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Abstract

The dual weighted residual (DWR) method yields reliable a posteriori error bounds
for linear output functionals provided that the error incurred by the numerical ap-
proximation of the dual solution is negligible. In that case its performance is gener-
ally superior than that of global ‘energy norm’ error estimators which are ‘uncondi-
tionally’ reliable. We present a simple numerical example for which neglecting the
approximation error leads to severe underestimation of the functional error, thus
showing that the DWR method may be unreliable. We propose a remedy that pre-
serves the original performance, namely a DWR method safeguarded by additional
asymptotically higher order a posteriori terms. In particular, the enhanced estima-
tor is unconditionally reliable and asymptotically coincides with the original DWR
method. These properties are illustrated via the aforementioned example.
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1 Goal-oriented error estimation by duality and outline

Suppose that we are given the prototype elliptic boundary value problem

−∆u = f in Ω, u = 0 on Γ = ∂Ω (1)

and a linear output functional G such that G(u) is a quantity of physical, engineering, or
scientific interest. In order to approximate G(u), one may compute G(u1

T ), where u1
T ∈

V
1
T (Ω) is the linear finite element approximation to u over a conforming triangulation

∗Research partially supported by NSF grants DMS-0204670, DMS-0505454, and by Italian MIUR

PRIN 2006 “Metodi numerici avanzati per il calcolo scientifico”.
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T of Ω. We are interested in estimating the approximation error |G(u) − G(u1
T )| =

|G(u− u1
T )|.

Several approaches have been proposed for this task; see [1, 2, 12, 13, 14, 15]. A key
device is duality [6, 7, 8, 9]. In fact, combining the solution of the dual problem

−∆z = G in Ω, z = 0 on Γ = ∂Ω (2)

with Galerkin orthogonality yields the representation formula

G(u− u1
T ) = 〈−∆z, u− u1

T 〉 =
〈

∇z,∇(u− u1
T )

〉

=
〈

∇(u− u1
T ),∇(z − z1

T )
〉

, (3)

where 〈·, ·〉 stands for the duality pairing H−1(Ω)×H1
0 (Ω) or the scalar product in L2(Ω)

and z1
T denotes the linear finite element approximation of z. Moreover, invoking also

the residual R(u1
T ) = f + ∆u1

T ∈ H−1(Ω) of the primal solution and splitting it into
element contributions leads to the alternative representation formula:

G(u− u1
T ) = 〈R(u1

T ), z − z1
T 〉 =

∑

T∈T

〈R, z − z1
T 〉T − 〈J, z − z1

T 〉∂T , (4)

where R and J denote the interior and jump residual of the approximate primal solution
u1
T (for their precise definitions, see (10) below). These two error representations give

rise to two basic ideas:

• Estimate the right hand side of (3) by means of global ‘energy norm’ techniques.

• Eliminate the explicit appearance of the not computable dual solution z from the
right hand side of (4).

The realization of the first idea requires a passage to global energy norms, which can
be accomplished by the Cauchy-Schwarz inequality

〈

∇(u− u1
T ),∇(z − z1

T )
〉

≤ ‖∇(u− u1
T )‖0,Ω‖∇(z − z1

T )‖0,Ω; (5)

hereafter ‖ · ‖s,ω indicates the norm of Hs(ω). Since the energy norms on the right
hand side can be estimated in an unconditionally reliable way, the ensuing estimator is
also unconditionally reliable. However, a global step like (5) does not take into account
possible ‘cancellations’ in the product 〈∇(u − u1

T ),∇(z − z1
T )〉 and may thus entail a

severe overestimation: in the case of (5), this is measured by the angle between u− u1
T

and z − z1
T in H1

0 (Ω), which depends on the interplay of f and G.
The second idea offers a way to exploit cancellations. In fact, the appearance of

z − z1
T in the right hand side of (4) may be interpreted as a locally varying weight to

the residual R(u1
T ) of the primal solution. This interpretation seems to be particularly

useful in instances when the dual solution exhibits complex behavior and its size varies
substantially in the computational domain Ω. In this spirit Becker and Rannacher [2]
have proposed the Dual Weighted Residual (DWR) estimate

|G(u− u1
T )| ≤

∑

T∈T

ρTωT , (6)
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where

ρT := ‖R‖0,T + h
−1/2
T ‖J‖0,∂T and ωT := ‖z − z1

T ‖0,T + h
1/2
T ‖z − z1

T ‖0,∂T

and hT is the diameter of T . Strictly speaking, (6), as it stands, is not really a classical a
posteriori error bound, because it involves the unknown solution z to the dual problem.
To approximate the dual solution z numerically, there are two different approaches [3]:

• Post-process the linear finite element solution z1
T of (2) over T , the mesh correspond-

ing to the approximate primal solution u1
T .

• Approximately solve the dual problem (2) by means of a higher order method or on
a mesh that is finer than T .

Of course, both approaches yield a reliable variant of (6) only if the corresponding
approximation error is negligible. If the approximation of z is of higher order, then this
is guaranteed for a sufficiently small (global) meshsize. In this respect, E. Süli in his
review [18] of the book [1] writes:

“The additional errors incurred through the numerical approximation of the dual
solution are difficult to quantify unless one embarks on reliable a posteriori error
estimation for the dual problem; for reasons of economy, this is rarely attempted in
practice. Indeed, there is very little in the current literature in the way of rigorous
analytical quantification of the impact of replacing the exact dual solution z in the
DWR error bound by its numerical approximation; see, however, the recent analytical
work of Carstensen [4] on the estimation of higher Sobolev norms from lower order
approximation, and the application of this in the context of the DWR method. A
second issue is that the necessity to obtain a “reasonably” accurate approximation
to the dual solution adds computational work.”

In this vein, it is worth stressing that [4] gives a justification for the recovery of z
from z1

T provided that the global meshsize is sufficiently small. Thus, at least from a
theoretical viewpoint, the issue of reliability remains open for relatively coarse or strongly
graded meshes – two cases that are quite important in an adaptive context. Notice also
that the notion ‘sufficiently small meshsize’, and so the guaranteed reliability of the
computational DWR method, is strongly problem-dependent, quite vague, and difficult
to verify in practice.

These serious theoretical drawbacks are not just ‘academic’. In §2 we show with the
help of a simple, far from pathological, example that the DWR method with a higher
order approximation of the dual solution is unreliable on relatively coarse meshes, i.e. in
early stages of adaptivity when critical decisions have to be made. Consequently, even
if one restricts to the model problem class described by (1) and (2), the DWR method
should not be implemented as a ‘black box’ algorithm.

We propose a remedy that preserves the advantages of the DWR estimate. We derive
in §3 the a posteriori upper bound

|G(u− u1
T )| ≤ E1(T ) + E2(T ), (7)
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where E1(T ) is a computable version of the right hand side of (6), based upon the
quadratic finite element approximation of the dual solution z, and E2(T ) is an a posteriori
estimate of the error incurred by the approximation of z, which in the original DWR
method is neglected. Thanks to the ‘safeguarding’ part E2(T ), the bound (7) holds
also on relatively coarse and strongly graded meshes. Consequently, E1(T ) + E2(T )
is unconditionally reliable. Moreover, since E2(T ) estimates an error that is formally
of higher order, we can expect that E1(T ) + E2(T ) asymptotically coincides with the
usual DWR method, thus essentially maintaining its performance. Both properties are
illustrated by our numerical experiments in §4, where we apply (7) to the example of §2.

The validity of the usual DWR method hinges upon a closeness assumption on the
numerical approximation to the dual solution, which is strongly problem-dependent and
thus problematic: it depends on the differential operator, the domain and the output
functional. It thus appears very difficult to design an abstract and general strategy for
estimating the error incurred on substituting the dual solution by a numerical approxi-
mation. Therefore, our contribution is inevitably rather modest in scope since we restrict
the discussion to the simple model (1). Despite its simplicity, the behavior of the DWR
method can already be troublesome for (1). In order to avoid any closeness assumption
on the numerical dual solution, we need to incorporate additional geometric informa-
tion about the interaction of the elliptic operator and the domain, namely the structure
of corner singularities. Such information is often available for most important elliptic
operators in applications, both in 2D and 3D, but the ensuing safeguarded estimator
(7) is far from a problem-independent tool. On the other hand, typical functionals G
are unrelated to corner singularities and so their explicit use in constructing an estima-
tor that gets around the closeness assumption on the numerical dual solution seems to
be justified. We hope that this first attempt to make the DWR method reliable will
promote further research on this important but unexplored territory.

2 Example: the DWR method is unreliable

We first discuss the computational DWR method to be used in what follows and then
present an example for which it fails.

Define u, u1
T , and z as in §1. If z2

T ∈ V
2
T (Ω) is the continuous piecewise quadratic

finite element approximation to z, then we may write

G(u− u1
T ) = 〈R(u1

T ), z2
T 〉 + 〈R(u1

T ), z − z2
T 〉. (8)

Observe that the first term on the right hand side is computable and can be rewritten
upon using the definition of u1

T and integrating by parts elementwise:

〈R(u1
T ), z2

T 〉 =
∑

T∈T

〈R, z2
T − I1

T z
2
T 〉T − 〈J, z2

T − I1
T z

2
T 〉∂T , (9)

where I1
T is the Lagrange interpolation operator onto V

1
T (Ω) and the element and in-

terelement residuals R and J are defined as follows: for each triangle T or each side S
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of T , respectively, there holds

R = f, J =

{

1
2 [νS · ∇u1

T ], if S ⊂ ∂T \ ∂Ω,
0, if S ⊂ ∂Ω,

(10)

where [νS · ∇u1
T ] denotes the jump of the normal flux across the interelement side S

(which does not depend on the orientation of νS). The second term in (8), however,
depends on the unknown dual solution z and thus, in general, is not computable.

According to [3, (3.60)], 〈R(u1
T ), z − z2

T 〉 can be neglected from (8) for a sufficiently
fine initial mesh. In this case, (9) suggests the a posteriori error estimator

E1(T ) :=
∣

∣

∣

∑

T∈T

〈R, z2
T −I

1
T z

2
T 〉T−〈J, z2

T −I
1
T z

2
T 〉∂T

∣

∣

∣
≤

∑

T∈T

∣

∣

∣
〈R, z2

T −I
1
T z

2
T 〉T−〈J, z2

T −I
1
T z

2
T 〉∂T

∣

∣

∣
.

(11)
Notice that E1(T ) allows for interelement cancellations, while the right hand side of (11)
does not; however, the latter consists of positive element contributions. This suggests
to mark elements to be refined with the help of the indicators

∣

∣

∣
〈R, z2

T − I1
T z

2
T 〉T − 〈J, z2

T − I1
T z

2
T 〉∂T

∣

∣

∣
, T ∈ T , (12)

but to stop the algorithm employing E1(T ). Regarding the sharpness of E1(T ) and its
relationship with (6), it is instructive to observe that

E1(T ) = |〈R(u1
T ), z2

T 〉| = |〈R(u1
T ), z2

T − z1
T 〉|

≤
∑

T∈T

∣

∣

∣
〈R, z2

T − z1
T 〉T − 〈J, z2

T − z1
T 〉∂T

∣

∣

∣
≤

∑

T∈T

ρT ω̃T ,
(13)

with
ω̃T := ‖z2

T − z1
T ‖0,T + h

1/2
T ‖z2

T − z1
T ‖0,∂T , ∀T ∈ T .

This means that E1(T ) is bounded by a computable version of the DWR estimator in (6).
The steps in (13) do not incorporate additional information about the dual solution z
and, thus,

∑

T∈T ρT ω̃T is just bigger than E1(T ), without actually increasing reliability.
Therefore, in what follows, we consider E1(T ) as the original DWR estimator.

We implemented an adaptive algorithm aiming at |G(u−u1
T )| ≤ tol for a prescribed

tolerance tol > 0 within the framework of the finite element toolbox ALBERTA [16].
The algorithm stops when E1(T ) ≤ tol is satisfied and marks elements for refinement
with the help of the equidistribution strategy, the indicators of which are given by (12).

Let us consider (1) with the L-shaped domain Ω := (−2, 2)2 \ (−2, 0) ⊂ R
2 and

the constant load f = 1 in Ω. We are interested in approximating ∂yu(x0, y0) with
(x0, y0) = (−0.5, 1). Since u 7→ ∂yu(x0, y0) is not a continuous functional in H1

0 (Ω),
we resort to the following approximation G of the y-derivative of the Dirac mass in
(x0, y0) = (−0.5, 1):

G(x, y) = −
a(y − y0)

b+ ((x− x0)2 + (y − y0)2)2.5
with a = 3, b = 10−4;
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Figure 1: Plot of the regularized ∂yδ(x0 ,y0) 6∈ H−1(Ω) (left). Initial (and final, using
original DWR) mesh (right).

see also Figure 1 (left). We require tol = 0.1 and start from the mesh T0 in Figure
1 with 12 triangles, for which the point (x0, y0) is not a (linear or quadratic) node. It
turns out that

E1(T0) = 0.070921 but |G(u− u1
T0

)| = 1.66290594.

The value of E1(T0) causes the instantaneous stop of the DWR method, while the ap-
proximation error |G(u − u1

T )| in the quantity of interest is still large. We conclude
that discarding 〈R(u1

T ), z− z2
T 〉 in (8) leads to severe underestimation in that the actual

error is about 25 times larger than the estimator. The use of E1(T ) without any further
reliability checks may thus lead to unreliable results.

This behavior is not surprising since on the mesh T0 the functional G is quasi-
orthogonal to the space V

2
T (Ω) of continuous piecewise quadratic finite elements. There-

fore, neglecting the second term in (8) has a devastating effect of almost complete loss
of information: the neglected term contains most of the information on G! To convince
ourselves that this elementary example is not that special a simple counting argument
suffices. The ‘zoo’ of pairs of functionals G and coarse meshes T0 exhibiting the same
critical behavior can be (potentially) dangerous in practical situations in which cancel-
lation, the very reason for using the DWR method, may be difficult or impossible to
detect beforehand.

3 A safeguarded DWR estimator

As illustrated in §2, the DWR is in general unreliable. However, exploitation of cancel-
lations, as described in §1, remains a valid conceptual advantage. Therefore, the design
of a reliable variant of the DWR method is a highly desirable objective. To this end, we
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observe that the term neglected in the DWR method of §2, that is the second term in
the right hand side of (8), satisfies

〈R(u1
T ), z − z2

T 〉 = 〈∇(u− u1
T ),∇(z − z2

T )〉 = 〈∇(u− u2
T ),∇(z − z2

T )〉, (14)

where u2
T denotes the quadratic finite element approximation to u and the Galerkin or-

thogonality for z2
T has been used. Identity (14) reveals that, depending on the regularity

of u and z, the neglected term is of higher order. Notice also that the ‘higher order con-
tribution’ associated with z hinges on G and, thus, is affected by possibile regularizations
as in §2.

The right hand side of (14) can be estimated by means of global energy norm tech-
niques. Inserting these estimates in (8) leads to a DWR estimate that is safeguarded by
higher order terms. However, such an approach additionally requires the computation
of u2

T , which, when at hand, suggests the use of G(u2
T ) as approximate value for G(u).

We thus end up with the classical dilemma of a posteriori error estimation by higher
order terms.

Here we shall pursue a different approach that relies on the assumption

f ∈ H1+ε(Ω) (15)

with ε ≥ 0 to be specified below (see Remark 3.1) and the identity

〈R(u1
T ), z − z2

T 〉 = 〈∇(z − z2
T ),∇(u− Π2

T u)〉 = 〈R∗(z2
T ), u− Π2

T u〉, (16)

where R∗(z2
T ) := G + ∆z2

T ∈ H−1(Ω) denotes the dual residual, and Π2
T u is an appro-

priate second order interpolant of u. The term 〈R∗(z2
T ), u−Π2

T u〉 can be estimated with
the help of the techniques in [11]. The computation of u2

T is not required and, thanks
to the assumption (15), there is a higher order contribution that is independent of G;
see Remark 3.2.

Apart from (15), we suppose that the data of (1) and (2) satisfies

Ω ⊂ R
2 is a bounded, polygonal domain and G ∈ L2(Ω). (17)

3.1 Corner singularities

Assumption (15) implies extra regularity for the primal solution u, which has to be
exploited for a sharp estimate of the last term 〈R∗(z2

T ), u−Π2
T u〉 in (16). However, the

full shift theorem, which would imply u ∈ H3+ε(Ω), is spoiled by singularities at the
corners of Ω. In this subsection we recall a decomposition of the solution u of (1) into
a smooth part with regularity compatible with the shift theorem and singular functions
associated to the corners of Ω; this decomposition is a main tool for our estimate of
〈R∗(z2

T ), u− Π2
T u〉 in (16).

Let Γ1, . . . ,ΓM be the segments of Γ = ∂Ω and let P1, . . . , PM be the vertices arranged
in a counterclockwise order so that Pl and Pl+1 are the two vertices of Γl and Γl,Γl−1

are the two sides emanating from Pl. Let ωl ∈ (0, 2π] denote the interior angle of Γ
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at Pl, measured in a counterclockwise direction from Γl to Γl−1. Given the smoothness
parameter s ≥ 2, define

Jl(s) = max{j ∈ N | jαl < s− 1}

with αl = π/ωl ∈ [1/2,∞) and the convention max ∅ = −∞. We finally introduce the

singular functions ψ
(l)
j associated with each vertex. Let the polar coordinates (rl, θl) be

chosen at vertex Pl so that the interior angle ωl is spanned by the two half lines θl = 0
and θl = ωl. The singular functions can be written as

ψ
(l)
j (rl, θl) = φl(rl)v

(l)
j (rl, θl),

where φl(rl) are smooth cut-off functions which equal 1 in a neighborhood of rl = 0 and

possess non-overlapping support, whereas v
(l)
j are given by

v
(l)
j (rl, θl) :=

{

rjαl

l sin(jαlθl), if jαl 6∈ N,

rjαl

l

(

θl cos(jαlθl) + (log rl) sin(jαlθl)
)

, if jαl ∈ N.

Notice that, if jαl ∈ N, then v
(l)
j and so ψ

(l)
j does not have homogeneous Dirichlet

boundary values.

Theorem 3.1 (Shift theorem with corner singularities). Let s ≥ 2 be such that
(s− 1)/αl 6∈ N for every l = 1, . . . ,M . Then f ∈ Hs−2(Ω) entails that the solution u of
(1) satisfies

u =

M
∑

l=1

Jl(s)
∑

j=1

Λ
(l)
j ψ

(l)
j + w (18)

with

‖w‖s,Ω +
M
∑

l=1

Jl(s)
∑

j=1

|Λ
(l)
j | ≤ C‖f‖s−2,Ω. (19)

Proof. See [10, Thm 3.1], [5].

3.2 Weighted Residual Estimator

The effect of the corner singularities in §3.1 is encoded into a suitable weight for the
ensuing estimator of 〈R∗(z2

T ), u−Π2
T u〉. In this subsection we first introduce this weight

and then define the estimator.
The aforementioned weight is built up with the following modified distance functions

ρl : Ω̄ → R
+, l = 1, . . . ,M :

ρl(x) :=
√

rl(x)2 + h(x)2, ∀x ∈ Ω̄,

where rl(x) := |x−Pl| is the Euclidean distance between x and the vertex Pl of Ω and h
denotes the piecewise constant meshsize of T , that is the restriction of h to any T ∈ T
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equals the diameter of T , h|T = hT . Notice that ρl is strictly positive in Ω̄ and so in
particular in Pl. Moreover, as we will see in a moment, there hold

Pl /∈ T =⇒ rl(x) < ρl(x) ≤ Crl(x), ∀x ∈ T (20)

as well as the non-oscillation property

max
x∈N(T )

ρl ≤ Λ min
x∈N(T )

ρl(x), ∀T ∈ T , (21)

where C and Λ solely depend on the minimum angle of T ; hereafter, the neighborhood

N(A) :=
⋃

{T ′ ∈ T : A ∩ T ′ 6= ∅} (22)

of a given closed set A is the union of all elements of the partition T adjacent A. To
prove the nontrivial inequality of (20), we recall that

dist(T,Ω \N(T )) ≥ ChT , ∀T ∈ T ,

with C > 0 solely depending on the minimum angle of T . Therefore, for elements T not
containing corner Pl,

rl(x) ≥ dist(T, Pl) ≥ dist(T,Ω \N(T )) ≥ ChT = Ch(x), ∀x ∈ T, (23)

whence ρl ≤ Crl in T . To prove (21), we first observe that there hold maxN(T ) h ≤
CminN(T ) h with C as above and maxN(T ) rl ≤ minN(T ) rl + 3maxN(T ) h since rl is
Lipschitz with constant 1. Thus, if N(T ) 3 Pl, then (21) follows from minN(T ) rl = 0
and h ≤ ρl and, if N(T ) 63 Pl, from (20).

Given a M -tuple γ = (γl)
M
l=1 with nonnegative coefficients, we define the mesh de-

pendent weight functions

σγ(x) := min
1≤l≤M

ργl

l (x) and σ−γ(x) :=
1

σγ(x)
, ∀x ∈ Ω, (24)

which also satisfy (21). The error indicator for a triangle T ∈ T is given by

η∗−1,γ(T )2 := h6
T ‖R

∗σγ‖
2
0,T + h5

T ‖J
∗σγ‖

2
0,∂T , (25)

where the dual element and interelements residuals R∗ and J∗ are defined as follows: for
each triangle T and side S of T ,

R∗ = G+ ∆z2
T , J∗ =

{

1
2 [νS · ∇z2

T ], if S ⊂ ∂T \ ∂Ω,
0, if S ⊂ ∂Ω.

(26)

The global estimator is then defined by summing the squared indicators:

η∗−1,γ(T )2 :=
∑

T∈T

η∗−1,γ(T )2. (27)

Notice that
η∗−1,γ(T ) ≤ h2

T (max
T

σγ)η∗1(T ), (28)

where η∗1(T )2 := h2
T ‖R

∗‖2
0,T +hT ‖J

∗‖2
0,∂T denotes the usual energy norm error indicator

for z2
T .
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3.3 Upper bound

We now prove the main result of this article, an a posteriori upper bound for the error
|G(u) − G(u1

T )| in the quantity of interest in terms of the DWR estimator (11) and
additional higher order safeguarding terms.

Theorem 3.2 (Upper bound). Suppose that (15) and (17) are valid with

ε ≥ 0 such that (2 + ε)/αl /∈ N for every l = 1, . . . ,M, (29)

where αl := π/ωl. Then the error of the approximation G(u1
T ) associated to the con-

tinuous linear finite element solution u1
T ∈ V

1
T (Ω) of (1) is bounded in the following

way:
|G(u) −G(u1

T )| ≤ E1(T ) + E2(T ),

where

E1(T ) =
∣

∣

∣

∑

T∈T

〈R, z2
T −I

1
T z

2
T 〉T−〈J, z2

T −I
1
T z

2
T 〉∂T

∣

∣

∣
, E2(T ) = C

M
max
l=1

L(hl)
3/2η∗−1,−β(T )‖f‖1+ε,Ω,

z2
T denotes the continuous piecewise quadratic finite element solutions of (2), L(hl) :=

1 + | log hl| with hl indicating the minimum length of all sides emanating from Pl, and
η∗−1,−β(T ) is given by (27) and β := (βl)

M
l=1 with

βl := max
(

0, 2 − αl

)

. (30)

Remark 3.1 (Presence of ε). Condition (29) is due to the application of Theorem 3.1 with
s = 3+ε. Taking ε = 0 would exclude the important cases ωl ∈ {π/2, 3π/2, 2π} for some
l ∈ {1, . . . ,M}, but these cases are included with ε > 0 and so whenever f ∈ H 1+ε(Ω).

Remark 3.2 (Higher order nature of E2). In general, E2 is expected to be of higher order
‘away from the corners’. In what follows, we illustrate the higher order nature of E2 in
the case of a convex domain Ω, that is ωl < π for all l = 1, . . . ,M , and global refinement.
Although the estimate

E1(T ) ≤ ‖∇(u− u1
T )‖0,Ω‖∇(z2

T − z1
T )‖0,Ω

may be quite rough for concrete meshes, it is typically sharp in terms of asymptotic
convergence speed. Consequently, the convergence order (on globally refined meshes) of
E1 is the sum of the convergence orders of u1

T and of z1
T with respect to the energy norm

error. In view of (28), the convergence order of E2 is the sum of minM
l=1(2 − βl) and the

convergence order of z2
T with respect to the energy norm. Since minM

l=1(2 − βl) > 1 and
the order of z2

T is greater or equal to the one of z1
T , E2 is of higher order. Notice that the

possible higher order of z2
T hinges on the nature of G and may take place only on quite

fine meshes. Therefore, the higher order contribution associated with h2
T maxT σ−β in

(28) is particularly advantageous in the case of regularized output functionals as in §2.
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Proof of Theorem 3.2. In view of (8), (9), and (16), we have the error representation
formula

G(u − u1
T ) = 〈R(u1

T ), z2
T − I1

T z
2
T 〉 + 〈R∗(z2

T ), u− Π2
T u〉.

That the first term is bounded by E1(T ) follows from (11). Therefore, it just remains to
show that, for an appropriate choice of the interpolation operator Π2

T ,

〈R∗(z2
T ), u− Π2

T u〉 ≤ E2(T ) = C
M

max
l=1

L(hl)
3/2η∗−1,−β(T )‖f‖1+ε,Ω. (31)

Let Π2
T be the Scott-Zhang interpolation operator onto the space V

2
T (Ω) of continuous

piecewise quadratic finite elements over T ; see [17]. Then the following local stability
and error estimates are valid: for all k ∈ N0,m ∈ N with 0 ≤ k ≤ m ≤ 3, v ∈ Hm(Ω),
and T ∈ T ,

‖Dk(v − Π2
T v)‖k,T ≤ Chm−k

T ‖Dmv‖0,N(T ). (32)

In view of the non-oscillation property (21), this readily implies in particular the weighted
stability (k = m) and error estimate (k < m)

‖σ−βD
k(v − Π2

T v)‖0,T ≤ Chm−k
T ‖σ−βD

mv‖0,N(T ). (33)

Exploiting (29), we may invoke the decomposition in Theorem 3.1 with s = 3 + ε to
write

〈R∗(z2
T ), u− Π2

T u〉 = 〈R∗(z2
T ), w − Π2

T w〉 +

M
∑

l=1

Jl(s)
∑

j=1

Λ
(l)
j 〈R∗(z2

T ), ψ
(l)
j − Π2

T ψ
(l)
j 〉. (34)

We thus have to estimate the various evaluations of R∗(z2
T ) on the right hand side.

Let us start with 〈R∗(z2
T ), w − Π2

T w〉, which is associated to the regular part w ∈
H3(Ω) of u. Standard techniques for the residual error estimator and (32) with k = 0, 1
and m = 3 yield the following ‘weight-free’ estimate:

|〈R∗(z2
T ), w − Π2

T w〉| ≤ Cη∗−1,0(T )‖D3w‖0,Ω,

where C depends on the minimum angle of T . In view of βl ≥ 0 for all l = 1, . . . ,M ,
this implies

|〈R∗(z2
T ), w − Π2

T w〉| ≤ Cη∗−1,−β(T )‖D3w‖0,Ω (35)

with C depending also on the domain Ω.
For the remaining terms in (34) associated to the singular part of u, we modify

the preceding argument for |〈R∗(z2
T ), w − Π2

T w〉| as follows. Fix l ∈ {1, . . . ,M} and
j ∈ {1, . . . , Jl(s)}, and write

〈R∗(z2
T ), ψ

(l)
j − Π2

T ψ
(l)
j 〉 =

∑

T∈T \Tl

[

〈R∗, ψ
(l)
j − Π2

T ψ
(l)
j 〉T − 〈J∗, ψ

(l)
j − Π2

T ψ
(l)
j 〉∂T

]

+
∑

T∈Tl

[

〈R∗, ψ
(l)
j − Π2

T ψ
(l)
j 〉T − 〈J∗, ψ

(l)
j − Π2

T ψ
(l)
j 〉∂T

]

.
(36)
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with Tl := {T ∈ T | N(T ) 3 Pl} denoting those triangles of T whose neighborhoods
N(T ) touch the corner Pl.

We first estimate that part of the first sum in (36) associated to the dual element
residual R∗. To this end, we observe that, independently of j, the following weighted
estimate holds:

‖σβD
3ψ

(l)
j ‖0,Ωl

≤ CL(hl)
3/2, (37)

where Ωl := ∪T∈T \Tl
N(T ) and hl ≤ Cdist(Pl,Ω \ Ωl). In fact, (37) follows from direct

integration of |σβD
3ψ

(l)
j |2 in {rl ≥ hl}; note that ψ

(l)
j contains a (log rl)-term whenever

jαl ≤ 2 is an integer. Utilizing (33) with k = 0 and m = 3 and (37), we derive

∑

T∈T \Tl

|〈R∗, ψ
(l)
j − Π2

T ψ
(l)
j 〉T | ≤

∑

T∈T \Tl

‖σ−βR
∗‖0,T ‖σβ(ψ

(l)
j − Π2

T ψ
(l)
j )‖0,T

≤ C
∑

T∈T \Tl

‖σ−βR
∗‖0,Th

3
T ‖σβD

3ψ
(l)
j ‖0,N(T )

≤ CL(hl)
3/2

[

∑

T∈T \Tl

h6
T ‖σ−βR

∗‖2
0,T

]1/2
.

(38)

Next, we estimate that part of the second sum in (36) associated to the dual element

residual R∗. Here we shall use the following property of the singular functions ψ
(l)
j ,

j = 1, . . . , Jl(s):

∫

Nl

σ2
β|∇ψ

(l)
j |2 ≤ Ch̄

max{0,4−2αl}
l

∫ h̄l

0
r2αl−1L(r)2 dr ≤ Ch̄4

lL(h̄l)
2, (39)

where Nl := ∪T∈Tl
N(T ) and h̄l is the smallest radius such that Nl ⊂ B(Pl; h̄l). Exploit-

ing (33) with k = 0 and m = 1, (39), as well as h̄l ≤ ChT for all T ∈ Tl, and hl ≤ h̄l, we
obtain

∑

T∈Tl

|〈R∗, ψ
(l)
j − Π2

T ψ
(l)
j 〉T | ≤ C

∑

T∈Tl

hT ‖σ−βR
∗‖0,T ‖σβ∇ψ

(l)
j ‖0,N(T )

≤ C‖σβ∇ψ
(l)
j ‖Nl

[

∑

T∈Tl

h2
T ‖σ−βR

∗‖2
0,T

]1/2

≤ CL(hl)
[

∑

T∈Tl

h6
T ‖σ−βR

∗‖2
0,T

]1/2
.

(40)

We now turn to those parts of the two sums in (36) associated with the jump residual
J∗. In view of the scaled and weighted trace inequality

‖σβv‖
2
0,∂T ≤ Ch−1

T ‖σβv‖
2
0,T + ChT ‖σβ∇v‖

2
0,T ∀v ∈ H1(T ), (41)

one can proceed similarly to the parts for R∗. In fact, after application of (41) with

v = ψ
(l)
j − Π2

T ψ
(l)
j we can treat the sums with the first term on the right hand side of

12



(41) as before, while for the other sums we employ (33) with k = 1 (instead of k = 0)
and m = 1, 3. We thus obtain

∑

T∈T

|〈J∗, ψ
(l)
j − Π2

T ψ
(l)
j 〉∂T | ≤ CL(hl)

3/2
[

∑

T∈T

h5
T ‖σ−βJ

∗‖2
0,∂T

]1/2
. (42)

Upon inserting (38), (40), and (42) into (36), we readily obtain

|〈R∗(z2
T ), ψ

(l)
j − Π2

T ψ
(l)
j 〉| ≤ CL(hl)

3/2η∗−1,−β(T ).

Finally, replacing this and (35) into (34), and using the stability estimate of Theorem 3.1,
we arrive at (31) and thus complete the proof.

4 Back to the Example: Reliable Estimator

We now reexamine the example of §2 and illustrate that the safeguarded DWR estimate
is not only reliable but also asymptotically coincides with the original DWR estimate.

The adaptive algorithm based upon the safeguarded DWR estimate of Theorem 3.2
stops when E1(T )+E2(T ) ≤ tol is satisfied. Notice that the evaluation of E2(T ) requires
a choice for the constant C. Here we use the ad hoc choice C‖f‖1+ε maxl L(hl)

3/2 = 1,
which means that we ignore the presence of the logarithmic term and suppose that C is
of moderate size. If the stopping test is not satisfied, elements are marked for refinement
with the help of the equidistribution strategy, the indicators of which are given by

∣

∣〈R, z2
T − I1

T z
2
T 〉T − 〈J, z2

T − I1
T z

2
T 〉∂T

∣

∣ + η∗−1,−β(T ), T ∈ T . (43)

We apply this algorithm to the example of §2. As there, we require tol = 0.1 and
start from the same mesh T0 in Figure 1 with 12 triangles. Here it turns out that

E1(T0) = 0.070921 and E2(T0) = 93.490629.

Consequently, the algorithm does not stop and marks elements for refinement. After 8
adaptive loops, it finishes with

E1(T8) = 0.073332, E2(T8) = 0.000923, and |G(u) −G(u1
T )| = 8.75382298e − 03.

Figure 2 (left) shows the corresponding convergence history of the true error |G(u) −
G(u1

T )|, the safeguarded DWR estimate of Theorem 3.2, and the original DWR estimate
(11) and Figure 2 (right) depicts the final mesh T8 with 7561 degrees of freedom (DOFs).

These numerical results

• show that the original DWR estimate (11) is unreliable not only on T0 but also on T1

and T2;

• corroborate the upper bound with the safeguarded DWR estimate in Theorem 3.2;

13



10
1

10
2

10
3

10
4

10
5

10
6

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Error
Safeguarded
DWR

Figure 2: Using the safeguarded DWR: True error, safeguarded and original DWR esti-
mate versus number of degrees of freedom in log-log scale (left). The original DWR may
be unreliable but the safeguarded one is always reliable; the two estimates asymptotically
coincide. Final mesh with 7561 degrees of freedom (DOFs) (right).

• indicate that the constant C is of moderate size for ‘reasonable’ domains and meshes;

• complement Remark 3.2 by demonstrating that the safeguarded DWR estimate asymp-
totically coincides with the original one also on graded meshes.

We may summarize our findings by saying that the safeguarded DWR estimate of The-
orem 3.2 gains unconditional reliablity without loosing the advantages of the original
DWR estimate.
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