. Some alternatives
for the precise form of Ψ will be discussed in the following. Here we will
simply remark that using the general closure formula (5) equation (3), can
be rewritten as

∂As

∂t
+

(∂ΨQl)

∂x
= 0. (6)

The prognostic variables of the model are η, Ql, As, while the other quanti-
ties are recovered using closure formulae. It worths noticing that the choice
of the prognostic variables is different from classical one–dimensional mod-
els. In the latter, indeed, the prognostic variables are usually surface ele-
vation η or water depth h, mean velocity U and the elevation of the lower
point of the bottom zb (see figure 1). While Ql is equivalent to U , As

and zb are deeply different; the solid area As is an averaged quantity and
carries information related to the cross section geometry while the hight
of the lowest point of the bottom zb is a point variable; the use of zb in a
section–averaged model would lead to a lack of information related to cross
section geometry.

In order to analyse the eigenstructure of the system made up by equa-
tions (1), (2) and (6), we rewrite the equations applying the chain rule
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as
(

∂Al

∂η

)
∂η

∂t
+

(
∂Al

∂As

)
∂As

∂t
+

(
∂Ql

∂x

)
= 0, (7)

∂Ql

∂t
+

(
Q2

l

Al

∂β

∂η
− βQ2

l

A2
l

∂Al

∂η
+ gAl

)
∂η

∂x
+

(
2βQl

Al

)
∂Ql

∂x
+

+

(
Q2

l

Al

∂β

∂As
− βQ2

l

A2
l

∂Al

∂As

)
∂As

∂x
= − τ̄0

ρ
Cw, (8)

∂As

∂t
+

(
Ql

∂Ψ

∂η

)
∂η

∂x
+

+

(
Ψ + Ql

∂Ψ

∂Ql

)
∂Ql

∂x
+

(
Ql

∂Ψ

∂As

)
∂As

∂x
= 0. (9)

The resulting system can be written in matrix form as

B
∂U

∂t
+ A

∂U

∂x
= S (10)

where we have defined

U=




η
Ql

As



 , B =




(
∂Al

∂η

)
0
(

∂Al

∂As

)

0 1 0
0 0 1


 , S =




0

− τ̄0

ρ Cw

0



 ,

A=




0 1 0




Q2

l

Al

∂β
∂η +

−βQ2

l

A2

l

∂Al

∂η + gAl




(

2βQl

Al

)



Q2

l

Al

∂β
∂As

+

−βQ2

l

A2

l

∂Al

∂As





(
Ql

∂Ψ
∂η

) (
Ψ + Ql

∂Ψ
∂Ql

) (
Ql

∂Ψ
∂As

)




If no lateral bank breaks occur, then surface width depends on surface
elevation only and ∂Al/∂As = −1; moreover, for simplicity in the following
analysis we consider β = 1.

3 Sediment transport closure formulae

Several sediment transport closure formulae are available in the litera-
ture. A complete treatment of the topic is beyond the target of the present
work; here we just mention some examples.

The simplest transport formula is based on the assumption that the ratio
Ψ = Qs/Ql can be expressed as a power of the mean velocity and water
depth: Ψ = asU

mhn, where as is a constant depending on cross section
geometry and on the nature of the sediment, m and n are two exponents.
A good choice for the exponents is m = 2 and h = −1 leading to [1]:

Ψ = as
U2

h
(11)
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Other monomial formulas are based on the Shields mobility parameter
define by:

θ =
Q2

l

A2
l χ

2d∆
, (12)

where χ is Chézy roughness parameter. Two examples are the Einstein–
Brown formula [6], [2]:

Ψ =
100Bd

√
gd∆θ3

Ql
(13)

and the Engelund–Hansen formula [7]:

Ψ =
0.084Bd

√
gd∆θ5/2

Ql
(14)

where B is the surface width.
A more complicated example of monomial formula is the Parker for-

mula [17], defined by:

Ψ = 0.00218Bd
√

gd∆

(
θ

3

2

Ql
G (ξ)

)
, (15)

where ξ = θ/0.0386 and

G(ξ) =





5471

(
1 − 0, 853

ξ

)4.5

if ξ > 1.65 ,

exp
[
14.2 (ξ − 1) − 9.28 (ξ − 1)

2
]

if 1 < ξ ≤ 1.65 ,

ξ14.2 if ξ ≤ 1 .

(16)

The Meyer–Peter and Müller formula [13] is an example of a formula
that use a threshold below which no sediment transport occurs. It can be
written as:

Ψ =





8Bd
√

gd∆(θ − θc)
3/2

Ql
if θ > θc

0 if θ ≤ θc

(17)

The threshold value θc is, in general, non–constant, depending on the physi-
cal properties of the sediment, on the channel shape and on the flow regime;
nevertheless, in most real applications where the bed inclination is not too
large, the sediment size is homogeneous and the turbulence is fully devel-
oped, the value 0.047 is usually considered.

4 Eigenvalues of the hyperbolic systems for

mobile–bed, free–surface channel flow

The characteristic polynomial p (λ) associated to system (10) has been
computed in order to study the behaviour of the eigenvalues as functions of
the different flow and transport regimes and different cross section geome-
tries. The algebra is quite cumbersome, so that the complete derivation
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is reported in the appendix. After rescaling by

[(
−∂Al

∂η

)
−1 (

1
gAl

∂Al

∂η

)2/3
]
,

and defining the non–dimensional eigenvalues

µ = λ

√
1

gAl

∂Al

∂η
(18)

and the generalised Froude number

Fr =

√
Q2

l

gA3
l

∂Al

∂η
, (19)

the non–dimensionalised characteristic polynomial takes the form

p (µ) = b3µ
3 + b2µ

2 + b1µ + b0, (20)

where the coefficients are given by

b0 = 3ΘΦΨ Fr (21)

b1 = Fr2 −1 − 3ΘΨ (22)

b2 = −2 Fr (23)

b3 = 1 (24)

Here Φ is a shape parameter depending on the section geometry and Θ
is a mobility parameter depending on the physical characteristics of the
sediment. Since the coefficients (21)–(24) in formula (20) only depend on
non–dimensional parameters, it is possible to analyse the dependency of
the eigenstructure of system (10) on different cross section geometries and
different flow and sediment transport regimes. For example, the sediment
transport parameter Ψ is zero for the fixed–bed case while it is non–zero
for mobile–bed cases. The shape parameter Φ is equal to one in the case of
rectangular cross section and monomial transport formula while it is larger
then one for different cross section geometries or different transport formu-
lae. The mobility parameter Θ is equal to one for the monomial formula
while it is equal to θ/(θ − θc) for the Meyer–Peter and Müller formula.
Typical values for the shape parameter Φ are 1.1–1.5 for compact cross
sections and 1.5–2.0 for non–compact cross sections. In table 1 the values
of the parameters describing the system eigenstructure are summarised for
different geometries and different sediment transport formulae.

In the case of fixed–bed flow, it is customary to fix the value of the sedi-
ment transport and to analyse the behaviour of the eigenvalues by plotting
their values as functions of the Froude number (see e.g. [1] and [19]). In
the case of mobile–bed flow, it is possible to fix the values of the three
parameters Φ, Ψ and Θ and plot the eigenvalues as functions of the gener-
alised Froude number. Strictly speaking, parameters Ψ and Θ depend on
the Froude number, so that the choice of keeping them fixed is just a simpli-
fication that helps in performing a simple analysis. It would be possible to
consider the dependency of Ψ and Θ on the Froude number; this would lead
to variations and asymmetries in the system eigenstructure that are larger
than those presented in the forthcoming results. It has to be remarked that
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Monomial Formula

Ψ = as
U2

h
Θ = 1

Rectangular Section Arbitrary Section

Φ = 1 Φ =
1

3

(
2 − Al

h

∂h

∂As

)

µ =
λ√
gh

µ = λ

√
1

gAl

∂Al

∂η

Fr =
U√
gh

Fr =

√
Q2

l

gA3
l

∂Al

∂η

Meyer–Peter and Müller Formula

Ψ =





8Bd
√

gd∆ (θ − θc)
3/2

Ql
if θ > θc

0 if θ ≤ θc

Θ =
θ

θ − θc

Rectangular Section Arbitrary Section

Φ =

[
1 +

B

6 (B + 2h)

]
Φ =

[
1 − Cw

6

∂Rh

∂h

∂h

∂As

]

µ =
λ√
gh

µ = λ

√
1

gAl

∂Al

∂η

Fr =
U√
gh

Fr =

√
Q2

l

gA3
l

∂Al

∂η

Table 1: Values of the parameters governing the system eigenstructure for dif-
ferent geometries and different transport formulae.
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Figure 2: Eigenvalues of system (10) as functions of generalised Froude number,
for different values of the shape parameter Φ and of the mobility parameter Θ
for Ψ = 5 × 10−3. Eigenvalues for monomial transport formula (Θ = 1.00) are
presented in the left column, eigenvalues for Meyer–Peter and Müller transport
formula with Θ = 2.00 are presented in the right column. The rectangular cross
section case is represented by Θ = 1.00, Φ = 1.00 and by Θ = 2.00, Φ = 1.17.
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Ψ = 0.000 Ψ = 0.001 Ψ = 0.005 Ψ = 0.010

Φ = 1.30 0.00 0.14 0.13 0.13

Φ = 1.70 0.00 0.29 0.28 0.28

Φ = 2.00 0.00 0.40 0.39 0.37

Table 2: Relative variations of µ3 at Fr = 1 for different values of Ψ and Φ with
respect to the rectangular cross section case (Φ = 1.00) with monomial transport
formula (Θ = 1).

Ψ = 0.000 Ψ = 0.001 Ψ = 0.005 Ψ = 0.010

Φ = 1.30 0.00 0.06 0.06 0.05

Φ = 1.70 0.00 0.20 0.19 0.18

Φ = 2.00 0.00 0.30 0.28 0.27

Table 3: Relative variations of µ3 at Fr = 1 for different values of Ψ and Φ with
respect to the rectangular cross section case (Φ = 1.17) with Meyer–Peter and
Müller transport formula and Θ = 2.

the generalised Froude number (19) accounts for the cross section geometry
and is to be used in the analysis of section–averaged model, instead of the
classical Froude number which is based on the rectangular cross section
geometry. The use of the traditional Froude number would indeed lead to
an unphysical shift of the eigenvalues as functions of the Froude number.

In order to evaluate the dependency of the eigenstructure on the cross
section geometry and on the transport formula, in figure 2 the eigenvalues
calculated as functions of the generalised Froude number with Ψ = 5×10−3

are presented for different values of the shape parameter Φ and different
transport formulae (i.e. different values of the mobility parameter Θ).
While the first eigenvalue is almost unaffected by varying Φ and Θ, varia-
tions of the second and third eigenvalue are concentrated in a region around
Fr = 1. The width of this region depends on the values of Φ and Θ: larger
values of these parameters determine larger widths of this region.

In table 2 the relative variation of µ3 at Fr = 1 with respect to the
rectangular cross section case (Φ = 1) are presented for the monomial
transport formula (Θ = 1) and different values of Φ and Ψ parameters. In
table 3 the relative variations of µ3 at Fr = 1 with respect to the rectangular
cross section case with infinite surface width (Φ = 1.17) are presented for
Meyer–Peter and Müller transport formula with Θ = 2 and different values
of Φ and Ψ parameters (considering a rectangular cross section with an
infinite surface width is equivalent to using a pure 1D model). It can be
observed that the impact of the section shape on the eigenvalues (i.e. on
the flow and sediment transport celerities) is quite large, so that significant
errors can be expected if the details of the cross sections geometry are
neglected.
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5 Eigenvectors of the hyperbolic system for

mobile–bed, free–surface channel flow

The left eigenvectors Li associated with the non–dimensional eigenval-
ues µi of the hyperbolic system (10) can be expressed as functions of the
generalised Froude number as follows:

Li =

[
−Ei

Di
,

Fi

Di
, 1

]
(25)

where

Di = − (µi + Fr)
2
, (26)

Ei = µ2
i − (3ΘΦΨ + 2)Frµi + 3 (2Φ − 1)ΘΨ Fr, (27)

Fi =

√
1

gAl

∂Al

∂η
[− (3ΘΨ + 1)µi + 3ΘΦΨ Fr] . (28)

Here i = 1, 2, 3 and parameters Φ, Ψ and Θ are described in table 1. The
complete derivation of the eigenvectors is reported in the appendix. The
dimensions of Fi are [(m s−1)−1], while Di and Ei are non–dimensional
quantities.

The following relation among left eigenvectors Li, dimensional and non–
dimensional eigenvalues λi and µi respectively holds:

LiA = λiLiB = µi

(
1

gAl

∂Al

∂η

)
−1/2

LiB, i = 1, 2, 3 (29)

where A and B are the matrices of system (10). Using this relation it
is possible to derive the canonical form of the system (see e.g. [20]).
Multiplication of each term of equation (10) by Li gives:

LiB
∂U

∂t
+ LiA

∂U

∂x
= LiS, i = 1, 2, 3. (30)

Substitution of (29) into (30) gives:

LiB
∂U

∂t
+ µi

(
1

gAl

∂Al

∂η

)
−1/2

LiB
∂U

∂x
= LiS, i = 1, 2, 3. (31)

Defining the material derivative:

DU

Dt

∣∣∣∣
i

=
∂U

∂t
+ µi

(
1

gAl

∂Al

∂η

)
−1/2

∂U

∂x
, i = 1, 2, 3, (32)

it is possible to write the canonical form of system (10) as follows:

LiB
DU

Dt

∣∣∣∣
i

= LiS, i = 1, 2, 3, (33)

where

LiB =

[
−Ei

Di

∂Al

∂η
,

Fi

Di
,

Ei

Di
+ 1

]
(34)
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and the material derivative is evaluated along the characteristic curve de-
fined by:

dx

dt
= λi = µi

(
1

gAl

∂Al

∂η

)
−1/2

(35)

Each of equations (33) is a weighted sum of rates of change of the
primitive variables along the characteristic curve and this sum balances the
source term (see e.g. the analysis in [18]). The primitive variables vary
along the characteristic curves and the relative magnitude of their variations
along the i–th curve is determined by the weights LiB. Since equations (33)
are in dimensional form, the quantitative comparison between the weights
LiB is not straightforward. In order to compare the relative importance
of each weight, however, it is possible to non–dimensionalise the canonical
equation, rescaling lengths by a typical length H and velocities by a typical
velocity C. This yields the following form of the canonical equation:

L̃iB̃
DŨ

Dt

∣∣∣∣∣
i

= L̃iS̃, i = 1, 2, 3, (36)

where

L̃iB̃ =

[
−Ei

Di

∂Ãl

∂η̃
,

F̃i

Di
,

Ei

Di
+ 1

]
, (37)

Ũ =

[
η

H
,

Ql

H2C
,
As

H2

]T

, (38)

S̃ =

[
0,

1

HC2

τ̄0

ρ
Cw

]T

, (39)

F̃i = −
(

Ψ + Ql
∂Ψ

∂Ql
+ 1

)
µi + Al

∂Ψ

∂As
Fr, (40)

The quantity ∂Ãl/∂η̃ is equal to one for rectangular cross sections and
increases for arbitrary cross sections; in particular, it can be very large
when abrupt width changes occur.

6 Qualitative analysis of the different trans-

port regimes

In this section, we will exploit the eigenstructure derived for system (10)
to understand the behaviour of the system solutions in different transport
regimes, as well as to investigate the strength of the coupling between
liquid flow and sediment transport. We define the matrix of weights L̃B̃

in which the rows are given by the relation (37) for i = 1, 2, 3 and plot its
components as functions of the generalised Froude number in different cases
(figures 3–5). Graphs are composed in such a way that each row corresponds
to a characteristic line. Thus the first column represents the weights of
free surface variations, the second column the weights of liquid discharge
variations and the third column the weights of solid area variations along
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Figure 3: Non–dimensional weights L̃B̃ in equation (36) as functions of the
generalised Froude number for Θ = 1.00 (monomial transport formula), Ψ =
5 × 10−3, ∂Ãl/∂η̃ = 1.00 and different values of the shape parameter Φ. The
rectangular cross section case is represented by Φ = 1.00.
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Figure 4: Non–dimensional weights L̃B̃ in equation (36) as functions of the
generalised Froude number for Θ = 2.00 (Meyer–Peter and Müller transport
formula), Ψ = 5× 10−3, ∂Ãl/∂η̃ = 1.00 and different values of the shape param-
eter Φ. The rectangular cross section case is represented by Φ = 1.17.
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Figure 5: Non–dimensional weights L̃B̃ of the canonical equation (36) as func-
tions of the generalised Froude number for Θ = 2.00 (Meyer–Peter and Müller
transport formula), Ψ = 5 × 10−3, ∂Ãl/∂η̃ = 5.00 and different values of the
shape parameter Φ.
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each characteristic. In figures 3 and 4, ∂Ãl/∂η̃ = 1.00 is considered, while

in figure 5 ∂Ãl/∂η̃ = 5.00 is considered.
The first and the second characteristics are associated to the positive

eigenvalues µ1 and µ2, respectively, while the third characteristic is associ-
ated to the negative eigenvalue µ3. Since µ1 > µ2, the first characteristic
have a larger celerity. The variations of the weights at varying Φ and Θ are
concentrated along the second and third characteristic (second and third
line of each figure) in a region around Fr = 1. As noted before with the
eigenvalues, the width of this region depends on the value of the non–
dimensional parameters Φ, Ψ and Θ: larger values of these parameters
make the width of the region larger.

For ∂Ãl/∂η̃ = 1.00, along the first characteristic:

• for Fr ≪ 1 variations in solid area Ãs are negligible with respect to
variations in free surface elevation η̃ and in liquid discharge Q̃l,

• for Fr ≃ 1 variations in free surface elevation η̃ are negligible with
respect to variations in liquid discharge Q̃l and in solid area Ãs,

• for Fr ≫ 1 all the variations have the same order of magnitude.

Along the second characteristic:

• for Fr ≪ 1 and for Fr ≃ 1 variations in solid area Ãs are dominant,

• for Fr ≫ 1 all the variations have the same order of magnitude.

Along the third characteristic:

• for Fr ≪ 1 variations in solid area Ãs are negligible with respect to
variations in free surface elevation η̃ and in liquid discharge Q̃l,

• for Fr ≃ 1 and for Fr ≫ 1 variations in solid area Ãs are dominant.

For larger values of ∂Ãl/∂η̃, the range of variation of the weights as-
sociated to the free surface is larger than the others, so that free surface
variations tend to dominate. n particular, for ∂Ãl/∂η̃ = 5.00, along the
first characteristic:

• for Fr ≪ 1 variations in free surface elevation η̃ are dominant,

• for Fr ≃ 1 variations in free surface elevation η̃ are negligible with
respect to variations in liquid discharge Q̃l and in solid area Ãs,

• for Fr ≫ 1 variations in free surface elevation η̃ are dominant.

Along the second characteristic:

• for Fr ≪ 1 variations in solid area Ãs are dominant,

• for Fr ≃ 1 variations in liquid discharge Q̃l are negligible with respect
to variations in free surface elevation η̃ and in solid area Ãs,

• for Fr ≫ 1 variations in free surface elevation η̃ are dominant.

Along the third characteristic:

• for Fr ≪ 1 variations in free surface elevation η̃ are dominant,

• for Fr ≃ 1 variations in liquid discharge Q̃l are negligible with respect
to variations in free surface elevation η̃ and in solid area Ãs,

• for Fr ≫ 1 variations in solid area Ãs are dominant.
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Combining the information about the eigenvalues and the weights L̃B̃,
it is possible to infer that for Fr ≪ 1 the perturbations of the free surface
and of the liquid discharge travel downhill with celerity µ1 along the first
characteristic curve and uphill with celerity µ3 along the third characteristic
curve. The bed perturbation travels downhill on the second characteristic
curve, whose celerity µ2 is the smallest in absolute value. Hence, for Fr ≪ 1,
the hydrodynamic processes and the morphodynamic processes are associ-
ated to distinct characteristic curves and the celerity of the latter is smaller,
i.e. the evolution of the bed is quite slower than the evolution of the hy-
drodynamic variables η and Ql. For Fr ≃ 1 and Fr ≫ 1, on the contrary,
there is no clear separation among the variations of the three variables,
neither in terms of characteristic curves nor in terms of velocity of the evo-
lution. It is worth noticing that for Fr > 1 there is a significant component
of As variation along the third characteristic curve; this explains why bed
perturbations travel uphill for Fr > 1.

Since for Fr ≪ 1 the variations of the hydrodynamic variables η and Ql

and the variations of the morphologic variable As travel on different char-
acteristic curves, with different celerities, it seems natural to assume (see
e.g. [19]) that in this regime the two processes can be considered decoupled,
so that it would be possible to solve for the hydrodynamic variables at fixed
bed and after that solving for the bed variations. The eigenvalues of the
fixed–bed model are µi = Fr±1, thus the ratio:

r =





µ(3) − (Fr−1)

µ(3)
if Fr < 1

µ(2) − (Fr−1)

µ(2)
if Fr ≥ 1

(41)

can be regarded as a measure of the strength of the coupling between hy-
drodynamic and morphodynamic processes. Indeed, for small values of r
the eigenvalues of the fixed–bed and of the mobile–bed models are not too
different. The values of r at different values of Φ, Ψ and Θ are presented in
figures 6 and 7. The eigenvalues of the mobile–bed model are significantly
different from those of the fixed–bed model in a region around Fr = 1 but
the width of this region depends on the values of the parameters Φ, Ψ and Θ.
Particularly, for larger values of these parameters the width of this region is
larger. It is also worth to notice that the region is not symmetrical around
Fr = 1. Sieben [19] analysed the eigenstructure of a one–dimensional model
considering a monomial transport formula and suggested that the region
in which the two processes should be considered coupled is 0.8 < Fr < 1.2;
this bounds are commonly accepted in the literature (see e.g. [12]). The
value r at Fr = 0.8 and Fr = 1.2 for the pure one–dimensional model with
the monomial tranport formula (Φ = 1.00, Θ = 1.00) with Ψ = 0.001 are
∼ 0.035. In figure 8 the values of Fr for which r = 0.035 are presented as a
function of the shape parameter at different values of Ψ and Θ. It is then
clear that the region in which relevant coupling takes place is strongly af-
fected by the cross section geometry and by the nature and the intensity of
sediment transport. As a consequence, it does not seem possible to define
uniquely a decoupling region in the context of a realistic river flow model.
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Another clear consequence of the previous analysis is that the use of a
one–dimensional model in cases of arbitrary cross sections can lead to large
errors. However, it is still possible to define an equivalent rectangular cross
section in which the equivalent width Beq and the equivalent water depth
heq are given by:

Beq =
∂Al

∂η
, heq =

Al

Beq
(42)

Assuming that the surface elevation η and the water discharge Ql re-
main unchanged by the new geometry definition, relations (42) imply that
(Al)eq = Al, Ueq = U and (Fr)eq = Fr, i.e. the flow regime is not affected
by the new definition. Relations (42) do not guarantee that (As)eq = As

but, provided that Ψeq = Ψ, the following holds: ∂(As)eq/∂t = ∂As/∂t.
For arbitrary cross sections ∂Al/∂η is a function of η and, consequently,
a function of time. The transport parameter Ψ depends, in general, on
the shape of the cross section. Hence, a model using the rectangular cross
section defined by (42) is equivalent to a section averaged model provided
that the time variations of ∂Al/∂η and the two–dimensional information
related to the transport formula are accounted for.

7 Well posedness of hyperbolic systems for

mobile–bed, free–surface channel flow

In this section, we study the well posedness of the mobile–bed system
(10) as an initial and boundary value problem. Firstly, direct inspection of
the system structure shows that the local existence and uniqueness results
proven in [11] apply (see e.g. theorems 5.1.1, 5.1.2 therein). Thus, exis-
tence, uniqueness and regularity of a classical solution of system (10) are
guaranteed for small perturbations of a stationary, constant solution. In
particular, since it was shown in section 4 that λ1, λ2 > 0, λ3 < 0, these re-
sults will hold on an interval x ∈ [a, b] if the following boundary conditions
are assigned at the left and right boundaries, respectively:

v1(t) = G1(t) x = a

v2(t) = G2(t) x = a (43)

v3(t) = G3(t) x = b.

Here, vi = LiBU and Gi denote sufficiently regular functions of time. In
general, these functions can also depend on the outgoing characteristics,
but we do not consider this case in order to simplify the following well–
posedness proof. Consider now the frozen coefficients, linearised system

B
∂W

∂t
+ A

∂W

∂x
= 0, (44)

where B,A, are assumed to be constant matrices and W a perturbation
of the state U around some constant reference solution. For simplicity,
the friction terms have been neglected. It can be shown that, with an
appropriate choice of the energy norm, energy inequalities can be derived
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for the solution of (44) under the assumption that boundary conditions (43)
hold. As a consequence, the frozen coefficients problem can be considered
well posed according to the definition of Kreiss (see e.g. [9], [10]). Indeed,

consider the positive definite matrix R =
∑3

i=1 BTLT
i LiB and define the

energy norm as

‖|W‖|2 =

∫ b

a

W(x) · RW(x)dx (45)

=

3∑

i=1

∫ b

a

w2
i (x)dx =

3∑

i=1

∫ b

a

LiBW(x) · LiBW(x)dx.

Here, wi = LiBW as in equation (43). Considering the energy norm
variation in time and using equation (44) and the definition of the left
eigenvalues, one yields

∂

∂t

‖|W‖|2
2

=
3∑

i=1

∫ b

a

LiBW(x) · LiB
∂W

∂t
(x)dx

= −
3∑

i=1

λi

∫ b

a

LiBW(x) · LiA
∂W

∂x
(x)dx (46)

= −
3∑

i=1

λi

2

∫ b

a

∂

∂x
[LiBW(x) · LiBW(x)] dx

=
3∑

i=1

λi

2
w2

i (a) −
3∑

i=1

λi

2
w2

i (b). (47)

Applying boundary conditions of type (43) to equation (44) and using the
fact that λ1, λ2 > 0, λ3 < 0, it follows that

‖|W(t)‖|2 ≤ ‖||W(0)‖|2 +
1

2

∫ t

0

[
λ1G1(s)

2 + λ2G2(s)
2 − λ3G3(s)

2
]

ds,

(48)
thus proving well posedness of system (44) in the sense of Kreiss.

8 Conclusions and perspectives for ongoing

work

In this paper, the hyperbolic system associated to a section averaged
sediment transport model has been analysed. The model, which allows for
river sections of arbitrary shape, is a key component of state–of–the–art,
realistic river flow modelling packages (see e.g. [21]). The eigenvalues and
eigenvectors of the hyperbolic system have been expressed as functions of
the generalised Froude number and of non dimensional parameters, related
to the section shape and to the sediment transport regime. Appropriate
boundary conditions have been derived, in order to achieve existence and
uniqueness of classical solutions for small perturbations of steady state flows
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and to guarantee the validity of an energy inequality for the linearised,
frozen coefficient problem. On the basis of the eigenstructure analysis, the
important issue of coupling between flow and morphological dynamics has
been addressed, showing a strong dependency on the intensity and nature
of the transport process and on the cross section shape.

Based on this work, efficient and accurate numerical methods for a sec-
tion averaged sediment transport model will be investigated. In particu-
lar, in order to allow for long time range, high resolution realistic simula-
tions at the lowest possible computational cost, the application of the time
discretization techniques developed in [16] to the section averaged model
equations will be studied, in the framework of the development of a mobile–
bed, free–surface model based on the 1D–2D coupling technique proposed
in [14],[15].

Appendix

Computation of the eigenvalues in the general case of

mobile–bed channel flow

The characteristic polynomial of system (10) is given by:

p (λ) = det (A − λB) = a3λ
3 + a2λ

2 + a1λ + a0, (49)

where:

a0 =
Q3

l

A2
l

β
∂Ψ

∂η
+

Q3
l

A2
l

β
∂Ψ

∂As

∂Al

∂η
− AlQlg

∂Ψ

∂As
+

−Q3
l

Al

∂Ψ

∂As

∂β

∂η
+

Q3
l

Al

∂Ψ

∂η

∂β

∂As
, (50)

a1 = −Q2
l

A2
l

β
∂Al

∂η
+

Q2
l

Al

∂β

∂η
+ gAl (1 + Ψ) +

Q2
l

Al
Ψ

∂β

∂As

∂Al

∂η
+

+
Q2

l

Al
Ψ

∂β

∂η
− 2

Q2
l

Al
β

∂Ψ

∂As

∂Al

∂η
− 2

Q2
l

Al
β

∂Ψ

∂η
+ (51)

+
Q3

l

Al

∂β

∂As

∂Ψ

∂Ql

∂Al

∂η
+

Q3
l

Al

∂β

∂η

∂Ψ

∂Ql
+ AlQlg

∂Ψ

∂Ql
,

a2 = 2
Ql

Al
β

∂Al

∂η
+ Ql

∂Ψ

∂As

∂Al

∂η
+ Ql

∂Ψ

∂η
, (52)

a3 = −∂Al

∂η
. (53)

Rewriting the derivatives as follows

∂Ψ

∂η
=

∂Ψ

∂h

∂h

∂η
,

∂Ψ

∂As
=

∂Ψ

∂h

∂h

∂As
,

∂Al

∂η
=

∂Al

∂h

∂h

∂η
,

∂Al

∂As
=

∂Al

∂h

∂h

∂As
= −1,

∂β

∂η
=

∂β

∂h

∂h

∂η
,

∂β

∂As
=

∂β

∂h

∂h

∂As
,
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it is possible to simplify (50)–(52):

a0 = −AlQlg
∂Ψ

∂As
, (54)

a1 =
Q2

l

A2
l

(
Al

∂β

∂η
− β

∂Al

∂η

)
+ gAl

(
1 + Ψ + Ql

∂Ψ

∂Ql

)
, (55)

a2 = 2β
Ql

Al

∂Al

∂η
. (56)

After scaling by

[(
−∂Al

∂η

)
−1 (

1
gAl

∂Al

∂η

)2/3
]
, the non–dimensional charac-

teristic polynomial becomes:

p (µ) = b3µ
3 + b2µ

2 + b1µ + b0, (57)

where:

b0 = Al
∂Ψ

∂As
Fr, (58)

b1 =

[
β − Al

∂β

∂η

(
∂Al

∂η

)
−1
]

Fr2 −
(

1 + Ψ + Ql
∂Ψ

∂Ql

)
, (59)

b2 = −2β Fr, (60)

b3 = 1. (61)

Here µ denotes the non–dimensional eigenvalues of equation (18) and Fr is
the generalised Froude number defined in equation (19); both account for
arbitrary cross section geometry.

We now consider the case in which Ψ is given by the monomial transport
formula (11), the cross section is arbitrary and, for simplicity, β = 1. The
derivative ∂Ψ/∂Ql at fixed η and As is given by:

∂Ψ

∂Ql
=

∂

∂Ql

(
as

Q2
l

A2
l h

)
=

2Ψ

Ql
. (62)

The derivative ∂Ψ/∂As at fixed η and Ql is given by:

∂Ψ

∂As
=

∂

∂Ql

(
as

Q2
l

A2
l h

)
=

(
2

Al
− 1

h

∂h

∂As

)
Ψ. (63)

Hence, the coefficients of the characteristic polynomial (57) are:

b0 =

(
2 − Al

h

∂h

∂As

)
Ψ Fr, (64)

b1 = Fr2 −1 − 3Ψ, (65)

b2 = −2 Fr, (66)

b3 = 1. (67)

It is now possible to rewrite coefficient b0 as:

b0 = 3ΦΨ Fr, (68)
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where the shape parameter Φ is defined by:

Φ =
1

3

(
2 − Al

h

∂h

∂As

)
. (69)

In the case of rectangular cross section Al = Bh and ∂h/∂As = −1/B,
hence Φ = 1.

Alternatively, we can consider Ψ as given by the Meyer–Peter and Müller
formula (17), along with an arbitrary cross section and, for simplicity, β =
1. The Shields mobility parameter θ is defined in equation (12) and depends
on the Chézy roughness coefficient χ. In general cases, the Chézy coefficient
is non–constant; its dependency on the hydraulic radius Rh = Al/Cw is
given by the Strickler formula:

χ = KR
1/6
h , (70)

where K is the Strickler roughness coefficient.
In the case θ ≤ θc, Ψ and its derivatives are zero and the fixed–bed case

is recovered. In the more interesting case θ > θc, the derivative ∂Ψ/∂Ql at
fixed η and As is:

∂Ψ

∂Ql
=

∂

∂Ql

(
Qs

Ql

)
=

1

Ql

(
∂Qs

∂Ql
− Ψ

)
. (71)

The derivative ∂Qs/∂Ql at fixed η and As is:

∂Qs

∂Ql
=

∂

∂Ql

(
8Bd

√
gd∆(θ − θc)

3/2
)

=
3

2

Qs

θ − θc

∂θ

∂Ql
. (72)

Using the definitions of θ and χ yields:

∂θ

∂Ql
=

∂

∂Ql

(
Q2

l

A2
l χ

2d∆

)
=

2θ

Ql
. (73)

Substitution of (73) and (72) in (71) yields:

∂Ψ

∂Ql
=

Ψ

Ql

(
3

θ

θ − θc
− 1

)
. (74)

The derivative ∂Ψ/∂As at fixed η and Ql is:

∂Ψ

∂As
=

∂

∂As

(
Qs

Ql

)
=

1

Ql

(
∂Qs

∂As

)
. (75)

The derivative ∂Qs/∂As at fixed η and Ql is:

∂Qs

∂As
=

∂

∂As

(
8Bd

√
gd∆(θ − θc)

3/2
)

=
3

2

Qs

θ − θc

∂θ

∂As
. (76)

The derivative ∂θ/∂As at fixed η and Ql is:

∂θ

∂As
=

∂

∂As

(
Q2

l

A2
l χ

2d∆

)
= 2θ

(
1

Al
− 1

χ

∂χ

∂As

)
.
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The derivative ∂χ/∂As at fixed η and Ql is:

∂χ

∂As
=

∂

∂As

(
KR

1/6
h

)
=

K

6
R

−5/6
h

∂Rh

∂h

∂h

∂As
. (77)

Substitution of (70) and (76)–(77) in (75) yields:

∂Ψ

∂As
= 3Ψ

θ

θ − θc

1

Al

[
1 − Cw

6

∂Rh

∂h

∂h

∂As

]
. (78)

Hence, the coefficients of the characteristic polynomial (57) are:

b0 = 3
θ

θ − θc

[
1 − Cw

6

∂Rh

∂h

∂h

∂As

]
Ψ Fr, (79)

b1 = Fr2 −1 − 3
θ

θ − θc
Ψ, (80)

b2 = −2 Fr, (81)

b3 = 1. (82)

It is now possible to rewrite coefficients b0 and b1 as:

b0 = 3ΘΦΨ Fr, (83)

b1 = Fr2 −1 − 3ΘΨ, (84)

where the shape parameter Φ is defined by:

Φ =

[
1 − Cw

6

∂Rh

∂h

∂h

∂As

]
(85)

and the mobility parameter Θ is defined by:

Θ =
θ

θ − θc
. (86)

In the case of rectangular cross section Cw = B + 2h, Rh = Bh
B+2h , hence

∂Rh

∂h = B2

(B+2h)2 and Φ =
[
1 − B

6(B+2h)

]
. From the calculation presented

here, it is clear that the system eigenstructure can be described by the
general formula (20) with coefficients given by (21)–(24) and summarised
in table 1.

Computation of the eigenvectors in the general case of

mobile–bed channel flow

The left eigenvectors Li associated with the dimensional eigenvalues λi of
the hyperbolic system (10) are computed by solving Li (A − λiB) = 0.
Since only two equations are linearly independent, the system has infinite
solutions. Using the second and the third equation and considering vectors
of the form [(L1)i, (L2)i, 1], the following expressions can be found:

(L1)i = −Ei

Di
, (L1)i =

Fi

Di
, (87)
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where

Di = A2
l

∂Al

∂As
λ2

i − 2AlQlβ
∂Al

∂As
λi + Q2

l

(
β

∂Al

∂As
− Al

∂β

∂As

)
, (88)

Ei = A2
l λ

2
i − QlAl

(
Al

∂Ψ

∂As
+ 2β

)
λi +

+Q2
l

[(
Ψ + Ql

∂Ψ

∂Ql

)(
β

∂Al

∂As
− Al

∂β

∂As

)
+ 2Alβ

∂Ψ

∂As

]
, (89)

Fi = A2
l

[
∂Al

∂As

(
Ψ + Ql

∂Ψ

∂Ql

)
− 1

]
λi + A2

l Ql
∂Ψ

∂As
, (90)

and i = 1, 2, 3. Assuming β = 1 and ∂Al/∂As = −1 as explained in sec-

tion 2 and rescaling Di, Ei and Fi by a factor
(

1
gAl

∂Al

∂η

)
(which is equivalent

to multiplying and dividing each component of Li by the same factor) gives
the left eigenvectors associated with the non–dimensional eigenvalues µi as
functions of the generalised Froude number:

Di = − (µi + Fr)
2
, (91)

Ei = µ2
i −

(
Al

∂Ψ

∂As
+ 2

)
Fr µi +

+

[
2Al

∂Ψ

∂As
−
(

Ψ + Ql
∂Ψ

∂Ql

)]
Fr2, (92)

Fi =

√
1

gAl

∂Al

∂η

[
−
(

Ψ + Ql
∂Ψ

∂Ql
+ 1

)
µi + Al

∂Ψ

∂As
Fr

]
. (93)

Computing the derivatives of Ψ for different transport formulae and differ-
ent geometries, as done previously for the computation of the eigenvalues,
and using the parameters Φ, Ψ and Θ described in table 1, it is possible to
rewrite (91)–(93) in the form presented in relations (26)–(28).
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