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Abstract

This work proposes and analyzes an anisotropic sparse grid stochastic
collocation method for solving elliptic partial differential equations with
random coefficients and forcing terms (input data of the model). The
method consists of a Galerkin approximation in the space variables and
a collocation, in probability space, on sparse tensor product grids utiliz-
ing either Clenshaw-Curtis or Gaussian knots. Even in the presence of
nonlinearities, the collocation approach leads to the solution of uncoupled
deterministic problems, just as in the Monte Carlo method. This work
includes a priori and a posteriori procedures to adapt the anisotropy of
the sparse grids to each given problem. These procedures seem to be very
effective for the problems under study. The proposed method combines
the advantages of isotropic sparse collocation with those of anisotropic full
tensor product collocation: the first approach is effective for problems de-
pending on random variables which weigh approximately equally in the
solution, while the benefits of the latter approach become apparent when
solving highly anisotropic problems depending on a relatively small num-
ber of random variables, as in the case where input random variables are
Karhunen-Loève truncations of “smooth” random fields. This work also
provides a rigorous convergence analysis of the fully discrete problem and
demonstrates: (sub)-exponential convergence in the asymptotic regime and
algebraic convergence in the pre-asymptotic regime, with respect to the to-
tal number of collocation points. Numerical examples illustrate the theo-
retical results and are used to compare this approach with several others,
including the standard Monte Carlo. In particular, for moderately large
dimensional problems, the sparse grid approach with a properly chosen
anisotropy seems to be very efficient and superior to all examined methods.

Key words: Collocation techniques, PDEs with random data, differential
equations, finite elements, uncertainty quantification, anisotropic sparse
grids, Smolyak algorithm, multivariate polynomial interpolation.

1



Introduction

Stochastic formulations provide a natural way to include uncertainty quantifi-
cation in practical applications. Uncertainty usually appears through in the
input data of the problem, such as model coefficients, forcing terms, boundary
conditions, geometry, etc. See for instance [1, 25] and the references therein.

In this work we focus on the solution of elliptic partial differential equations
(PDEs) with random coefficients and forcing terms (input data of the model),
and especially address the situation where the input data are assumed to depend
on a moderately large number of random variables.

The method proposed here, namely an anisotropic Sparse Grid Stochatic
Collocation, extends the isotropic method analyzed in [25], and consists of a
Galerkin approximation in the space variables and a collocation, in probability
space, on sparse tensor product grids utilizing either Clenshaw-Curtis or Gaus-
sian knots. As a consequence of the collocation approach our technique naturally
lead to the solution of uncoupled deterministic problems, just as in the Monte
Carlo method.

The work [25] revealed that the isotropic sparse collocation algorithm is very
effective for problems whose input data depend on a moderate number of random
variables, which “weigh equally” in the solution. For such isotropic situations
the displayed convergence is faster than standard collocation techniques built
upon full tensor product spaces. On the other hand, the convergence rate of
the isotropic sparse collocation algorithm [25] deteriorates for highly anisotropic
problems, such as those appearing when the input random variables come e.g.
from Karhunen-Loève -type truncations of “smooth” random fields. In such
cases, a full anisotropic tensor product approximation may still be more effec-
tive for a small or modest number of random variables. However, if the number
of random variables is large, the construction of the full tensor product spaces
becomes infeasible, since the dimension of the approximating space grows expo-
nentially fast with respect to the number of random variables in the problem.

The main contribution of this work is to propose and analyze the use of
anisotropic sparse tensor product spaces constructed from a weighted Smolyak
interpolant with suitable abscissas. This approach is particularly attractive in
the case of truncated expansions of random fields, since the anisotropy can be
tuned to the decay properties of the expansion. We will present a priori and a
posteriori procedures for choosing the anisotropy of the sparse grids which are
extremely effective for the problems under study.

This work provides a rigorous convergence analysis of the fully discrete prob-
lem and demonstrates: (sub)-exponential convergence in the asymptotic regime
and algebraic convergence in the pre-asymptotic regime, with respect to the to-
tal number of collocation points. Numerical examples illustrate the theoretical
results and are used to compare this approach with several others, including the
standard Monte Carlo. In particular, for moderately large dimensional prob-
lems, the sparse grid approach with properly chosen anisotropy seems to be very
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efficient and superior to all examined methods.
The Monte Carlo method described in [11] is the classical and most used

technique for approximating expected values of quantities of interest depending
on the solution of a partial differential equations with random inputs. The algo-
rithm approximates the desired expectation by a sample average of independent
identically distributed (iid) realizations. When solving partial differential equa-
tions with random inputs, this method implies the solution on one deterministic
differential equation for each realization of the input parameters. This makes
the method simple to implement, allows for maximal code reusability and it is
straightforward to parallelize. Its numerical error is approximately O(1/

√
M),

where M is the number of realizations. The advantage of utilizing this approach
is that the rate does not deteriorate with respect to the number of random vari-
ables in the problem, making the method very attractive for problems with large
dimensional random inputs. On the other hand, when solving large-scale appli-
cations, the exponent 1/2 in the rate of convergence generates a tremendous
amount of computational work required to achieve accurate solutions. Other
ensemble based methods like Quasi Monte Carlo, Latin Hypercube Sampling,
etc. (see e.g. [24, 19] and references therein), have been devised to produce
faster convergence, O(log(M)r/M), where the coefficient r > 0 becomes larger
with the dimension of the random input. We explore alternative methods that
obtain faster convergence rates, exploiting the high regularity that the solution
of elliptic PDEs may have with respect to the random input, while preserving
the implementation advantages of ensemble-based methods.

Another possible substitute for the Monte Carlo method is the so called
Spectral Galerkin method, see e.g. [18]. It employs standard approximations in
space (finite elements, finite volumes, spectral or h-p finite elements, etc. and
polynomial approximation in the probability domain, either by full polynomial
spaces [33, 23, 17], tensor product polynomial spaces [2, 12, 28] or piecewise
polynomial spaces [2, 20]. This family of methods exploit the regularity of the
solution to acquire faster convergence rates. However, in general, this technique
requires solving a system of equations that couples all degrees of freedom in the
approximation to the stochastic solution.

A new numerical technique, which has gained much attention recently by the
computational community, see [1, 13, 25, 22, 32], is Stochastic Collocation, which
can be based either on full or sparse tensor product approximation spaces. As
shown in [1], Stochastic Collocation essentially preserves the fast convergence of
the Spectral Galerkin method, even coinciding in particular cases, while main-
taining an ensemble-based approach, just as Monte Carlo. Hence, Stochastic
collocation seems to be an ideal method for computing realistic statistics from
solutions of PDEs with random input data, but the challenge comes when solving
problems with a relatively large number of input random variables. Therefore,
our goal is investigating variants of this procedure to attain highly accurate solu-
tions while reducing the curse of dimensionality. To extend the applicability of
the collocation method to cases with large dimensional random inputs, several
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sparse-approximation-based methods have been recently explored [32, 25, 13].
Aligned with this research effort, the main contribution of this work is to pro-
pose and analyze a novel anisotropic stochastic collocation method that is based
on a weighted version of the Smolyak algorithm. As our numerical and theo-
retical results indicate, this method seems very promising and worth exploring
further, both from the implementation and the theoretical point of view.

The outline of the paper is the following: in Section 1 we introduce the
mathematical problem and the main notation used throughout. There we also
state assumptions on the parametrization of the random inputs, which is useful
when later transforming the original stochastic problem into a deterministic
parametric one, and on the problem solution’s regularity, which is used to later
prove the error estimates in Section 5.

In Section 2 we focus on applications to linear elliptic PDEs with random
input data. The main idea here is to verify the assumptions from Section 1 in a
particular setting, showing that they are justified and that one can extend them
to a variety of problems.

In Section 3 we introduce the approximation spaces and provide an overview
of various collocation techniques. We also describe the anisotropic sparse approx-
imation method to be considered as well as the different interpolation techniques
to be employed. Next, in Section 4, we provide a priori and a posteriori pro-
cedures for tuning the anisotropy of our sparse grid method to the problem at
hand. In Section 5 we provide a detailed error analysis of the method, includ-
ing cases where the sparse interpolant uses both Clenshaw-Curtis and Gaussian
abscissas. This analysis relies on the regularity of the solution and exploits the
behavior of sparse approximations from the anisotropic Smolyak method. Fi-
nally, in Section 6 we present numerical results, including a comparison with the
Monte Carlo method, showing the efficiency of the proposed method.

1 Problem setting

Similarly to [25] we begin by focusing our attention on an elliptic operator L,
linear or nonlinear, on a domain D ⊂ Rd, which depends on some coefficients
a(ω, x) with x ∈ D, ω ∈ Ω and (Ω,F , P ) a complete probability space. Here Ω
is the set of outcomes, F ⊂ 2Ω is the σ-algebra of events and P : F → [0, 1] is a
probability measure. Analogously, the forcing term f = f(ω, x) can be assumed
random as well.

Consider the stochastic elliptic boundary value problem: find a random func-
tion, u : Ω × D → R, such that P -almost everywhere in Ω, or in other words
almost surely (a.s.), the following equation holds:

L(a)(u) = f in D (1.1)

equipped with suitable boundary conditions. Before introducing some assump-
tions we denote by W (D) a Banach space of functions v : D → R and define,
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for q ∈ [1,∞], the stochastic Banach spaces

Lq
P (Ω; W (D)) :=

{
v : Ω → W (D) | v is strongly measurable

and
∫

Ω
‖v(ω, ·)‖q

W (D)dP (ω) < +∞
}

and

L∞P (Ω; W (D)) :=
{

v : Ω → W (D) | v is strongly measurable

and P − ess sup
ω∈Ω

‖v(ω, ·)‖2
W (D) < +∞

}
.

Of particular interest is the space L2
P (Ω; W (D)), consisting of Banach valued

functions that have finite second moments.
We will now make the following assumptions:

A1) the solution to (1.1) has realizations in the Banach space W (D), i.e.
u(·, ω) ∈ W (D) almost surely and ∀ω ∈ Ω

‖u(·, ω)‖W (D) ≤ C‖f(·, ω)‖W ∗(D)

where we denote W ∗(D) to be the dual space of W (D), and C is a constant
independent of the realization ω ∈ Ω.

A2) the forcing term f ∈ L2
P (Ω; W ∗(D)) is such that the solution u is unique

and bounded in L2
P (Ω; W (D)).

Here we give two example problems that are posed in this setting:

Example 1.1 The linear problem{
−∇ · (a(ω, ·)∇u(ω, ·)) = f(ω, ·) in Ω×D,

u(ω, ·) = 0 on Ω× ∂D,
(1.2)

with a(ω, ·) uniformly bounded and coercive, i.e. there exists amin, amax ∈ (0,+∞)
such that P (ω ∈ Ω : a(ω, x) ∈ [amin, amax]∀x ∈ D) = 1 and f(ω, ·) square inte-
grable with respect to P , satisfies assumptions A1 and A2 with W (D) = H1

0 (D)
(see [1]).

Example 1.2 Similarly, for k ∈ N+, the nonlinear problem{
−∇ · (a(ω, ·)∇u(ω, ·)) + u(ω, ·)|u(ω, ·)|k = f(ω, ·) in Ω×D,

u(ω, ·) = 0 on Ω× ∂D,
(1.3)

with a(ω, ·) uniformly bounded and coercive and f(ω, ·) square integrable with
respect to P , satisfies assumptions A1 and A2 with W (D) = H1

0 (D) ∩ Lk+2(D).
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1.1 On Finite Dimensional Noise

In some applications, the coefficient a and the forcing term f appearing in (1.1)
can be described by a random vector [Y1, . . . , YN ] : Ω → RN , as in the following
examples. In such cases, we will emphasize such dependence by writing aN and
fN .

Example 1.3 (Piecewise constant random fields) Let us consider again prob-
lem (1.2) where the physical domain D is the union of non-overlapping subdo-
mains Di, i = 1, . . . , N . We consider a diffusion coefficient that is piecewise
constant and random on each subdomain, i.e.

aN (ω, x) = amin +
N∑

i=1

σi Yi(ω)1Di(x).

Here 1Di is the indicator function of the set Di, σi, amin are positive constants,
and the random variables Yi are nonnegative with unit variance.

In other applications the coefficients and forcing terms in (1.1) may have other
type of spatial variation that is amenable to describe by an expansion. Depend-
ing on the decay of such expansion and the desired accuracy in our computations
we may retain just the first N terms.

Example 1.4 (Karhunen-Loève expansion) We recall that any second or-
der random field g(ω, x), with continuous covariance function cov[g] : D ×D →
R, can be represented as an infinite sum of random variables, by means, for in-
stance, of a Karhunen-Loève expansion [21]. To this end, introduce the compact
and self-adjoint operator Tg : L2(D) → L2(D), which is defined by

Tgv(·) :=
∫

D
cov[g](x, ·) v(x) dx ∀v ∈ L2(D).

Then, consider the sequence of non-negative decreasing eigenvalues of Tg, {λi}∞i=1,
and the corresponding sequence of orthonormal eigenfunctions, {bi}∞i=1, satisfy-
ing

Tgbi = λibi, (bi, bj)L2(D) = δij for i, j ∈ N+.

In addition, define mutually uncorrelated real random variables

Yi(ω) :=
1√
λi

∫
D

(g(ω, x)− E[g](x)) bi(x)dx, i = 1, . . .

with zero mean and unit variance, i.e. E[Yi] = 0 and E[YiYj ] = δij for i, j ∈ N+.
The truncated Karhunen-Loève expansion gN , of the stochastic function g, is
defined by

gN (ω, x) := E[g](x) +
N∑

i=1

√
λi bi(x) Yi(ω) ∀N ∈ N+.
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Then by Mercer’s theorem (cf [27, p. 245]), it follows that

lim
N→∞

{
sup
D

E
[
(g − gN )2

]}
= lim

N→∞

{
sup
D

( ∞∑
i=N+1

λib
2
i

)}
= 0.

Observe that the N random variables in (1.4), describing the random data, are
then weighted differently due to the decay of the eigen-pairs of the Karhunen-
Loève expansion. The decay of eigenvalues and eigenvectors has been investigated
e.g. in the works [12] and [29].

The above examples motivate us to consider problems whose coefficients are
described by finitely many random variables. Thus, we will seek a random field
uN : Ω×D → R, such that a.s., the following equation holds:

L(aN )(uN ) = fN in D, (1.4)

We assume that equation (1.4) admits a unique solution uN ∈ L2
P (Ω; W (D)).

We then have, by the Doob–Dynkin’s lemma (cf. [26]), that the solution uN of
the stochastic elliptic boundary value problem (1.4) can be described by uN =
uN (ω, x) = uN (Y1(ω), . . . , YN (ω), x). We underline that the coefficients aN and
fN in (1.4) may be an exact representation of the input data as in Example 1.3
or a suitable truncation of the input data as in Example 1.4. In the latter case,
the solution uN will also be an approximation of the exact solution u in (1.1)
and the truncation error u − uN has to be properly estimated, see for instance
[25, Section 4.2].

Remark 1.5 (Nonlinear coefficients) In certain cases, one may need to en-
sure qualitative properties on the coefficients aN and fN and may be worth while
to describe them as nonlinear functions of Y . For instance, in Example 1.1 one is
required to enforce positiveness on the coefficient aN (ω, x), say aN (ω, x) ≥ amin

for all x ∈ D, a.s. in Ω. Then a better choice is to expand log(aN − amin).
The following standard transformation guarantees that the diffusivity coefficient
is bounded away from zero almost surely

log(aN − amin)(ω, x) = b0(x) +
∑

1≤n≤N

√
λnbn(x)Yn(ω), (1.5)

i.e. one performs a Karhunen-Loève expansion for log(aN − amin), assuming
that aN > amin almost surely. On the other hand, the right hand side of (1.4)
can be represented as a truncated Karhunen-Loève expansion

fN (ω, x) = c0(x) +
∑

1≤n≤N

√
µncn(x)Yn(ω).

Remark 1.6 It is usual to have fN and aN independent, because the forcing
terms and the parameters in the operator L are seldom related. In such a situa-
tion we have aN (Y (ω), x) = aN (Ya(ω), x) and fN (Y (ω), x) = fN (Yf (ω), x), with
Y = [Ya, Yf ] and the vectors Ya, Yf are independent.
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For this work we denote Γn ≡ Yn(Ω) the image of Yn, where we assume Yn(ω)
to be bounded. Without loss of generality we can assume Γn = [−1, 1]. We also
let ΓN =

∏N
n=1 Γn and assume that the random variables [Y1, Y2, . . . , Yn] have a

joint probability density function ρ : ΓN → R+, with ρ ∈ L∞(ΓN ). Thus, the
goal is to approximate the function uN = uN (y, x), for any y ∈ ΓN and x ∈ D.
(see [1], [2])

Remark 1.7 (Unbounded Random Variables) By using a similar approach
to the work [1] we can easily deal with unbounded random variables, such as
Gaussian or exponential ones. For the sake of simplicity in the presentation we
focus our study on bounded random variables only.

1.2 Regularity

Before discussing various collocation techniques and going through the con-
vergence analysis of such methods, we need to state some regularity assump-
tions on the data of the problem and consequent regularity results for the ex-
act solution uN . We will perform a one-dimensional analysis in each direction
yn, n = 1, . . . , N . For this, we introduce the following notation: Γ∗n =

∏N
j=1

j 6=n
Γj ,

y∗n will denote an arbitrary element of Γ∗n. We require the solution to problem
(1.1) to satisfy the following estimate:

Assumption 1.8 For each yn ∈ Γn, there exists τn > 0 such that the function
uN (yn,y∗n, x) as a function of yn, uN : Γn → C0(Γ∗n;W (D)) admits an analytic
extension u(z,y∗n, x), z ∈ C, in the region of the complex plane

Σ(Γn; τn) ≡ {z ∈ C, dist(z,Γn) ≤ τn}. (1.6)

Moreover, ∀z ∈ Σ(Γn; τn),

‖uN (z)‖C0(Γ∗n;W (D)) ≤ λ (1.7)

with λ a constant independent of n.

The previous assumption should be verified for each particular application.
In particular, this has implications on the allowed regularity of the input data,
e.g. coefficients, loads, etc., with respect to yn, n = 1, 2, . . . , N , of the PDE
under study. In the next Section we recall some theoretical results, which were
proved in [1, Section 3], for the linear problem introduced in Example 1.1.

2 Applications to linear elliptic PDEs with random
input data

In this Section we give more details concerning the linear problem described
in Example 1.1. Problem (1.2) can be written in a weak form as: find u ∈
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L2
P (Ω; H1

0 (D)) such that∫
D

E[a∇u · ∇v] dx =
∫

D
E[fv] dx ∀ v ∈ L2

P (Ω; H1
0 (D)). (2.1)

A straightforward application of the Lax-Milgram theorem allows one to state
the well posedness of problem (2.1). Moreover, the following a priori estimates
hold

‖u‖H1
0 (D) ≤

CP

amin
‖f(ω, ·)‖L2(D) a.s. (2.2)

and

‖u‖L2
P (Ω;H1

0 (D)) ≤
CP

amin

(∫
D

E[f2] dx

)1/2

, (2.3)

where CP denotes the constant appearing in the Poincaré inequality:

‖w‖L2(D) ≤ CP ‖∇w‖L2(D) ∀w ∈ H1
0 (D).

Once we have the input random fields described by a finite set of random
variables, i.e. a(ω, x) = aN (Y1(ω), . . . , YN (ω), x), and similarly for f(ω, x), the
”finite dimensional” version of the stochastic variational formulation (2.1) has
a “deterministic” equivalent which is the following: find uN ∈ L2

ρ(Γ
N ;H1

0 (D))
such that∫

ΓN

ρ (aN∇uN ,∇v)L2(D) dy =
∫

ΓN

ρ (fN , v)L2(D) dy, ∀ v ∈ L2
ρ(Γ

N ;H1
0 (D)).

(2.4)
Observe that in this work the gradient notation, ∇, always means differentiation
with respect to x ∈ D only, unless otherwise stated. The stochastic boundary
value problem (2.1) now becomes a deterministic Dirichlet boundary value prob-
lem for an elliptic partial differential equation with an N−dimensional param-
eter. For convenience, we consider the solution uN as a function uN : ΓN →
H1

0 (D) and we use the notation uN (y) whenever we want to highlight the de-
pendence on the parameter y. We use similar notations for the coefficient aN

and the forcing term fN . Then, it can be shown that problem (2.1) is equivalent
to∫

D
aN (y)∇uN (y) · ∇φdx =

∫
D

fN (y)φdx, ∀φ ∈ H1
0 (D), ρ-a.e. in ΓN . (2.5)

For our convenience, we will suppose that the coefficient aN and the forcing term
fN admit a smooth extension on the ρ-zero measure sets. Then, equation (2.5)
can be extended a.e. in ΓN with respect to the Lebesgue measure (instead of
the measure ρdy).

It has been proved in [1] that problem (2.5) satisfies the analyticity result
stated in Assumption 1.8. For instance, if we take the diffusivity coefficient as
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in Example 1.3 and a deterministic load we can take the size of the analyticity
region as

τn =
amin

4σn
. (2.6)

On the other hand, if we take the diffusivity coefficient as a truncated expansion
like in Remark 1.5, then a suitable analyticity region Σ(Γn; τn) is given by

τn =
1

4
√

λn‖bn‖L∞(D)

. (2.7)

Observe that, in the latter case, as
√

λn‖bn‖L∞(D) → 0 for a regular enough
covariance function (see [12]) the analyticity region increases as n increases. This
fact introduces, naturally, an anisotropic behavior with respect to the “direction”
n. This effect will be exploited in the numerical methods proposed in the next
sections.

3 Collocation techniques

We seek a numerical approximation to the exact solution of (1.4) in a suitable
finite dimensional subspace. To describe such a subspace properly, we introduce
some standard approximation subspaces, namely:

• Wh(D) ⊂ W (D) is a standard finite element space of dimension Nh, which
contains continuous piecewise polynomials defined on regular triangula-
tions Th that have a maximum mesh-spacing parameter h > 0. We suppose
that Wh has the following deterministic approximability property: for a
given function ϕ ∈ W (D),

min
v∈Wh(D)

‖ϕ− v‖W (D) ≤ C(s;ϕ) hs, (3.1)

where s is a positive integer determined by the smoothness of ϕ and the
degree of the approximating finite element subspace and C(s;ϕ) is inde-
pendent of h.

Example 3.1 Let D be a convex polygonal domain and W (D) = H1
0 (D).

For piecewise linear finite element subspaces we have

min
v∈Wh(D)

‖ϕ− v‖H1
0 (D) ≤ c h ‖ϕ‖H2(D).

That is, s = 1 and C(s;ϕ) = ‖ϕ‖H2(D), see for example [5].

We will also assume that there exists a finite element operator πh : W (D) →
Wh(D) with the optimality condition

‖ϕ− πhϕ‖W (D) ≤ Cπ min
v∈Wh(D)

‖ϕ− v‖W (D), ∀ϕ ∈ W (D), (3.2)

where the constant Cπ is independent of the mesh size h.
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• Pp(ΓN ) ⊂ L2
ρ(Γ

N ) is the span of tensor product polynomials with degree
at most p = (p1, . . . , pN ) i.e. Pp(ΓN ) =

⊗N
n=1 Ppn(Γn), with

Ppn(Γn) = span(yk
n, k = 0, . . . , pn), n = 1, . . . , N.

Hence the dimension of Pp(ΓN ) is Np =
∏N

n=1(pn + 1).

Stochastic collocation entails the sampling of approximate values πhuN (yk) =
uN

h (yk) ∈ Wh(D), to the solution uN of (1.4) on a suitable set of abscissas
yk ∈ ΓN .

Example 3.2 If we examine the linear PDE for example, then we introduce the
semi-discrete approximation uN

h : ΓN → Wh(D), obtained by projecting equation
(2.5) onto the subspace Wh(D), for each y ∈ ΓN , i.e.∫

D
aN (y)∇uN

h (y) · ∇φh dx =
∫

D
fN (y)φh dx, ∀φh ∈ Wh(D), for a.e. y ∈ ΓN .

(3.3)
Notice that the finite element functions uN

h (y) satisfy the optimality condition
(3.2), for all y ∈ ΓN .

Then the construction of a fully discrete approximation, uN
h,p ∈ C0(ΓN ;Wh(D)),

is based on a suitable interpolation of the sampled values. That is

uN
h,p(y, ·) =

∑
k

uN
h (yk, ·)lpk (y), (3.4)

where, for instance, the functions lpk can be taken as the Lagrange polynomials
(see Section 3.1, 3.2 and 3.3).

This formulation can be used to compute the mean value or variance of u,
as:

E[u] ≈ uN
h ≡

∑
k

uN
h (yk, ·)

∫
ΓN

lpk (y)ρ(y)dy

and
Var[u] ≈

∑
k

(
uN

h (yk, ·)
)2 ∫

ΓN

lpk (y)ρ(y)dy −
(
uN

h

)2
.

Several choices are possible for the interpolation points. We will discuss
two of them, namely Clenshaw-Curtis and Gaussian in Sections 3.3.1 and 3.3.2
respectively. See the work [30] for an insightful comparison between these two
choices. Regardless of the choice of interpolating knots, the interpolation can be
constructed by using either full tensor product polynomials, see Section 3.1, or
the space of sparse polynomials, see Sections 3.2 and 3.3.
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3.1 Full tensor product interpolation

In this Section we briefly recall interpolation based on Lagrange polynomials.
Let i ∈ N+ and {yi

1, . . . , y
i
mi
} ⊂ [−1, 1] be a sequence of abscissas for Lagrange

interpolation on [−1, 1].
For u ∈ C0(Γ1;W (D)) and N = 1 we introduce a sequence of one-dimensional

Lagrange interpolation operators U i : C0(Γ1;W (D)) → Vmi(Γ
1;W (D))

U i(u)(y) =
mi∑
j=1

u(yi
j) · lij(y), ∀u ∈ C0(Γ1;W (D)), (3.5)

where lij ∈ Pmi−1(Γ1) are Lagrange polynomials of degree pi = mi − 1 and

Vm(Γ1;W (D)) =

{
v ∈ C0(Γ1;W (D)) : v(y, x) =

m∑
k=1

ṽk(x)lk(y), {ṽk}m
k=1 ∈ W (D)

}
.

Here of course we have, for i ∈ N+,

lij(y) =
mi∏
k=1
k 6=j

(y − yi
k)

(yi
j − yi

k)

and formula (3.5) reproduces exactly all polynomials of degree less than mi.
Now, in the multivariate case N > 1, for each u ∈ C0(ΓN ;W (D)) and the
multi-index i = (i1, . . . , iN ) ∈ NN

+ we define the full tensor product interpolation
formulas

IN
i u(y) :=

(
U i1 ⊗ · · · ⊗U iN

)
(u)(y) =

mi1∑
j1=1

· · ·
miN∑
jN=1

u
(
yi1

j1
, . . . , yiN

jN

)
·
(
li1j1 ⊗ · · · ⊗ liNjN

)
.

(3.6)
Clearly, the above product needs (mi1 · · ·miN ) function values, sampled on a
grid. These formulas will also be used as the building blocks for the Smolyak
method, described next.

3.2 The isotropic Smolyak method

Here we follow closely the work [4] and describe the Smolyak isotropic formulas
A (w,N). The Smolyak formulas are just linear combinations of product formu-
las (3.6) with the following key properties: only products with a relatively small
number of knots are used and the linear combination is chosen in such a way
that an interpolation property for N = 1 is preserved for N > 1. With U 0 = 0
and for i ∈ N+ define

∆i := U i −U i−1. (3.7)

12



Moreover, for integers w ∈ N, we define the sets

X(w,N) :=

{
i ∈ NN

+ , i ≥ 1 :
N∑

n=1

(in − 1) ≤ w

}

and

Y (w,N) :=

{
i ∈ NN

+ , i ≥ 1 : w −N + 1 ≤
N∑

n=1

(in − 1) ≤ w

}
and for i ∈ X(w,N) or i ∈ Y (w,N) we put |i| = i1 + · · ·+ iN . Then the isotropic
Smolyak algorithm is given by

A (w,N) =
∑

i∈X(w,N)

(
∆i1 ⊗ · · · ⊗∆iN

)
. (3.8)

Equivalently, formula (3.8) can be written as (see [31])

A (w,N) =
∑

i∈Y (w,N)

(−1)w+N−|i|
(

N − 1
w + N − |i|

)
·
(
U i1 ⊗ · · · ⊗U iN

)
. (3.9)

To compute A (w,N)(u), one only needs to know function values on the “sparse
grid”

H (w,N) =
⋃

i∈Y (w,N)

(
ϑi1 × · · · × ϑiN

)
(3.10)

where ϑi =
{
yi
1, . . . , y

i
mi

}
⊂ [−1, 1] denotes the set of points used by U i. Note

that the Smolyak algorithm, as presented in this Section, is isotropic, since all
directions are treated equally. This can be seen from (3.8) where the multi-index
i ∈ NN

+ that determines the number of sample points in each dimension, in, n =
1, 2, . . . , N is sampled from the set X(w,N). This ensures that if (i1, i2, . . . , iN )
is a valid index, then any permutation of it is also a valid index.

Examples of isotropic sparse grids, for N = 2, constructed from the nested
Clenshaw-Curtis abscissas, described in Section 3.3.1, and the non-nested Gaus-
sian abscissas, described in Section 3.3.2, are shown in Figure 1. To see the
reduction in function evaluations we also include a plot of the corresponding
full tensor product grid computed from the Clenshaw-Curtis abscissas. We note
that since the Gaussian abscissas and the Clenshaw-Curtis abscissas tend to
accumulate towards the boundary, plots of full tensor product grids will look
superficially the same.

We will next discuss improvements that can be made to further reduce the
number of points used to compute U i by considering an anisotropic version of
the method.

13



33x33 Clenshaw!Curtis Grid ALPHA = [ 1.000000, 1.000000] 0 <= LEVEL <= 5

Figure 1: For a finite dimensional ΓN with N = 2 we plot the full tensor product
grid using the Clenshaw-Curtis abscissas and isotropic Smolyak sparse grids
utilizing the Clenshaw-Curtis abscissas and the Gaussian abscissas for w = 5.

3.3 The anisotropic Smolyak method

It was shown in [25] that the conventional Smolyak construction is very effec-
tive for problems whose input data depend on a moderate number of random
variables, which “weigh equally” in the solution. Upon the assumption that
the solution is analytic with respect to each stochastic direction we show that
for such isotropic situations the displayed convergence is faster than standard
collocation techniques built upon full tensor product spaces.

On the other hand, the convergence rate deteriorates when we attempt to
solve highly anisotropic problems, such as those appearing when the input ran-
dom variables come e.g., from Karhunen-Loève -type truncations of “smooth”
random fields described by Example 1.4. In this particular case we can rely on
a priori information related to the decay of the noise coefficients to develop an
anisotropic Smolyak algorithm.

To generalize the traditional sparse grid method with respect to different
stochastic dimensions we propose an algorithm that considers a different in-
dex set rather than the unit simplex |i| ≤ w + N . Similar to [14, 16] we let
α = (α1, α2, . . . , αN ) ∈ RN

+ be N -dimensional weight vector for the different
stochastic dimensions. Furthermore, we define α := min

1≤n≤N
αn and consider the

follow general class of simplicies defined by the index set

Xα(w,N) =

{
i ∈ NN

+ , i ≥ 1 :
N∑

n=1

(in − 1)αn ≤ wα

}
.

The strategy to this approach relies on constructing the weight vector α ∈
RN

+ from either a priori knowledge or a posteriori information. See Section 4
respectively for a more detailed description.

Then, using (3.7) we described the anisotropic Smolyak formulas, Aα(w,N),

14
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Figure 2: For a finite dimensional ΓN with N = 2 and w = 7 we plot: on the top,
the isotropic Smolyak grid and the anisotropic Smolyak grids with α2/α1 = 3/2
and α2/α1 = 2, utilizing the Clenshaw-Curtis abscissas and the bottom, the
corresponding indices (i1, i2) ∈ Xα(7, 2).

given by
Aα(w,N) =

∑
i∈Xα(w,N)

(
∆i1 ⊗ · · · ⊗∆iN

)
(3.11)

for w ∈ N. Equivalently, (3.11) can be written as

Aα(w,N) =
∑

i∈Yα(w,N)

cα(i)
(
U i1 ⊗ · · · ⊗U iN

)
(3.12)

with
cα(i) :=

∑
j∈{0,1}N

i+j∈Xα(w,N)

(−1)|j|

and

Yα(w,N) := Xα(w,N) \Xα

(
w − |α|

α
,N

)
.
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Similarly to the isotropic case, to compute Aα(w,N)(u), one only needs to know
function values on the ”sparse grid”

Hα(w,N) =
⋃

i∈Yα(w,N)

(
ϑi1 × · · · × ϑiN

)
. (3.13)

We note that the isotropic Smolyak method presented in Section 3.2 is a special
case of the anisotropic algorithm. This can be observed by simply taking the
components of weight vector to be equal, i.e. α1 = α2 = · · · = αN . In this case
formula (3.11) is equivalent to (3.8) and it can be easily shown that (3.12) reduces
to (3.9). Finally, in Figure 2, for N = 2 and w = 7, we show anisotropic Smolyak
sparse grids utilizing the Clenshaw-Curtis points described in Section 3.3.1, cor-
responding to the anisotropy ratio α2/α1 = 1, α2/α1 = 3/2 and α2/α1 = 2
respectively. We also show the indices i ∈ Xα(7, 2) that were used to construct
the anisotropic sparse interpolant Aα(7, 2). In accordance with the nested struc-
ture of the Clenshaw-Curtis abscissas, in Figure 2 we point out the difference
between active points/indices and previously computed points/indices.

3.3.1 Clenshaw-Curtis Formulas

We first suggest to use the Smolyak algorithm based on polynomial interpolation
at the extrema of Chebyshev polynomials. For any choice of mi > 1 these knots
are given by

yi
j = − cos

(
π(j − 1)
mi − 1

)
, j = 1, . . . ,mi. (3.14)

In addition, we define yi
1 = 0 if mi = 1. It remains to specify the numbers mi

of knots that are used in formulas U i. In order to obtain nested sets of points,
i.e., ϑi ⊂ ϑi+1 and thereby HA (w,N) ⊂ HA (w + 1, N), we choose

m1 = 1 and mi = 2i−1 + 1, for i > 1. (3.15)

For such a choice of mi we arrive at Clenshaw-Curtis formulas, see [8]. It is
important to choose m1 = 1 if we are interested in optimal approximation in
relatively large N , because in all other cases the number of points used by
A (w,N) and Aα(w,N) increases too fast with N .

A variant of the Clenshaw-Curtis formulas are the Filippi formulas in which
the abscissas at the boundary of the interval are omitted [15]. In this case only
the smaller degree mi − 1 of exactness is obtained.

3.3.2 Gaussian formulas

We also propose to apply the Smolyak formulas based on polynomial interpola-
tion at the zeros of the orthogonal polynomials with respect to a weight ρ. This
naturally leads to the Gauss formulas that have a maximum degree of exactness
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of 2mi − 1. However, these Gauss-Legendre formulas are in general not nested.
Regardless, as in the Clenshaw-Curtis case, we choose

m1 = 1 and mi = 2i−1 + 1, for i > 1.

The natural choice of the weight ρ should be the probability density of the
random variables Yi(ω) for all i. Yet, in the general multivariate case, if the
random variables Yi are not independent, the density ρ does not factorize, i.e.

ρ(y1, . . . , yn) 6=
N∏

n=1

ρn(yn).

To this end, we first introduce an auxiliary probability density function ρ̂ : ΓN →
R+ that can be seen as the joint probability of N independent random variables,
i.e. it factorizes as

ρ̂(y1, . . . , yn) =
N∏

n=1

ρ̂n(yn), ∀y ∈ ΓN , and is such that
∥∥∥∥ρ

ρ̂

∥∥∥∥
L∞(ΓN )

< ∞.

(3.16)
For each dimension n = 1, . . . , N let the mn Gaussian abscissas be the roots
of the mn degree polynomial that is ρ̂n-orthogonal to all polynomials of degree
mn − 1 on the interval [−1, 1].

4 Selection of the α weights for Anisotropic Smolyak

The ability to evaluate the stochastic dimensions differently is a necessity since
many practical problems exhibit highly anisotropic behavior. The rationale be-
hind our anisotropic sparse grid approach is based on an examination of the
total error

ε = ‖uN − IN
p uN‖L2

ρ(ΓN ;W (D)), (4.1)

produced by anisotropic full tensor product polynomial interpolation on Gaus-
sian abscissas.

Each stochastic dimension contributes to this total error. When the total
error is divided equally among the random variables our earlier work [25] re-
vealed that the isotropic Smolyak method, described in Section 3.2, displays a
fast convergence rate and is very effective in considerably reducing the curse of
dimensionality. We are also able to treat effectively problems that depend on a
moderately large number of random variables, while keeping a high level of accu-
racy. When the error is dominated by certain directions we utilize the anisotropic
Smolyak algorithm, described in Section 3.3 which combines an optimal treat-
ment of the anisotropy of the problem while minimizing function evaluations via
the use of sparse grids. Similar to an adaptive interpolation method, we place
more points in the directions with the largest contribution to the total error.
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The main idea is to link the αn coefficients with the rate of exponential
convergence in the corresponding direction, which for functions that satisfy As-
sumption 1.8 is described by the following Lemma, whose proof can be found
in [1, Lemma 7] and which is an immediate extension of the result given in [9,
Chapter 7, Section 8]:

Lemma 4.1 Given a function v ∈ C0(Γ1;W (D)) which admits an analytic ex-
tension in the region of the complex plane Σ(Γ1; τ) = {z ∈ C, dist(z,Γ1) ≤ τ}
for some τ > 0, there holds

Emi ≡ min
w∈Vmi

‖v − w‖C0(Γ1;W (D)) ≤
2

%− 1
e−mi log(%) max

z∈Σ(Γ1;τ)
‖v(z)‖

W (D)

where

1 < % =
2τ

|Γ1|
+

√
1 +

4τ2

|Γ1|2
. (4.2)

Remark 4.2 (Approximation with unbounded random variables) A re-
lated result with
weighted norms holds for unbounded random variables whose probability density
decays as the Gaussian density at infinity (see [1]).

In the multidimensional case, the value of τn will depend, in general, on the
direction n, cf. (2.7) and (2.6). As a consequence of this variation and (4.2) the
decay coefficients %n will also depend on the direction, n = 1, . . . , N . We now
assume that we know positive numbers 0 < g(n), n = 1, . . . , N , such that

%n ≥ eg(n). (4.3)

Then, we will choose the anisotropic Smolyak weights as

αn = g(n) for all n = 1, 2, . . . , N, (4.4)

On what follows we will use the notations

α = g = min
1≤n≤N

{g(n)} and G (N) =
N∑

n=1

g(n). (4.5)

Observe that we have now transformed the problem of choosing α into the one
of estimating the decay coefficients g = (g(1), . . . , g(N)).

Remark 4.3 (Optimality of α choice) As will be seen in Remark 5.12 the
choice α = g is optimal with respect to the error bound derived in Theorem 5.7.

In principle, it is possible to consider two kinds of estimation strategies. The
first uses a priori knowledge, while in the second approach we use a posteriori
information from computations, i.e. we fit the values of g. The remainder of the
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Section will explain the choice of α ∈ RN
+ , for the construction of set of indices

i ∈ Xα(w,N), using these procedures.

A priori selection
The estimation of the α = g ∈ RN

+ coefficients can be achieved using a priori
information, i.e. by estimating first suitable values for τn, then using (4.2), and
taking g(n) as in (4.3), namely

g(n) = log

(
2τn

|Γn|
+

√
1 +

4τn
2

|Γn|2

)
,

for n = 1, 2, . . . , N . In the numerical examples presented in Section 6 we have
used the simpler and more conservative relation

g(n) = log
(

1 +
2τn

|Γn|

)
. (4.6)

On the other hand, a priori estimates for τn can be derived for certain classes of
problems, see for instance the linear problem (2.1) and the estimates (2.7) and
(2.6). In Section 6 we implement numerically this a priori choice of α = g ∈ RN

+

for the construction of the general simplices i ∈ Xα(w,N) when solving problem
(1.2).

In some practical applications it may not be possible to sharply estimate the
vector g using a priori information. Therefore, in the next Section we propose
a computational alternative.

A posteriori selection
In order to explain the a posteriori estimation of α = g ∈ RN

+ for the con-
struction of the general simplices i ∈ Xα(w,N) we will describe particular cases
with N = 11 and focus on both an isotropic and highly anisotropic version
the example described in Section 6, corresponding to Lc = 1/64 and Lc = 1/2
respectively.

Using Lemma 4.1, we expect an error decay in the direction n of the form

εn ≈ dn%n
−pn , for all n = 1, 2, . . . , N, (4.7)

where pn is the number of collocation points in the direction n. In order to
compute the weight vector g = α ∈ RN

+ , g ≈ log(%), we first observe from (4.7)
that

log10(εn) ≈ log10(dn)− pn log10(%n) ≈ log10(dn)− pn log10(e)g(n).

Therefore, if we plot log10(εn) versus pn for each stochastic dimension n =
1, 2, . . . , N and use a linear least squares approximation to fit the data, the slope
of each line will give an estimate of g(n). When solving problem (6.1), for the
cases Lc = 1/2 and 1/64, we utilize the same finite element space as in Section 6
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Figure 3: A linear least square approximation to fit log10(‖E[εn]‖L2(D)) versus
pn with εn defined by (4.7). For n = 1, 2, . . . , N = 11 we plot: on the left, the
highly anisotropic case Lc = 1/2 and on the right, the isotropic case Lc = 1/64.

and we approximate E[εn] in the n-th direction, corresponding to a multi index
p = (1, 1, . . . , pn, 1, . . . , 1) by E[εn] ≈ E[uN

h,p − uN
h,ep], with p̃ = (1, 1, . . . , pn +

1, 1, . . . , 1). The computational results for the L2(D) approximation error in the
expected value, E[εn], are shown on Figure 3.

g(1) g(2), g(3) g(4), g(5) g(6), g(7) g(8), g(9) g(10), g(11)
Lc = 1/2 1.7 1.6 2.1 3.3 5.3 7.4
Lc = 1/64 3.1 2.4 2.5 2.4 2.5 2.4

Table 1: The N = 11 values of the function g(n) = αn constructed from a
posteriori information. The values g(n), n = 1, 2, . . . , N are the slopes of N
linear least squares fits to the error of an univariate anisotropic method when
solving problem (6.1) with correlation lengths Lc = 1/2 and 1/64.

The results for g(n), n = 1, 2, . . . , N = 11 can be seen in Table 1. Table 1
reveals that the a posteriori selection of α ∈ RN

+ performs well at dictating the
behavior of problem (6.1) for the cases Lc = 1/2 and 1/64. In the former case
the vector α weighs heavily in the higher dimensions as opposed to the latter
that approximately weighs equally in all directions. Also, both cases Lc = 1/2
and 1/64, reveal that α = α2 = α3.

Observe that in general the rate %n also depends on y∗n ∈ Γ∗n, i.e. on the
values of the other random variables. Our way to estimate the decay coefficient
g(n) is not conservative since we only estimate %n at the single point E[y∗n]. A
more conservative estimate will imply estimating the worst value of y∗n, i.e. the
one that minimizes %n. This may be critical for nearly singular cases.
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Remark 4.4 (Applications to piecewise constant random fields) We also
comment that the a posteriori selection of α ∈ RN

+ , described above, is not only
restricted to random fields related to the Karhunen-Loève expansion described
in Example 1.4 but also can be easily applied in other cases, for instance to the
piecewise constant random fields described in Example 1.3.

5 Error Analysis

Collocation methods can be used to approximate the solution uN ∈ C0(ΓN ;W (D))
using finitely many function values. By Assumption 1.8, uN admits an analytic
extension. Further, each function value will be computed by means of a finite
element technique. In general, the semi-dicrete finite element solution πhuN

also satisfies the regularity assumpion 1.8. In particular this is true for the
linear problem presented in Section 2. We define the numerical approximation
uN

h,p = Aα(w,N)πhuN . Our aim is to give a priori estimates for the total error

ε = u− uN
h,p = u−Aα(w,N)πhuN

where the operator Aα(w,N) is described by (3.11) and πh is the finite element
projection operator described by (3.2). We will investigate the error

‖u−Aα(w,N)πhuN‖ ≤ ‖u− uN‖︸ ︷︷ ︸
(I)

+ ‖uN − πhuN‖︸ ︷︷ ︸
(II)

+ ‖πhuN −Aα(w,N)πhuN‖︸ ︷︷ ︸
(III)

(5.1)
evaluated in the natural norm L2

P (Ω; W (D)). Since the error functions in (II)
and (III) are finite dimensional the natural norm is equivalent to L2

ρ(Γ
N ;W (D)).

By controlling the error in this natural norm we also control the error in the
expected value of the solution, for example:∥∥E[u− uN

h,p]
∥∥

W (D)
≤ E

[∥∥u− uN
h,p

∥∥
W (D)

]
≤
∥∥u− uN

h,p

∥∥
L2

P (Ω;W (D))
.

The quantity (I) controls the truncation error for the case where the input data
aN and fN are suitable truncations of random fields. This contribution to the
total error was considered in [25, Section 4.2]. The quantity (I) is otherwise
zero if the representation of aN and fN is exact, as in Example 1.3. The second
term (II) controls the convergence with respect to h, i.e. the finite element
error, which will be dictated by standard approximability properties of the finite
element space Wh(D), given by (3.1), and the regularity in space of the solution
u (see e.g. [7, 5]). Specifically,

‖uN − πhuN‖L2
ρ(ΓN ;W (D)) ≤ Cπhs

(∫
ΓN

C(s;u)2ρ(y) dy

)1/2

by the finite element approximability property (3.1).
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The full tensor product convergence results are given by [1, Theorem 1] while
the sparse tensor product convergence results for the isotropic Smolyak method
are given by [25, Theorem 4.6 and 4.10]. Therefore, we will only concern our-
selves with the convergence results when implementing the anisotropic Smolyak
algorithm described in Section 3.3. Namely, our primary concern will be to
analyze the interpolation error (III)

‖πhuN −Aα(w,N)πhuN‖L2
ρ(ΓN ;W (D)) , (5.2)

for both the Clenshaw-Curtis and Gaussian versions of the anisotropic Smolyak
algorithm.

Under the very reasonable assumption that the semi-discrete finite element
solution πhuN admits an analytic extension as described in Assumption 1.8 with
the same analyticity region as for uN , the behavior of the error (5.2) will be anal-
ogous to ‖uN −Aα(w,N)uN‖L2

ρ(ΓN ;W (D)). For this reason, in the next sections
we will analyze the latter.

5.1 Analysis of the interpolation error

In order to to get error bounds for Smolyak’s algorithm in the multidimensional
case, we will connect the general case to the case N = 1 and then apply succes-
sively Lemma 4.1 .

As stated in Section 3.3, the sparse grid construction treats all directions
differently and is therefore an anisotropic algorithm. Moreover, the convergence
analysis presented in Section 5.1.1 exploits the possible anisotropic behaviors of
problem (1.1). Therefore, we can expect a faster convergence rate when com-
pared to our previous isotropic Smolyak algorithm [25], for such problems that
exhibit strong anisotropic effects. Since the algorithm exploits this behavior and
is a sparse interpolation technique, a similar conclusion can be drawn when mak-
ing convergence comparisons with the anisotropic full tensor product method,
introduced in the work [1]. See Section 6 where we explore numerically the
consequences of introducing an anisotropy into the model problem described by
Example 1.1.

5.1.1 Clenshaw-Curtis interpolation estimates

For n = 1, 2, . . . , N we begin by letting Em be the error of the best approximation
to functions u ∈ C0(Γn;W (D)) by functions w ∈ Vm. Similarly to [4], for n =
1, . . . , N , since U in is exact on Vmin−1 we can apply the general formula∥∥u−U in(u)

∥∥
∞,1

≤ Emin−1(u) ·
(
1 + Λmin

)
(5.3)

where Λm is the Lebesgue constant for our choice (3.14). It is known that

Λm ≤ 2
π

log(m− 1) + 1 (5.4)
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for m ≥ 2, see [10].
Using Lemma 4.1 and with the assumption (4.3) on the decay coefficients,

the best approximation to functions u ∈ C0(Γn;W (D)) that admit an analytic
extension as described by Assumption 1.8 is bounded by:

Emin
(u) ≤ C %

−min
n = C e−g(n) min , (5.5)

where C is a constant dependent on τ and u but otherwise independent of
n, defined in Lemma 4.1. For n = 1, 2, . . . , N we define the one-dimensional
indentity operator I

(n)
1 : Γn → Γn, then (5.3)-(5.5) implies∥∥∥(I(n)

1 −U in)(u)
∥∥∥
∞,1

≤ C log(min)%−min
n ≤ C in%−2in

n = C ine−g(n)2in
,∥∥(∆in)(u)

∥∥
∞,1

=
∥∥(U in −U in−1)(u)

∥∥
∞,1

≤
∥∥∥(I(n)

1 −U in)(u)
∥∥∥
∞,1

+
∥∥∥(I(n)

1 −U in−1)(u)
∥∥∥
∞,1

≤ E in%−2in−1

n = E ine−
g(n)

2
2in

(5.6)

for all i ∈ N+ with positive constants C and E depending on u but not on i or
n.

The convergence proof will be split in several pieces, the main results being
given in Theorems 5.3 and 5.7 which state the convergence rates in terms of the
level w and the total number of collocation points, respectively.

For the purpose of error analysis we first introduce the set

X̃α(w, d) :=

{
i ∈ Nd

+, i ≥ 1 :

(
d∑

n=1

(in − 1)αn − αw

)
∈ [0, αd]

}
.

Moreover, we denote by Id the identity operator applicable to functions which
depend on the first d variables y1, . . . , yd. Then the following result holds:

Lemma 5.1 For functions u ∈ L2
ρ(Γ

N ;W (D)) satisfying the assumption of
Lemma 4.1 with decay coefficients as in (4.3), the anisotropic Smolyak formula
(3.11) satisfies:

‖(IN −Aα(w,N)) (u)‖L2
ρ(ΓN ;W (D)) ≤

N∑
d=1

R(w, d) (5.7)

with

R(w, d) :=
∑

i∈X̃α(w,d)

CEd−1

(
d∏

n=1

in

)
e−h(i,d) (5.8)

and

h(i, d) =
d∑

n=1

g(n)2in−1, (5.9)

with constants C and E defined in (5.5) and (5.6).
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Proof. We start providing and equivalent representation of the anisotropic Smolyak
formula:

Aα(w,N) =
∑

i∈Xα(w,N)

N⊗
n=1

∆in

=
∑

i∈Xα(w,N−1)

N−1⊗
n=1

∆in ⊗

j
1+w α

αN
−

PN−1
n=1 (in−1) αn

αN

k∑
j=1

∆j

=
∑

i∈Xα(w,N−1)

N−1⊗
n=1

∆in ⊗U

j
1+w α

αN
−

PN−1
n=1 (in−1) αn

αN

k

where we have denoted with b·c the integer part of a real number.
The error estimate is computed recursively using the previous representation.

IN −Aα(w,N) = IN −
∑

i∈Xα(w,N−1)

N−1⊗
n=1

∆in ⊗
(

U

j
1+w α

αN
−

PN−1
n=1 (in−1) αn

αN

k
− I

(N)
1

)

−
∑

i∈Xα(w,N−1)

N−1⊗
n=1

∆in ⊗ I
(N)
1

=
∑

i∈Xα(w,N−1)

N−1⊗
n=1

∆in ⊗
(

I
(N)
1 −U

j
1+w α

αN
−

PN−1
n=1 (in−1) αn

αN

k)
+ (IN−1 −Aα(w,N − 1))⊗ I

(N)
1

=
N∑

d=2

[
R̃(w, d)

N⊗
n=d+1

I
(n)
1

]
+
(
I
(1)
1 −Aα(w, 1)

) N⊗
n=2

I
(n)
1

where, for a general dimension d, we define

R̃(w, d) =
∑

i∈Xα(w,d−1)

d−1⊗
n=1

∆in ⊗
(
I
(d)
1 −U îd−1

)

and, for any (i1, . . . , id−1) ∈ Xα(w, d−1), we have set îd =
⌊
2 + w α

αd
−
∑d−1

n=1(in − 1)αn

αd

⌋
.

Observe that with this definition, the d-dimensional vector j = (i1, . . . , id−1, îd) ∈
X̃α(w, d).

The term R̃(w, d) can now be bounded as

∥∥∥R̃(w, d)(u)
∥∥∥
∞,d

≤
∑

i∈Xα(w,d−1)

d−1∏
n=1

∥∥(∆in)(u)
∥∥
∞,d

∥∥∥(I(d)
1 −U îd−1

)
(u)
∥∥∥
∞,d

≤
∑

i∈Xα(w,d−1)

C Ed−1

(
d−1∏
n=1

in

)
(̂id − 1)e−

Pd−1
n=1 g(n)2in−1−g(d)2îd−1

≤
∑

i∈X̃α(w,d)

C Ed−1

(
d∏

n=1

in

)
e−h(i,d) =: R(w, d).
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Hence, the interpolation error with the anisotropic Smolyak construction can be bounded
by

‖(IN −Aα(w,N))(u)‖∞,N ≤
N∑

d=2

R(w, d) +
∥∥∥(I(1)

1 −Aα(w, 1))(u)
∥∥∥
∞,1

.

Observe that the first term in the recursion (5.7) can also be bounded by (5.8).
Indeed, the set X̃α(w, 1) contains only the point i1 = b2 + αw

α1
c and∥∥∥(I(1)

1 −Aα(w, 1)
)

(u)
∥∥∥
∞,1

=
∥∥∥∥(I

(1)
1 −U

j
1+ αw

α1

k)
(u)
∥∥∥∥
∞,1

≤ C

⌊
1 +

αw

α1

⌋
e−g(1) 2

b1+ αw
α1 c

≤
∑

i1∈X̃α(w,1)

C i1 e−g(1) 2i1−1
=: R(w, 1)

and this concludes the proof. �

Lemma 5.2 For the choice αn = g(n) of the weights in the anisotropic Smolyak
formula (3.11), the following bound holds for the term R(w, d), d = 1, . . . , N :

R(w, d) ≤ C1(g, d) exp
{
−G (d)

2
2w

g

G (d) + w
dg

G (d)

}
, (5.10)

where the function C1(g, d) does not depend on w.

Proof. First we convert the sum appearing in (5.8) into an integral. For that, we
define the two subsets of Rd:

Ỹα(w, d) :=
{
y ∈ Rd

+ : byc+ 1 ∈ X̃α(w, d)
}

,

Ỹ +
α (w, d) :=

{
y ∈ Rd

+ :

(
d∑

n=1

ynαn − wα

)
∈ [0, αd +

d∑
n=1

αn]

}
,

and notice that X̃α(w, d) ⊂ Ỹα(w, d) ⊂ Ỹ +
α (w, d). Then the term R(w, d) can be

bounded by

R(w, d) =
∫

Ỹα(w,d)

CEd−1

(
d∏

n=1

(bync+ 1)

)
e−h(byc+1,d) dy

≤
∫

Ỹ +
α (w,d)

CEd−1

(
d∏

n=1

(yn + 1)

)
e−h(y,d) dy.

(5.11)

Next, we define y∗ = w
g

G (d) and we expand the function h(y, d) up to second order,
around the point y∗ = (y∗, . . . , y∗):

h(y, d) = h(y∗, d)+∇h(y∗, d) · δy︸ ︷︷ ︸
(I)

+ δyT 1
2
∇2h(y∗ + sδy, d)δy︸ ︷︷ ︸

(II)

, with δy = y − y∗ and s ∈ [0, 1].
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The linear term is positive on the set Ỹ +
α (w, d); indeed

(I) = log(2)2y∗−1
d∑

n=1

g(n) (yn − y∗)

= log(2)2y∗−1
d∑

n=1

(ynαn − wα) ≥ 0 ∀y ∈ Ỹ +
α (w, d)

Similarly, the second order remainder can be bounded as

(II) =
log(2)2

2

d∑
n=1

g(n)2[y∗+s(yn−y∗)−1](yn − y∗)2

≥ log(2)2

4

d∑
n=1

g(n)(yn − y∗)2

=
d∑

n=1

(yn − y∗)2

2σ2
n

, with σ2
n =

2
log(2)2g(n)

Finally, the bound (5.11) becomes

R(w, d) ≤ CEd−1e−h(y∗,d)

∫
Ỹ +

α (w,d)

d∏
n=1

(yn + 1)e
−

Pd
n=1

(yn−y∗)2

2σ2
n dy︸ ︷︷ ︸

I(d)

.

We now turn to estimate the term I(d). For that, let us introduce the function pn(y) =

e
− (y−y∗)2

2σ2
n /

√
2πσ2

n which corresponds to the probability density function of a Normal
random variable with mean y∗ and variance σ2

n. Then, we have

I(d) =
∫

Ỹ +
α (w,d)

d∏
n=1

√
2πσ2

n(yn + 1)pn(yn) dy {setting zn = yn + 1}

≤
d∏

n=1

(√
2πσ2

n

∫ ∞

0

znpn(zn − 1) dzn

)
{by Cauchy-Schwartz ineq.}

≤
d∏

n=1

(√
2πσ2

n

(∫ ∞

0

z2
npn(zn − 1) dzn

) 1
2
)

≤
d∏

n=1

(√
2πσ2

n

√
σ2

n + (1 + y∗)2
)

≤
d∏

n=1

(√
2πσ2

n (1 + y∗ + σn)
)
≤

d∏
n=1

(√
2πσ2

ney∗+σn

)
= C2(σ, d)ew

dg

G (d) , with C2(σ, d) =
d∏

n=1

(√
2πσ2

neσn

)
.

From this the final result is easily obtained and inequality (5.10) holds with constant

C1(g, d) = CEd−1

(
2
√

π

log(2)

)d
(

d∏
n=1

1√
g(n)

)
exp

{ √
2

log(2)

d∑
n=1

1√
g(n)

}
. (5.12)
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Theorem 5.3 For functions u ∈ L2
ρ(Γ

N ;W (D)) satisfying the assumption of
Lemma 4.1 with decay coefficients as in (4.3), the anisotropic Smolyak formula
(3.11) with the choice αn = g(n) of the weights satisfies:

‖(IN −Aα(w,N)) (u)‖L2
ρ(ΓN ;W (D)) ≤ Ĉ(g, N)ew−λ(w,N) (5.13)

where

λ(w,N) :=


w

g log(2)e
2

, if 0 ≤ w ≤ G (N)
g log(2) ,

G (N)
2

2w
g

G (N) , otherwise

, (5.14)

and the function Ĉ(g, N) does not depend on w.

Proof. From Lemmas 5.1 and 5.2 we obtain the following bound for the interpolation
error

‖(IN −Aα(w,N)) (u)‖L2
ρ(ΓN ;W (D)) ≤

N∑
d=1

C1(g, d) exp
{

w − λ̂(w, d)
}

with λ̂(w, d) := G (d)
2 2w

g

G (d) . We now turn our attention to finding a minimum for λ̂(w, d)

for 1 ≤ d ≤ N . Let us define, for s ∈
[
1, G (N)

g

]
, the function

p(s) := s 2
w
s .

so that λ̂(w, d) =
g

2p
(

G (d)
g

)
and

min
1≤d≤N

λ̂(w, d) ≥ min
s∈[1,G (N)/g]

g

2
p(s).

We have
dp

ds
= 2

w
s

(
1−

(w

s

)
log(2)

)
= 0

yielding s = w log(2). For w sufficiently large, the minimum of p(s) falls outside the
interval

[
1, G (N)

g

]
and the function p(s) is decreasing on this interval. Therefore, there

are two cases to consider. The first being the situation when w > G (N)
g log(2) and the second

when 0 ≤ w ≤ G (N)
g log(2) . In either case

min
1≤d≤N

λ̂(w, d) ≥ λ(w,N)

and hence,
max

1≤d≤N
e−

bλ(w,d) ≤ e−λ(w,N).

From this the result (5.13) follows, by taking

Ĉ(g, N) = N max
d=1,...,N

C1(g, d). (5.15)

�
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Remark 5.4 From the expressions (5.15) and (5.12) we observe that the con-
stant Ĉ(g, N) appearing in the convergence estimates of Theorem 5.3 goes to
infinity when g tends to zero. We should note that in such case we loose con-
vergence anyhow.

On the other hand, for given g and N , the more the sequence g is anisotropic
(i.e. the larger the ratio gmax/g gets), the smaller becomes the constant Ĉ(g, N).
In any case, such constant can be bounded by

Ĉ(g, N) ≤ C

E
exp

{
N
√

g

(
2E
√

π +
√

2
log(2)

)}
,

independently of the anisotropy.

Now we relate the number of collocation points η = η(w,N) = #Hα(w,N)
to the level w of the anisotropic Smolyak algorithm. We state the result in the
following lemma:

Lemma 5.5 Using the anisotropic Smolyak interpolant described by (3.8) where
the abscissas are the Clenshaw-Curtis knots, described in Section 3.3.1, the total
number of points required at level w satisfies the following bounds:

2w−1 ≤ η ≤ 2wew
PN

n=1 α/αn , (5.16)

Moreover, as a direct consequence of (5.16) we get that:

log(η)∑N
n=1

α
αn

+ log(2)
≤ w ≤ log2(2η) (5.17)

Proof. By using formula (3.8) and exploiting the nested structure of the Clenshaw-
Curtis abscissas the number of points η = η(w,N) = #Hα(w,N) can be counted in the
following way:

η =
∑

i∈Xα(w,N)

N∏
n=1

r(in), where r(i) :=

 1 if i = 1
2 if i = 2
2i−2 if i > 2

. (5.18)

Begin by noticing that for all n = 1, 2, . . . , N the following bound holds:

2in−2 ≤ r(in) ≤ 2in−1. (5.19)

Next, let m ∈ [1, N ] be the index corresponding to the minimum α, i.e. αm =
min

1≤n≤N
{αn} = α. A lower bound on the numebr η of points can be obtained con-

sidering only the contribution from the tensor grid of indices in = 1, for n 6= m and
im = w + 1. On the other hand, it is easy to see that |i−1| =

∑N
n=1(in− 1) ≤ w so the

following bounds hold:

2w−1 ≤ η =
∑

i∈Xα(w,N)

N∏
n=1

r(in) ≤
∑

i∈Xα(w,N)

2|i−1| ≤ 2w#Xα(w,N).
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We need now a bound for the cardinality of the set Xα(w,N). We prove by induction
that

#Xα(w,N) ≤
N∏

n=1

(
w

α

αn
+ 1
)

. (5.20)

Indeed, the result is obviously true for N = 1, and assuming that it holds for N − 1, we
have

#Xα(w,N) =
bwα/αNc+1∑

jN=1

#Xα

(
w − (jN − 1)αN

α
,N − 1

)

=
bwα/αNc+1∑

jN=1

N−1∏
n=1

(
w

α

αn
− (jN − 1)αN

αn
+ 1
)

≤
bwα/αNc+1∑

jN=1

N−1∏
n=1

(
w

α

αn
+ 1
)

≤
N∏

n=1

(
w

α

αn
+ 1
)

and this finishes the induction proof. Moreover we have

#Xα(w,N) ≤ exp

{
w

N∑
n=1

α

αn

}
(5.21)

and the inequalities (5.16) and (5.17) follow. �

Remark 5.6 The bound for the cardinality of the set #Xα(w,N) given in
(5.20) is not sharp when w → ∞ and actually one has instead the asymptotic
behaviour

#Xα(w,N) <∼
wN

N !

N∏
n=1

α

αn
,

which is consistent with the isotropic result given in [25]. Moreover, if we use
Stirling’s approximation for the factorial term, the previous bound becomes

#Xα(w,N) <∼
1√
N

N∏
n=1

ew

N

α

αn
≤ 1√

N
exp

{
w

(
e

N

N∑
n=1

α

αn

)}
,

which greatly improves (5.21).

The next Theorem provides an error bound in terms of the total number η
of collocation points. The proof follows directly from the results in Theorem 5.3
and Lemma 5.5 and is therefore omitted.

Theorem 5.7 For functions u ∈ L2
ρ(Γ

N ;W (D)) satisfying the assumption of
Lemma 4.1 with decay coefficients as in (4.3), the anisotropic Smolyak formula
(3.11) with the choice αn = g(n) of the weights satisfies:
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• Algebraic convergence
(
0 ≤ w ≤ G (N)

g log(2)

)
. Under the assumption that g ≥

1/(e log(2)),

‖(IN −Aα(w,N)) (u)‖L2
ρ(ΓN ;W (D)) ≤ Ĉ(g, N)η−µ1 , µ1 =

g log(2)e− 1

log(2) +
∑N

n=1 g/g(n)
.

(5.22)

• Sub-exponential convergence
(
w > G (N)

g log(2)

)
‖(IN −Aα(w,N)) (u)‖L2

ρ(ΓN ;W (D)) ≤ Ĉ(g, N)(2η)1/ log(2)e−
G (N)

2
ηµ2

,

with µ2 =
g log(2)

G (N)
(
log(2) +

∑N
n=1 g/g(n)

) .
(5.23)

and constant Ĉ(g, N) defined in (5.15) and independent of η.

Remark 5.8 The estimates given in (5.23) may be improved when w → ∞.
Such asymptotic estimate is obtained using the better counting result described
in Remark 5.6.

Remark 5.9 We observe that sub-exponential rate of convergence is always
faster than the algebraic one when w > G (N)/(g log(2)). Yet, this estimate
is of little practical relevance since in practical computations, such a high level
w is seldom reached.

Remark 5.10 The condition g > 1/(log(2)e) in the algebraic regime can be
improved following and L2 analysis. Yet it is largely satisfied in all our numerical
tests. In the next Section we present results using Gaussian abscissas where this
condition is no longer needed.

Remark 5.11 Suppose now that the stochastic input data are truncated expan-
sions of random fields and that we are able to estimate the values {g(n)}∞n=1.
Whenever the sum

∑∞
n=1 g/g(n) is finite then the algebraic exponent in (5.22)

does not deteriorate as the truncation dimension N increases. This condition is
satisfied for instance by the problem presented in the numerical Section. This is
a clear advantage with respect to the isotropic Smolyak method.

Remark 5.12 (Optimal choice of α) Looking at the exponential term e−h(i,d)

in (5.8), which is the term determining the rate of convergence, we may try to
choose the weight α for Xα(w,N) as the solution to the optimization problem

max
α∈Rd

+

|α|=1

min
i∈X̃α(w,d)

h(i, d)

This problem has the solution α = g and hence, our choice of weights (4.4) is
optimal.
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5.1.2 Gaussian interpolation estimates

By using a similar approach to our previous work [25, Section 4.1.2] we can
develop error estimates for interpolating functions u ∈ C0(ΓN ;W (D)) that ad-
mit an analytic extension as described by Assumption 1.8 using the anisotropic
Smolyak formulations based on Gaussian abscissas described in Section 3.3.2. We
remind the reader that in the global estimate (5.1) we need to bound the interpo-
lation error (III) in the norm L2

ρ(Γ
N ;W (D)). Yet, the Gaussian points defined

in Section 3.3.2 are constructed for the more appropriate density ρ̂ =
∏N

n=1 ρ̂n

and we have the following useful bound:

‖v‖L2
ρ(ΓN ;W (D)) ≤

∥∥∥∥ρ

ρ̂

∥∥∥∥
L∞(ΓN )

· ‖v‖L2
ρ̂(ΓN ;W (D)) for all v ∈ C0(ΓN ;W (D)).

In what follows we will use the shorthand notation ‖ · ‖ρ̂,N for ‖ · ‖L2
ρ̂(ΓN ;W (D)).

Following [25], the 1d interpolation error for Gaussian abscissas satisfies∥∥∥(I(n)
1 −U in)(u)

∥∥∥
ρ̂,1

≤ C̃ e−g(n)2in
, and

∥∥(∆in)(u)
∥∥

ρ̂,1
≤ Ẽ e−

g(n)
2

2in

for all i ∈ N+ with positive constants C̃ and Ẽ depending on u but not on i or
n.

The following Theorem states the rate of convergence for the anisotropic
Smolyak formula based on Gaussian abscissas. Since the proof is mostly similar
to the one presented in the previous Section for Clenshaw-Curtis points, it will
be just sketched and only the main differences will be highlighted.

Theorem 5.13 For functions u ∈ L2
ρ(Γ

N ;W (D)) satisfying the assumption of
Lemma 4.1 with decay coefficients as in (4.3), the anisotropic Smolyak formula
(3.11), based on Gaussian abscissas and with the choice αn = g(n) of the weights
satisfies:

• Algebraic convergence
(
0 ≤ w ≤ G (N)

g log(2)

)
:

‖(IN −Aα(w,N)) (u)‖L2
ρ(ΓN ;W (D)) ≤ ĈG(g, N)η−µ1 , µ1 =

g log(2)e

2 log(2) +
∑N

n=1 g/g(n)
.

(5.24)

• Sub-exponential convergence
(
w > G (N)

g log(2)

)
:

‖(IN −Aα(w,N)) (u)‖L2
ρ(ΓN ;W (D)) ≤ ĈG(g, N)e−

G (N)
2

ηµ2
,

with µ2 =
g log(2)

G (N)
(
2 log(2) +

∑N
n=1 g/g(n)

) .
(5.25)

and constant ĈG(g, N) independent of η.
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Proof. The recursion formula (5.7) still holds with the term R(w, d) defined now as

R(w, d) =
∥∥∥∥ρ

ρ̂

∥∥∥∥ ∑
i∈X̃α(w,d)

C̃Ẽd−1e−h(i,d)

Notice that the negative effect of the Lebesgue constant for the Clenshaw-Curtis points,
which was responsible for the term

∏d
n=1 in in the definition of R(w, d) (see (5.8)) is not

present any more. Then, following the guidelines of the proof of Lemma 5.2, this term
can be bounded as

R(w, d) ≤ CG
1 (g, d) exp

{
−G (d)

2
2w

g

G (d)

}
.

with constant

CG
1 (g, d) =

∥∥∥∥ρ

ρ̂

∥∥∥∥ C̃Ẽd−1

(
2
√

π

log(2)

)d
(

d∏
n=1

1√
g(n)

)
.

This leads to the estimate in terms of w

‖(IN −Aα(w,N)) (u)‖L2
ρ(ΓN ;W (D)) ≤ ĈG(g, N)e−λ(w,N) (5.26)

with the same λ(w,N) as in (5.14) and ĈG(g, N) = N maxd=1,...,N CG
1 (g, d). Again,

notice the great improvement with respect to the bound (5.13) holding for Clenshaw-
Curtis points. Finally, we observe that for a given level w, the number of Gauss points
is larger than the number of Clenshaw-Curtis points (due to the non-nested structure)
and, following [25], we know that

η =
∑

i∈Yα(w,N)

N∏
n=1

r̃(in), with r̃(i) :=

{
1 for i = 1
2i−1 + 1 for i > 1

(5.27)

N∏
n=1

r̃(in) ≤
N∏

n=1

(2in−1 + 1) ≤ 22|i−1| ≤ 22w

and the number of points can be bounded as

2w−1 ≤ η ≤ 22w#Yα(w,N) ≤ 22w#Xα(w,N),

which, substituted in (5.26) gives the desired result. �

6 Numerical Examples

This Section illustrates the convergence of the anisotropic sparse collocation
method for the stochastic linear elliptic problem in two spatial dimensions, as
described in Section 2. The computational results are in accordance with the
convergence rates predicted by the theory. Actually, we observe a faster conver-
gence than stated in (5.22) and (5.24), which hints that the current estimates
may be improved.
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We will also use this problem to compare the convergence of the anisotropic
Smolyak method with other ensemble-based methods such as: the isotropic
Smolyak method described in [25], the anisotropic adaptive full tensor product
method described in the work [3, Section 9] and finally, the well-known Monte
Carlo method.

The problem is to solve{
−∇ · (a(ω, ·)∇u(ω, ·)) = f(ω, ·) in D × Ω,

u(ω, ·) = 0 on ∂D × Ω.
(6.1)

with D = [0, d]2 and d = 1. For this numerical example we take a deterministic
load f(ω, x, z) = cos(x) sin(z) and construct the random diffusion coefficient
aN (ω, x) with one-dimensional spatial dependence as

log(aN (ω, x̃)− 0.5) = 1 + Y1(ω)
(√

πL

2

)1/2

+
N∑

n=2

ζn ϕn(x) Yn(ω). (6.2)

where

ζn :=
(√

πL
)1/2 exp

(
−
(
bn

2 cπL
)2

8

)
, if n > 1 (6.3)

and

ϕn(x) :=

 sin
(
bn

2
cπx

Lp

)
, if n even,

cos
(
bn

2
cπx

Lp

)
, if n odd.

(6.4)

For x ∈ [0, d] let Lc be a desired physical correlation length for the coefficient
a, meaning that the random variables a(x) and a(y) become essentially un-
correlated for |x − y| >> Lc. Then, the parameter Lp in (6.4) and (6.3) is
Lp = max{d, 2Lc} and the parameter L in (6.2) and (6.3) is

L =
Lc

Lp
.

In this example, the random variables {Yn(ω)}∞n=1 are independent, have
zero mean and unit variance, i.e. E[Yn] = 0 and E[YnYm] = δnm for n, m ∈ N+,
and are uniformly distributed in the interval [−

√
3,
√

3]. Expression (6.2) is
truncation of a one-dimensional random field with stationary covariance

cov[log(aN − 0.5)](x1, x2) = E
[
(log(a)(x1)− E[log(a)](x1)) ((log(a)(x2)− E[log(a)](x2))

]
= exp

(
−(x1 − x2)2

L2
c

)
.

We consider now an a priori selection of the weights g(n) based on formula (4.6).
For that, from (2.7) we can estimate the parameters τn by
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τn =
1

4ζn‖ϕ‖∞
=


√

1
8
√

πL
, for n = 1

√
1

16
√

πL
exp

(
bn

2
c2π2L2

8

)
, for n > 1.

Then, using (4.6) the weight vector g becomes

g(n) =


log
(
1 +

√
1

24
√

πL

)
, for n = 1

log
(
1 +

√
1

48
√

πL
exp

(
bn

2
c2π2L2

8

))
, for n > 1

(6.5)

and then we have %n ≥ eg(n) for all n = 1, 2, . . . , N .
In Table 2 we show the function values g(n) for n = 1, 2, . . . , N = 11

using (6.5). With this a priori information we can construct the simplices
i ∈ Xα(w,N). These become the indices i ∈ NN

+ used for solving problem (6.1)
with correlation lengths Lc = 1/2, 1/4, 1/16 and 1/64. This table also yields
insight into the anisotropic behavior of each problem. In the case of small cor-
relation lengths, i.e. Lc = 1/64, we observe an almost equal weighing of all
stochastic directions, except for the first one. The opposite behavior can be seen
as we increase the correlation length. For example, when Lc = 1/2 the ratio
between g(11) and g = g(2) = g(3) is approximately 30 : 1.

g(1) g(2), g(3) g(4), g(5) g(6), g(7) g(8), g(9) g(10), g(11)
Lc = 1/2 0.20 0.19 0.42 1.24 3.1 5.8
Lc = 1/4 0.27 0.21 0.26 0.36 0.56 0.91
Lc = 1/16 0.48 0.36 0.37 0.37 0.38 0.40
Lc = 1/64 0.79 0.62 0.62 0.62 0.62 0.62

Table 2: The N = 11 values of the function g(n) constructed from a priori
information given by (6.5) for correlation lengths Lc = 1/2, 1/4, 1/16, 1/64.

Since the random variables Yn are uniformly distributed, in this case the
Gaussian abscissas correspond to the root of the Legendre polynomials. Recall
from Section 3.3.1 that the Clenshaw-Curtis abscissas are nested and therefore,
the number of points η = η(w,N) = #Hα(w,N) can be counted as in formula
(5.18). On the other hand, the Gaussian abscissas, described in Section 3.3.2,
are not nested and hence, we can count the number of points η used by the
Smolyak interpolant as in (5.27).

The finite element space for the spatial discretization is the span of contin-
uous functions that are piecewise polynomials with degree two over a uniform
triangulation of D with 4225 unknowns.

Observe, in general, that the collocation method only requires the solution
of uncoupled deterministic problems over the set of collocation points, even in
the presence of a diffusivity coefficient which depends nonlinearly on the random
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variables as in (6.2). This is a significant advantage that the collocation method
offers compared to the classical Stochastic-Galerkin finite element method as
considered, for instance, in [2, 12, 23, 33]. To study the convergence of the
anisotropic Smolyak algorithm we consider a problem with a fixed dimension N
and investigate the behavior when the level w of the interpolation in the Smolyak
algorithm is increased linearly.

The computational results for the L2(D) approximation error to the expected
value, E[u], are shown in Figures 4. Here we consider the truncated probability
space to have dimensions N = 5 and N = 11 and we compute approximate
solutions up to level w. To estimate the computational error in the w-th level,
for 0 ≤ w ≤ w, first we denote the maximum index utilized by Aα(w,N) in each
stochastic direction, κ(α, w) ∈ NN

+ , given component-wise as:

κn(α, w) ≡ max
i∈Xα(w,N)

{in}. (6.6)

Then we introduce an enriched solution,

Abα(w + 1, N)πhuN , with α̂n =
(

κn(α, w)− 1
κn(α, w)

)(
αn

α

)
, (6.7)

and approximate the computational error for w = 0, 1, 2, . . . , w as

‖E[ε]‖ ≈ ‖E[Aα(w,N)πhuN −Abα(w + 1, N)πhuN ]‖ (6.8)

By construction, the enriched solution possesses a maximum index κ(α̂, w +
1) which is larger by one in each direction, i.e. κn(α̂, w + 1) = κn(α, w) + 1,
n = 1, . . . , N .

Tables 3 and 4 show the values κ(α, w) for computing Aα(w,N), with w =
0, 1, 2, . . . , w, as well as the value κ(α̂, w) for computing the enriched solution,
Abα(w,N), for the cases Lc = 1/2 and Lc = 1/64, respectively. The convergence
plots shown in Figures 4 and 5 confirm, as expected, that the error decreases sub-
exponentially, as the level w increases linearly. For highly anisotropic problems,
i.e. Lc = 1/2, we observe that the rate of convergence is increased significantly
with respect to the isotropic Smolyak method, as we anticipated in Theorem 5.7.
We also observe that the convergence rate is dimension dependent and slightly
deteriorates as N increases.

To investigate the performance of the algorithm by varying the correlation
length Lc we examine Figure 5. We notice that the larger correlation lengths have
positive effects on the rate of convergence. This can be explained by examining
g(n) defined by (6.5). From this we see that as Lc becomes large the higher
dimensions weigh less which greatly reduces the number of function evaluation
required by the anisotropic sparse collocation method. On the other hand, the
effect of decreasing Lc is a deterioration of the rate of convergence, due to the
equal weighing of all directions. In this case, our anisotropic Smolyak algorithm
and the isotropic Smolyak obtain an equivalent convergence rate. Our final
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w κ1 κ2=κ3 κ4=κ5 κ6=κ7 κ8=κ9 κ10=κ11

0 1 1 1 1 1 1
1 1 2 1 1 1 1
2 2 3 1 1 1 1
3 3 4 2 1 1 1
4 4 5 2 1 1 1
5 5 6 3 1 1 1
κ̂ 6 7 4 2 2 2

Table 3: The N = 11 components of the maximum indices κ(α, w) and κ̂ =
κ(α̂, w + 1), defined by (6.6) and (6.7), respectively, used for solving problem
(6.1) with a correlation length Lc = 1/2.

w κ1 κ2=κ3 κ4=κ5 κ6=κ7 κ8=κ9 κ10=κ11

0 1 1 1 1 1 1
1 1 2 2 2 2 2
2 2 3 3 3 3 3
3 3 4 4 4 4 4
4 4 5 5 5 5 5
κ̂ 5 6 6 6 6 6

Table 4: The N = 11 components of the maximum indices κ(α, w) and κ̂ =
κ(α̂, w), defined by (6.6) and (6.7), respectively, used for solving problem (6.1)
with a correlation length Lc = 1/64.

interest is to compare our sparse tensor product methods, both isotropic and
anisotropic, with an anisotropic full tensor product method, proposed in [3] and
also with the Monte Carlo method.

The isotropic Smolyak algorithm for solving problem (6.1) was analyzed in
[25] and can be constructed by equally weighing all stochastic directions, i.e.
α = 1 ∈ RN

+ . To estimate the computational error in the w-th level we approx-
imate ‖E[ε]‖ ≈ ‖E[A (w,N)πhuN − A (w + 1, N)πhuN ]‖ using either Gaussian
or Clenshaw-Curtis abscissas.

The anisotropic full tensor product algorithm can be described in the fol-
lowing way: given a tolerance tol the method computes a multi-index p =
(p1, p2, . . . , pN ), corresponding to the order of the approximating polynomial
spaces Pp(ΓN ). This adaptive algorithm increases the tensor polynomial degree
with an anisotropic strategy: it increases the order of approximation in one di-
rection as much as possible before considering the next direction. Table 5 and
Table 6 show the values of components of the 11-dimensional multi-index p for
different values of tol, corresponding to Lc = 1/2 and Lc = 1/64 respectively.
These tables can also give insight into the anisotropic behavior of each particular
problem and should be compared with Tables 5 and Table 6, respectively. Ob-
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serve, in particular, for the case Lc = 1/64 the algorithm predicts a multi-index
p which is equal in all directions, i.e. an isotropic tensor product space. A con-
vergence plot for Lc = 1/2 and Lc = 1/64 can be constructed by examining each
row of the Table 5 and Table 6 respectively, and plotting the number of points
in the tensor product grid versus the error in expectation. We estimate the error
in expectation by ‖E[ε]‖ ≈ ‖E[uN

h,p−uN
h,ep]‖, with p̃ = (p1 +1, p2 +1, . . . , pN +1).

This entails an additional computational cost, which is bounded by the factor
exp

(∑N
n=1 1/pn

)
times the work to compute E[uN

h,p].

tol N = 1 N = 2, 3 N = 4, 5 N = 6, 7 N = 8, 9 N = 10, 11
1.0e-04 1 1 1 1 1 1
1.0e-05 2 1 1 1 1 1
1.0e-06 2 2 1 1 1 1
1.0e-07 3 2 2 1 1 1
1.0e-08 4 3 2 1 1 1
1.0e-09 4 4 3 1 1 1
1.0e-10 5 5 3 2 1 1
1.0e-11 5 5 4 2 1 1
1.0e-12 5 6 4 2 1 1

Table 5: The N = 11 components of the multi index p computed by he
anisotropic full tensor product algorithm when solving problem (6.1) with a
correlation length Lc = 1/2.

tol N = 1 N = 2, 3 N = 4, 5 N = 6, 7 N = 8, 9 N = 10, 11
1.0e-03 1 1 1 1 1 1
1.0e-06 2 2 2 2 2 2
1.0e-09 3 3 3 3 3 3
1.0e-12 4 4 4 4 4 4

Table 6: The N = 11 components of the multi index p computed by the
anisotropic full tensor product algorithm when solving problem (6.1) with a
correlation length Lc = 1/64.

The standard Monte Carlo Finite Element Method is the most common
choice for anyone solving SPDEs such as (6.1) [6, 3]. If the aim is to compute
a functional of the solution such as the expected value, one would approximate
E[u] numerically by sample averages of iid realizations of the stochastic input
data. Given a number of realizations, M ∈ N+, we compute the sample average
as follows: For each k = 1, . . . ,M , sample iid realizations of a(ωk, ·) and f(ωk, ·),
solve problem (6.1) and construct finite element approximations uN

h (ωk, ·). We
note that once we have fixed ω = ωk, the problem is completely deterministic,
and may be solved by standard methods as in the collocation approach. Finally,
approximate E[u] by the sample average: E[uN

h,k;M ](·) := 1
M

∑M
k=1 uN

h (ωk, ·).
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For the cases Lc = 1/2, 1/4, 1/16 and 1/64 we take M = 2i, i = 0, 1, 2, . . . , 11
realizations and compute the approximation to the error in expectation by
‖E[ε]‖ ≈ ‖E[uN

h,k;M ] − E[Abα(w + 1, N)πhuN ]‖, where Abα(w + 1, N) is the en-
riched anisotropic sparse solution defined previously and α̂ is defined by (6.7).

To study the advantages of an anisotropic sparse tensor product space as
opposed to the isotropic sparse tensor product space or an anisotropic full tensor
product space we show, in Figure 6, the convergence of these methods when
solving problem (6.1), using correlation lengths Lc = 1/2, 1/4, 1/16 and Lc =
1/64 with N = 11. We also include 5 ensembles of the Monte Carlo method
described previously. Figure 6 reveals that for the isotropic case with Lc = 1/64
the anisotropic and isotropic Smolyak method obtain a comparable convergence
rate, both faster than the anisotropic full tensor product method.

On the contrary, opposite behavior can be observed for Lc = 1/2. Since, in
this case, the rate of decay of the expansion is faster, the anisotropic full tensor
method weighs heavily the important modes and, therefore, achieves a faster con-
vergence than the isotropic Smolyak method. Similar conclusions can be made
for the anisotropic Smolyak: the increased convergence for this method comes
from the fact that it combines an optimal treatment of the problem anisotropy
while reducing the curse of dimensionality via the use of sparse grids.

In all four cases we observe that all the 3 methods out-perform the Monte
Carlo method. We know that the amount of work to reach the accuracy ε in
the Monte Carlo approach can be approximated by ε ≈ O(M−1/2) times the
amount of work per sample, where M is the number of samples. This is only
affected by the problem dimension through the increase of the work per sample.
Nevertheless, the convergence rate is quite slow and a high level of accuracy is
only achieved when an large amount of function evaluations are required. This
can been seen from Figure 6 where we include reference lines with slopes −1/2
and −1, respectively, or in Table 7 where, for N = 11, we compare the work,
proportional to the number of samples, which is the number of collocation points,
required by each method to decrease the original error by a factor of 104 for all
four correlation lengths Lc = 1/2, 1/4, 1/16 and Lc = 1/64.

Lc AS AF IS MC
1/2 50 2.5× 102 2.5× 103 5.0× 109

1/4 1.6× 102 1.2× 103 4.0× 103 2.0× 109

1/16 2.0× 102 2.0× 103 5.0× 102 1.6× 109

1/64 3.1× 102 2.0× 105 3.6× 102 1.3× 109

Table 7: For N = 11, we compare the number of function evaluations required
by the Anisotropic Smolyak (AS) using Clenshaw-Curtis abscissas, Anisotropic
Full Tensor product method (AF) using Gaussian abscissas, Isotropic Smolyak
(IS) using Clenshaw-Curtis abscissas and the Monte Carlo (MC) method using
random abscissas, to reduce the original error by a factor of 104.
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Figure 4: The rates of convergence of the anisotropic Smolyak algorithm for
solving problem (6.1) with given correlation lengths Lc = 1/2, 1/4, 1/16 and
1/64 using both the Gaussian and Clenshaw-Curtis abscissas. For a finite
dimensional probability space ΓN with N = 5 and N = 11 we plot log(ε)
versus the number of collocation points. The L2(D) approximation error in
the expected value for the anisotropic sparse collocation methods is given by:
‖E[ε]‖L2(D) ≈ ‖E[Aα(w,N)πhuN−Abα(w,N)πhuN ]‖L2(D) where w = 0, 1, . . . , w
and α̂ is defined by (6.7).
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Figure 5: The convergence of the anisotropic Smolyak algorithm for solving
problem (6.1) with given correlation lengths Lc = 1/2, 1/4, 1/16 and 1/64 us-
ing both the Gaussian and Clenshaw-Curtis abscissas. For a finite dimensional
probability space ΓN with N = 5 and N = 11 we plot log(ε) versus the loga-
rithm of the number of collocation points. The L2(D) approximation error in
the expected value for the anisotropic sparse collocation methods is given by:
‖E[ε]‖L2(D) ≈ ‖E[Aα(w,N)πhuN−Abα(w,N)πhuN ]‖L2(D) where w = 0, 1, . . . , w
and α̂ is defined by (6.7).
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Figure 6: A 11-dimensional comparison of the anisotropic Smolyak method,
the isotropic Smolyak method, the anisotropic full tensor product algorithm
and Monte Carlo approach for solving problem (6.1) with correlation lengths
Lc = 1/2, 1/4, 1/16 and 1/64. The L2(D) approximation error in the ex-
pected value for the sparse collocation methods is given by: ‖E[ε]‖L2(D) ≈
E[Aα(w,N)πhuN −Abα(w,N)πhuN ] where w = 0, 1, . . . , w and α̂ is defined by
(6.7). The L2(D) approximation error in the expected value for the anisotropic
full tensor product method is given by: ‖E[ε]‖L2(D) ≈ ‖E[uN

h,p − uN
h,ep]‖L2(D),

where p = (p1, p2, . . . , pN ) and p̃ = (p1 + 1, p2 + 1, . . . , pN + 1). The L2(D)
approximation error in the expected value for the Monte Carlo method is given
by: ‖E[ε]‖L2(D) ≈ ‖E[uN

h,k;M ] − E[Abα(w,N)πhuN ]‖L2(D), where M = 2i,
i = 0, 1, 2, . . . , 10.
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7 Conclusions

This work proposed and analyzed a novel weighted Smolyak method, describing
an optimal choice for the weight parameters. These weights adaptively tune the
anisotropy of the method for each given problem. Their systematic choice can
be based both on a priori or a posteriori information and is motivated by the
regularity of the solution and the error estimates derived in this work.

The method proposed here can be viewed as a natural extension of our pre-
vious works; the full tensor Stochastic Collocation method [1] and the isotropic
Sparse Grid Stochastic Collocation method [25].

The new technique consists of a Galerkin approximation in physical space
and an anisotropic collocation in probability space, at the zeros of sparse tensor
product polynomials utilizing either Clenshaw-Curtis or Gaussian knots. As a
consequence of the collocation approach our techniques naturally lead to the
solution of uncoupled deterministic problems that are trivially parallelizable, as
in the Monte Carlo method.

The error estimates derived in this work predict a rate of convergence that
is at least algebraic with respect to the total number of collocation points. Sim-
ilarly to the Monte Carlo method, the number of collocation points is directly
proportional to the computational work required by the algorithm. Furthermore,
the derived estimates provide a glimpse into future directions in this area. We
observe that for problems possessing coefficients that are truncated expansions
with proper decay in each probability direction, there may not be a deterioration
in the exponent of the algebraic convergence with respect to the truncation di-
mension. This is a substantial advantage when comparing to the previous works
[1] and [25].

The numerical examples included in this work gave computational ground to
the theoretical results and suggest that the actual convergence rate of the method
may be superior to the prediction yielded by the current error estimates. The
numerical results include a comparison of the new weighted Smolyak method
with the methods from [1], [25] and the standard Monte Carlo. In particular,
for moderately large dimensional problems, the anisotropic sparse grid approach
seems to be very efficient and superior to all examined methods.
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