ANALYSIS OF A GEOMETRICAL MULTISCALE MODEL BASED
ON THE COUPLING OF ODE’S AND PDE’S FOR BLOOD FLOW
SIMULATIONS

ALFIO QUARTERONI!T # § AND ALESSANDRO VENEZIANI §

Abstract. In hemodynamics, local phenomena, such as the perturbation of flow pattern in a
specific vascular region, are strictly related to the global features of the whole circulation (see e.g.
[7]). In [16] we have proposed a heterogeneous model where a local, accurate, 3D description of
blood flow by means of the Navier-Stokes equations in a specific artery is coupled with a systemic,
0D, lumped model of the remainder of circulation. This is a geometrical multiscale strategy, which
couples an initial-boundary value problem to be used in a specific vascular region with an initial-
value-problem in the rest of the circulatory system. It has been succesfully adopted to predict the
outcome of a surgical operation (see [2, 3]). However, its interest goes beyond the context of blood
flow simulations, as we point out in the Introduction. In this paper we provide a well posedness
analysis of this multiscale model, by proving a local-in-time existence result based on a fixed-point
technique. Moreover, we investigate the role of matching conditions between the two submodels for
the numerical simulation.
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1. Introduction. In computational fluid dynamics there might be the need of
accurately simulating the flow in a subregion of a complex system, that can be rea-
sonably represented by a hydraulic network. One may think, for instance, to a system
for water supply for which there is the interest of ascertaining the spatial variations
of velocity and pressure only in a specific pipeline or in a reservoir. Another instance,
which has motivated our investigation, is the blood circulatory system. Here the
underlying (low cost) model is based on an analogy with electric circuits and can
predict the time evolution of average physical quantities (flow rate and pressure) in
the different compartments of the overall system (see e.g. [15], [23]). Yet, there is
the interest of carrying out three-dimensional simulations on a sensible region (e.g.
a coronary by-pass, a carotid bifurcation, a stented artery, etc.). In these cases, the
local investigation requires the specification of boundary conditions on the interface
between the region of interest and the remainder of the network. In fact, the signifi-
cance of numerical results is strictly related to the capability of the numerical device
of properly accounting for exchange of information with the global network. Actu-
ally, it is well known that, in the circulatory system, local behavior of blood flow in
a specific region is strictly related to the systemic features of the circulation. For
instance, the presence of a plaque localized in a carotid bifurcation can induce a flow
rate increment in other vessels in order to restore a sufficient oxygenation of the brain,
thus modifying the local flow features (see [1]).

Blood is a complex fluid, which can be described by means of the incompressible
Navier-Stokes equations (possibly accounting for a non Newtonian rheology - see
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[17]). Numerical simulations of the whole circulatory system completely based on
the numerical solution of the Navier-Stokes equations are unaffordable. Actually, a
tremendous amount of morphological data would be required, which typically are not
available, not to mention the computational costs of such investigations which would
be prohibitive. In order to set up numerical tools for the correct simulation of blood
flow, in [7] we have proposed a geometrical multiscale approach. In fact, a hierarchy of
models was introduced, with a different level of accuracy, ranging from the local 3D
accurate Navier-Stokes equations to systems of ordinary differential equations: the
latter are associated to lumped parameter models set up by exploiting the analogy
between hydraulic and electric networks (see e.g. [23]) and account for the systemic
circulation. These different models are then coupled at the numerical level in order
to provide at the same time local details and global information on blood flow. The
same strategy has been succesfully used in [5] for the coupling of a 3D model with a
1D model based on a non-linear hyperbolic system that accounts for the propagation
of pressure waves in the arterial tree.

A heterogeneous model which couples ordinary differential systems for the whole
circulation with the 3D Navier-Stokes equations has been proposed in [16] and suc-
cesfully adopted in a real-life application arising from pediatric surgery (see [2, 3]).

The aim of the present work is to provide a theoretical analysis of this hetero-
geneous model coupling ODE’s and PDE’s, providing a local-in-time existence result
for the solution. The heterogeneous problem will actually be split into subproblems
(the system of ODE’s for the global description and the PDE system based on the
Navier-Stokes equations for the local model). The solution of the original problem will
be regarded as the solution of a suitable fixed point problem, based on the successive
solution of the subproblems. A-priori estimates for the solutions of the individual
subproblems will be stated at first. Then, we will prove that the classical Schauder
fixed point theorem can be applied in order to prove the existence of the solution of
the original problem.

The outline of this paper is as follows. In §2 we address the analysis of the Navier-
Stokes problem, having provided boundary conditions which can be considered as a
generalization of the so-called mean pressure drop problem investigated in [10], as
they arise in bioengineering applications. The well-posedness analysis carried out
for the mean pressure drop problem is therefore generalized to the present case. In
§3 we discuss the basic features of the ordinary differential systems arising in the
systemic modelling. We will address the lumped parameter description of a simple
compliant pipe and then extend the basic concepts to the case of a nonlinear ODE
system accounting for the whole circulation. In §4 we deal with the heterogeneous
model obtained by coupling the local and the systemic submodels. In §5 we address
the well-posedness analysis and prove our main result. We comment on the way the
interface conditions can be split to set up an iterative algorithm for the numerical
solution of the coupled multiscale problem. Finally, in §6 we provide some numerical
results on academic test cases as well as on a case of real life clinical interest.

1.1. Basic Notations. Let Q be a bounded domain in R? (d = 2,3). We
denote by L?(Q) the space of real functions whose square is integrable in 2 and by
(+,-) and || - || the associated inner product and norm, respectively. The corresponding
vector space (L?(Q))% will be denoted by L?(Q). Similarly, we introduce the space
HY(Q) = {v € L*(Q)|Vv € L?(Q)} whose norm is denoted ||-||;. Correspondingly, we
set HY(Q) = (H*(Q2))? and we still denote its norm by || -||;. For functions depending
on space and time, for a given space V of space dependent functions, we define (for
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some T > 0)

T
L*(0,T; V) ={v:(0,T) = V|v is measurable and / [Iv(t)||2dt < oo}
0

. T 9 1/2
with norm [|V]|2 v, = (jo ||v(t)||vdt) and

L2(0,T;V) ={v: (0,T) » V[ sup [[v(t)|lv < oo}
te(0,T)

with norm [[v|| e rv) = SUP¢e(0,T) Iv(®llv-

If ¥ is an open non-empty subset of 9, we denote by H'/?(X) the space of
functions defined on ¥ which are traces of functions in H'(f2). We recall that the
trace operator Lirace : H'(Q) — H/2(99) is surjective and continuous (see [12]).

When considering functions which depend only on time, we define the space:

L*0,T7)={z:(0,T) > R™| sup |z(t)| < oo}
t€(0,T)

endowed with the norm [|z[| e o, r) = supse(o,7) |Z(2)]-

2. The local submodel. Let Q C R® (or R?) be a vascular region where we aim
at providing a detailed flow analysis. For each £ € 2, and at any time ¢ > 0, we denote
by u(€,t) and p(€,t) the blood velocity and pressure, respectively. Moreover, we
assume that blood is an incompressible Newtonian fluid, which is acceptable in many
situations, especially in large and medium-size vessels (see [17]). Correspondingly, we
denote by p the blood density and by v the blood viscosity, which are both assumed
to be constant.

Fic. 2.1. A typical vascular region, where the boundary T'1 represents the upstream section,
while T'; (i =2,3,4) are the downstream sections.

Under the previous assumptions, blood flow can be described by the Navier-Stokes
equations
p%% —vAu+p(u-V)u+Vp=0
(2.1) £et>0,
V-u=0
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which express momentum and mass conservation principles. We are neglecting the
presence of any external force, which is reasonable in our context. For the sake of
simplicity, we normalize p to 1. The previous system has to be provided with initial
condition,

(2.2) u(,0) = uo(§) €9,

and boundary conditions. In this respect, we split 02 into different parts. The
vascular wall will be denoted by T'y4;;- In the present work, we are assuming that the
walls are rigid, so that no-slip boundary condition

(23) ll(g,t) =0 £ € Fwall;t >0

hold. The other parts of 02 are the artificial boundaries which bound the compu-
tational domain. For the sake of clarity, we distinguish the “upstream” or proximal
sections, on the side of the heart, and the “downstream” or distal sections, on the side
of the peripheral vessels. We will suppose in general that there are 7 artificial sections,
denoted by T'; (i = 1,...,7), where we can prescribe different kind of boundary con-
ditions, corresponding to different specific boundary problems (see e.g. [10, 5, 6, 22]).
In the present work, we prescribe, in particular, the condition

(2.4) pn—vVu-n— R;(u-n)n=pn on I';,

where p; = p;(t) is assumed to be a given function of ¢ (independent of x) on each
section, n represents the outward unit vector on every part of the vessel boundary
and R; is a suitable non negative constant. When R; = 0 we recover from (2.4) the
conditions for the Navier-Stokes problem corresponding to the mean pressure drop
problem investigated in [10], and specifically investigated in the context of hemody-
namics in [22]. The physical justification for the case in which R; # 0 is provided in
the sequel (see Fig. 4.1).

Both the mathematical analysis and the numerical treatment of the Navier-Stokes
problem are based on its weak formulation. We define the following bilinear and
trilinear forms:

a:H(Q) xH'(Q) - R s.t.
p) =

(2.52) v(Vv, ch)+2,_ R; [1,(v-n)n- @dy,

a(v,
(2.5b) b:HY(Q) x HY(Q) x H(Q) = R st. b(v,w,p) = ((v-V)w,p),

(2.5¢) 1:QxHQ) 5 R st. (Y, 0)=—,V-p),

where Q = L2(Q). Moreover, we set

(2.5d) sz / n-pdy

for each ¢ € H!(2). Furthermore, we define:

(26) V={peHQ)]| o|

The weak formulation of the problem given by (2.1), (2.2), (2.3), (2.4) reads:

=0}, V'={peV|V-p=0}

wall
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PROBLEM 2.1. Given ug € V* and p; € L*(0,T) fori =1,...,7., find u €
L2(0,T;V) and p € L?(0,T, Q) such that for all t > 0

0
(6—j, <P> Ta(u, @) + b, ) + @) = cltg)  VpeV

Wpu)=0  Vye@

with u|;—¢ = ug. Its solenoidal version, which is more suitable for our analysis (see
[10, 21]) reads:
PROBLEM 2.2. Given ug € V*, find u € L*(0,T;V*) such that for all t > 0

(2.7 (%—?,cp) + a(u, ) + b(u,u, @) = c(p) Yo € V*

with ul—g = up.

2.1. Well-posedness analysis. Let V] be the completion of V* with respect
to the norm of L2(Q). For each f € V] there exists exactly one w € V* satisfying

(2.8) (Vw, Vo) =(f,p) VpeV~

Conversely, for every w € V* there exists at most one f € V} such that (2.8) holds.
In this way, as stated in [9], a one-to-one correspondence can be defined between the
elements f of V# and the functions w belonging to a suitable subspace D(A) of V*.
The Stokes operator A : D(A) — V* is defined setting —Aw = f so that (2.8) is
satisfied. The inverse operator A~! is self-adjoint and has a sequence of eigenfunctions
{ap}, which are orthogonal (see [21]) in V*.

In the sequel, ¢; (i = 1,2,...) will denote generic constants, not necessarily the
same at different places. The inequalities

(2.9) sup [w] < c[Vw)| Aw| /2,
(2.10) VW] < cl|Aw]|

are satisfied for each w € D(A), provided Q is a bounded domain (see [10, 25]).
Furthermore, if we define

7
D = su i R =max R;
P t>§;|pzl, ax R;

the following estimates hold for every w € span{a;,...,ay}:
ﬁ ~ ~
(2.11) Sopi [ Aw-ndy| < cplldwl,
i=1 YL
R ~ ~
(2.12) Z R; / (w-n)n-Awdy| < c,R||Vw|| [|Aw]|.
i=1 L

The former can be found in [10]. To prove (2.12) we start noting that for each
v € H(Q) the identity

(2.13)/ vn-&w:Z/ vn-Aw:/vV-Aw—i—/VU-AW:/VU-AW
o) ‘=0 /T Q Q Q
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holds since Aw is a solenoidal function vanishing on T'yqy.
Indeed, let v € H () satisfy:

—Av=0 inQ
vlr, = Ri(w-n)|r,, i=1,...,7m
vlrwall =0.

From well known results on harmonic extensions we have (see [12]):

n
IVoll <>~ Rillw - llga/2(r) < eaRIVWI,

i=1

thus, (2.12) follows from (2.13).
Now, we can prove the following Proposition.
PROPOSITION 2.1. Let v and R be such that

(2.14) k=v —2Rc,c, > 0.

Then, there is a time interval on which the solution of Problem 2.2 does exist. Further-
more, if we assume that the initial and boundary data are sufficiently small, precisely

_k and  p< 2 VK
4c, 4 /c, \/ﬂclc3 ’

then, the solution of Problem 2.2 exists for all t > 0 and satisfies the inequality:

(2.15) [[Vuo|| <

K
(2.16) IVa@l < "
Finally, there exists an interval (0,T) in which the solution is unique and depends
continuously on the data.

Proof. This Proposition is an extension of a similar result holding for the mean
pressure drop problem (Theorem 6 in [10]). Actually, as we have already pointed out,
the mean pressure drop problem can be recovered as a particular case of Problem 2.2,
when R = (0. We therefore report only the main steps of the proof.

Consider the sequence

N
uy = Z’YkN(t)ak
k=1

which is built by solving equation (2.7) for each ¢ € span{a;,...,ay}. The solution
u is obtained as the weak limit of a subsequence of {uy} in L?(0,T; V*). The outline
of the proof is the following: we firstly obtain some a-priori estimates for {uy} that
are inherited by the limit solution when N — oo, yielding the existence of a solution
locally in time. Then, if the initial data are small enough, we will prove further a-
priori estimates, ensuring the existence of the solution for all ¢ > 0. Finally, we will
prove that locally in time the limit solution is unique and depends continuously on
the data.
Setting ¢ = —Auy in (2.7), we have

N =
Q..|Q‘

IVunlP + vl Auy|” = ((uy - V)uy, Auy) + sz-/ n- Auy

i=1 T



ANALYSIS OF A MULTISCALE BLOOD FLOW MODEL 7

+ ZRi~/1“-(UN -n)n-AuN,
=1 z

< sup un|[IVuy[| |Auy| + espl| Aun |

+ cuR||Vuy || |Auy|]
< vl Vun | Aux | + 272 + X)) Auy?
+ c.coR||Aun])?.

Therefore

d ~ .
(2.17) EHVUNH2 + (£ = 26/ || Vunl]) | Aupy|* < fp2-

Using standard arguments (see [10]), from this inequality we can infer that the
Galerkin approximant uy satisfies the following a-priori estimate:

(2.18) lun|lv < cp

When N — oo, the same inequalitity is satisfied, locally in time, by the limit
solution u. This proves the local existence of a solution.

Furthermore, suppose that assumptions (2.14) and (2.15) hold. Then, there exists
a time interval on which the coefficient of [|Aun]|? is positive. Exploiting (2.10), we
can prove that in the same interval:

K
den/a

The same inequality holds for the limit solution obtained for N — oo. It is then
possible to prove that the sup of the time interval on which (2.16) holds, i.e. the time
instant at which (2.16) becomes an equality, is not finite, yielding the global existence
result.

Consider now the issue of uniqueness and continuous dependence on the data. We
firstly prove that there exists a time interval of continuous dependence on the data,
assuming the uniqueness of the solution. Later on, we will prove that the uniqueness
actually holds. Suppose, therefore, that there exists a time interval where the solution
of Prok()lgem 2.2 is unique. In particular, denote by u‘®) the solution associated to t(h()a
1 2

data p;’ (i = 1,...,7m) and, correspondingly, by u(® the solution associated to D;

(i=1,...,7m). Set:

[[Vun|| <

w=u®—u®, 5 =max|p" - p{”)|
2

By subtraction and some classical estimates (see [10]), we have :

1d
5 Il + VWP + SiR; [ fw - nPay
r;

= —b(u®, w,w) — b(w,u®, w) — b(w,w,w) + [(p{") — pi*)w - ndy
T,

v Ce cr ’ N
< §||VW||2 + - sup [u® lw]|* + §||V11(2)||4||"V||2 + cs||w|[[Vw]|” + co65”.
(2.19)
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Hence:
1d
(2.20) 5 g IWIF + (v = cnollwlD[Vw?

1 1 y
< eu(s sup [u®P + ,/—3||V11(2)||4)||W||2 + codp?,

Since w(0,x) = 0, from this inequality we deduce that there exists 7' > 0 such that:

2.21 < op.
(221) Il < c max, 67

Finally, the uniqueness of the solution can be proven by contradiction. Assume
that there exist two solutions associated to the same data set. We can repeat steps
(2.19), (2.20) with 6p = 0. Then (2.21) implies that the solution is unique, and this
concludes our proof.

O

REMARK 2.1. Since w is a solenoidal function, we have the trace inequality[10]

(see also (2.11)):

| / w - ndvy| < craf|wl|
r;

Together with (2.21), it implies in particular that the flow rates on the boundaries T';
are continuous functions of the pressure data.

3. Lumped parameters models. Modeling the whole circulatory system in
terms of the Navier-Stokes equations as done in the previous Section is not affordable
in practice due to its prohibitive computational cost. In this context, simplified models
are often applied. They are less accurate as they cannot catch local details, however
they can correctly account for systemic phenomena (like pressure pulse propagation
or flow rate distribution at different environments), and have the fascination of being
computationally very cheap.

The earliest and most simple global models considered in the literature are based
on a representation of the circulatory system as a network of “compartments”. The
mathematical description of the problem moves from an analogy with electric circuits.
Actually, in the Sixties electric circuits were physically built as “circulation analog
simulators” (see [23]). On the ground of this analogy, a systemic representation of
the circulation is given by a set of ordinary differential equations. In the multiscale
perspective of the present work, such equations need to be numerically linked to the
Navier-Stokes model set on a specific local region (see e.g. [16]).

In the following subsection we firstly introduce the lumped parameter model of
a very simple compartment given by a compliant cylindrical pipe. This will help to
clarify the physical meaning of the lumped parameters we are dealing with. Then, we
will give a short outline of the lumped description of districts of specific interest (such
as the heart, the heart valves, etc.), that are assembled in a network of compartments.
Finally, we will discuss the most relevant mathematical features of the associated
system of ordinary differential equations in view of the subsequent analysis of the
multiscale model.

3.1. Lumped models for a cylindrical vessel. Let us consider a cylindrical
compliant pipe of length  and radius Ro. Denote by p,, and pg,, the mean pressure



ANALYSIS OF A MULTISCALE BLOOD FLOW MODEL 9

on the upstream and downstream sections, respectively. Moreover, we set
Ful)= [ wndy,  Fu(®=[ u-nd
Tup Taw

the upstream and downstream flow rates, respectively. We denote by F(t) the flow
rate at the mid-point of the pipe (Figure 3.1 left).

Fic. 3.1. Location of the variables of interest upstream, downstream and the middle of a
cylindrical vessel featuring finite length I (left). A lumped T-network is shown; it is equivalent to a
compliant pipe with both the flow rates prescribed on the artificial sections (right).

Suppose that F,,(t) and Fg,(t) are prescribed. Under suitable simplifying as-
sumptions the momentum and mass conservation principles yield the following system
of ordinary differential equations (see e.g. [16])

dy

(3.1) i Ay + b(Fup, Faw) t>0

where y = (Pup, Paw, F)” is the “state vector” (which depends on t),

0 0 -2/C 2F,,/C
A=[ o 0o 2/C . b(Fu,Fu)=| —2Fu/C
1/L -1/L -R/L 0

The parameters R, L and C' depend on the physical and geometrical properties of the
pipe at hand. More precisely (see e.g. [23]):
8vl pl _ 3wR§l

= L= =
Ry’ mRY’ 2Eh

(3.2) R

where o, E and h are the Poisson ratio, the Young modulus and the wall thickness.
Equations (3.1) can be equivalently regarded as the mathematical description of an
electric circuit, which is known as m-network (see Figure 3.1 right).

Note that, in the hydraulic/electric analogy, pressure and flow rate correspond to
the electric voltage and current, respectively; moreover, the resistor R is related to
blood viscosity, the inductor L to the inertia of blood and the capacitor C' to the wall
compliance. More details can be found in [16, 23].

3.2. Network models for the circulatory system. A network model of the
circulatory system can be regarded as the assembly of many elementary bricks such as
the one in Figure 3.1, right. However, a specific description is required for the heart
action of providing the energy necessary to blood for circulation in the whole system.
Heart can be considered as a couple of pumps. In particular, in [20], each ventricle
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can be represented as a compliant vessel whose compliance C(t) changes in time.
Moreover, in order to describe the heart action, in the electric/hydraulic analogy
every valve behaviour is suitably modelled by a diode for the current according to
the value of the applied voltage drop. Precisely, one ventricle is represented by a
simple brick as in Figure 3.2, where two diodes S; and S2 and a compliance C(t) are
represented (see also [15]).

F1G. 3.2. Scheme of a ventricle, represented by a pressure source U(t) and a compliance C(t)
changing in time. The two valves are modelled by two diodes S1 and Sa.

Altogether, the whole circulation can therefore be described by differential system
whose abstract form reads

(3.3) { % = Aly,t)y +r(y,t) t>0
y(0) = yo

where y € R™ is the vector of state variables, A(y,t) € R™*™ and r(y,t) € R™ are
a matrix and a vector whose dependence on y is due to the presence of diodes, while
the dependence on time has to be attributed to the heart ventricles compliances.

Specific instances of systems like the one in (3.3) can be found e.g. in [11, 14]. In
the quoted references, lumped parameters systems featuring respectively 16 and 48
state variables for the description of the whole circulation have been proposed for a
specific investigation of the coronary bed.

4. The geometrical multiscale model. We wish now to represent the whole
system by an electric circuit except on a specific region 2, where blood flow is modelled
by the Navier-Stokes equations.

For the sake of simplicity, the compliance of the vessel wall is neglected, hence
 is constant in time. The mean pressure and the flow rate through each artificial
section I'; of Q (¢ = 1,...,7) are denoted by p; and F;. We will set F = (F});=1,._7,
where F;(t) = [, u-ndy.

Let us assume that the network faces the district Q by capacitors C; and resistors
R; (i = 1,...,m) as shown in Figure 4.1. In particular, we have put in evidence
the representation in terms of a network of the vascular regions in the immediate
neighborhood of the 3D model. We denote these parts of the lumped network the
bridging regions. In this picture, we have three bridging regions corresponding to
the three sections of 2. The Navier-Stokes equations and the lumped network are
actually coupled by means of interface conditions involving the flow rates and the
mean pressure values in the bridging regions. More precisely, denote again by y € R™
the state vector of the circuit at hand. For the sake of notation, we will suppose that
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 RES I/\/\/‘-H \

NS2 2 27

pNS,; R3F3 = p3

ReRE=P,

NS1 11

F1G. 4.1. Scheme of coupling between the whole system and a local district. The lumped repre-
sentation of the three bridging regions at the interfaces with the Navier-Stokes model is highlighted
in the dashed circles. This representation is related to the interface conditions (4.3).

the first 7 state variables y; (i = 1,...,7, T < m) correspond to the interface pressures
pi(t). Due to the specific lumped representation of the bridging regions, the mean
pressures on the Navier-Stokes interfaces are given by p;(t) — R;F;(t) (i = 1,...,7).
Moreover, observe that the fluxes F;(t) are not state variables of the lumped system,
as no time derivatives of F;(t) occur in the mathematical description of the network.

We will assume that the network is modelled by the differential system (3.3). In
particular we set

r(y,t) = ru(y,t) + b(F(t)),

where, ry accounts for the heart action, b involves the variables at the external
terminals in such a way that

b; = C;F; fori=1,...,n
(4.1) { b, =0 otherwise

and C; are suitable constants depending on the capacitors at the interfaces.

The coupled problem reads therefore:

PROBLEM 4.1. Given ug € V* and yo € R™, find u € L*(0,T;V) and y €
L°(0,T) such that for everyt

W Aly.t)y +rnly.t) + bE®)
(4.2) ,
(8—?,90) +a(u, @) +b(u,u, ) = c(p) Vo € V*

with y(0) = yo, u|t—o = ug, where, as stated above, the first m entries of the state
vector'y correspond to the interface pressures, in such a way that the mean pressures
at the interface boundaries T'; are given by:

(4.3) pr;(t) =pi(t) — RiFi(t) = vi(t) — R F3(t) i=1,...,7m



12 A. QUARTERONI, A. VENEZIANI

and, by definition, the entries of the vector F are given by:
(4.4) F,(t):/ u-ndy i=1,...,7m.
T

In (4.2), the bilinear form a(-,-), the trilinear form b(-, -, -), as well as the functional
¢(+) are the same introduced in (2.5a), (2.5b), (2.5¢), (2.5d). Observe that ¢(-) in (4.2)
is a function of the vector y, and, in particular, of its first 7 components.

In Problem 4.1 we match a local 3D model, for a domain of the order of a few
centimeters, with a systemic model, covering a much wider region. The level of detail
provided by the two models is obviously not the same. This difference is evident and
relevant at the interfaces. On one hand, the ODE model considers mean data, namely
p;i(t) and F;(t), as specified in (4.3) and (4.4). On the other hand, the Navier-Stokes
model would require pointwise conditions like (2.4). In Problem 4.1, this difference
is in fact faced by a natural treatment of the boundary conditions, as suggested, in
a similar context, in [10]. In particular, the variational formulation for the Navier-
Stokes problem considered in (4.2) accounts for the interface data (4.3) in a natural
way, which corresponds to force a pointwise relation like (2.4). Besides, (4.4) states
the relation between the mean data of velocity considered by the systemic side and
the pointwise velocity field of the Navier-Stokes equations. In the next Section, we
will see that this strategy ensures the well posedness of the coupled problem. In §5.3,
however, we will return on this issue and in particular on the impact of substituting

(4.3) with (2.4).

5. Well posedness analysis of the multiscale model. In this Section, we
prove a local-in-time existence result for Problem 4.1, by reformulating it as a fixed
point problem. We will prove that the fixed point map 7T is a compact operator map-
ping a bounded subset of a Banach space into itself, to which the classical Schauder
theorem can be applied.

It is worthwhile to observe that a similar fixed-point approach we have adopted
in [16] for the numerical solution of this multiscale problem.

5.1. An auxiliary linear lumped model. In order to define the operator 7T,
we introduce the following ordinary differential system, which is a linear counterpart
of (3.3):

(5.1) { % = A(z,t)y +ru(z,t) + b(F(®) t>0
y(0) = yo

where the vector of fluxes F(t), matrix A(z,t) and vectors rg(z,t) and b(F(t)) are
defined as in (3.3) and z € L>°(0,T) is a given vector function.

Suppose that there exist two constants C'4,Cy > 0 such that
(5.2) ||A(z,t)[2<C, and |ru(z,t)| <Cy Vz € L*(0,T),Vt € (0,T).

Finally, define ¢y = max;(C?), where C; are given in (4.1), so that

(5.3) [bF®) <o) |F®)> V>0
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Classical results (see e.g. [19]) yield the existence and uniqueness of the solution
of the linear system (5.1). Moreover, using the Gronwall Lemma, we obtain:

=
n
GAYOF < (v + e+ Y [IFG) ds | exp2+Cn, W0,
=17
5.2. The main result. For any ¢ > 0 we consider the subset of L>(0,T):
(5.5) B,r={z € L*(0,T):|z| <o}.

Consider Problem 2.1 and a vector z € B, r. Denote by Lys the operator
mapping z(t) into the solution u(x,t) of Problem 2.1:

u= ﬁst.

More precisely, we solve Problem 2.1 with the pressure data provided by the first 7
components of z. Then, we set F(¢) the vector whose entries F;(t) are function of
u(x, t) according to (4.4) and solve the linear ordinary differential system (5.1). In
this way, we implicitly define the operator £y g, mapping u(x,t) into y(t),

y = LneTU
and therefore a composite operator:
T:£NET-£N5360,T—>LOO(O,T), Z—)}’:TZ.

At this stage, we can easily see that if y is a fixed point of T, i.e. y = Ty, then, the
couple (y,u = Lygy) is a solution of Problem 4.1. We are therfore left to prove that
T has a fixed point.

PROPOSITION 5.1. Suppose that the initial data yo and Vug are small enough,
and, in particular, that:

(5.6) Yol <o IVuol| < o1.

where o and o1 are chosen in such a way that Problem 2.2 is well posed as stated in
Proposition 2.1. Moreover, suppose that (5.2) and (2.14) hold. Consequently, there
ezists T 0 < T < T ) such that T is a compact operator mapping Bg,f into itself.
Then, T admits at least one fixed point in BJ,T-

Proof. Let z be a vector in B, 7, and define y = Tz. Note that from (5.4)
y € L*(0,T). Let us prove that there exists a time interval Z = (0,7) such that
y € Ba,i“ for t € Z. In fact, this proves that 7 maps Baj’ into itself. According to
the notation of §2, set § = sup,;» E?:l |pi(t)| where as usual p; are the first @ entries

of z. Since Y1, |pi(t)|> < |2(t)[? for every t, it follows that < . Then, according
to Proposition 2.1, there exists a unique solution u of Problem 2.2 in a time interval
(0,T) such that

(5.7) IVu(t)l| < o1Vt € (0,T).

Furthermore, consider the system (3.3) with F;(t) as in (4.4). If ¢ is any function
of V* and I' any subset of 012, the inequality

(5.8)

/ w-ndv‘ < Vel
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holds for a constant ¢; whose value depends on the Poincaré inequality. Then, owing
o (5.7) and (5.8), b(F(t)) in (5.3) belongs to L?(0,T), whence the Cauchy problem

(5.1) is well posed in (0,7). Denote by y its unique solution. In particular, since
|E3(t)] < cs]|Vu(?)]|, from (5.4) it follows that

(5.9) ly(t)]* < (lyol2 +C2t+ ﬁcocg/o ||Vu(s)||2ds) exp((2 + C,)t).

Under assumption (5.6) it is possible to verify that there exists a positive 7' such that
the following inequality

t
6100 Iyl + Cht+med [ [Vu(s)|Pds < o” exp(—(2+ C)1
0

holds for all 0 < ¢t < T. Indeed T corresponds to the intersection point between the
monotonically increasing curve |yo|? + C2t +nic,c? fg [[Vu(s)||?ds, and the monoton-
ically decreasing one o2 exp(—(2 + C,)t) (see Figure 5.1). Thus, thanks to (5.9) we

| Yol?

FiG. 5.1. Intersection between the curves |yo|2 + CZ4t + ficoc? fo [|Vu(s)||?ds (solid line) and
02 exp(—(2 + Ca)t) (dash-dotted line).

have

(5.11) ly@®)| <o

for each t € (0,T). Therefore, in (0,7) T maps B, 7 into itself.

Moreover, T = Lygr - Lys is continuous. Indeed, this follows from the continuity
of the two maps Lys and Lyg,; Lys is continuous as proven in (2.21), while the
continuity of Lyzr is an immediate consequence of the continuity of b(-) defined in
(4.1) and the fact that the ordinary differential system at hand (5.1) is linear.

Having proven the continuity of 7, we now need to prove its compactness. Since
the set B, 18 bounded by construction, we need simply to prove the compactness of
the range of B 7 according to 7. We have already verified that this set is bounded.
Moreover, from (5.1) we have for all ¢t € Z:

‘ = |A(z,t)y +ru(z,t) + b(F)| < Cac+Cy +Coy =M



ANALYSIS OF A MULTISCALE BLOOD FLOW MODEL 15

where the constant M does not depend on t. We can therefore conclude that the image
of a bounded set in L*°(0,T") according to the map 7 is bounded and equicontinuous.
Thanks to the Ascoli-Arzeld Theorem,[26] this means that the image of a bounded
set according to T is compact. Since 7T is continuous, we conclude that 7T is compact.

The (local-in-time) existence of the solution of the multiscale Problem 4.1 follows
from the Schauder fixed point principle ([26]).
a

It is worthwhile to point out that, if (u,y) satisfies Problem 4.1, then there
exists a unique function p € L2(0,7; L?()) such that the couple (u,p) is solution
of the Navier-Stokes submodel. Indeed, the map £, : V — R such that £,(p) =
%(u, ) + a(u, ) + b(u,u, ¢) belongs to V' and vanishes on V*. Therefore, by well
known results (see e.g.[8]) there exists a function p € L?(Q) (which is unique up to an
additive constant), such that £,(¢) = (p, V) for all ¢ € V. Thanks to conditions
(2.4), p is the unique function such that (u,p) solves the Navier-Stokes problem.

REMARK 5.1. The initial bounds assumed by hypothesis in (5.6) actually hold in
T, in the sense that:

(5.12) ly(®)| <o and  [[Vu(®)|| <o

for each t € (O,T). This is an immediate consequence of the estimates found in
proving Propositions 2.1 and 5.1.

REMARK 5.2. In §3 we have pointed out that systemic models can be obtained by
considering the circulation as a set of regions connected one to the others. Starting
from a 3D description of blood flow in each region (based on the Navier-Stokes equa-
tions), we obtain a simplified mathematical description carrying out a space average
of the basic equations of mass and momentum conservation. The actual values of
the parameters depend on the geometrical and physical features of the compartment at
hand (see (3.2)). As an example, in the case of a compliant straight pipe, the value
of the resistance parameter R is a function of the blood viscosity v, the radius of the
pipe Ry and the length of the compartment [.

In the multiscale model, interface conditions (4.8) involve the parameters of the
lumped network. In particular, conditions (4.3) depend on the resistence parameters
R; featuring the bridging regions interposed between the local model and the remainder
of the circulation. In this context, assumption (2.14) can be regarded as a constraint
on geometry of the bridging regions. In particular, suppose that these regions are
cylindrical vessels. Owing to (3.2), (2.14) reads 16lc,c, < wR}. In fact, the assump-
tion (2.14) can be reinterpreted as a constraint on the length l of the bridging region
which must be sufficiently small. In other words, a suitable lumped representation,
where the bridging districts have been suitably chosen, can always satisfy (2.14).

5.3. Different splittings of the coupled problem. In the proof of Proposi-
tion 5.1 we have analysed the coupled problem by means of a splitting of the multiscale
problem into a local Navier-Stokes problem and a global ordinary differential system.
In this context, at the first step of the splitting, the interface conditions (4.3) have
played the role of boundary conditions for the Navier-Stokes problem. On the other
hand, the interface conditions (4.4) has been accounted for in the second step through
the forcing terms of the lumped parameters system.

As pointed out in §4, there is a difference between the data accounted for at the
interfaces of the two models. In the perspective of the splitting, we are now in position
of specifying how this difference is faced. Indeed, (4.3) is not enough as boundary
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condition for a 3D Navier-Stokes problem, since it prescribes average data on the
interfaces, while three conditions would be required pointwise ([21]). However, the
selected variational formulation introduced in Problem 2.1 and 4.1 corresponds to the
natural treatment of defective conditions firstly introduced for the mean pressure drop
problem in [10].

More precisely, the weak formulation (4.2) embodies condition (2.4) as natural
condition. In the special case of a cylindrical domain with boundary sections orthog-
onal to the vessel axis, condition (2.4) does actually reduce to (4.3), as the viscous
forces ¥Vu - n vanish on T';. Although the latter circumstance does not occur in
domains of general shape, nonetheless the extra-conditions stemming from (2.4) with
respect to (4.3) are satisfied in a weak sense and therefore yield mild perturbation on
the associate solution.

The role of the interface conditions in the splitting procedure is in fact naturally
driven by the specific topology of the network at the interfaces. In our case, the
interface flow rates are not state variables of the lumped system, and, therefore, they
are well suited to play the role of a forcing term for the ordinary differential system.
However, depending on the choice of the bridging regions, the matching between the
network and the Navier Stokes system could be pursued, for instance, by interchanging
the role of flux and pressure at the interfaces. When splitting the coupled problem,

F1G. 5.2. Scheme of coupling between the whole system and a local district where the bridging
regions are given by inductors.

we should suppose that the flow rates are provided to the Navier-Stokes system by
the network, which in turn receives pressure data. For instance, in the network
configuration of Fig. 5.2, the interface pressure is not a state variable of the lumped
system, so it is a good candidate for being a forcing term of the ordinary differential
system, provided by the Navier-Stokes solution. On the other hand, the interface flow
rates, which in the electric analogy correspond to the current at the interfaces and are
state variables for the system, become boundary data for the Navier-Stokes problem.
In a way similar to the (generalized) mean pressure problem (conditions (4.3)), the
prescription of boundary fluxes is not enough to make the Navier-Stokes problem
well posed. The defective data still need to be suitably completed. A theoretical
analysis of this problem has been carried out in [10], while a reformulation of this
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problem that is more suitable for the numerical approximations is provided in [6]. In
the perspective of the present work, the results in Proposition 5.1 can be extended
to this case as well. Actually, a fixed point approach can be adopted in the proof, in
a completely similar way to the one adopted here, starting from the well-posedness
analysis of the individual submodels.

Downstream bridging region

Lumped parameters model

Navier-Stokes

model
77777777777 R7 L4

Rs S4 Rs L2 R4 S2 RRS3 Rs Rs Ls
— WA WA AP AW A

T Qo

Upstream bridging region

Fi1G. 5.3. Representation of the multiscale test case.

6. A numerical test case. In this Section, we illustrate some numerical results
on a test case based on the Womersley solution for the Navier-Stokes equations (see
[24]).

Consider a flow between two infinite planes where a periodic-in-time pressure
gradient is prescribed. Let the two planes be at distance d in the frame of reference
(z1,22)- In particular, if the pressure gradient is given by:

Vp = Asin(wt),
the flow field can be analytically determined, providing in 2D the analog of the Wom-

ersley solution, that has been obtained for a 3D cylindrical domain (see [24, 17]). In
particular, the transversal velocity us is null, while the axial velocity wu; is:

(61) u; = Z Y2k+1 sin M.’L@
k=0 d
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F1G. 5.4. Pressure drop of the multiscale simulation applied to the 2D region.

2

where, setting § = R

i = Wfiuﬂ) (i2ﬂ sin{wt) + we 1Pt _ cos(wt))

Observe that (like for the Poiseuille flow) the non-linear term in the Navier-Stokes
equations vanishes, independently of A and w, since, due to the particular morphol-
ogy and the boundary data independent of x5, the velocity field is orthogonal to its
gradient. Therefore, for more complex periodic pressure differences, the analytical
solution can be determined by expanding the pressure drop in a Fourier series, and
superimposing the contribution of each term accordingly.

The variational strategy illustrated above has been succesfully adopted in [22] for
computing the Womersley solution (6.1) on a couple of finite length of planes, that
means a 2D rectangular pipe, featuring an upstream and a downstream section. In
the multiscale perspective, we have coupled such 2D rectangular pipe with a lumped
parameter model, given in Fig. 5.3. The pressure difference applied to the 2D region
is periodic (see Fig. 5.4), so we can compute analytically the local flow Womersley
solution. In Tab 1 we illustrate the L2(f2) errors at different instants of the heart
beat.

These numerical results confirm the correctness of our approach and the well
posedness of the multiscale model stated in the present work.

Beyond this academic test case, numerical results obtained in more realistic con-
texts, still based on the approach of the present work, can be found in [16] and
in [2, 3, 4]. In these references the adoption of geometrical multiscale models has
revealed very promising for analysing, by means of numerical simulations, the dy-
namics of flow patterns in morphologically complex vascular districts in the context
of pediatric surgery. The goal was to identify some “optimal” design for surgical
interventions. Fig. 5.5 (taken from [4], courtesy of the authors) illustrates some nu-
merical results obtained with the geometrical multiscale approach of the present work
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Fi1G. 5.5. Simulation of a complez vascular districts (Total Cavo-Pulmonary Connections):
velocity fields at different instants of the heart beat. These are the 3D results of a multiscale simu-
lations, allowing a realistic boundary data prescription. See [4] for more details.
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TABLE 6.1
Relative errors in the Womersley test case during a heart beat. The heart beat duration is fized
to 0.8 s.

t ||uWomersley - ucomputedH
Tbeat HuWomersleyH
0.125 6.0 x10~ %
0.250 2.9 x10—6
0.375 2.4 x10~5
0.500 1.4 x10~4
0.625 1.1 x10~6
0.750 1.7 x10~6
0.875 1.8 x10~6
1.000 2.5 x10—6

for the ascending aorta region after a surgical intervention (the so-called TCPC, Total
Cavo-Pulmonary Connection). Thanks to the multiscale approach, it has been possi-
ble to compute physiological velocity profiles and secondary flow patterns which were
not captured in previous simulations, based on the prescription of incorrect (even if
realistic) essential boundary velocity data.
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