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Abstract

In this paper we propose a dual-mixed hybrid formulation capable of treating under
a unified framework both compressible and incompressible problems in continuum
mechanics. A theoretical analysis of the method is carried out and optimal error
estimates are derived for both mixed and hybrid variables. The potentialities of
the novel approach are exploited in the computation of the stress field required in
the simulation of the thermal oxidation process in semiconductor technology. The
numerical formulation is validated both on model problems in continuum mechanics
and on a realistic example of the thermal oxidation process in a local oxidation
structure (LOCOS).
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1 Introduction and Motivation

In this paper we propose a dual mixed-hybrid (DMH) finite element formula-
tion capable of dealing with both compressible and incompressible problems
in continuum mechanics, providing at the same time an accurate representa-
tion of the stress field. The motivation underlying this research is to devise a
flexible and reliable procedure for the simulation of physical systems involving
materials with heterogeneous fluid-mechanical properties (for example, com-
pressible and incompressible materials) using a unified numerical formulation.



This avoids in particular the escape of introducing quasi-incompressible ap-
proximations for handling the incompressible regime (such as the B method,
see [15], Sect.4.5.2, and [28], Sect.12.5.2) or the difficulty of adopting two sep-
arate computer codes, thus facing the problems arising from their proper cou-
pling and maintenance. A significant example of the aforementioned situation
occurs in the simulation of the thermal oxidation process in semiconductor
device technology (see [20] and [22] for a more comprehensive mathematical
presentation). In this industrial relevant application, the DMH formulation
reveals to be an appropriate method to deal with the simultaneous presence
of both compressible (silicon and silicon nitride) and incompressible (oxide)
materials, providing at the same time an accurate approximation of the stress
field which plays a primary role in the process evolution.

The DMH approach is based on the conservative form of the model contin-
uum mechanics equations, and stems from a modified Hellinger-Reissner vari-
ational principle. The first modification consists in introducing a rotational
parameter that weakly enforces the symmetry of the stress tensor [16]. At
the discrete level, this has the effect of relieving from working with a discrete
symmetric tensor function space. In this respect the DMH formulation may
be regarded as a variant of the Plane Elasticity Element with Reduced Sym-
metry (PEERS) method [2,26]. It must be noticed that formulations based on
the Hellinger-Reissner principles are not affected by locking phenomena in the
quasi-incompressible and incompressible limit. An evidence of this statement
can be found in the recent work [7], where an implementation of the PEERS
method has been carried out, assessing the robustness of the method in the
quasi-incompressible limit and deriving a-posteriori error estimates indepen-
dent of the compressibility parameter. However, in the pure incompressible
regime (Stokes problem), an additional constraint on the trace of the stress
tensor must be enforced [4], which turns out turning into non-trivial difficul-
ties at the discrete level. To overcome these difficulties, a second modification
of the Hellinger-Reissner principle is carried out in the DMH formulation by
introducing a pressure function to allow for a straightforward numerical treat-
ment of the constraint of null volume variations [15]. In this latter case the
pressure function has the physical meaning of hydrostatic pressure. Finally, a
displacement interface variable (hybrid variable) is introduced to enforce the
continuity of the normal stress across neighboring elements. This procedure
is numerically equivalent to performing the hybridization of the correspond-
ing dual-mixed formulation [1] and improves the computational efficiency of
the method yielding a linear algebraic system in the interface displacements,
pressure and rotation unknowns.

The paper is organized as follows: in Sect.2 we present the DMH formulation,
proving existence and uniqueness of the solution of the continuous and dis-
crete problems. In Sect.3 the error analysis of the method is carried out; in
particular, we provide optimal error estimates for the approximation with a



superconvergence result for the hybrid variable. In Sect.4 we briefly describe
the mathematical model of the thermal oxidation process and we discuss the
algorithm implemented in the computer code to solve the fully coupled prob-
lem. In Sect.5 we present numerical results to validate the novel formulation,
concerning first the sole fluid-mechanical formulation and then the simula-
tion of a realistic thermal oxidation process. Finally, in Sect.6 we draw some
conclusions and indicate some perspectives for the future work on this subject.

2 Dual mixed-hybrid formulation for the solution of the fluid-
mechanical problem

The aim of this section is to present the DMH formulation for compressible
and incompressible problems in continuum mechanics, stating existence and
uniqueness results for both the associated continuous and discrete weak prob-
lems.

2.1 Functional setting and notation

Throughout the article € is an open bounded set in R? with Lipschitz con-
tinuous boundary I' = 02, although the presentation of the method can be
straightforwardly extended to the three-dimensional case. Let 7, be a regular
partition [9] of Q2 into triangles K such that Q = Ugcr, K and let &, be the
set, of edges associated with 7,. For each element K € 7,, we denote by 0K
the Lipschitz continuous boundary of K, by ng the unit outward normal vec-
tor along the boundary 0K and, for each K, K' € T, sharing an edge we set
ex—x = OK NOK'. Moreover, if v is any function defined in €2, we denote by
v¥ its restriction to the element K and by vk its restriction on the element
boundary 0K.

Given an integer m > 0 and the real numbers p,q € [1,00), we define the
following local space

Wwme(K) = {v € IP(K) | D% € LP(K)Va,|a| < m} VK €T,

provided with the norm and seminorm

[|v]

1/p
m,p, K — ( Z A{‘Dav‘p d.’]?) .

al=m

1/p
e DO AL R
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When p = 2, W™?(K) is the usual H™(K) Sobolev space (see [18]) and the



simplified notation ||.||;, x and |.|m,x will be used. We also introduce the local
space
Wy(div; K) = {r € (L'(K))? |divT € LY(K)},

provided with the norm

1/q
0+ |ldiv T||3,K) .

i = (IIT

When ¢ = 2, the space Wy(div; K) is the Sobolev space H(div; K) (see [5]).

From now on, p and ¢ will be chosen to be conjugate numbers, i.e., 1/p+1/q =
1. It will be useful in the sequel to consider the space of the traces on 0K of
functions v € WH?(K) and 7 € W,(div; K). Notice that the trace vsx belongs
to the space W'/%?(0K), while the normal trace 7 n|sx belongs to the space
W-Y24(9K); the spaces W?(0K) and W~1/%9(9K) are provided with the
following norms

Pl ok = sup UK iy K 1
/2,4 q
veWLP(K) |[v] 1,p,K
and ( >
TN,V
[]lyjgpox = sup ———L2E— Yy e WH(K). 2)

TEW,(div;K) HTnH—l/q,q,aK
Given the above functional setting, we can characterize the global space W, (div; )
as the space of the functions 7 € [[xc7, W,(div; K) such that

d (T n,v)ex =0 VYve Wy (), (3)

KET;,

where W,?(Q) is the subspace of W'?(Q) consisting of functions v such
that v = 0 on I', and where (-,-)sx denotes the duality pairing between
W-1/44(0K) and W/9?(0K). Relation (3) extends to the space W,(div; )
the characterization of the space H (div;{2) which is essential in the construc-
tion of dual-hybrid methods (see [5], Ch.3, Prop.1.2.).

Proceeding as in [11,12], we assume henceforth that
4/3 <p<2. (4)

Under this condition, functions belonging to W/%?(9K) need not be contin-
uous at the vertices of 0K, unlike in standard dual-hybrid methods where
the hybrid variable belongs to the space W'/22(0K) = HY?(0K) and its
approximation must be continuous at the vertices. This is the main reason
for assuming the limitation (4), which allows instead for adopting discontin-
uous piecewise finite elements for the approximation of the hybrid variable
on &, at the expense of a slightly stronger regularity on functions belonging



to Wy(div; K) (indeed we have ¢ > 2). While this latter extra-amount of
regularity has no practical limiting consequences on the choice of the finite
element spaces for the approximation of functions in W,(div ; K), the relaxed
continuity requirements for the hybrid variable has the advantage of produc-
ing an approximation of the normal stresses that is continuous on each edge
of 7. This is not the case with standard hybrid methods, where this latter
important conservation property is achieved only in an average sense over the
patch of elements surrounding each node of the triangulation.

2.2 The continuum-mechanics problem in mized form

Let us consider the linear elasticity problem in mixed form:

find (o, u) such that

dive+ f=0 in Q,
o = 2fie(u) + Mre(u)d  in €, (5)
u=20 on I

where e(u) = 3(Vu+(Vu)T) and ), i are the Lame coefficients of the material.
Homogeneous Dirichlet boundary conditions are assumed here only for ease of
presentation; general mixed boundary conditions could be considered as well,
as will be shown in the numerical experiments presented in Sect.5.

In order to derive the DMH formulation, we elaborate the constitutive equa-
tion (5)2 as follows. We take the trace of (5), yielding

tro

tre(u) = m

(6)
and we introduce the pressure parameter
1
= ——tro. 7
p=—ztro (7)

Substituting these quantities back in (5),, we obtain the following expression
for the constitutive law
A

(A+ )



System (5) can thus be rewritten as

'divo-i-f:() in Q,
27ie(u) A 0 in
o =2pe(u) — —=——=pd in €,
4 (A +7) (8)
p=—§tra in €2,
\uzO on I

System (8) is the starting point for introducing the DMH formulation. It is
easy to verify that for A — 400 system (8) can be conveniently interpreted as
the conservative form of the Stokes equations in fluid dynamics

div (—2ve(u) +pd) = f  in Q,
divu =0 in €, 9)
u=20 on I

where v = [i is the kinematic viscosity and u is to be intended as a velocity
field. Indeed, from (6) and (7) we have

tre(u) =divu = Y
o

that for A — —+oo recovers the incompressibility constraint divu = 0. Notice
that only in this latter case the pressure parameter p assumes the meaning of
hydrostatic pressure (see also [15]).

2.8 Formulation of the problem with Lagrangian multipliers

We define the following function spaces
% = [ker, (Wy(div; K))?, V= (L1(Q))?
A= {u € Mxer, WY (0K))?, uX = on ex_xr, VK, K' € Ty,
¥ =00n 0K NT, VK € ﬁ},

W=LQ), Q=LIQ)NLANQ), M=VxAxW, M=MxQ,
(10)



where L§(Q) is the subspace of L?(Q) of functions with zero mean value over
Q. Next, we let 7 =7 € X, 0 = (v,u,0) € M, v = (0,9) € M and we
introduce the following continuous bilinear forms a(-, -), b(-, -) and ¢(-, -) defined
respectively on ¥ x ¥, x M and M x M:

( 1
a(, 7) / o:rde,  b(©,7) = bi(5,7) + bo(,7),
Q

2%
h(0,7)= > / v-divrdr — Z/ ,u-(Tn)ds+/0aSTda:,
< Ker, /K KeT, 19K “ (11)

by (0, 7) =/Q%qtr7dx,

| c(@,7) = /Qp;pqd:r,

where 0 : 7 = ¥7 ., 0y7ij, asT = Ty — 712 and p; = M(A(A + 1)) (in the
incompressible case we have po, = 1/[i).

The DMH formulation of problem (5) reads:
find (6 =0,% = (u, A\, w,p)) € (¥ x M), such that

a(&,7) + (i, 7) = 0 VFieS,
(12)
b(7,7) + c(@,7) = F@®) Ve M,

where F(7) = — [ f -vdz and f € (LP(Q))%
Some comments on the meaning of the variables in (12) are in order.

The variable p is a pressure function that in the incompressible limit (/A\ = +00)
represents the hydrostatic pressure. In this latter case an undetermination on
Jotrodz, i.e. on the mean value of p, arises. The undertermination can be
solved by imposing a-priori the side condition p € L2(). This latter procedure
allows in turn for a straightforward numerical treatment of the constraint
of null volume variations, that is easier to deal with than the corresponding
condition on the trace of the stress tensor o [2]. If A < 400, since p = —3tro =
a.e. in Q, taking 7 = § in (12); yields tro € L3(Q2) and thus p € L3(Q2). This
is the reason why p is sought in the space LI(Q) N L3(Q2) for every value of the
compressibility parameter X, even when it is redundant (see [4] for a similar
discussion of this subject).

The variable w is a rotational parameter that avoids requesting the stress
tensor to be sought a priori in a symmetric function space.

Finally, the hybrid variable X is the Lagrangian multiplier that enforces back



the continuity of the normal component of the stress tensor across the interele-
ment interfaces.

2.4 Euxistence and uniqueness of the solution of the DMH formulation

It is not hard to see that if (u*,o*) is the solution of problem (5) such that
o* € (W,(div;))? and such that tro* € (L9(Q) N L3(R)), then (¢ = o*;u4 =

(u*, ujg, scurlu®, p = —1tro*)) is a solution of (12), where V¢ = (1, ¢») €
(H'(2))? we have curl ¢ = (%@ — %@5_1)'
1 T2

To assess the uniqueness of the solution of problem (12), we set f = 0, take
7 =0 in (12);, ¥ = @ in (12)2 and subtract (12); from (12);, yielding

a(o,0) — c(p,p) = 0. (13)

We can rewrite (13) as
a(o,0) =0, (14)

where

1
g,n + ) HtrTHg,n VT € X,

4N+ 1

1
a(r,7) = ﬁHTD

1
having defined for every 7 € ¥ the deviatoric part of 7 as 7” = 7 — 5 tr (7)4.

In the compressible regime (A < +00), equation (14) immediately yields o = 0
and consequently p = 0. In the incompressible regime (A = +00), equation
(14) provides a control only for the deviatoric part of 0. To ensure control
on the complete tensor, we recall that, since dive = 0 in Q (f = 0) and
tro € L2(f2), there exists a positive constant C' such that (see [3])

lollog < Clle”llbe

(see [5] Prop. 3.1 p.161). This allows us to conclude that ¢ = 0 also in the
incompressible case. From this latter result, it immediately follows that p = 0
as well.

In order to show that also v = 0,A = 0 and w = 0, we must check the inf-
sup condition for the bilinear form b (-,-). To do this, we use the following
proposition (see [12] for a proof):

Proposition 1 There exists a positive constant C such that

()’Q) V@EM\

sup

> C(|[vlfon+ 110
Tex 0 |IT

We are now in a position to state the following existence and uniqueness result:



Theorem 2.1 Suppose that the solution (u,o) of problem (5) has the regu-
larity
o € (W,(div; Q))?, tro € LI(Q) N L (Q).

Then (¢ = o;u = (u, usk, %curlu, —%tr 0)) is the unique solution of problem

(12).
2.5 Finite element discretization of the DMH formulation

This section concerns with the numerical approximation of problem (12). For
k > 0, we denote by P, (K) the space of polynomials in two variables of total
degree at most k on the element K and by Ry(0K) the space of polynomials
of total degree at most £ on each edge of K. Notice that functions belonging
to Ri(0K) need not to be continuous at the vertices of 0K. Furthermore, we
denote by D(K) = (RTo(K)®Bk)?, where RT((K) is the lowest order Raviart-
Thomas finite element space [23] on K and By = curl(bk), bx being the cubic
bubble function on K. The finite element spaces for the DMH approximation
are defined as follows:

Y = {TE LK e D(K)VK € Th}, Vi = {v e V|vK € (Py(K))>VK € Th},
Ap = {ueAm@Ke (RO(aK))ZVKeTh},Wh: {9€C°(§)|0KEIP1(K)VKE77L},

Qh:{q€Q|QK€PO(K) VKEE},

Mh:VhXAhXWh, M\h:MhXQh-
(15)

The finite element spaces ¥p, Vj, Ay and W), are the same as in [2] except
for the space (), since the pressure variable is not introduced in that for-
mulation. The pressure variable is instead introduced in [11,12] in a similar
formulation but considering a different constitutive law for the stress o, that
in these references is defined as o = 2ie(u). This latter choice implies that
o does not account for volumetric variations, that are instead represented by
the pressure, but only for deviatoric stresses. However, in the definition of the
complete stress tensor both contributions must appear, this reflecting into a
rather involved functional and discrete representation of the spaces ¥ and X,
(see [12], definition 2.1 and Example 3.1). On the other hand, in the DMH
formulation, which is more akin to the PEERS method, the introduction of
the pressure variable is carried out according to a straightforward physical
definition which extends to the dual-mixed formulation of the elasticity prob-
lem the original approach proposed by Herrmann in [17] in the context of
displacement-based formulations.



A final remark is in order concerning with the rotation finite element space
W), that consists of nodally continuous functions over §). We give here the
following physical interpretation of this statement. As a matter of fact, the
simplest choice

Wh={0eW |0k € Po(K) VK € Tp}

leads to undesired rigid body motions (mechanisms) of rotational type (see
Fig.1). This suggests that some kind of rotational continuity between neigh-
boring triangles must be enforced, as is the case of the space W)}, used in the
present formulation.

X
N
£>< iwzo
5E 5E

Figure 1. Discontinuous approximate rotations lead to the appearance of rigid body
motions. In the schematic representation, the hinges denote the variable A, while
crosses denote the variable wy,.

Having introduced the finite element spaces (15), problem (12) is discretized
by the following one:

find (6}1 = Op, Up = (’U,h, /\h,wh,ph)) € (Eh X Mh), such that

a(&h,T'h)—i—b(ﬂh,?h) =0 V%h EEh,
(16)
b(&h,’IN)h) + C(ﬂh,f)h) = f(QNJh) VY U, € My,

The proof of the uniqueness of the solution of problem (16) follows the same
lines as in the continuous case. Setting f = 0 in (16), we first check that

a(op, on) — c(pr, pr) =0 implies o5, =0, p, = 0. (17)

To do this, it is useful to recall that the space L3(f2) is isomorphically equiv-
alent to the space L*(Q)/R. At the discrete level, working in the space

Qn = {a € (L(Q) N L*@)/R) | ¢ € Po(K) VK € T}

is equivalent to prescribing the value p, = p* on a certain element K* of the
triangulation, p* being an arbitrary constant (see for example [19], Sect.9.3).

10



Without loss of generality, we can set p* = 0. Then, we can take in equation
(16)2 05, = (0,0,0,1g), with 1x = 1on K, K # K* and 0 elsewhere, obtaining

pr = 2\K|/ trop, dx VK € T, K # K*.

Substituting this latter relation back in (17), we get

0= Z / 2—ah opdr — /1(4|K|2 /trahdx dx

KeTy, KeT K£K*

2

> /—0’ O'd:E—/ ) /tra dz dx)
KET< th 1 Uy tronds)
2 (/ 2 —Op : o-hdx_/Kll‘K‘/ tI‘O’h dﬂ?)

KeTy

KeT

where we have used the fact that

(/Ktrohda:)2 < |K|/K(trah)2dx (18)

From the above inequality and from the definition of a(-, -), it immediately fol-
lows that o5, = 0 and pj, = 0, irrespectively of the value of the compressibility
parameter \.

In order to show that also u, = 0,\, = 0 and w, = 0, we must check the
discrete inf-sup condition for the bilinear form b (-,-). For this we use the
following proposition (see [12] for a proof):

Proposition 2 There exists a positive constant C' such that

by (5, 7 o
_ sup M > C(||vallon + [106]]0.0) Vo, € My,
ThEXR, Th#0 3y

We are now in a position to state the existence and uniqueness result:

Theorem 2.2 There exists a unique element (G, Up) € (X5 X My,) satisfying

(16).
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3 Error analysis

The subsequent analysis is divided into several steps. First, we introduce suit-
able projection and interpolation operators. Then we obtain optimal error
estimates for o, p, v and w. Finally, we derive optimal error estimates for the
L? projection of u and for the hybrid variable .

3.1 Projection and interpolation operators

In order to carry out the error analysis for the DMH formulation, we need to
introduce appropriate projection and interpolation operators. First, we define
the linear operator I} : W,(div;K)? — X,(K) satisfying the orthogonality
relation

/az( <H}(T - 7') n-ro=0  Vrg € (Ry(0K))?, VK €T, (19)

and satisfying for all 7 € (H'(K))*, divr € (H'(K))? the approximation
properties (see [25], Chapt.6, Theorem 6.3)

|7 = Hk7llox < Chilrlik,
(20)

||div (1 — Hk7)||o.x < Chk|div 7|, K, [=0,1,
where C' is a constant independent of K and hg is the diameter of K. From
the operator IT, for all 7 € W, (div; K)? N (L9(£2))*, we construct the global
operator II} as

7| =1t VK € T

Moreover, we denote by PP the projection operator from (L?*(2))? onto V},
such that, for all v € (L?(2))?, we have

/K(P,?v W) pedz=0 Ve (Po(K))?, VK €T,

and by pj, the projection operator from [Ixc7, (L?(0K))? onto Ay such that,
for all p € [ger, (L*(0K))?, we have

/aK(p%p —p)-rodz =0 Vry € (Ry(0K))?, VK € Tp.

Then, for all ¢ € L*(2), we introduce the following projection operator from
L*(2) onto Qp

1
Shqd = Ppnq — @ /Q,th dx,

12



where [Q2] = meas(Q2) and pj, is the L? projection from [[gcs, L?(K) onto
[Iker, Po(K). Finally, we let py° be the Clément interpolation operator (see
[9], Sect.17) from H'(Q) onto W}, such that, for all n € H'(2), we have

m,2 S Chl_m|7]

n— pi’cﬂ L0, m=0,1.

3.2  FError estimates

We start with the following result.

Lemma 3.1 If the triangulation T, is reqular, then there exists an operator
Il : ¥ — X such that, for all T =7 € X, we have

bi (7 —Ty7,05) =0 Vo, € My, (21)
Moreover, if T € (H'(Q))?*, we have
|17 — 7|00 < Ch|T|10, (22)
where C s a constant independent of h.

Proof. Following [12], we let s be the mean value of as(t — II}7) on Q and
B = as(t — II,7) — s. Thus, there exists w € (H}(Q2))? such that divw = 3
and ||w|]1,0 < C||B]]o,q (see [14], Lemma 2.2 and Corollary 2.4), from which
it follows that ||wl||1o < C||T — }7||o.o. We now exploit the correspondence
between the finite element spaces used in the present work for the stress and
the rotation fields and the finite element spaces used in the MINI element [5]
to approximate the velocity and the pressure fields in the Stokes problem.
The stability of the MINI discretization allows us to conclude that the ap-
proximate velocity wy, = (wy,, w?), with

wy € {2 € (C°(Q))%, ¥ € (P1(K) ® B2, VK € Tr}

is such that [, div (w — wy)&, dz = 0 for all piecewise linear continuous func-
tions &, and ||w||1,0 < Cl|lw||i 0. Choosing

0,7 = I 7 + (curlwy, curlwy) + (s/2)x,

it is immediate to check that (21) is satisfied. Observing now that ||7 —
I,7lloo < C||7 — I1;7||o,0 and using property (20);, we eventually end up
with (22). O

We are now in a position to prove the following result.

Theorem 3.1 Let (¢,u) be the solution of problem (12) and (6, uy) be the
solution of problem (16). If o € (H'(Q))*, p € (H'(Q) N L(Q)) and w €

13



H'(Q), then there exists a constant C independent of h such that

| ( Q) (23)
( ), (24)

l|w = walloo < Ch(lo|ia + [pla + lwlie)- (25)

Proof. From (12) and (16) we obtain the error equations

b(& — 5—h:77h) = —C(’lj — ﬂh,’l’jh) Yo, € Vp,
(26)
a(&—&h,?h)+b(ﬂ—ﬂh,%h)=0 V7, € 2.

Denote by Py = (PPu, p) A, p,ll’cw, spp) the projection of @ onto the space M.
It is immediate to check that P,u satisfies

b(Th, Phu—1) = /Q %(p—shp) tr(7) dm—l—/ﬁ(w—p,l;cw) as(7y) dz, V7, € X
(27)

Using (21) and taking 7, = [I,6 — &5, we get
b(I1,6 — &p, Op) / Agptr(I,5 — &) dz — c(U — TUp, Tp) Vo, € My,
CL(& - 5’h, Hh6 - 5-h) + b(Phﬂ - TNLh, H,ﬁ - 611) = b(Ph’lj - 11, Hh& - 5-11)7
(28)
yielding for (28)

a(H,ﬁ — 6h,Hh5 — 5]1,) = a(H,ﬁ — 5’, H,ﬁ — 5-h)

_(/Q %(p — spp) tr(I1,& — &) d + /Q(w — pyw)as(Il,& — 63) dz (29)

+/ (snp — pn) tr(Ilpo — &) dx—//rp pw)(skp — ph) dz).

To proceed, we need to establish an estimate for the error on the pressure
variable. Setting 7, = (0,0,0,¢p) in (26); yields the following error equation
for the pressure constitutive relation

Jo

Taking g5, = spp — pr, in (30) and performing some manipulations we get

(p—pn) + %tr(o — oh)] gndr =0 Yan € Q. (30)

p;/ﬂ(shp—ph) Etr(ﬂm?—&)—(p—ph)] dx = /(shp ph);tr(ﬂhﬁ—@z) dz.

14



The above relation allows to conveniently reformulate (29) as

a(H;ﬁ — 6h,Hh5' — O'h / % ShP — Ph tI‘(HhO' — O'h)d

= a(llyo — 7,10 — Gy) + / (spp — p) tr(Ilo — o3, dx (31)

MIS

+ /Q(p,ll’cw — w)as(Ilo — 73) dz.

Let us now obtain a relation between s,p — p, and tr(II,& — &) over each
element K € T,, K # K*. Taking ¢, = 1%, K # K*, after some algebra
relation (30) gives VK € T, K # K*

1 1 -~
(snp—pn) |k = 2|K| / tr(Il,0—o7) d:l:+|K| (/ (spp — p) dx + /K Etr(Hha —7) d:v) :

This latter relation can be used in the second integral at the left hand side of
(31), to obtain

5 N 5 ~
/ A(spp —pp) tr(llpg — Gp) dz = Y 2(spp — ph)\K/ tr (11,0 — oy) dz
Q 2 KZk+ 2 K

S [_% (/Ktr(Hh6—6h)dx>2

that yields the following form of (31)

1 L o L 2
/Qﬁ(l'[ha—ah)zdx— > 4|l);'| (/Ktr(Hha—ah)dx>

K+K*

~ o~ ~ o~ %N
= a(llpo — 7,114,606 — op) — > ﬁ (/ (snp — p) dx
KTy, K£K* K| \Jk

1 S I
+/ itr(Hha —7) d:v) /K tr (11,6 — o3) dz

+/ (spp — p) tr(llo — G4) dac—l—/ (ppw — w)as(Ily& — &) dx
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Using again (18) and Lemma 4.3 of [2], we obtain the following coerciveness
result for the left hand side of (32)

L s _5)2de - ﬁ( 55 )2
/QQN(HhJ on)’dr — > 1K /Ktr(Hha on) dz

K+K*

1
> | ==
20

(1,5 — )2 d — % / (tr(Ip5 — 54))? dz
0
= 6(1_[}15' - 5-17,; Hh6 — 5-h) Z C’ﬁ(Q)HH,ﬁ - 5'11”(2),9,
where C; = C5(f) is a positive constant depending on fi and €2 but indepen-

dent of . Gathering this latter result with the right hand side of (32), we end
up with the estimate

00+ |lw — pywlloe)

0.0 < C(llo —xo

||[IIno — G| 0.0+ ||p— snp

(33)
< Ch(lolia + [plia + [wlie),

where we have used the standard interpolation estimates for the quantities
o —Thollo.q, |[p — suplloq and ||w — pyw||o.q. Moreover, the error equation
(30) and the coerciveness of the bilinear form c(.,.) yield, after some algebra,
the following estimate

|[shp — palloe < C(||p = supllo,e + |lo — Ihonl|o,0)- (34)

Relations (34) and (33), via triangle inequality, eventually lead to (23).

We conclude the proof establishing (24) and (25). From the relation (26)2, we
have

by (Pyii— Gin, 7) = a(h — 3, 7) + b1 (Poli — U, 7) + bp (G — TUn, ) V7 € S
Observing that

by (Pt — 0, 7) = /Q(p,ll’cw —w)as(Ty)dx V7, € Xp,

using Proposition 1 and the standard interpolation estimates for the quantities
1P = snpllo.0; [0 — Taollon and [lw — p wl[o,0, we obtain

00+ lorw — willog < Ch(lolia + |plie + |w]i,0), (35)

| PPy — up,
that, via triangle inequality, eventually leads to (24) and (25). O
In the DMH approach, A\, is an approximation of v on the edges of the trian-

gulation. Our aim is thus to derive error bounds for (ugx — Ap). In doing this
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we will also obtain a sharper estimate on || PPy —up||o.o than the one obtained
in (35). To proceed, we first need to recall the following result [11]:

Lemma 3.2 For all T € (W~Y%9(9K))? there erists a unique 7, € D(K)
such that VK € T}, we have

/aK(Th n—T)-10=0  Vro e (Ro(9K))2 (36)

Furthermore, if Ty, is uniformly regular (see [9]), then there is a constant C
independent of K such that

I7allox < CR¥P7Y|T|-1/q.00k, (37)

and
1div 7allo,xc < CR*P72(|T|-1/q,4,0, (38)
where p is defined as in (4), q is its conjugate and the norm ||.||=1/440K has

been defined in (1).

We are now in a position to state the following result:

Theorem 3.2 Let (7,%) be the solution of problem (12) and (G4, un) be the
solution of problem (16). If the triangulation is uniformly regular and o €
(H' ()%, dive € (HY(Q))?, p € (HY(Q) N L)) and w € HY(Q), then there
exists a constant C' independent of h such that

[Py — uplo,0 < Ch*(|o

Lo+ [Pl + [divelie + [wlie), (39)

PAA=Anll1/gpor < CR?P(|o|10+p

where the norm ||.||1/qp0x has been defined in (2).

potldivelio+|wlie) VK €Ty, (40)

Proof. To prove (39) we use a duality argument (see [2]).
Define the pair v € H?(2) and 7 € {£ € (H'())* | as(§) =0, [otrédz =0}
as the solution of the elasticity system

T = 2%ie(v) + Atr (e(v))d  in Q,
divr = Plu — uy, in €, (41)
v=>0 on I,
and set n = (curlv)/2, ¢ = —(tr7)/2. Since (Plu — uy) € L*(Q) and Q is a
convex polygon in R?, we have the following a-priori estimate for the solution

of (41)
1o+ [Klue+ [lvllze + lInllue < CllPu — usllog- (42)

I7]
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Now,
[ Piu — unll§ o = / div 7 (PPu — uy) dx = / div (11, 7) (Pu — uy) da
= a(op — 0, I1;7) —I—/ wp, — w)as(Il,T) do -l—/ (pn — p)tr (IL,7) dx
=a(op —0,7) +alop, — o, 7 —7) + / (wp, — w)as(IlpT — 7) dx (43)
+/ (pp, — p)tr (I, 7 — 7) da:+/ (pn, — p)tr (1) dx
=Lh+L+ 1L+ 14+ 5.

It is immediate to deduce from (23),(25) and (42) that

L]+ |I3] + | L] < Ch?( Lo+ [wlie)[|Pyu — upllog-  (44)

To bound I; + I5, we use the defining equations for 7,v,n and ¢ and those for
o, 05, and p, py, to compute

I + 15 = —/ Uh_U) de+/ ph—p)tr(T)dag
:%/ﬂ(ah—o):(Vv—nx)dx—/npx[%tr(ah—a)+(ph_p) Cdz

1
=5 / div (Tlyo — o) (v — PPv) dx — / (n — pyn) as(Tyo — o) d
Q

_/ [ tr ( ah—a)+(ph—p)](§—shg)d$
so that

11| + [T < Ch*( 2)l[Pru = unllog.  (45)

Combining (43),(44) and (45), we obtain (39).
To obtain (40), we let 7 be any element of (W, (div; K))? and 7, € D(K) be
defined by (36) with T' = 7n|sx and we take 7, = 7, such that

Th‘K:?ha Th|K’:0a VKI#K, VKGE,

thus obtaining from the first equation of (12) and the first equation of (16)

1

/(QKTh n(A— M) ds = — 2

/ (0 — op)Thdz + /K(u — uy) div (73) dzx

+ /K(w — wy) as(Tp) dz + f /K(p — pn) tr (Th) d,

18



which can be written as

1 o
[ 7oA = M) ds = % J o= onmnda+ [ (Pru—uy)div(7y) da

+/ w — wp) as(Ty) dz + ’\/ p — pp) tr (Tp) dx.

Owing to the definition of 7, , using (37) and the definition (2) (38) and (39),
we eventually get

Hp?z)\ - /\hHl/q,p,BK S Chz/p( , ) VK € 771

Since p < 2, estimate (40) can be regarded as a superconvergence property
for Ap. In practical computations, we shall demonstrate the superconvergence

of A\, using a different norm more easily computable than (2), as suggested in
1]. O

4 Modeling of the thermal oxidation process in semiconductor
technology

Thermal oxidation is one of the several steps involved in the manufacturing
of integrated circuits. The numerical simulation of this process is aimed at
predicting the final shape of the oxidized structure in order to assess the
electrical and mechanical performance of the semiconductor device. In this
section we present a brief description of the thermal oxidation process and we
give some details about its mathematical and numerical modeling using the
DMH discretization (for a more comprehensive mathematical model of the
thermal oxidation process, we refer to the recent work [22]).

The oxidation process is a complex phenomenon where a layer of oxide (Si0, ),
that is usually employed as an electric insulator, is thermally grown on a silicon
wafer bulk (Si). The surface of the Siis masked by a silicon-nitride (SizNy)
pattern impermeable to the oxidant penetration and is exposed to oxygen or
water vapor at high temperature for a certain oxidation time (generally, 1-2
hours). The oxygen diffuses through the oxide and reacts with the silicon at
the Si-Si0,interface. Since the Si0j has a molar volume 2.2 times greater
than the Si, at each time of the process a volume fraction of the new grown
oxide replaces the silicon that has been consumed, while the remaining volume
fraction pushes the old oxide upward. This constrained volume expansion gives
rise to large stresses and in particular causes the Si0, to undergo a compres-
sion state and the Sito undergo a tension state. Experimental evidence [20,6]
shows that this state of stress can significantly affect both the 0, diffusion in
the pre-existing Si0, layer and also the chemical reaction kinetics between the
0, and the Si. The combination of these effects determines the final shape
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of the Si-Si0,system, that in turn can considerably affect the overall elec-
tric performance of the semiconductor device and its mechanical reliability. A
schematic representation of the thermal oxidation process is shown in Fig.2.

Figure 2. Schematics of the thermal oxidation process in a local oxidation structure
(LOCOS): 3D model (left), 2D reduction (center) at the beginning of the oxidation
and 2D model (left) after process completion.

The mathematical model of the process considers a sequence of quasi-stationary
steps each involving the solution of two groups of PDEs systems over a domain
whose shape changes with time. The two PDE systems are mutually depen-
dent: the diffusion and kinetic reaction coefficients as well as the geometry of
the deformed domain depend on the stress distribution; in turn, the chemi-
cal reaction forces the oxide-silicon interface to move, driving the mechanical
problem. After solving the diffusion-reaction problem, an incremental stress
analysis is performed on the structure to compute the new stress field and the
resulting deformed configuration (see Fig.3). Notice how the data exchanged

Oxidant
Diffusion—Reaction
Pb.
interface -
Coefficients motion Domain
update geometry

Stress Pb. update

in Si, Si0y,Siz Ny

stress field displacements
Final shape

Figure 3. Flux diagram for the thermal oxidation process simulation.

between the sub-blocks in both the coupled systems are stress dependent quan-
tities, so that the quality of their approximation clearly affects the accuracy of
the overall computation. In a standard displacement finite element approach,
fluxes and stresses are typically post-processed quantities that suffer from a
number of limitations such as the failure of the post-processed stresses at sat-
isfying self-equilibrium and interelement traction reciprocity, and the possible
onset of locking problems in the incompressible regime. The DMH approach is
specifically tailored to overcome these limitations with a computational cost
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not severely exceeding the one of standard displacement methods applied to
the solution of the problem at hand.

4.1  Fluid-mechanical model for the thermal oxidation process

There are several models to describe the stress field evolution during the oxi-
dation process, some of which are very advanced. In any case, it is commonly
accepted that different continuum-mechanics models need to be adopted to
describe faithfully the mechanical behavior of each material involved in the
oxidation process. Following the experiments of [6] and [20], the SizNy stripe
and the Sibulk have been modeled in this work as linear isotropic elastic
materials, while a non-Newtonian model is used for the SiO, . Precisely, the
Si0,is represented by an incompressible non-Newtonian fluid with nonlinear
viscosity of Eyring type

_ Tmaw/ac _ (011 - 022)2 2
) =t = |

where pi is the stress-free constant viscosity, 7,4, is a critical stress value and
0. = 2kgT/V,, V. being an activation volume, kg the Boltzmann constant and
T the temperature of the process (isothermal conditions are supposed).

From the above discussion, it turns out that the problem at hand involves
materials with heterogeneous fluid-mechanical properties, leading to a fluid-
structure interaction problem. In particular, the interaction between the Si domain
and the Si0O;-Si3N, domains is handled by a standard Boundary Loading
Method, since it can be checked that the deformations produced by the Si domain
on the Si0, are negligible. The interaction between the Si0, and the SizNs domains
is instead handled by a coupled procedure, with an inner iterative map to solve

for the nonlinear dependence of the oxide viscosity on the normal stresses. No-
tice that this coupling procedure is easily implemented due to the use of the
unified compressible /incompressible formulation of the DMH method, the only
difference being in the numerical values of the Lameé parameters in the two
subdomains.

5 Numerical results

In this section we first present some numerical results concerning the fluid-
mechanical problem and then we validate the DMH formulation on a realistic
simulation of a LOCOS device. Mixed Dirichlet-Neumann boundary condi-
tions will be considered in all the numerical experiments.
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5.1 Fluid-mechanical benchmark problems

The dual mixed-hybrid method has been tested in the case of compressible
elastic problems and incompressible fluid problems. In the first example a
vertical compressive load of 100 Nm~2 is applied to a (1 x 3) m rectangular
plate along the portion = € [1.5,2] of the upper edge. The plate is clamped
along the vertical edges, is stress-free along the bottom edge and is constituted
by two materials with Young modulus E; << E,, with E; = 2-1 x 10*Pa
and Ey = 2 -1 x 10°Pa, respectively. In Fig.4 we show the deformations and
the stresses due to the load when the two materials are vertically stratified.
Looking at the stress distribution, we clearly see that the applied load is much
more consistently transferred from the material on the top to the material on
the bottom when the softer material is situated over the stiffer material (Fig.4,
rightmost column). This latter situation is somewhat similar to the situation
occurring in the oxidation problem, where a structure made of materials with
different stiffness properties is subjected to a force field.

1, 1

IR e - memmemmmmemmemmmmmmm—————————

0.8]

06

-0.09 -008 -0.07 -0.06 -0.05 -0.04 -003 -0.02 -0.01 0  0.01 -009 -008 -0.07 -006 -0.05 -004 -0.03 -002 -001 O

Figure 4. Deformations (here amplified by a factor 100 for graphical purposes) of
a rectangular plate constituted of materials with stiffness E5 >> FE; subject to a
compressive load (top row) and o9 component of the stress (bottom row).

As a second test case, we show the results for a simple fluid-elastic interacting
structure solved using the unified coupled procedure discussed in the previous
section. The domain €2 is the unit square, with the upper half behaving like
a fluid, while the lower half behaving like an elastic solid (with a very low
Young modulus). For a certain time interval a compressive load is applied on
the top edge of the fluid domain, while stress-free boundary conditions and null
displacements are assumed on the vertical and bottom sides, respectively for
all the time duration of the simulation. At a certain time, the load is released
and the elastic solid relaxes recovering its original shape and squeezing out
the fluid, as shown in Fig.5 where some phases of the temporal evolution of
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the phenomenon are displayed.

Figure 5. Temporal evolution of the coupled fluid-elastic interacting system. The
four diagrams must be looked at in clockwise rotation sequence from top left posi-
tion.

Finally, we assess numerically the convergence properties of the DMH formu-
lation solving the Stokes problem for an incompressible fluid squeezed between
two parallel plates moving one toward the other with constant velocity (see
[24] for the analytical solution of the problem). Due to the symmetry of the
problem, the computation has been carried out only on a quarter of the do-
main, that is the dashed-line region in Fig.6. Symmetry boundary conditions
have been enforced on the left and bottom edges as shown in Fig.6. Observe
that in the DMH formulation Neumann boundary conditions are imposed on
the complete stress tensor, unlike in displacement-based formulations, where
the same boundary condition is enforced on the tensor vVu — pd, this latter
procedure being variationally correct but not physically consistent (see e.g.
[19], Sect.10.1.1).

Figure 6. Geometry of the domain and boundary conditions for the Stokes problem.

The computed error curves are in agreement with the theoretical estimates
given is Sect.3. Observe in particular the superconvergence of A\, measured in
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the norm
Aklle, = (X lell Al fraen2) /s An € An

ec&y
(see [1] and [5], Ch.5, p.188). This norm is standard in the error analysis of
hybridized mixed finite element methods and can be regarded as a practically
feasible numerical implementation of the (sharper) norm |[.||;/qp ok used in
the theoretical error analysis.

1

10

10° b

107

10°

p=1

10_ ‘0 0

10 10

Figure 7. Error norms. On the left: [Ju — unllon) (), llphu — Anlle, (O,
[[Phun — unllo,n) (V') On the right: |[o — anll,n) (O, llp — palloe) (V),
[l = wrllo,0) (X).

5.2 Thermal oxidation simulation

We have considered a computational domain that is one half of the local ox-
idation structure shown in Fig.2. The total oxidation time considered in this
simulation is 1500s. The device has semi-length 1.5 my, is padded with an ox-
ide layer initially 0.015 my thick and is patterned with a 0.75 my thick nitride
mask. Material properties have been chosen as in [22]. In Fig.8 the deformed
configuration and the corresponding pressure field are shown at different time
levels. The typical ”bird’s beak” shape of the final oxide configuration is clearly
recognizable. The largest stresses arise as expected on the junction line be-
tween the Si0, and the SizN4 regions and in particular near the rightmost edge
of the SizN4 band.

6 Conclusions and future work

In this paper we have presented and theoretically analyzed a dual-mixed hy-
brid (DMH) formulation capable of treating in a unified framework both com-
pressible and incompressible problems in continuum mechanics. This allows
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Figure 8. Deformed configuration (top, zoom of the area) and pressure field (bottom)
for ¢ = 300, 600, 1500s.

for handling in a simple and efficient manner problems with different mate-
rials using a unique computer code. The DMH approach has been employed
in the computation of the stress field in the simulation of the thermal oxida-
tion process in semiconductor technology. In this application it is necessary to
compute accurately the stress field both in an incompressible fluid (510, ) and
in elastic solids (SizN4,Si). In particular, the SizN,-Si0, domains have been
considered as a unique material with different Lame parameters. The results
show the accuracy and the flexibility of the method.

The future research will consists in implementing several improvements of the
present model. In particular it is planned to:

i) adopt a more realistic solid viscoelastic model for the SizNy ;

ii) account for the monocrystalline structure of the Si by adopting an anisotropic
elastic model. In this respect, the DMH formulation has been recently ex-
tended in [8] to deal with orthotropic materials, which covers the standard
crystalline configurations used in semiconductor device technology.
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