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INTRODUCTION

In these notes we will address the problem of developing models for the numer-
ical simulation of the human circulatory system. In particular, we will focus our
attention on the problem of haemodynamics in large human arteries.

Indeed, the mathematical investigation of blood flow in the human circulatory
system is certainly one of the major challenges of the next years. The social and
economical relevance of these studies is highlighted by the unfortunate fact that
cardiovascular diseases represent the major cause of death in developed countries.

Altered flow conditions, such as separation, flow reversal, low and oscillatory
shear stress areas, are now recognised by the medical research community as im-
portant factors in the development of arterial diseases. An understanding of the
local haemodynamics can then have useful applications for the medical research
and, in a longer term perspective, to surgical planning and therapy. The develop-
ment of effective and accurate numerical simulation tools could play a crucial role
in this process.

Besides their possible role in medical research, another possible use of numerical
models of vascular flow is to form the basis for simulators to be used as training sys-
tems. For instance, a technique now currently used to cure a stenosis (a pathological
restriction of an artery, usually due to fat deposition) is angioplasty. It consists of
inflating a balloon positioned in the stenotic region by the help of a catheter. The
balloon should squash the stenosis and approximately restore the original lumen
area. The success of the procedure depends, among other things, on the sensitivity
of the surgeon and his ability of placing the catheter in the right position. A train-
ing system which couples virtual reality techniques with the simulation of the flow
field around the catheter, the balloon and the vessel walls, employing geometries
extracted from real patients, could well serve as training bed for new vascular sur-
geons. A similar perspective could provide specific design indications concerning
the realisations of surgical operations. For instance, numerical simulations could
help the surgeon in understanding how the different surgical solutions may affect
blood circulation and guide the selection of the most appropriate procedure for a
specific patient.

In such “virtual surgery” environment, the outcome of alternative treatment plans
for the individual patient can be foreseen by simulations. This numerical approach
is one of the aspects of a new paradigm of the clinical practise, which is referred to
as “predictive medicine” (see [54]).

Since blood flow interacts mechanically with the vessel walls it gives rise to a
rather complex fluid-structure interaction problem which requires algorithms able
to correctly describe the energy transfer between the fluid (typically modelled by
the Navier-Stokes equations) and the structure. This is indeed one of the main
subjects of these notes, which will adopt the following steps.

(1) Analysis of the physical problem. We illustrate problems related to haemo-
dynamics, focusing on those aspects which are more relevant to human
physiology. This will allow us to identify the major mathematical variables
useful for our investigation. This part will be covered in Sect. 1.

(2) Mathematical modelling. Starting from some basic physical principles,
we will derive the partial differential equations which link the variables
relevant to the problem. We will address some difficulties associated to
the specific characteristics of these equations. Problems such as existence,
uniqueness and data dependence of the solution will be briefly analysed.
In particular in Sect. 2 we will deal with models for the fluid flow and
recall the derivation of the incompressible Navier-Stokes equations starting
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from the basic principles of conservation of mass and momentum. In Sec. 4
the attention will be instead focused on the dynamics of the vessel wall
structure. Some simple, yet effective, mathematical models for the vessel
wall displacement will be derived and discussed.

Numerical modelling. We present different schemes which can be employed
to solve the equations that have been derived and discuss their properties.
In particular, Sect. 3 deals with some relevant mathematical aspects related
to the numerical solution of the equations governing the flow field, while
Sect. 5 is dedicated to the coupled fluid-structure problem.

Reduced models which make use of a one dimensional description of
blood flow in arteries are often used to study the propagation of average
pressure and mass flow on segments of the arterial tree. In Sect. 6 we present
the derivation of a model of this type, together with a brief analysis of its
main mathematical characteristics.

Numerical simulation. A final section is dedicated to numerical results
obtained on relavant test cases.



MODELLING THE CARDIOVASCULAR SYSTEM 7

1. THE PHYSICAL PROBLEM
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FIGURE 1. The human circulatory system
The human cardiovascular system has the task of supplying the human organs
with blood. Its correct working is obviously crucial, and depends on many
parameters: external temperature, muscular activity, state of health, just to
mention a few. The blood pressure and flow rate then change according to the
body needs.

1.1. A brief description of the human vascular system. The major compo-
nents of the cardiovascular system are the heart, the arteries and the veins. It is
usually subdivided into two main parts: the large circulation system and the small
circulation system, as shown in Fig. 1. The former brings oxygenated blood from
the heart left ventricle to the various organs (arterial system) and then brings it
back to right atrium (venous system). The latter pumps the venous blood into the
pulmonary artery, where it enters the pulmonary system, get oxygenated and is
finally received by the heart left atrium, ready to be sent to the large circulation
system.

Figure 2 shows a picture of the human heart. Its functioning is very complex and
various research teams are currently trying to develop satisfactory mathematical
models of its mechanics, which involves, among other things, the study of the
electro-chemical activation of the muscle cells. We will not cover this aspect in
these notes, where we rather concentrate on vascular flow, an in particular flow in
arteries.
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FIGURE 2. The human heart. Courtesy of the Texas Heart®Institute.

Arteries can be regarded as hollow tubes with strongly variable diameters and can
be subdivided into large arteries, medium arteries and arterioles and capillaries.
The main role of large arteries (1-3 cm of diameter) is to carry a substantial blood
flow rate from the heart to the periphery and to act as a “compliant system”. They
deform under blood pressure and by doing so they are capable of storing elastic
energy during the systolic phase and return it during the diastolic phase. As a
result the blood flow is more regular than it would be if the large arteries were
rigid. We have then a fluid-structure interaction problem. The blood may be
considered a homogeneous fluid, with “standard” behaviour (Newtonian fluid), the
wall may be considered elastic (or mildly visco-elastic).

The smaller arteries (0.2 mm-1 cm of diameter) are characterised by a strong
branching. The vessel may in general be considered rigid (apart in the heart,
where the vessel movement is mainly determined by the heart motion). Yet, the
blood begins to show “non-standard” behaviour typical of a shear-thinning (non-
Newtonian) fluid.

The arterioles have an important muscular activity, which is aimed at regulating
blood flow to the periphery. Consequently, the vessel wall mechanical characteristics
may change depending on parameters such as blood pressure and others. At the
smallest levels (capillaries), blood cannot be modelled anymore as a homogeneous
fluid, as the dimension of the particles are now of the same order of that of the
vessel. Furthermore, the effect of wall permeability on the blood flow becomes
important.

The previous subdivision is not a mere taxonomy: the morphology of the vessel
walls and the physical characteristics of blood change in dependence of the type of
vessel.

Indeed, the blood is not a fluid but a suspension of particles in a fluid called
plasma. Blood particles must be taken into account in the rheological model in
smaller arterioles and capillaries since their size becomes comparable to that of the
vessel. The most important blood particles are

e red cells (erythrocytes), responsible for the exchange of oxygen and carbon-
dioxide with the cells;

e white cells (leukocytes), which play a major role in the human immune
system;
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FiGure 3. The deposition of lipids and cholesterol in the inner
wall of an artery (frequently a coronary) can cause a stenosis and
eventually a dramatic reduction (or even the interruption) of blood
flow. Images taken from “Life: the Science of Biology” by W.K.
Purves et al., fourth edition, published by Sinauer Associates Inc.
and W.H. Freeman and Company.

o platelets (thrombocytes), main responsible of blood coagulation.

Here, we will limit to flow in large/medium sized vessels. We have mentioned
that the vascular system is highly complex and able to regulate itself: an excessive
decrease in blood pressure will cause the smaller arteries (arterioles) to contract and
the heart rate increase. On the contrary, an excessive blood pressure is counter-
reacted by a relaxation of the arterioles wall (which causes a reduction of the
periphery resistance to the flow) and decreasing the heart beat. Yet, it may happen
that some pathological conditions develop, for example the arterial wall may become
more rigid, due to illness or excessive smoking habits, fat may accumulate in some
areas causing a stenosis, that is a reduction of the vessel section as illustrated in
Fig. 3, aneurysms may develop. The consequence of these pathologies on the blood
field as well as the possible outcome of a surgical intervention may be studied by
numerical tools.

1.2. The main variables for the mathematical description of blood flow.
The principal quantities which describe blood flow are the wvelocity u and pressure
P. Knowing these fields allows the computation of the stresses to which an arterial
wall is subjected due to the blood movement. Since we will treat fluid-structure
interaction problems, the displacement of the vessel wall due to the action of the
flow field is another quantity of relevance. Pressure, velocity and vessel wall dis-
placement will be functions of time and the spatial position.

The knowledge of the temperature field may also be relevant in some particu-
lar context, such as the hyperthermia treatment, where some drugs are activated
through an artificial localised increase in temperature. Temperature may also have
a notable influence on blood properties, in particular on blood viscosity. Yet, this
aspect is relevant only in the flow through very small arterioles/veins and in the
capillaries, a subject which is not covered in these notes.

Another aspect of blood flow which we will not cover in these notes, is the
chemical interaction with the vessel wall, which is relevant both for the physi-
ology of the blood vessels and for the development of certain vascular diseases.
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Not mentioning the potential relevance of such investigation for the study of the
propagation/absorption of pharmaceutical chemicals. Some numerical models and
numerical studies for the chemical transport/diffusion process in blood and through
arterial wall may be found in [47, 45].

1.3. Some relevant issues. Among the difficulties in the modelling of blood flow
in large vessels, we mention the following ones.

o The flow is transient. Blood flow is obviously pulsatile. This means that one
cannot neglect the time by considering a “steady state” solution, function
only of the spatial position, as it is often done in many other situations (for
example the study of the flow field around an aeroplane or a car). With
some approximation one may think the blood flow to be periodic in time.
Yet, this is usually true only for relatively short periods, since the various
human activities require to change the amount of blood sent to the various
organs.

The cardiac cycle can be subdivided into two phases. The systole cor-
responds to the instant in which the heart is pumping the blood into the
arterial system. The systolic period is then characterised by the highest flow
rate. The diastole, instead, corresponds to the instant in which the heart
is filling up with the blood coming from the venous system and the aortic
valve is closed. The blood flow is then at its minimum. Fig. 4 illustrates a
typical flow rate curve on a large artery during the cardiac cycle.

Unsteady flow is usually much more complex than its transient counter-
part. For instance, if we consider a steady flow of a fluid like water inside
an “infinitely long” cylindrical tube, it is possible to derive the analytical
steady state solution (also called the Poiseuille flow solution), characterised
by a parabolic velocity profile. Transient flow in the same geometrical con-
figuration becomes much more complex. The solution may still be obtained
analytically if we assume time periodicity, giving rise to the so called Wom-
ersley flow[57], whose expression may be found for instance in [42]. Just as
an example, in figure 5 we show the velocity profile in a tube for a Poiseuille
and for a Womersley flow (the latter, obviously, at a given instant).
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FIGURE 4. A typical flow rate in an artery during the cardiac cycle.

o The wall interacts mechanically with the flow field. This aspect is rele-
vant for relatively large vessels. In the aorta, for example, the radius may
vary in a range of 5% to 10% between diastole and systole. This is quite



MODELLING THE CARDIOVASCULAR SYSTEM 11

09

o

o

Ty AKX
g ol

“\“‘\\\“\ W Q‘O'l’l

i
L

I
ity
i

%

i

il

Ly

K

R
i

i
\ \\\“\\m{

‘\\

X
X

ol

i \:\\\\3{\\\\\\\\\\&{\\ ’ I’I

it
ol

\

i

)

i
i \
IO \
O
i,
My i
A
4

\‘\
‘\\)\\\\\‘\

.
: b
0 A

|

FIGURE 5. Three-dimensional velocity profiles for a Poiseuille flow
(left) and Womersley unsteady flow at a given instant (right).

a large displacement, which affects the flow field. The fluid structure in-
teraction problem is the responsible of the propagation of pulse pressure
waves. Indeed, no propagative phenomena would otherwise occur in an in-
compressible fluid like blood. The interaction problem is a rather complex
one, since the time scales associated to the interaction phenomena are two
orders of magnitude greater than those associated to the bulk flow field.

In arterioles and capillaries the movement of the wall may be considered
negligible.

o Lack of boundary data. We are normally interested in modelling only a sec-
tion of the cardiovascular system by means of partial differential equations.
A proper setting of a differential problem requires to provide appropriate
conditions at the domain boundary, i.e, on the sections at the ends of the
region of interest. For instance, let us consider figure 6. “Standard” condi-
tions for the inlet section I'” and the outlet sections I'**, may be derived
from the analysis of the differential equations governing the fluid flow. A
possible choice is to prescribe all components of the velocity on I'” and the
velocity derivative along the normal direction (or the normal stress com-
ponents) on I'*. Unfortunately, in practise one never has enough data
for prescribing all these conditions. Normally, only “averaged” data are
available (mean velocity and mean pressure), which are not sufficient for a
“standard” treatment of the mathematical problem. One has thus to devise
alternative formulations for the boundary conditions which, on one hand
reflect the physics and exploit the available data, on the other hand, permit
to formulate a mathematically well posed problem. In these notes we will
not investigate this particular aspect. A possible formulation for the flow
boundary conditions which is particularly suited for vascular flow problems
is illustrated and analysed in [18].

We have not used the terms “inflow” and “outflow” to indicate boundary condi-
tions at '™ and T'°* since they would be incorrect. Indeed, outflow would indicate
the normal component of the velocity is everywhere positive (while it is negative at
an inflow section). However, in vascular problems, this assumption is seldom true
because the pulsating nature of blood flow might (and typically does) induce a flow
reversal on portions of an artery during the cardiac beat. Indeed, the Womersley
solution [57] of a pulsatile flow in circular cylinders, which provides a reasonable
approximation of the general flow pattern encountered in arteries, shows a periodic
flow reversal.

In the medical literature, one encounters the terms “proximal” to indicate the
section which is reached first by the flow exiting from the heart, while “distal” is
the term associated to the sections which are farther from the heart. Here we have
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FIGURE 6. An example of a computational domain made of a sec-
tion of vasculay system. We need to provide proper boundary
conditions at I'”, T'* and T'*.

preferred instead the terms “inlet” and “outlet” which refer to the behaviour of the
mean flow rate across the section. At an inlet (outlet) section the mean flow is
entering (exiting) the vascular element under consideration.

g

FIGURE 7. Recirculation in the carotid bifurcation. On the left we
illustrate the location of the carotid bifurcation. The image on the
right shows the particle path during the diastolic period in a model
of the carotid bifurcation. A strong recirculation occurs inside the
carotid sinus. The image on the left is courtesy of vesalius.com.

Some of the problems which the simulation of blood flow in large arteries may
help in answering are summarised below.

o Study of the physiological behaviour of vessel walls. For example, are there
any characteristics of the flow field which may be related to the formation
of stenoses? In particular, in some sites like the carotid bifurcation (see
Fig. 7) it is quite usual to have a reversal of the flow during the cardiac
cycle which generates a recirculation zone. These recirculation zones have
been found to be possible sites for fat accumulation and, consequently, the
appearance of stenosis. There is some evidence that one of the factors
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FIGURE 8. A schematic example of a coronary by-pass. The alter-
ation of the flow field due to the by-pass may cause the formation
of a new stenosis, typically immediately downstream the by-pass.

which prompt fat accumulation is linked to the oscillatory nature of the
vessel wall stresses induced by the fluid in the flow reversal zone. Wall
stresses are quantities very difficult to measure “in vivo” while are easily
computed once the flow field is known. Numerical simulations may then
help in assessing the effectiveness of such theory.

Study of post-surgical situations. Is it possible to predict the flow behaviour
after the geometry has been modified by a surgical operation like a by-pass?
(see figure 8). It has been found that the flow pattern in the by-pass region
may affect the insurgence of post-surgery pathologies. Again, a zone with
recirculating or stagnant fluid has negative consequences. Numerical simu-
lations may allow to predict the post-surgery flow pattern and determine,
say, the best by-pass configuration.
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2. THE DERIVATION OF THE EQUATIONS FOR THE FLOW FIELD

The flow field is governed by a set of partial differential equations in a region
whose boundary changes in time. Their derivation, moving from the basic physical
principles of conservation of mass and momentum, is the scope of this section.

2.1. Nomenclature. The space R? is equipped with a Cartesian coordinate system
defined by the orthonormal basis (e1, ez, e3), where

1 0 0
e = 0 €y = 1 €3 = 0
0 0 1

Vectors are understood as column vectors. A vector £ € R® may then be written as

3
f=> fie
=1

where f; is the i—th component of f with respect to the chosen basis. Vectors
will be always indicated using bold letters while their components will be generally
denoted by the same letter in normal typeface. Sometimes, when necessary for
clarity, we will indicate the i—th component of a vector f by (f); or simply f;.
These definitions apply as well to vectors in R?.

With the term domain we will indicate an open, bounded, connected subset of
RY, N = 2,3, with orientable boundary. We will indicate with n the outwardly
oriented unit vector normal to the boundary. We will also assume that the domain
boundary be Lipschitz continuous (for instance, a piecewise polynomial, or a C!
curve). In figure 9 some admissible domains are shown. If a quantity f (like

3 (5

FI1GURE 9. Example of admissible domains. 2, has a boundary
formed by piecewise C' curves. € is a multi-connected domain,
with a polygonal internal and a C'*° external boundary. Finally €,
has a polygonal boundary.

temperature or pressure) takes a scalar value on a domain , we say that the
quantity defines a scalar field on ), which we will indicate with f : Q@ — R. If
instead a quantity f associates to each point in Q a vector (as in the case of the
velocity), we say that it defines a vector field on 2, and we will indicate it with
f : Q — R®. Finally, if a quantity T associates to each point in Q a RV*N matrix,
we will say that it defines a (second order) tensor field on Q if it obeys the ordinary
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transformation rules for tensors[1]. Its components will be indicated by either (T);;,
or simply T3;, with 4,5 =1,...,3.
Given a function f : Q@ - R, x — f(x), and a domain V' C Q we will use the
shorthand notation
/1
v

Aﬂ@w,

f

av
to indicate the surface (or line) integral

to indicate the integral

and

fdo,
v
unless the context requires otherwise.
When referring to a physical quantity f, we will indicate with [f] its measure
units (in the international system). For instance if v indicates a velocity, [v] = m/s,
where m stands for meters and s for seconds.

2.2. The motion of continuous media. In order to derive the differential equa-
tions which govern the fluid motion, we need to introduce some kinematic concepts
and quantities. The kinematics of a continuous medium studies the property of
the motion of a medium which may be thought as continuously occupying, at each
time, a portion of space. This allows the use of standard methods of analysis. We
will set the derivation in R®, since this is the natural spatial dimension. However,
the definitions and final differential equations are valid also in R?. Furthermore,
we will assume that the motion will take place during a time interval I = (¢, 1).

The motion itself is described by a family of mappings £; which associate the
position x of a fluid particle at time ¢ € I to a point & € g, 2y being the domain
occupied by the fluid at the reference initial time t,. More precisely, we denote
with €, the portion of space occupied by the fluid at time ¢ and we indicate with
L; the mapping

L:t :QO _)Qta £—>X=X(t,£):£t(£),

which will be denoted Lagrangian mapping at time . We assume that £; is con-
tinuous and invertible in Q, with continuous inverse.

We call Qg the reference configuration, while §; is called current (or spatial)
configuration. The position of the material particle located at the point x in the
current configuration 2; is a function of time and of the position of the same
material particle at the reference time.

We may thus relate the variables (¢,x) to (¢,&). The former couple is referred to
as the Fulerian variables while the latter are called the Lagrangian variables.

It is worthwhile to point out that when using the Eulerian variables as indepen-
dent variables, we are concentrating our attention on a position in space x € (); and
on the fluid particle which, at that particular time, is located at x. When using the
Lagrangian variables as independent variables (Lagrangian frame) we are instead
targeting the fluid particle “labelled” & (that is the fluid particle which was located
at position £ at the reference time). That is, we are following the trajectory T¢ of
fluid particle & € Qq, defined as

(2.1) Te = {(t,x(t,£)), teI}.
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The basic principles of mechanics are more easily formulated with reference to the
moving particles, thus in the Lagrangian frame. Yet, in practice is more convenient
to work with the Eulerian variables. Therefore, we need to rewrite the equations
stemming from those basic principles into the Eulerian frame. We will see later on
that for the numerical approximation of the problem at hand it will be necessary to
introduce yet another, intermediate, frame of reference, called Arbitrary Lagrangian
Eulerian.

Being the mapping surjective, a quantity associated with the fluid may be de-
scribed as function of either the Lagrangian or the Eulerian variables, depending
on convenience. We will in general use the same symbol for the functions which
describe the evolution of the same quantity in the Lagrangian and in the Eulerian
frame, unless the context needs otherwise. In the latter case, we will mark with the
hat symbol “ ™7 a quantity expressed as function of the Lagrangian variables, that
is, if f: I x Qy — R we have the equality

f(t,8) = f(t,x), with x = L,(§).

We will often use the following alternative notation
f=foLy, orf=foL

with the understanding that the composition operator applies only to the spatial
variables.

The symbol V is used exclusively to indicate the gradient with respect to the
Eulerian variable x. When we need to indicate the gradient with respect to the
Lagrangian variable £ we will use the symbol Vg, that is

3 ~
~ (‘)f
Vﬁf = Z 8_£-ei

i=1 >

The same convention applies to other spatial differential operators (divergence,
Laplacian etc.) as well.
In the following we will put I x Q; = {(¢,x), t € I, z € 4 }.

2.2.1. The velocity. The fluid velocity is the major kinematic quantity of our prob-
lem. In the Lagrangian frame it is expressed by means of a vector field 4 = u(t, &)
defined as

ox 0

(2.2) i= e G(LE) = 5x(t,6).

F1GURE 10. The Lagrangian mapping
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i is called the Lagrangian velocity field (or velocity field in the Lagrangian frame),
and it denotes the time derivative along the trajectory T¢ of the fluid particle &.
The velocity u on the Eulerian frame is defined for (¢,x) € I x §; as

u=1toL;", ie u(t,x) =1L (x)).
Ezxample 2.1. Let us consider a 2D case and the following movement law, for ¢ > 0

T = f1€t & e(—1,1)
T2 = &2 & e (-1,1)

The domain at time ¢ > 0 occupies the rectangle (—e?,e?) x (—1,1). The mapping
is clearly invertible for all £ > 0.
We have
ﬂ1=6x1/6t=§1et, ﬂ2=3$2/8t=0
We can immediately compute the velocity field as function of the Eulerian variable
as
Uy = 1 us = 0.

Once the velocity field and the reference configuration is known, the motion may
be derived by solving the following Cauchy problem:

For any £ € Qy, find the function x = x(¢,£&) which satisfies

6X(t &) =d(t,€),Vtel

(to,ﬁ) =¢.

2.2.2. The material derivative. We can relate time derivatives computed with re-
spect to the different frames. The matem’al (or Lagrangian) time derivative of a
function f, which we will denote 2 ﬁ, is defined as the time derivative in the La-
grangian frame, yet expressed as function of the Eulerian variables.

That is, if f: I x Q » Rand f = fo Ly,

D D
(2.3) D{ IxQ —R, F{(t x) = f(t £), £€=L'(x).
Therefore, for any fixed & € {0y we may also write
Df
DLt = 2 1(0x(1,8)),

by which we can observe that the material derivative represents the rate of variation
of f along the trajectory T¢.
By applying the chain-rule of derivation of composed functions, we have

Df _of
(2.4) E—a‘FU‘Vf.
Indeed,
Df |0 8 of 6x 6 of
A quantity which satisfies
o _,
ot
is called stationary, and a motion for which
Ou
i 0

is said a stationary motion. Clearly, blood flow ought not to be stationary!
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Example 2.2. Let us consider again the motion of Example 2.1 and consider the
function f(x1,%2) = 3z1 + xz2 (which is is independent of ¢). The application of

relation (2.4) gives
Df o X1 3 _
On the other hand,

]/c\: 3£1€t + 52,

and
of ¢
E - 3516 )
by which we deduce that,
af ._
5 oL, = 3z,.

This example, besides verifying relation (2.4), shows that a function f = f(¢,x)
with 8f/0t = 0 in general has D f/Dt # 0.

2.2.3. The acceleration. In the Lagrangian frame the acceleration is a vector field
a: I xQy— R defined as

ou  0’x

ot o2’

By recalling the definition of material derivative, we may write the acceleration in
Eulerian frame as

a=

Du Ou

(25) a=ﬁ=§+(u.v)u‘
Componentwise,

8ui 3 au,
2. i = i .
(2.6) a = — +]§u,8mj

2.2.4. The deformation gradient. Another kinematic quantity necessary for the
derivation of the mathematical model is the deformation gradient F;, which is
defined, for each t € I, as

(2.7) Fo:Q o RVY, F =V, = g—z.
Componentwise,

= 6.’L‘Z

Fp)i = ——.

( t) J 66‘7

In particular, its determinant,
(2.8) Jp = det Fy,

is called the Jacobian of the mapping £;. As usual, its counterpart in the Eulerian
frame is indicated J;.

It is possible to show that the time continuity and the invertibility of the La-
grangian mapping is sufficient to have, for all t € T

(2.9) T, (&) >0 V£ € Q.

The importance of J; is clearly linked to the rule which transforms integrals
from the current to the reference configuration. We recall the following theorem of
elementary calculus (without providing its proof).
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Theorem 2.1. Let V; C Q; be a subdomain of Q¢ and let us consider the function
f:IxVy — R. Then, f is integrable on Vi iff (f o Ly)J; is integrable on Vo =
L£;71(V;), and

Vi

ftxdx = | F(8,€) Jy(¢)de,

where f(t,€) = f(t,L:(€)). In short,

/wf=/V0f£.

2.2.5. The Reynolds transport theorem. An interesting property of the Jacobian is
that its time derivative is linked to the divergence of the velocity field.

Lemma 2.1. Let J; denote the Jacobian (2.8) in the Eulerian frame. Then
D

(2.10) D_tJt = Jt divua

This relation is sometimes called Euler expansion formula.
Proof. We have, by direct application of the chain-rule,

Vgﬁ = VE(UO ﬁt) = ﬁVgﬁt = ﬁf‘t

On the other hand, by recalling the definition of the velocity (2.2),
d 9 OF

X) _ v t

—Vex=—-.
ot & ot
Thus, we may write

~ ~ oF ~ N —
Fop.=F + ea—tt +0(e) =F; + eVuF, + o(e) = (I+ eVu) F, + o(e).

We now exploit the well known result that for any non-singular matrix A
det(I+€A) =1+ etr A + o(e),
where tr A =3~ Aj; denotes the trace of the matrix A, to write

Jipe = det(Frpe) = (1 + etr V) J; + o(e) = (1 + edivii)J; + o(e).

We have used the identity trVa = divi. Then, by applying the definition of
material derivative and exploiting the continuity of the Lagrangian mapping, we
may write

DJt _ . jt+e - j\t
i <hm

) ol = (divﬁj;)oﬁ,?l =divu J;.

e—0 €
Example 2.3. For the movement law given by Example 2.1 we have
T et 0 t
Jy = det [0 1] =e
and J; = e’ as well. We may verify directly relation (2.10) since
~ D
Jydivu=e(14+0) =¢f = %Jt = (by relation (2.3)) = D—tJt.

We have now the following fundamental result.
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Theorem 2.2 (Reynolds transport theorem). Let Vo C Qo, and V; C Qy be its
image under the mapping L;. Let f : I X Qy — R be a continuously differentiable
function with respect to both variables x and t.

Then,

of
(2.11) dt/ / — + fdivu) = / (E + div(fu))
Proof. Thanks to Theorem 2.1 and relations (2.10) and (2.3), we have

g, fei= 4 [ Faodei =

/Vo 8at [f(t §)Jt(€)] d§ =/ lg{ (t, g)Jt(g) +f(t,§)%ft(g) d¢

We now use Theorem 2.1 and the definition of material derivative (2.3) to write

of Df

| sitoiee=|

—(t,x)dx.
Furthermore, we exploit again the definition of material derivative (2.3) in order to
rewrite relation (2.10) in the following equivalent form

0 =

aJt(g) = J,(¢) divu(t,x(t, £)).

Consequently,

Df

LI rawdx= [ PLaxpax+ [ Fit,6)7x(t,€)) divut, x(t, €))de =
t v v, Dt Vo

bJ —(t,x)dx+ | f(t,x)divu(t,x)dx = D7

v, Dt v v Di —(t,x) + f(t,x) divu(t, x)dx.

The second equality in (2.11) is a consequence of (2.4). O

Relation (2.11) is given the name of Reynolds transport formula, or simply trans-
port formula (sometimes the name convection formula is used as well).
By the application of the divergence theorem the previous expression becomes

d [, [ of

2.3. The derivation of the basic equations of fluid mechanics. In the sequel,
the symbol V; will always be used to indicate a material volume at time ¢, i.e. V; is
the image under the Lagrangian mapping of a subdomain Vo C Qo, i.e. V; = L4(V))
(as already done in Theorem 2.2).

2.3.1. Continuity equation or mass conservation. We assume that there exists a
strictly positive, measurable function p : I x Q; — R, called density such that on

each V; C
| p=mm)
Vi

where m(V;) is the mass of the material contained in V;. The density p has dimen-

sions [p] = kg/m3.

A fundamental principle of classical mechanics, called principle of mass conser-
vation, states that mass is neither created nor destroyed during the motion. This
principle translates into the following mathematical statement:
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Given any material volume V; C ; the following equality holds

d

We can apply the transport theorem, obtaining

(2.12) /V (%f +pdivu) =0.

By assuming that the terms under the integral are continuous, the arbitrariness of
Vi allows us to write the continuity equation in differential form
dp
at
In these cases for which we can make the assumption that p is constant (like for
blood flow), we obtain

(2.13) divu = 0.

+ divpu = 0.

Relation (2.13), which has been derived from the continuity equation in the case
of a constant density fluid (sometimes also called incompressible fluid), is indeed a
kinematic constraint. Thanks to (2.10), relation (2.13) is equivalent to

D
2.14 —Jy =
( ) Dt Jt 0;

which is the incompressibility constraint. A flow which satisfies the incompressibil-
ity constraint is called incompressible. By the continuity equation we derive the
following implication:

constant density fluid = incompressible flow

whereas the converse is not true in general.
By employing the transport formula (2.11) with f = 1 we may note that the
incompressibility constraint is equivalent to

d
— / dx =10 YV C Q,
dt Jy,

which means that the only possible motions of an incompressible flow are those

which preserve the fluid volume.

2.3.2. The momentum equation. Another important principle allows the derivation
of an additional set of differential equations, that is the principle of conservation of
momentum. It is an extension of the famous Newton Law, “force=mass x acceleration”,
to a continuous medium.

Remark 2.1. In the dimension unit specifications we will use the symbol Ne to
indicate the Newtons (the dimension units of a force), Ne = kgm/s?, instead of the
more standard symbol IV, since we have used the latter to indicate the number of
space dimensions.

%

Three different types of forces may be acting on the material inside €2,

e Body forces. These forces are proportional to the mass. They are nor-
mally represented by introducing a vector field ¥ : I x Q, — R®, called
specific body force, whose dimension unit, [f*]=Ne/kg=m/s?, is that of an
acceleration. The body force acting on a volume V; is given by

/ pt?,
Vi
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whose dimension unit is clearly Ne. An example is the gravity force, given
by f® = —ges, where e3 represents the vertical direction and g the gravita-
tional acceleration.

o Applied surface forces. They represent that part of the forces which are
imposed on the media through its surface. We will assume that they may
be represented through a vector field t¢ : I x I'} — R3, called applied
stresses, defined on a measurable subset of the domain boundary I'} C 0,
and with dimension unit [t*]= Ne/m?. The resultant force acting through
the surface is then given by

/ .
ry

An example of a surface stress is that caused by the friction of the air
flowing over the surface of a lake.

o Internal “continuity” forces. These are the forces that the continuum media
particles exert on each other and are responsible for maintaining material
continuity during the movement. To model these forces let us recall the
following principle.

The Cauchy principle. There exists a vector field t, called Cauchy stress,
t:IxQ xS; - R®
with
S;={necR®: |n|=1}

such that its integral on the surface of any material domain Vi C §4, given by
(2.15) / 6(t, x, n)do
A

is equivalent to the resultant of the material continuity forces acting on Vi. In
(2.15), n indicates the outward normal of OV;.
Furthermore, we have that

t=t° on 0V; NTY.

This principle is of fundamental importance because it states that the only depen-
dence of the internal forces on the geometry of 0V; is through n.
We may now state the following principle of conservation of linear momentum.
For any t € I, on any sub-domain V; C €y completely contained in €, the
following relation holds,

(2.16) % p(t,x)u(t,x)dx:/

p(t,x)fb(t,x)dx+/ t(t,x,n)do,
Vi Vi

vy
where all terms dimension unit is Ne. Relation (2.16) expresses the property that
the variation of the linear momentum of V; (represented by the integral at the left
hand side) is balanced by the resultant of the internal and body forces.

With some further assumptions on the regularity of the Cauchy stresses, we are
now able to relate the internal continuity forces to a tensor field, as follows.

Theorem 2.3 (Cauchy stress tensor theorem.). Let us assume that ¥t € I, the

D
body forces f°, the density p and D_tu are all bounded functions on Q; and that

the Cauchy stress vector field t is continuously differentiable with respect to the
variable x for each n € Sy, and continuous with respect to n. Then, there exists a
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continuously differentiable symmetrict. tensor field, called Cauchy stress tensor,
T:1xQ =R [T] = Ne/m?,
such that
t(t,x,n) = T(t,x)-n Viel, Vxe Q, VneS;.
The proof is omitted. The interested reader may refer to [1, 50].

Therefore, under the hypotheses of the Cauchy theorem, we have

(2.17) T-n=t° ondVinIy,
and that the resultant of the internal forces on V; is expressed by
(2.18) T-n,
A
and we may rewrite the principle of linear momentum (2.16) as follows.

For all t € I, on any sub-domain V; C Q; completely contained in €y, the
following relation holds,

(2.19) i/ pu:/ pff+ [ T.n.
dt Jy, v, av;

Since p is constant and divu=0, by invoking the transport formula (2.11) we obtain

d/ u / —D(u)—l— udivu Du
J— frd v = .
at )y, " T ), \De P TP v P Dt

By using the divergence theorem, and assuming that divT is integrable, relation
(2.19) becomes
Du
— —divT - pf’| = 0.
J i -

Thanks to the arbitrariness of V; and under the hypothesis that the terms under
the integrals are continuous in space, we derive the following differential equation
Du
"Dt
Remark 2.2. In deriving (2.20) we have assumed that V; is completely contained
into ;. We may however extend the derivation to the case where V; has a part of

boundary in common with I'?. In that case, we should use in place of (2.19) the
following,

(2.20) —divT = pf®  in Q.

(2.21) 4 pu:/ T-n+/ te+/ pf?.
dt Jy, BV av,nry v,

Even now we would re-obtain (2.20) in view of property (2.17) of the Cauchy stress
tensor, which should now be regarded as boundary condition.

¢
D
We may note that D—ltl is indeed the fluid acceleration. Referring to relation
(2.5), it may be written as
Du Ou
D_t = E + (u . V)u,

IThe symmetry of the Cauchy tensor may indeed be derived from the conservation of angular
momentum.
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where (u- V)u is a vector whose components are
3

ou; .
((u ,—Zu]&c] =1,...,3.

For ease of notation, from now on we will omit the subscript b to indicate the
body force density applied to the fluid, which will be indicated just as f.
Relation (2.20) may finally be written as

(2.22) p%—ltl +p(u+V)u—divT = pf
Componentwise,
3 3
6Uz 8Tij b .
— =pf; =1,...,3.
pat+2.7 j:16$j pz: ? ’ ’

The non linear term p(u - V)u is called the convective term.

Remark 2.3. We note the convective term may be written in the so called divergence
form div(u ® u), where

3
0
(divu@u)ijzzax (U,U]) 1=1,...,3,j=1,...,3.
J

Indeed, thanks to the incompressibility of the fluid
(u-Viu=(u:-V)u+udiva =diviu®u).
The momentum equation in divergence form is then
(2.23) (9_ +div(pu®u —T) = pf.

¢
2.3.3. The constitutive law. In order to close the system of equations (2.22) and
(2.13) just derived, we need to link the Cauchy stress tensor to the kinematic
quantities, and in particular, the velocity field. Such relation, called constitutive
law, provides a characterization of the mechanical behavior of the particular fluid
under consideration.

The branch of science which studies the behavior of a moving fluid and in partic-
ular the relation between stresses and kinematic quantities is called rheology. We
have already anticipated in the introduction that blood rheology could be complex,
particularly in vessels with small size.

Here, we will assume for the fluid a Newtonian behavior (an approximation valid
for many fluids and also for blood flow in large vessels, which is the case in our

presentation). In a Newtonian incompressible fluid, the Cauchy stress tensor may
be written as a linear function of the velocity derivatives [50], according to

(2.24) T = —PI + p(Vu + Vu?),

where P is a scalar function called pressure, I is the identity matrix, p is the
dynamic viscosity of the fluid and is a positive quantity. The tensor

T
(Vuziv“), Dyj = %(g;‘; (6’91;;:)’ i=1,...,3,j=1,...,3
is called the strain rate tensor. Then,

T = —PI+ 2uD(u).
The term 2pD(u) in the definition of the Cauchy stress tensor is often referred
to as viscous stress component of the stress tensor. We have that [P]=Ne/m? and

D(u) =
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[u]=hkg/ms. The viscosity may vary with respect to time and space. For example, it
may depend on the fluid temperature. The assumption of Newtonian fluid, however,
implies that u is independent from kinematic quantities. Simple models for non-
Newtonian fluids, often used for blood flow simulations, express the viscosity as
function of the shear stress rate, that is g = p(D(u)). The treatment of such
cases is rather complex and will not be considered here, the interested reader may
consult, for instance, [46, 12].
We now recall that, if P is a scalar and X a vector field, then

div(PY) = VPX + Pdivy,

and, therefore,

div(PI) = VPI + PdivI = VP.

The momentum equation may then be written as

Ou

Pot

Since p is constant, it is sometimes convenient to introduce the kinematic viscosity
v = p/p, with [v]=1/sm?, and to write

+ p(u- V)u+ VP — 2div(pD(u)) = pf.

(2.25) — + (u- V)u+ Vp—2div(yD(u)) =1,
where p = P/p is a scaled pressure (with [p]|=m?/s?).

Remark 2.4. Under the additional hypothesis that v is constant, the momentum
equation may be further elaborated by considering that

div Vu = Au,
div Vu’ = V(divu) = (by relation (2.13)) = 0.

Consequently, the momentum equation for an incompressible Newtonian fluid
with constant viscosity may be written in the alternative form

Ou
(2.26) 5 +(u-V)u+ Vp—vAu=T1.
However, for reasons that will appear clear later on (and that have to see with the
way the fluid stresses act on the vessel structure) we prefer to use the Navier-Stokes
equations in the form (2.25), even when considering a constant viscosity.

¢

2.4. The Navier-Stokes equations. The set of differential equations formed by
the continuity equation and the momentum equations in the form derived in the
previous section provides the Navier-Stokes equations for incompressible fluids.

They are in particular valid on any fixed spatial domain 2 which is for all times
of interest inside the portion of space filled by the fluid, i.e Q2 C Q;. Indeed, in most
cases, as with the flow around a car or an aeroplane, the flow motion is studied in
a fixed domain 2 (usually called computational domain) embodying the region of
interest. We will see in Sect. 5 that this is not possible anymore when considering
the fluid-structure interaction problem arising when blood is flowing in a large
artery.

Yet, before addressing this more complex situation, we will analyze the Navier
Stokes equations in a fixed domains, that is, we will consider, for any ¢ € I, the
system of equations

Qu
(2.27) ot
diva=0, in Q.

(u:V)u+ Vp—2div(D(u)) =f, in Q
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Furthermore, we need to prescribe the initial status of the fluid velocity, for instance
(2.28) u(t = to,x) = ug(x) x €.

The principal unknowns are the velocity u and the “scaled” pressure p = P/p.

Let’s take a practical case-study, namely the blood flow in an artery, for example
the carotid (ref. Fig. 3), which we will here consider rigid. We proceed by identifying
the area of interest, which may be the carotid sinus, and a domain 2 which will
contain that area and which extends into the vessels up to a certain distance. For
obvious practical reasons we will need to “truncate” the domain at certain sections.
Inside such domain, the Navier-Stokes equations are valid, yet in order to solve
them we need to provide appropriate boundary conditions.

2.4.1. Boundary conditions for the Navier Stokes equations. The Navier-Stokes
equations must be supplemented by proper boundary conditions that allow the de-
termination of the velocity field up to the boundary of the computational domain
Q. The more classical boundary conditions which are mathematically compatible
with the Navier Stokes equations are

(1) Applied stresses (or Neumann boundary condition). We have already faced
this condition when discussing the Cauchy principle. With the current
definition for the Cauchy stresses it becomes

(2.29) T-n=-Pn+2uD(u)-n=t° onI" C 9N,

where I'” is a measurable subset (possibly empty) of the whole boundary
oN.

(2) Prescribed velocity (or Dirichlet boundary condition). A given velocity field
is imposed on I'%, a measurable subset of dQ (which may be empty). This
means that a vector field

g: I xT% 5 R
is prescribed and we impose that
u=g on ',

Since divu = 0 in Q, it must be noted that if T = 8} then at any time g
must satisfy the following compatibility condition

(2.30) /99g-n=0.

Clearly for a proper boundary condition specification we must have I'™ UT'? = 9f).

The conditions to apply are normally driven by physical considerations. For
instance, for a viscous fluid (4 > 0) like the one we are here considering here,
physical consideration lead to impose the homogeneous Dirichlet condition u = 0
at a solid fixed boundary. When dealing with an “artificial boundary”, that is
a boundary which truncates the space occupied by the fluid (for computational
reasons) the choice of appropriate conditions is often more delicate and should in
any case guarantee the well-posedness of the resulting differential problem.

For example, for the flow field inside a 2D model for the carotid artery such the
one shown in figure 11, we could impose Dirichlet boundary condition on I'”*, by
prescribing a velocity field g.

On the “wall” boundary T'”, which is in this case assumed to be fixed, we will
impose homogeneous Dirichlet conditions, that is u = 0 on I'*. When we will
consider the coupled problem between fluid and vessel wall, T'* will be moving,
hence the homogeneous Dirichlet condition will be replaced by u = w, where w is
the wall velocity.
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rin u:g

FIGURE 11. A possible boundary subdivision for the flow in a
carotid bifurcation

At the exit T'*, we could, for instance, impose homogeneous Neumann condi-
tions, i.e relation (2.29) with t¢® = 0. For the case illustrated in Fig. 11 and with
that choice of coordinate basis, it becomes (derivation left as exercise)

6’&1 (911,2
21222y =0
u(a.’EQ + 8.7;'1 ’
_pyou g
6.1'2

Remark 2.5. We anticipate the fact (without providing the proof) that this choice
of boundary conditions, with the hypothesis that at ['* the velocity satisfies ev-
erywhere the condition u+n > 0, is sufficient to guarantee that the solution of the
Navier-Stokes problem exists and is continuously dependent from the data (initial
solution, boundary conditions, forcing terms), provided that the initial data and
forcing term are sufficiently small.

%

Unfortunately, the homogeneous Neumann condition, which indeed would sim-
ulate a discharge into the open air, is rather unphysical for the case of a human
vessel. As a matter of fact, it neglects completely the presence of the remaining
part of the circulatory system. The difficulty in devising proper boundary condition
for this specific problem was already mentioned in section 1 of these notes. The
matter is still open and is the subject of active research. A possibility is provided by
coupling the Navier-Stokes equations on the section of the arterial tree of interest
with reduced models, like the one that will be presented in section 6, which are able
to represent, though in a simplified way, the presence of the remaining part of the
circulatory system. Techniques of this type has been used and analysed in [20, 15].
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3. THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS AND
THEIR APPROXIMATION

In this section we introduce the weak formulation of the Navier-Stokes equations
for constant density (incompressible) fluids. Then, we address basic issues con-
cerning the approximation of these equations in the context of the finite element
method.

3.1. Some functional spaces. For the following discussion we need to introduce
some Sobolev spaces for vector functions. We assume that the reader is already ac-
quainted with the main definitions and results on Sobolev spaces in one dimension.
A simple introduction is provided in [48]. For a deeper insight see, for instance, [4].

We will indicate with L?(Q2) (1 < p < o) the space of vector functions f : @ —
RY (with N = 2 or 3) whose components belong to L?(Q). Its norm is

N g
”fHLP(Q) = (Z ||f’i||II)JP(Q)> , 1 <p<oo
=1

and

Il =inf{C eR| |fi|<C,i=1,---,N, ae. in Q},
where a.e stands for “almost everywhere”. We will use the same notation for tensor
fields, i.e. we will also indicate with L?(f2) the space of tensor fields T : Q — RV*¥
whose components belongs to LP(Q). In this case

N N P
||T||LP(Q) = ZZ ||Tz]||I[),P(Q) 7]- <p<oo.
i=1 j=1

Analogously a vector (or a tensor) function f belongs to H™(Q) if all its compo-
nents belong to H™ (), and we have

N 3
Ifllzm @) = (Z ||fi||§{m(9)> ;
i=1

while its semi-norm is

N 3
f|am Q) = (Z |fi|%{mm)> .
i=1
It is understood that, when m =0,
H°(Q) = L*(Q).

When equipped with the following scalar product
N
(fa g)Hm(Q) = Z(fl;gZ)Hm(Q)a fag € Hm(Q)J
i=1
the space H™(Q2) is a Hilbert space.
To ease notation, we will often use the following short-hand notation for the L?
scalar products,

(v,w) = (v, W)L2(0), ?,9) = 0, Q12
We note that the L? scalar product of two tensor fields T and G belonging to
L2(Q) is defined as

N N
(T,G) = (T,G)L2(Q) = /QT :G = ZZ/QT”G”

i=1 j=1
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For our purposes we will usually have m = 1. In that case we have the equality
€11z () = Ill52() + I VElIZ2(0)-
We often utilise the space H§(£2) defined as
H;(Q2) = {ve H'(Q)| v|so =0}.

We will consider bounded domains Q with regular (i.e. Lipschitz continuous)
boundary 92, so that both the Sobolev embedding theorems in RY and the Green
integration formula hold. Some important results are here recalled, without pro-
viding the demonstration, which may be found in [34] or [4].

Theorem 3.1 (Sobolev embeddings (simplified form)). Let Q be a bounded domain
of R with Lipschitz continuous boundary. The following properties hold

If055<%’ HS(Q)(_)LP(Q)J p= N2iv28’
Ifs=2%, H*(Q) <L), 2<¢<oo,
H*(Q) < [C°(@)]7,

Ifs> ¥
where A — B means that A is included in B with continuous embedding.

27

Theorem 3.2 (Green integration formula). Let Q be a bounded domain of RY with
Lipschitz continuous boundary and let n denote the unit outer normal along 0f).
Let u,v € HY(Q), then the integral
/ UV N;
1)

ezists and is finite for each component n; of n. In addition we have

ou ov

v=— [ u +/ uong, i =1,...,N.
o 0z; o Oz fsl9]

Lemma 3.1 (Poincaré inequality - multidimensional case). Let f : RY — R be a
function of HY(Q), with f =0 on T C 95 of strictly positive measure. Then, there
exists a positive constant Cp, (depending only on the domain Q and on T'), such
that

(3.1) 1flz22) < CPIIVFLa(e)-

Lemma 3.2. Let Q be a bounded and connected subset of RY, where N = 2 or 3.
Furthermore, let us assume that the velocity field u € H'(Q) vanishes on T C 0 of
strictly positive measure. Then, there exists a constant Cx > 0 so that the following
inequality holds,

(3.2) | D) : D) > Cul| Bulfs o

This theorem is a consequence of the Korn inequality, whose precise statement
may be found for instance in [9, 14].

Lemma 3.3 (Gronwall Lemma). Let f be a non-negative function which is inte-
grable in I = (to,t1) and g and ¢ be two continuous functions in I, with g non-
decreasing. If

¢

(3.3) o) <g(t)+ | f(r)g(r)dr Viel,

to
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then
t
(3.4) o) <gt)exp | f(r)dr Vtel.
to

3.2. Weak form of Navier-Stokes equations. The incompressible Navier-Stokes
equations read

(3.5a) % + (u-V)u+ Vp—2div(vD(u)) = f, in Q, tel,
(3.5b) divu =0, inQ,tel,
(3.5¢) u = uy, in Q, t=tp.

We assume that v is a bounded strictly positive function, precisely we assume that
there exist two constants vy > 0 and vy > 0 such that Vi € I,

vy < v < 1y almost everywhere in .

We consider the case in which the system of differential equations (3.5) is equipped
with the following boundary conditions.

(3.6a) u=g on T tel,
(3.6b) —pn+2vD(u)-n=h on I' tel,

We have indicated with T'¢ and T'™ the portions of ) where Dirichlet and Neu-
mann boundary conditions are applied, respectively. We must have I'? UT™ = 9Q.

Remark 3.1. If T¢ = 99 we call the problem formed by (3.5) and (3.6) a Dirichlet
problem. We will instead use the term Neumann problem when I'* = 0f2. The
conditions g = 0 and h = 0 are called homogeneous boundary conditions.

In the case of a Dirichlet problem, the boundary datum has to satisfy the fol-
lowing compatibility relation for all ¢ € I:

/ g-n=0.
a0

Remark 3.2. For the problem at hand, we normally have f = 0, since the only
external force which one may eventually consider in blood flow is the gravity force.
Even in this case, we may still adopt the Navier-Stokes equations with f = 0 by
replacing p with p*(¢,x) = p(¢,x) + gz(x)e,, where g is the gravity acceleration,
e, the unit vector defining the vertical direction (upwardly oriented) and z(x) the
(known) quota of point x with respect to a reference horizontal plane. Yet, for
the sake of completeness, many of the derivations of this as well as the following
sections refer to the general case f # 0.

¢

The weak form of the Navier-Stokes equations is (formally) obtained by taking
the scalar product of the momentum equations with a vector function v belonging
to a functional space V (called test function space), which will be better specified
later on, integrating over 2 and applying the Green integration formula. We operate
similarly on the continuity equation, by multiplying it by a function ¢ € @ and
integrating. Also the space @ will be specified at a later stage.

¢
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We formally obtain
Ou

G+ (@ V)wv)+2 [ D) : D) = (p.divy)

:(f,v)+/89v-(21/D(u)-n—pn),

(divu,q) =0.
We have exploited the identity

/QI/D(II) : Vv = / vD(u) : D(v),

Q

which derives from the symmetry of D(u).
The boundary term may now be split into two parts

/89V-(2I/D(u)'n—pn):/de.(2yD(u).n_pn)+/ v-h

n

We note that the contribution from the Neumann boundary is now a given data,
while contribution from the Dirichlet boundary can be eliminated by appropriately
choosing the test space V.

By inspection, we may recognise that all terms make sense if we choose as test
function spaces

V={veH'(Q), vlr=0},
Q= {qe L*N), with / ¢=0 ifT?=09Q},
Q
and if we seek, at each time ¢, the velocity in
Ve={ueH'(Q), ulp:=g}
and the pressure in Q.

Remark 3.3. The request that @ is formed by functions with zero mean on 2 when
we treat a Dirichlet problem derives from the fact that in such a case the pressure
is determined only up to a constant, as it appears in the equations only through
its gradient. To compute a unique value for the pressure it is then necessary to fix
the constant. This is obtained by the zero-mean constraint.

%

Finally, the weak form of the Navier-Stokes problem (3.5) and (3.6), reads:
Find, Yt € I, u(t) € Vg and p(t) € Q such that
(Grov)+ouv) + el u,v) +0(v.p) = (E3) + [ veh, WV,

(3.7) ot

b(u,q) =0, VgeQ,

n

where
(3.8) a(u,v) = 2/QVD(u) :D(v),
(3.9 c(w,u,v) = /Q(w -Vu-v,

(3.10) b(v,p) = —/deivv.
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3.2.1. The homogeneous Dirichlet problem. In this section we will focus on the
homogeneous Dirichlet problem, that is the case when I' = 9Q and g = 0 in
(3.6a). Therefore,

G1)  V-H®, Q=LB®={cl’®), [q=0)
Q
and the weak form reads:

Find, ¥t € I, u(t) € V and p(t) € Q such that
P 3) 4 a(u,v) + el v) +bv.p) = (V) WeV,
(3.12) ot

b(u,q) =0, VgeQ.

Lemma 3.4. The formsa: VXV 5 R, c: VXVXV3Randdb: VxQ—-R
are continuous with respect to their arguments. In addition, a(-,-) is coercive, i.e.
Ja > 0 such that

a(v,v) 2 Oé”V”%_p(Q), C > O,VV € V.
Proof. The continuity the bilinear forms a and b is an immediate consequence of
the Cauchy-Schwarz inequality. Indeed, Vu,v € V and Vq € Q
la(u, V)| <vifula (o) |V (@) < willulla @) IVIlE (@)
b(u, p)| <[l divullz2(e)llpll2(0) < llulla @) llpllzz@)
For the tri-linear form ¢ we first have to note that thanks to the Sobolev embed-
ding theorem H'(Q2) — L¢(Q) (as N = 2,3) and consequently H*(Q2) — L*(Q).

Then, wu € L2(Q2), and considering the expression of ¢(-,-,-) component-wise, we
have

Uk

ou ou 0
/Qwia—wka < ||wivk||L2(Q)”6—xf”L2(Q) < ||wi||L4(Q)||Uk||L4(Q)||a—$i||L2(Q)-

Then

6uk 6uk
313 [ wigton < Ol @ 5 Lz ol ) <

C||wi||H1(Q)|Uk|H1(Q)||Uk||H1(Q) < C”wi”Hl(Q)”uk”Hl(Q)”vk”Hl(Q);

where C' is a positive constant.
It follows that, Vu,v,v € V

c(w,u,v) < Cil|wlla ) llulla @) lIvla (),

by which the continuity of the tri-linear form is proved (C} is a positive constant).

The coercivity of the linear form a derives from inequalities (3.1) and (3.2), since
(3.14) a(v,v) > 21/0/QD(V) :D(v) > 21/0C’K|v|%11(9) > a||v||%11(9), Vv eV,

2v0Ck

with a = G EE

being Cp and Ck the constants in (3.1) and (3.2), respectively. O

We now introduce the space

Vaiy ={f €V| divf=0ae. in Q}.
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Theorem 3.3. If u is a solution of the weak formulation (3.12), then it satisfies

(3.15) @,v) +a(u,v) + c(u,u,v) =(f,v), Vve Vg, tel.

( ot
Conversely, if, Vt € I, u(t) € Vaiy is a solution of (3.15) and 66—;1 € L%(Q), then
there exists a unique p € Q such that (u,p) satisfies (3.12).

Proof. The first part of the proof is trivial. If u satisfies (3.12) then it belongs to
Vaiv and it satisfies (3.15), since Vg;y C V.

The demonstration of the inverse implication requires first to state the following
result.

Lemma 3.5. Let Q be a domain of RY and let L € V'. Then L(v) = 0¥v € Vg
if and only if there exists a function p € L*(S)) such that

L(v) = (p,divv), Vv e V.
For the proof see Lemma 2.1 of [24].
The application L defined as
L(v) = (aa—ltl,v) +a(u,v) +c(u,u,v) —(f,v) YWwevVv

belongs to V', being a linear continuous functional on V. We can therefore apply
lemma (3.5) and obtain the desired result. O

3.3. An energy inequality for the Navier-Stokes equations. We now prove
an energy inequality for problem (3.12), by which we may assess a continuous
dependence of the solution from the given data.

Theorem 3.4 (Energy inequalities). Let u(t) € Vaiy be a solution of (3.12), Vt € I.
Then the following inequalities hold

t t
@Iz @) + Cr / I Va(r) |22 ) dr < (nuouiz(m + / ||f(T)||i2(9)dT)
where C; = 4v9Ck, and

t ¢
Cp
lu(®)lf2) + Co | IVullizgy()dr < |luollfzy + =~ [ €)1z dT
0 Cs2 Jo

where Cy = 2vyCk. Here, Cx and Cp are the constants in the Poincaré inequality
(3.1 and in (3.2), respectively.

We first prove the following result
Lemma 3.6. If u is a solution of (3.12) then c(u,u,u) = 0.
Proof. Tt follows from the Green formula and the fact that u|sq = 0. Indeed,

c(u,u,u):/(u-V)u-u:/ 1V(|u|2)-u:—l/ |u|2divu+1/ lul*u-n.
Q Q2 2 Ja 2 Joq

Now, the last integral is zero since u = 0 on 0. Moreover, for the same reason
/divu:/ u-n=20.
Q o0
2
e= [ P,
Q
we have

/|u|2divu:/ |u|2divu—c/ divu:/(|u|2—c)divu:b(u,(|u|2—c)):0,
Q Q Q Q

where the last equality is obtained since (Jul? —c) € Q and b(u,q) =0,Vge Q. O

Then, if we set
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We now give the demonstration of theorem 3.4.

Proof. For all fixed ¢, take v = u(t) in the momentum equation of (3.15). We have

1d
(3.16) 5&”“”%}(9) + c(u,u,u) + b(u,p) + a(u,u) = (f,u).
Then,
1d, .,
5&”“”1}(9) +a(u,u) = (f,u).

Now, thanks to (3.2)
a(u,u) =2 / vD(u) : Du > 2uCx || V2 g,
Q
then
d 2 2 1 2 2
(3.17) a”“”m(g) + 4o Ck || Vu|g2(q) < 2(f,u) < 2_€||f||L2(Q) + 2e|lullg2 ()

for any € > 0. The first inequality is obtained by choosing € = % By integrating
between tg and t we have

t
u(t) 256 + 426Cxc / IVa(r) 2 gy dr <
0

t t
/t ||f(T)||i2m)dT+/t [la(7)IIz2 0y dr + [uolz2 (o) -
0 0

We apply Gronwall lemma (Lemma 3.3) by identifying

t
(6@ + Cxc [ IVa()layds
to
with ¢(t), obtaining the first result. By using instead the Poincaré inequality on
the last term of (3.17), and by taking e = 29&  we obtain

C%
@iy + 200k V2o < —C2— ]2
a7 1lez (@) + 20 CklIVulliz @) < 5 -l )

By integrating between to and ¢t we obtain the second inequality of the theorem. [

Remark 3.4. In the case where f = 0 we may derive the simpler estimate
t
e oy + 40Cc | IVa(r) B < ol e 2 to
0

%

3.4. The Stokes equations. The space discretisation of the Navier-Stokes equa-
tions give rise to a non-linear set of ordinary differential equations because of the
presence of the convective term. This makes both the analysis and the numeri-
cal solution more difficult. In some cases, when the fluid is highly viscous, the
contribution of the non-linear convective term may be neglected. The key param-
eter which allow us to make that decision is the Reynolds number Re, which is an
a~dimensional number defined as

L
Re = Jull ,

14
where L represents a length-scale for the problem at hand and |u| the Euclidean
norm of the velocity. For the flow in a tube L is the tube diameter.
Contrary to other fluid dynamic situations, the high variation in time and space
of the velocity in the vascular system does not allow to select a single representative
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value of the Reynolds number, % nevertheless in the situations where Re << 1 (for
instance, flow in smaller arteries or capillaries) we may say that the convective
term is negligible compared to the viscous contribution and may be discarded. We
have then the Stokes equations, which read (in the case of homogeneous Dirichlet
conditions)

(3.18a) g—ltl + Vp — 2div(vD(u)) =1, in Q,tel,
(3.18b) divu=0, inQ,tel,

(3.18¢c) u=0 on 09, tel,

(3.184d) u = uy, in Q, t=tp.

The corresponding weak form reads

Find, Vt € I, u(t) € V, p(t) € Q, such that
(22,v) + a(u,v) +b(v,p) = (E,v), VeV,
(3.19) ot

b(u,q) =0, Vg€ Q.

. . Ou .
In the case of a steady problem, that is when we consider — = 0, the solution

(u,p) of the Stokes problem (3.19) is a saddle point for the functional
1
S(v,q) = za(v,v) +b(v,q) = (f,v), veEV, qeQ.

This means
S(u,p) = min max S(v, q).

veV qeQ
In this respect, the pressure p may be considered as a Lagrange multiplier associated
to the incompressibility constraint.

Remark 3.5. In those cases when instead Re >> 1 (high Reynolds number flows)
the flow becomes unstable. High frequency fluctuations in the velocity and pressure
field appear, which might give rise to turbulence. This phenomenon is particularly
complex and its numerical simulation may be extremely difficult. To make the
problem amenable to numerical solution it is often necessary to adopt a turbulence
model, which allows to give a more or less accurate description of the effect of
turbulence on the main flow variables.

In normal physiological situations, the typical values of the Reynolds number
reached in the cardiovascular system do not allow the formation of full scale tur-
bulence. Some flow instabilities may occur only at the exit of the aortic valve and
limited to the systolic phase. Indeed, in this region the Reynolds number may
reach the value of few thousands only for the portion of the cardiac cycle corre-
sponding the the peak systolic velocity. Therefore, there is no sufficient time for a
full turbulent flow to develop.

The situation is different in some pathological circumstances, e.g in the presence
of a stenotic artery. The increase of the velocity at the location of the vessel
restriction may induce turbulence to develop. This fact could explain the high
increase in the noise produced caused by the blood stream in this situation.

¢

2Another a-dimensional number which measures the relative importance of inertia versus vis-
cous in oscillatory flow is the Womersley number [21]
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3.5. Numerical approximation of Navier-Stokes equations. In this section
we give a very short account on possible numerical methods for the solution of
the Navier-Stokes equations. This subject is far from being simple, and we will not
make any attempt to be exhaustive. The interested reader can consult, for instance,
chapters 9,10 and 13 of A. Quarteroni, A. Valli [43] and the classic books on the
subject by V. Girault and P.A. Raviart [24] and R. Temam [55].

Here, we will simply mention a few methods to advance the Navier-Stokes equa-
tions from a given time-level to a new one and we will point out some of the
mathematical problems that have to be faced. For the sake of simplicity we will
confine ourselves to the homogeneous Dirichlet problem (3.12).

3.5.1. Time advancing by finite differences. The Navier-Stokes problem (2.27) (equiv-
alently, its weak form 3.12)) can be advanced in time by suitable finite difference
schemes.

The simulation will cover the I = (0,T) which we subdivide into sub-intervals
(time-steps) I* = (k¥ t**1) with k = 0,---, N and where t**! — tkF = At is
constant. We have thus partitioned the space-time domain I x Q into several time-
slabs T* x Q. We assume that on each slab we know the solution at t = t*¥ and
that we wish to find the solution at ¢t = t*+1. Clearly, for the first time slab the
assumption is true since at t = 0 the approximate solution is obtained from the
initial data. If we treat the time slabs in their natural order as soon as the solution
on the k-th time slab has been found, it is made available as initial condition for
the computation on the next time slab. This is a time-advancing procedure.

We will indicate by (u*,p*) the approximate solution at time t*, that is

(u*,p*) & (u(t*), p(t")).
A family of simple time-advancing schemes is obtained by using the Taylor expan-
sion formula to write
du u(tF+1) — u(tk)
at At
Then, by making the first order approximation
Ou u'tt —u
at At
ir;t01(2.27 ) we may write the following time-stepping scheme to calculate u**+! and
+1.

(tF+h) = + O(Ab).

k+1 k

(tF+1) =

p
k1 _ gk
(3.20a) — A~ 2divyD(uf*) + (u* - V)u** + WpF L = fFHL 0 in Q,
(3.20b) divu**! =0, in Q,
(3.20c) u*tl =0 on 9N).

Here, f¥*! stands for f(¢tk+1).
The value of u* and u** in the non-linear convective term may be taken, for
instance, as follows

(uf - V)uk, fully explicit treatment,
(u* - V)u™* =< (uf - V)ubt!,  semi-implicit treatment,
(uftl . W)ub*t)  fully implicit treatment.
In the case of the fully implicit treatment, equations (3.20) give rise to a non-

linear system. The semi-implicit and fully explicit treatments, instead, perform a
linearisation of the convective term, thus eliminating the non-linearity.
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Let us consider the scheme resulting from the fully explicit treatment of the
convective term. Problem (3.20) is then rewritten as

(3.21a)
1
Aituk"'1 — 2div(yD(u*th)) + Wphtt = £+l 4 A—tuk — (u* . V)u*F inQ,
(3.21b) divu**' =0 in Q,
(3.21c) u*t1 =0  on 99.

We will now denote u**! and p*+! by w and m, respectively, and by q and ag
the quantities

(3.22) q=fHt 4 iuk —(u* . V)uk, q = i
Problem (3.21) may be written in the form

(3.23a) agw — 2div(vD(w)) + Vr =q, in Q,
(3.23b) divw =0, inQ,

(3.23c) w=0 on 09,

which is called the generalised Stokes problem.

For its approximation, a Galerkin finite element procedure can be set up by
considering two finite element spaces V, for the velocity and @ for the pressure,
and seeking wy, € Vj, and 7, € @y, such that

a(Wh, Va) +b(wWn,mn) = (q, V), Vvh € Vi,
(3.24)

b(Wn,qn) =0, Vqn € Qn,
where d(w,v) = ag(w, V) + a(w,v).

The algebraic form of problem (3.24) is derived by denoting with
{‘pb izl:"'7NVh}7 {wu 22177NQ;L}

the bases of V}, and Qp, respectively. Here Ny, = dim(V}) and Ng, = dim(Q4).
Then, by setting

Nv, Ngq,
(3.25) wh(x) = Z wip;(x), Pa(x) = Z mihi(x)

we obtain the following system from (3.24):

Cc DT\ (W Fs
629 (b %) ()= ()
where W, IT and Fy denote three vectors defined respectively as
(W) = w;, (I0); = m, (Fs)i = (a4, %),
while C, K and D are matrices whose components are defined as

(C)ij = ale;, i), (D)ij =blp;,i)-
The global matrix

oo a=(G 2

is a square matrix with dimension (Nvy, + Ng,) x (Ny, + Ng,).

In the case of a finite element approximation, p; represents the pressure at the
i-th mesh node. The interpretation of w; is made more complex by the fact that
the velocity is a vector function, while w; is a scalar. Let us assume that we are
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considering a three dimensional problem and let the basis for V;, be chosen by
grouping the vector functions ¢, into 3 families, as follows:

¥i 0 0
0 0 Pi

Finally, let My, = N‘3'h . Then, we may rewrite the first expansion in (3.25) as

Mv, 3

wa(x) = D > wlel(x),

i=1 j=1
where wf here represents the j-th component of w at the i-th mesh node.
Lemma 3.7. If ker DT = 0, then matriz A is non-singular.

Proof. We first prove the non-singularity of C. For any W € RVVr, W #£ 0
th th
WICW = > ) wiw;Cyj = d(w,w) >0,

i=1 j=1

where w = Zf\;‘;’” w;p,;. Consequently, C' is positive-definite, and thus non-singular.
From (3.26) we have
W=C""'(F,— D), DW=0.

Then we may formally compute the discrete pressure terms by

—(DC'D")II =-DC'Fs.
Proving that A is non-singular thus reduces to show that the matrix

S=DC™'DT

is non singular. If we take any q € RVe» with |q| # 0 we have by hypothesis that
DTq # 0. Then

q"Sq=(DTq)"C"'DTq #0,
since C~1! is symmetric positive definite. Thus matrix S (which is clearly symmet-

ric) has all eigenvalues different from zero and, consequently, is non-singular. This
concludes the proof. O

The scheme we have presented, with an explicit treatment of just the convective
term, is only one of the many possible ways of producing a time discretisation of
the Navier-Stokes equations. Another choice is to resort to a fully implicit scheme.

3.5.2. Fully implicit schemes. By employing in (3.20) a full implicit treatment of
the convective part we would obtain a non-linear system of the following type

(-6

where now the matrix F is a function of the unknown velocity,
(E(W))Z] = 6(90“ ‘P]) + c(uk+17 ‘pja ‘pz) = C’lJ + Z c(‘pma ‘Pj: ‘P,)Wm

m=1

A possible way to solve it is to resort to Newton’s method:
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0
Given (vl"IIO ), solve for [=0,---
6—E(Wl) W'+ E(W!) DT\ (WH! - W!

_(Fs\ _ E(W!Y DT\ (W!
—\o D 0)\m)’
until a suitable convergence criterion is met.

The solution of a non-linear system is now reduced to a series of solutions of
linear systems. Going back to the Navier-Stokes equations, we may note that a full
implicit scheme would require to solve at each time step a series of linear systems
of form (3.29), that resembles the Stokes problem. The resulting numerical scheme
is thus in general very computationally intensive.

3.6. Projection methods. We now follow another route for the solution of the
incompressible Navier-Stokes equations which does not lead to a Stokes problem
but to a series of simpler systems of partial differential equations. We start from
the Navier-Stokes equations already discretised in time and we will consider again
a single time step, that is

R

At

plus (3.20b) and (3.20c). Here, for the sake of simplicity (and without any loss
of generality) we have chosen a semi-implicit treatment of convective term. We
wish now to split the system in order to consider the effects of the velocity and
the pressure terms separately. We define an intermediate velocity 11, obtained by
solving the momentum equation where the pressure contribution has been dropped,
precisely

(3.30) + (u¥ . W)uPt! — 2div(vD(uf 1)) + Wt = £FFL in Q,

i—u

(3.31a) At (u* . V)it — 2div(vD(in)) = f**!, in Q,
(3.31b) @=0 on 90.

We may recognise that (3.31a) is now a problem on the velocity only, which could
be re-interpreted as the time discretisation of a parabolic differential equation of
the following type

i

6—‘; + (W V)i - 2div(D(d)) = f,
with w a given vector field. We cannot at this stage impose the incompressibility
condition because we would obtain an over-constrained system.

We then consider the contribution given by the pressure term and the incom-
pressibility constraint, that is
uk+1

(3.32a) Tt_u + Wt =0, inQ,

(3.32b) divuf*t =0, in Q.

System (3.32) depends on both the velocity and pressure, yet we may derive an
equation only for the pressure by taking (formally) the divergence of (3.32a) and
exploiting the incompressibility constraint (3.32b). That is,

0 = div utt —a +Whtl) = ~ L diva + div Wpht! = L divia + Aphtt
At At At ’



MODELLING THE CARDIOVASCULAR SYSTEM 41

by which we obtain a Poisson equation for the pressure in the form
1
(3.33) Aphtl = X divi, in Q.

Equation (3.33) must be supplemented by boundary conditions, which are not
directly available from the original problem (3.30). For that, we need to resort to
the following theorem, also known as Ladhyzhenskaja theorem.

Theorem 3.5 (Helmholtz Decomposition Principle). Let Q be a domain of R
with smooth boundary. Any vector function v € L?(Q) (with N = 2,3) can be
uniquely represented as v = w + Vi) with w € Hy;,, (), where

Hyin () = {w| we L*(Q),divw =0, a.e w.n=0 on 0},
and ¢ € H' (Q).

The proof is rather technical and is here omitted. An outline, valid for the case
v € H'(Q), is given in [8]. A more general demonstration is found in Theorem 1.5
of [55].

If we now consider the expression

(3.34) i = uft! + V(Agpht?),

derived from (3.32a), we may identify @1 with v and (Atp**!) with ¢ in the
Helmholtz decomposition principle. Then, the natural space for u**! is Hg;, (),
by which we should impose

(3.35) w1 n=0, ondQ.

Unfortunately, (3.35) is still a condition on the velocity, while we are looking for a
boundary condition for the pressure. The latter is found by considering the normal
component of (3.34) on the boundary,

-n=ul.n4+ AtVpF*tl.n, on 9Q,

1

and noting that on 9 we have i - n = 0, because of (3.31b), and u**! .n = 0.

Then,
apk-i-l

Wt .on = o = 0, on 09,

which is a homogeneous Neumann boundary condition for the Poisson problem
(3.33).
The projection method here presented for the solution of the Navier-Stokes equa-

tions consists then in solving at each time-step a sequence of simpler problems, listed
in the following.

(1) Advection-diffusion problem for the velocity . Solve problem (3.31a)-
(3.31b).
(2) Poisson problem for the pressure

(3.36a) ApFtt = Ait divia, in Q,
(3.36b) %pk+1 =0, on N

(3) Computation of uF*! (this is an explicit step)
(3.37) ubtl = i — ArWwphtL
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3.7. Algebraic Factorisation Methods. An alternative way of reducing the
computational cost of the solution of the full Navier-Stokes problem is to operate
at algebraic level. We will consider the generalised Stokes problem in its algebraic
form (3.26). This is the typical system that arises at each time step of a time
advancing scheme for the solution of the Navier-Stokes by a finite element method,
when the convective term is treated explicitly. In this case, the matrix C has the
form

M
=—+K+B
c At+ + b,

where M is the mass matrix, K the stiffness matrix and B the matrix arising from
the explicit treatment of the convective term.

The matrix D derives from the discretisation of the divergence term, while D*
represents a discrete gradient operator. We may formally solve for W

(3.38) W = C }(F, - DTTI),
and by substituting into (3.26) we have
(3.39) DC'DTIl = DC'F,.

The matrix DC'DT is called Stokes pressure matriz and is somehow akin to a
discrete Laplace operator. Having obtained IT from (3.39), we can then compute
the velocity by solving (3.38).

However, the inversion of C' is in general prohibitive in terms of memory and
computational cost (indeed C is sparse, but C~! is usually not).

A way to simplify the computation can be found by recognising that steps (3.39)
and (3.38) may be derived from the following LU factorisation of the global matrix
A

_(Cc DT\ _[C 0 Iw C7'DT\ _
(3.40) A_(D 0)‘(1) —Dc—10T>(D Iy = LU,

where Iw and Iy indicate the identity matrices of dimension equal to the number
of velocity and pressure degrees of freedom, respectively. We then consider the LU
solution

CW = F, W+ C DT =W
DW — DC-'DTTI = 0 m=1

where W and II are intermediate velocities and pressures.
The scheme may be written in the following alternative form,

(3.41a) Intermediate velocity CW = Fy,
(3.41b) Pressure computation ~— DC 'DTII = —DW,
(3.41c¢) Velocity update W =W —C 'DTIL.

The key to reduce complexity is to replace C' by a matrix simpler to invert, which,
however, is “similar” to C, in a sense that we will make precise. This technique is
called inezxact factorisation. In practise we replace A in (3.40) by an approximation
A* obtained by replacing in the LU factorisation the matrix C~! by convenient
approximations, which we indicate by H; and H,, that is

(3.42)

A* _ L*U* —_ C 0 IW HQDT _ C CHQDT
- ~\0 -DH\D*)\D Ig ) \D D(H,—H\)DT)"

If we choose H, = H; the discrete continuity equation is unaltered, that means
that the approximated system still guarantees mass conservation at discrete level.
If H, = C~1, the discrete momentum equations are unaltered, and the resulting
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scheme satisfies the discrete conservation of momentum. In particular, we can
consider the two special cases
D 0

T

-1 * C -DT -1 T
H, =C #HQ = A= D Q) Q:D(Hl—C )D
3.7.1. The algebraic Chorin-Temam Scheme. We note that
M 1 1 1
C_A—t+K+B_At(M+At(K+B))_AtM(Iw+AtM (K + B)).

We recall the well known Neumann expansion formula [35]

oo

(I +eA) ™t =D (-1)(eAY,
j=0
which converges for any matrix A and any positive number € small enough so that

the spectral radius of €A is strictly less than one. We can apply this formula to
C~1 to get

(3.43) C'=AtM(Iw +AtM YK +B)) 'M ' =
At (1) [AtMTHEK + B)) M~! = At(Tw — AtM ™IS+ )M,
=0

where we have put S = K + B.

A way to find a suitable approximation is to replace C~! with just some terms
of the series. The simplest choice considers just a first order approximation, which
corresponds to put into (3.42)

(3.44) Hy=Hy=H=AtM .
Consequently,

1NT T —-1nT
(3.45) A*:AOT=<g AtCM([) D):<g D +At66’M D)_
The scheme obtained by applying the corresponding LU decomposition reads
(3.46a) Intermediate velocity CW = F,
(3.46b) Pressure computation —— AtDM~'DTII = —DW,
(3.46¢) Velocity update W =W — AtM ' DTIL

This algorithm is known as algebraic Chorin-Temam scheme. Comparing with the
standard projection method, we may note that the algebraic scheme replaces in
the pressure computation step (3.46b) the Laplace operator of the Poisson problem
(3.36) with a “discrete Laplacian” DM ~'DT  which incorporates the boundary
condition of the original problem. No additional boundary condition is required for
the pressure, contrary to the standard (differential type) scheme.

Remark 3.6. The finite element mass matrix M is a sparse matrix with the same
structure of C'. Therefore it may seem that there is little gain in the computational
efficiency with respect to the original factorisation (3.41). However, the matrix M
may be approximated by a diagonal matrix called lumped mass matriz [43], whose
inversion is now trivial.

%
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Remark 3.7. It is possible to write the algebraic Chorin-Temam scheme in incre-
mental form, as it has been done for its differential counterpart.

%

3.7.2. The Yosida scheme. If we make the special choice

(3.47) Hy = AtM 1, Hy=C1
we have

" c DT . —1 ~1\pT
(3.48) ar=Ay=(p o) withQ=-D(AtM ' —C DT
The corresponding scheme reads
(3.49a) Intermediate velocity CW = F,
(3.49b) Pressure computation ~— AtDM~'DTTI = —DW,
(3.49¢) Velocity update W =W — AtC~'DTIL.

The last step (3.49c) is more expensive than its counterpart (3.46¢) in the Chorin-
Temam scheme, since now we need to invert the full matrix C. An analysis of this
method is found in [40].

Remark 3.8. If we consider the Stokes problem we have C = (At)"'M + K and
consequently the matrix Q = —D(AtM ! — C~1)DT in (3.48) may be written as
Q = —AtD [Iw — (Iw + AtK)™']| DT = —(At)’DY D7,

where
1

V=< [Iw — (Iw + AtK) 7],

may be regarded as the Yosida regularisation of K, which is the discretisation of
the Laplace operator. That is () may be interpreted as the discretisation of the
differential operator

(At)? div(Ya: V),

where Ya; is the Yosida operator [4].
¢

Remark 3.9. An incremental form may be found as follows. If II" represents the
known value of the pressure degrees of freedom from the previous time step, we
have

Intermediate velocity CW =F, — DT,
Pressure increment — AtDM 'DT(IT - II") = —DVA\?,
Velocity update W =W — AtC~'DT(II — TI™).
¢

More details on algebraic fractional step methods may be found in [37] and [41].
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4. MATHEMATICAL MODELLING OF VESSEL WALLS

The vascular wall has a very complex nature and devising an accurate model for
its mechanical behaviour is rather difficult. Its structure is indeed formed by many
layers with different mechanical characteristics[22, 30](see Fig. 12). Moreover, ex-
perimental results obtained by specimens are only partially significant. Indeed, the
vascular wall is a living tissue with the presence of muscular cells which contribute
to its mechanical behaviour. It may then be expected that the dead tissue used
in the laboratory will have different mechanical characteristics than the living one.
Moreover, the arterial mechanics depend also on the type of the surrounding tis-
sues, an aspect almost impossible to reproduce in a laboratory. We are then facing

Internal Elastic
Lamina

External Elastic

FIiGURE 12. The vessel wall is formed by many layers made of
tissues with different mechanical characteristics. Image taken from
“Life: the Science of Biology” by W.K. Purves et al., fourth edition,
published by Sinauer Associates Inc. and W.H. Freeman and Com-

pany.

a problem whose complexity is enormous. It is the role of mathematical modelling
to find reasonable simplifying assumptions by which major physical characteris-
tics remain present, yet the problem becomes amenable to numerical analysis and
computational solution.

The set up of a general mathematical model of the mechanics of a solid continuum
may follow the same general route that we have indicated for fluid mechanics. In
particular, it is possible to identify again a Cauchy stress tensor T. The major
difference between solids and fluids is in the constitutive relation which links T to
kinematics quantities. We have seen in section 2 that for a fluid such a kinematic
quantity is the velocity gradient or, more precisely, the strain rate D. For a solid,
the Cauchy stress tensor is instead a function of the deformation gradient, which
we have already defined in (2.7). That is, the constitutive law for a solid may be
written as

T = T(Fy).
If we assume that both the deformation gradient and the displacements are small,
under the hypothesis of linear elasticity and homogeneous material it is possible
to derive relatively simple relations for T. For sake of space, we will not pursue
that matter here. The interested reader may consult, for instance, Chapter 4 of
the book by L.A. Segel [49], or, for a more extensive treatment, the book by P.G.
Ciarlet [9)].
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Another possible situation is the one that involves a constitutive law of the form
(4.1) T =T(D,F,),

which describes the mechanical behaviour of a material with characteristics inter-
mediate to those of a liquid and a solid. In such case, the continuum is said to be
viscoelastic. An example of such behaviour is given by certain plastics or by liquid
suspensions. In particular, also blood exhibits a viscoelastic nature, particularly
when flowing in small vessels, e.g. in arterioles and capillaries. Indeed, in that
case the presence of suspended particles and their interaction during the motion
strongly affect the blood mechanical behaviour. Again, we will not cover this topic
here. The book by Y.C. Fung [22] may be used by the reader interested on the
peculiar aspects of the mechanics of living tissues.

The geometry of a section of an artery where no branching is present may be
described by using a curvilinear cylindrical coordinate system (r,8,z) with the
corresponding base unit vectors e,, eg, and e, where e, is aligned with the axis of
the artery, as shown in Fig. 13.

Loca Coordinate Basis

FI1GURE 13. A model of a “realistic” section of an artery with the
principal geometrical parameters.

Clearly, the vessel structure may be studied using full three dimensional models,
which may also account for its multilayer nature. However, it is common practise
to resort to simplified 2D or even 1D mechanical models in order to reduce the
overall computational complexity when the final aim is to study the coupled fluid-
structure problem. In Fig. 14 we sketch some of the approximations normally
made. A 2D model may be obtained by either resorting to a shell-type description
or considering longitudinal sections (§ =const.) of the vessels. In the first case we
exploit the fact that the effective wall thickness is relatively small to reduce the
whole structure to a surface. A rigorous mathematical derivation (for the linear
case) may be found in [10]. In the second case we neglect the variations of the
stresses in the circumferential direction. In this way we are able to eliminate all
terms containing derivatives with respect to 8 in the equations and we may consider
each plane § = const. independently. The resulting displacement field will depend
only parametrically on 6. If, in addition, we assume that the problem has an axial
symmetry (which implies the further assumption of a straight axis) the dependence
on 6 is completely neglected. In this case, also the fluid would be described by a
2D axi-symmetric model.

The simplest models, called 1D models, are derived by making the same assump-
tion on the wall thickness made for the shell model, yet starting from a 2D model.
The structure will then be represented by a line on a generic longitudinal section,
as shown in the last picture of Fig. 14.
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3D

2D

1D

FIGURE 14. Different models for arterial wall mechanics

Even with all these simplifying assumptions an accurate model of the vessel wall
mechanics is rather complex. Therefore, in these notes we will only present the
simplest models, whose derivation is now detailed.

4.1. Derivation of 1D models of vessel wall mechanics. We are going to
introduce a hierarchy of 1D models for the vessel structure, of variable complexity.
We first present the assumptions common to all models.

The relatively small thickness of the vessel wall allow us to use as basis model a
shell model, where the vessel wall geometry is fully described by its median surface,
see Fig. 15

FI1GURE 15. A cylindrical model of the vessel geometry. The latter
is approximated, at any time ¢, by a surface r = R(6, z;t), which
is outlined with dashed lines in figure.

We take as reference configuration I'fY the one assumed by the vessel at rest
when filled with fluid with zero velocity and whose pressure is equal to the pressure
P, exerted by the tissues external to the vessel. Although in principle P.,; can
change along the vessel (for instance because of the effect of gravity), for the sake of
simplicity (and without any loss of generality) we will consider only the case where
P, is constant.

The cylindrical-like aspect of sections of the arterial system allows us to derive
simplified mathematical models for the movement of the arterial wall assuming a
straight cylindrical geometry. We thus assume that the reference configuration I'{
be a cylindrical surface with radius Ry (a regular strictly positive function of z),
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ie.

Iy ={(r,0,2) : r = Ro(2), 0 € [0,27), z € [0, L]},
where L indicates the length of the arterial element under consideration. In our
cylindrical coordinate system (r,0, z), the z coordinate is aligned along the vessel
axes and a plane z = Z (= constant)) defines an azial section.

I |
z=0 z=L

FIGURE 16. The reference configuration I'f§’ used for the derivation
of our models is that of a circular cylinder. I'})’ indicates the current
configuration at a given time ¢, while §2; is the domain occupied
by the fluid.

We assume that the displacement vector 17 has only a radial component, that is
(4.2) n=mne, = (R— Roy)e,,

where R = R(, z;t) is the function that provides, at each ¢, the radial coordinate
r = R(0,z;t) of the wall surface. The current configuration T}’ at time ¢ of the
vessel surface is then given by

Ty ={(r,0,2): r = R(0,2;t), 6 € [0,27), z € [0, L]}.

As a consequence, the length of the vessel does not change with time. We will
indicate with n the outwardly oriented unit normal to the surface I'}’ at a given
point. In Fig. 16 we sketch the reference and current configuration for the model
of the section of an artery.

Another important assumption is that of plain stresses. We neglect the stress
components along the normal direction n, i.e. we assume that the stresses lie on
the vessel surface.

We itemise here the main assumptions:

A1 Small thickness and plain stresses. The vessel wall thickness h is sufficiently
small to allow a shell-type representation of the vessel geometry. In addi-
tion, we will also suppose that it is constant in the reference configuration.
The vessel structure is subjected to plain stresses.

A2 Cylindrical reference geometry and radial displacements. The reference ves-
sel configuration is described by a circular cylindrical surface with straight
axes.? The displacements are only in the radial direction.

A3 Small deformation gradients. We assume that the deformation gradients
are small, so that the structure basically behaves like a linear elastic solid
and %—? and %—Ij remain uniformly bounded during motion.

A4 Incompressibility. The vessel wall tissue is incompressible, i.e. it maintains
its volume during the motion. This is a reasonable assumption since bio-
logical tissues are ideed nearly incompressible.

3This assumption may be partially dispensed with, by assuming that the reference configuration
is “close” to that of a circular cylinder. The model here derived may be supposed valid also in
that situation.
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The models that we are going to illustrate could be derived from the general laws
of solid mechanics. Yet, this is not the route we will follow, preferring to describe
them in a more direct way, while trying to give some insight on the physical meaning
of the various terms that we are about to introduce.

4.1.1. Forces acting on the vessel wall. Let us consider the vessel configuration at
a given time ¢ and a generic point on the vessel surface of coordinates § =0, z = Z
and 7 = R(0,%;t), with Z € (0,L) and 6 € (0,27). In the following derivation, if
not otherwise indicated, all quantities are computed at location (R(6,%;t),8, %) and
at time ¢.

We will indicate with do the measure of the following elemental surface

dS = {(r,0,2): = R(0,2;t),0 € [0 — ﬁ,g—}— ﬁ], z€[z— %,E+ d_z]}
2 2 2 2

In figure 17 we have also indicated the two main stresses, the circumferential
stress and the longitudinal stress oy and o, which represent the internal forces
acting on the portion under consideration.

We may derive the following expression for n and do:

OR OR
— -1 _ Y » il
(4.3) n = (Rog) (Rer 50 eg — R P ez) ,
(4.4) do = gRydfdz = gdoy,
where

_ R [, (1OR\", (0R\?
97 Ry R 96 5z )

and o9 = Rydfdz is the measure of the image of dS in the reference configuration
I'y. In particular we have

(4.5) n-e.= ]%g*l
and
(4.6) n-e;do = Rdfdz.

The linear dimension of the elemental surface dS along the longitudinal direction
has been indicated with dl. T can be easily verified that

R\’
) =4/1+ [ — )
(4.7) di + ( 5% ) dz

Let us now consider the external forces acting through the elemental surface dS.

e Forces from the surrounding tissues. As the tissue surrounding the
vessel interacts with the vessel wall structure by exerting a constant pressure
P, the resulting force acting on dS is simply given by

(4.8) fiissue = — Peztndo + o(do).

e Forces from the fluid. The forces the fluid exerts on the vessel wall are
represented by the Cauchy stresses on the wall. Then, if we indicate with
T the Cauchy stress tensor for the fluid, we have

(4.9) fauia = — T - ndo + o(do) = Pndo — 2uD(u) - ndo + o(do).
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FIGURE 17. A cylindrical model of the vessel geometry (left) and
the infinitesimal portion of vessel wall used for the derivation of
the equations (right).

4.1.2. The independent ring model. The independent ring model is expressed by a
differential equation for the time evolution of 7, for each z and 8. For the derivation
of this model, we will make some additional assumptions:

IR-1 Dominance of circumferential stresses oy. The stresses o, acting along lon-
gitudinal direction are negligible with respect to o and are thus neglected
when writing the momentum equation.

IR-2 Cylindrical configuration The vessel remains a circular cylinder during mo-
tion, i.e. % = (0. This hypothesis may be partially dispensed with, by
allowing small circumferential variations of the radius, yet we will neglect
%—g in our model.

IR-3 Linear elastic behaviour. Together with hypotheses IR-1 and IR-2 it allows
us to write that the circumferential stress is proportional to the relative

circumferential elongation, i.e.
__E
11— Ry’

(4.10) o9

where £ is the Poisson ratio (which may be taken equal to 0.5 thanks to
the hypothesis A4) and E is the Young modulus.*

We will write the balance of momentum along the radial direction by analysing
the system of forces acting on dS. We have already examined the external forces,
we need now to look in more details at the effect of the internal forces, which, by
assumption, are only due to the circumferential stress og.

We may note in Fig. 18 that the two vectors eg(§ + %) and e(6 — &) form with
e, an angle of 7/2 + df/2 and —(7/2 + df/2), respectively. The component of the
resultant of the internal forces on the radial direction is then

— df — db
(411)  fine = (0639(9 + 7) +ogeq (6 — E)) e hdl =

= —204sin d—:hdl = —ophdfdl + o(dédl).

4The presence of the term 1 — &2 is due to the assumption of planar stresses. Some authors
(like [21]) consider that the hypothesis of mono-axial stresses is more realistic for the problem at
hand. In that case one has to omit the term 1 —£2 from the stress-strain relation and write simply
og = EnRy L
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og®+®P)

Fi1GUure 18. Computation of the angle between og and the radial
direction e;.

Owing to the incompressibility assumption A4 the volume in the current configu-
ration is unchanged with respect to that in the reference configuration, i.e.

hRdAdl = hoRodOdz.
Then, being o(dl) = o(dz) we may write (4.11) as

Eho n
fint = —ﬁhoRo + o(dfdz) = —e RdOdz + o(dfdz).

Finally, the mass of the portion of vessel wall under consideration is
mass = pyhRAOdl = py,hoRodfdz,

where p,, is the density of the vessel tissue, whereas the acceleration along the
32R 0?
radial direction is given by —— 77 . By balancing the resultant of the internal

and external forces, pr0v1ded in (4.8) and (4.9), with the inertia term, we have

(92 Ehg Ui
412) po
( )phoRga d0d+1—£2R
(2/‘D( ) ) -eqdo + (P - Pemt)n -e;do + O(dedz)'
By dividing either side by dfdz and passing to the limit for d§ — 0 and dz — 0,
and recalling that do = gT¥dfdz = R(n - e,)"1dfdz, thanks to (4.3) and (4.5), we
obtain

dfdz =

627) Eho n _
6t2 1-2R

Since the derivation has been made by considering an arbitrary plane # = § and
time ¢, we may finally obtain the independent ring model

pwhORO (QND( ) ) * eTgFE]U + (P - Pezt)R'

62
(4.13) 6t;7 +by=H, inT¥ tel,
where
E
(4.14)

(1= E)RY
is a positive coefficient linked to the wall mechanical properties, while

1 R
pwho | Ro

(w15) H=——[ZP-P.)- 2gu(D<u>-n>-er]=

p R
o 2gv(D(u) +n) - e, |,
L | = pect) — 200D ()

is the forcing term which accounts for the action of external forces.
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Remark 4.1. Often, the term R/Ry in the right hand side of (4.15) is neglected as
well as the contribution to the forcing term due to the fluid viscous stresses. In this
case, we have just

P-P ext

Pwho
and the forcing term does not depend anymore on the current geometrical config-
uration.

%

By neglecting the acceleration term in (4.13) we obtain the following algebraic
model, which is often found in the medical and bioengineering literature,

(4.17) bp=H, inT¢ tel

(4.16) H=

according to which the wall displacement is proportional to the normal component
of the applied external stresses.

Remark 4.2. One may account for the viscoelastic nature of the vessel wall structure
even in this simple model by adding to the constitutive relation (4.10) a term
proportional to the displacement velocity, as in a simple Voigt/Kelvin model [22],
that is by writing
__E n von
1-€ Ry Ry Ot’
where v (whose unit is [y] = kg/ms) is a positive constant damping parameter.
Then, the resulting differential equation would read

n ., v n
6t2 R%pwho 8t

g9

(4.18) +bp=H, inT¥tel

190
We may note that the term R—a—z plays the role of the strain rate D into the
0

general relation for viscoelastic materials (4.1).

¢

Models (4.13), (4.17) and (4.18) are all apt to provide a solution 7 for every
possible value of §. In principle, since no differentiation with respect to 6 is present
in the model, nothing would prevent us to get significant variations of 5 with 6
(or even a discontinuity), which would contradict assumption IR-2. This potential
drawback could be eliminated by enriching the models with further terms involving
derivatives along 6, as in the case of models derived from shell theory [11]. On the
other hand, a more heuristic and less rigorous argument can be put forward moving
from (4.17). Since b is relatively large, smooth variations of the forcing term H with
respect to 6 are damped to tiny one on 7. This observation may be extended also
to models (4.13) and (4.18) in view of the fact that for the problems at hand the
term by dominates the other terms on the left hand side. Similar considerations
apply to the model that we will introduce in the next subsection.

4.1.3. The generalised string model. A more complete model considers also the
effects of the longitudinal stresses o,. Experimental and physiological analysis [22]
show that vessel walls are in a “pre-stressed” state. In particular, when an artery is
extracted from a body tends to “shrink”, i.e. to reduce its length. This fact implies
that arteries in the human body are normally subjected to a longitudinal tension.

At the base of the generalised string model is the assumption that this longitu-
dinal tension is indeed the dominant component of the longitudinal stresses.

More precisely, let us refer to Fig. 19; we replace assumption IR-1 by the following
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Reference -
Line r=R(6,2)

A 77 R B . )

! Longitudinal Section 6=8 dZ

FIGURE 19. A cylindrical model of the vessel geometry (top) and
quantities on a longitudinal section (bottom)

GS-1 The longitudinal stress o, is not negligible and, in particular,

(419) o, =xo0,T,
where 7 is the unitary vector tangent to the curve
(4.20) r = R(0,z;t),

and its modulus o, is constant. Moreover, we assume that it is a traction
stress (that is with a versus equal to that of the normal to the surface on
which it applies).
We also maintain assumption IR-2 of the independent ring model. When consider-
ing the forces acting on dS we have now a further term, namely (referring again to
Fig. 19)
f.=[0.(Z+dz/2)+0.(Z—dz/2)|hRdE =
T(Z+dz/2) — 7(Z — dz/2)
=0,
dl
We now exploit the Frenet-Serret formulae to write
dr

— =kn
di ’
where & is the curvature of the line r = R(6, 2;t), whose expression is

BR 2 -3/2
- (@

dlhRdf = o, C;—;Rohodldﬁ + o(dzd#)

_ O°R
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By recalling (4.7) and (4.5) we obtain

—3/2
O’R OR\>
e =025 1+ (5> Rohodzdf + o(dzd).
.. . . . . . SR\2
We eliminate the geometnc non-linearity in the model by neglecting the term (4£)".
Furthermore, we replace 2 by ‘;ZZ 5

By proceeding like in the previous section, we may modify the independent ring
model into the following differential equation
o 9 -
(4.22) o 62+bn— , inTly, tel,

where
(2

Pw hO '
The final generalised string model is obtained by adding to the expression for
o, in (4.19) a term

a =

0 On
‘0t 02>
which is a viscoelastic term linking the longitudinal stress to the rate of rotation of
the structure. For small displacements, dn/0z is indeed proportional to the angle
of rotation around the circumferential direction of the structure, with respect to
the reference configuration.
The result is

c>0

n 9 >n
(423) W - a@ + bn —C
4.2. Analysis of vessel wall models. In the following we will provide some a-
priori estimates for the differential models just proposed.

We recall Poincaré inequality for the one dimensional case.

=H, inT% tel.

Lemma 4.1 (Poincaré inequality - one dimensional case). Let f € H'(a,b) with
f(a) = 0. Then there exists a positive constant Cp, such that

df
4.24 < — .
(424) 1/llz20,2) < Co|| 2 £2(0,L)
Proof. For all z € [a,b] we have,
_ df ° df
i@ =@+ [ L= [ L

a a

Then,

[ rew=[([Ze
< /ab ((/a 12dr)1/2 {/s[%(T)PdT}l/z)st <

s/b(b o L[

dz
by which inequality (4.24) is proved by taking C, = (b — a). The same inequality
holds if f(b) = 0. O

dT) ds < (by Cauchy-Schwarz inequality)

ﬁ 2

ds = (b — a)?
s=(b—a) In

L2(a,b)

?
L2(a,b)

5This last equality is clearly true whenever Rg is varying linearly with z.
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Thanks to the fact that no derivatives with respect to the variable 8 are present
in the equations, we may carry out some further analysis of the structure models
illustrated so far by considering the equations for a fixed value of 8 and z.

We will consider equation (4.13) and address then the following problem:

0%y

(4.25) -

+byp=H, inT¥ tel,

with the following initial values for the displacement and its time rate

(4.26) 17 = 1o, in 'y, t = to.

on_,
ot

We also introduce the space L2(I; L?(T¥)) of functions f : T¥ x I — R that are
square integrable in T'y for almost every (a.e.) t € I and such that

t1
| U@ e dr < co.
to

Lemma 4.2. If H € L*(I; L?>(T¥)), the following inequality holds for a.e. t € I

On 2 On 2
427) 5, Oliza@yy + bll 55 Ollz2rg) <

t
(1 By + ol + [ Ny ) .
0

Proof. Tt can be obtained by multiplying (4.25) by %;1 and applying Gronwall lemma
(Lemma 3.3). O

Relation (4.27) asserts that the sum of the total kinetic and elastic potential
energy associated to equation (4.25) is bounded, at each time ¢, by a quantity
which depends only on the initial condition and the forcing term.

Let us consider the generalised string model (4.23) with the following initial and
boundary conditions

an
4.28 = a7
( a) n o, ot
(428b) T]lzzo = Q, T’lz:L = ﬂ: tel.

=m inTy,t=to,

Let us define the following energy function

1/,0n on
420)  el® =3 (I5HOBrs) + GO ary) +UnORay)

Lemma 4.3. If H € L*(I; L>(TY)) and a = 8 = 0, the following inequality holds
forae tel

t1
(4.30) e, /”ata s, dr < (0 +k/ V@[, dr,

2
where k = 2—p and C, is the Poincaré constant.
c
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Proof. We use the short-hand notations 7 and 4 for the time derivatives of . We
first multiply the generalised string equation (4.23) by 7 and integrate w.r. to z:

L
(4.31) /Onn—a/o 1782 / 6t8z2+b/ m =
1d [*, n 9n .On n
EE/O " +“/0 9102 0= a[”&]oﬂ/ (Gias) ~

0%n
C[@t@z] 2dt/n /"H

By exploiting the homogeneous boundary conditions and the fact that
Onon _10 (on)*
otdz 0z 20t \0z) ’

we have

1d , ad [Lon? L 9% 7
(Bl v, = H.
2dt/n+2dt0 a2 +C/0 (6t6z 2dt/n /”
We now integrate w.r. to the circumferential direction, obtaining

0%n .
(432 %+l ) = [
0

otdz

The application the Cauchy-Schwarz,Young and Poincaré inequalities to the right-
hand side gives
des

g aqey) < 7o Fscey) +e||n||L2 g <

LI ey + C2el L e
for any positive e. If we choose € such that Cge = ¢/2 and integrate in time between
to and t we finally obtain the desired result. O
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5. THE COUPLED FLUID-STRUCTURE PROBLEM

In this section we will treat the situation arising when the flow in a vessel interacts
mechanically with the wall structure. This aspect is particularly relevant for blood
flow in large arteries, where the vessel wall radius may vary up to 10% because of
the forces exerted by the flowing blood stream.

We will first illustrate a framework for the Navier-Stokes equations in a mov-
ing domain which is particularly convenient for the analysis and for the set up of
numerical solution methods.

5.1. The Arbitrary Lagrangian Eulerian (ALE) formulation of the Navier-
Stokes equation. In section (2.4) we have introduced the Navier Stokes equations
in a fixed domain 2, according to the Fulerian approach where the independent
spatial variables are the coordinates of a fixed Eulerian system. We now consider
the case where the domain is moving. In practical situations, such as the flow
inside a portion of a compliant artery, we have to compute the flow solution in a
computational domain € varying with time.

F1GURE 20. The longitudinal section of a model of an artery. The

vessel wall T'¥ is moving. The location along the z axis of ['" and
I'# are fixed.

The boundary of {2; may in general be subdivided into two parts. The first
part coincides with the physical fluid boundary, i.e. the vessel wall. In the example
of Fig. 20, this part is represented by I'}’, which is moving under the effect of
the flow field. The other part of 9€; corresponds to “fictitious boundaries” (also
called artificial boundaries) which delimit the region of interest. They are necessary
because solving the fluid equation on the whole portion of space occupied by the
fluid under study is in general impractical, if not impossible. In our case, that
would mean solving the whole circulatory system!

In the example of Fig. 20, the “fictitious” boundaries are the inlet and outlet
boundaries, there indicated by T'# and I'?, respectively. The location of these
boundaries is fixed a priori. More precisely, I and I'¥ may change with time
because of the displacement of I'}’, however they remain planar and their position
along the vessel axis is fixed.

Clearly in this case the Eulerian approach becomes impractical.

A possible alternative would be to use the Lagrangian approach. Here, we identify
the computational domain on a reference configuration Qg and the corresponding
domain in the current configuration, which we indicate with Q,, will be provided
by the Lagrangian mapping (which has been introduced in section 2.2), i.e.

(5.1) Qgi :ﬁt(ﬂo), tel.

Fig. 21 illustrates the situation for the flow inside an artery whose wall is moving.
Since the fluid velocity at the wall is equal to the wall velocity, the Lagrangian
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FI1GURE 21. Comparison between the Lagrangian and the ALE ap-
proach. The reference computational domain Qg is mapped by (a)
the Lagrangian mapping £; and by (b) the Arbitrary Lagrangian
Eulerian mapping.

mapping effectively maps I'{’ to the correct wall position I'}’ at each time ¢. How-
ever, the “fictitious’ boundaries I'# and T'$ in the reference configuration will now
be transported along the fluid trajectories, into FZ and F%f. This is clearly not
acceptable, particularly if one wants to study the problem for a relatively large time
interval. Indeed, the domain rapidly becomes highly distorted.

The ideal situation would then be that indicated in Fig. 21 (b). Even if the
wall is moving, one would like to keep the inlet and outlet boundaries at the same
spatial location along the vessel axis.

With that purpose, we introduce the Arbitrary Lagrangian Eulerian (ALE) map-

ping
(52) .At : Qo — Q.Aw Y — y(t, Y) = At(Y),

which provides the spatial coordinates (¢,y) in terms of the so-called ALE coordi-
nates (t,Y), with the basic requirement that A; retrieves, at each time ¢ € I, the
desired computational domain, i.e.

QAt EAt(Qo) ZQt, Viel.

The ALE mapping should be continuous and bijective in Qg. Once given, we
may define the domain velocity field as

(5.3) w(t,Y) = %y(t, Y),

which, in the spatial coordinates is expressed as

(5.4) w=wod; ', ie wi(ty) =w(tA ().
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Similarly to what has been done for the Lagrangian mapping in Sect. 2.2 we use
the convention of indicating by f the composition of a function f with the ALE

mapping, i.e. f= foAs.
We define the ALE trajectory Ty for every Y € )y as

(55) TY = {(tay(ta Y))a te I}

and the ALE derivative of a function f, as the time derivative along a trajectory
Ty, that is if

fZIX Qt —)R,
then
A A
(5.6) D—f IxQ >R, %tf(t, y) = ‘Z{(t Y), Y =A7\()

Similarly to what already obtained for the Lagrangian mapping (relation (2.4)),
we have
DA
(57) =% swvy,

where now the gradient is made with respect to the y-coordinates.
The Jacobian of the ALE mapping J*¢, defined as

(5.8) JA = det (gg})

is, for all ¢t € I, a positive quantity because the ALE mapping is surjective at time
to is equal to the identity mapping. It satisfies the following relation

D.A
Dt

Again in a way all analogous to what seen for the Lagrangian mapping we may
derive the following result.

(5.9) JA = JA divw.

Theorem 5.1 (ALE transport theorem). Let Vy C Qo, and let VA C Q be its
image under the mapping A;. Furthermore, let f : T x Q; — R be continuously
differentiable with respect to both variables. Then

d of
(5.10) %/‘/At /VAt —f+fd1vw) /‘/At(a + div(fw))

_ of |
/‘;’At ot BV At fwn.

The proof is similar to that of theorem 2.2, and is omitted.

The Navier-Stokes equations (2.27) are clearly valid on €, yet it may be con-
venient to recast them in order to put into evidence the ALE time derivative. We
obtain, by a straightforward application of (5.7) to (2.27),

%?u +[(u—w)-V]u+ Vp—-2div(vD(u)) =f,
(5.11)

divu =0,

in Q; and for all ¢t € I.
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5.2. Coupling with the structure model. We now study the properties of the
coupled fluid-structure problem, using for the structure the generalised string model
(4.23). Referring to Fig. 16, we recall that T}’ is the current configuration of the
vessel structure, while I'y is the reference configuration in which the structure
equation is written. We also recall that we take n always to be the outwardly
vector normal to the fluid domain boundary.

We will then address the following problem:

For allt € I, findu, p , n such that

DAy + [(u—w)-V]u+ Vp—2div(vD(u)) =f,

Dt
(512) in Qt;
divu =0,
and
o’y 9% n .
(513) W —aw +b7’]—06t62z =H in Fow
with the following initial conditions for t = tg
(5143) u = up, x € Qo,
(5.14b) n=mn, n=m inlg,
boundary conditions for t € 1
(5.15a) [2vD(u) — (p —po)I] :n =0 on T
(5.15b) u=g, on I'",
(515C) n|z=0 =aQ, n|Z=L = BJ
and the interface condition
(5.16) ﬁZUOAtZ%eT, onT¥ tel.

Another interface condition is implicitly provided by the fact that the forcing term
H is function of the fluid variables (see (4.15)).

Here, ug, g, @ and § are given functions, H is the forcing term (4.15) and A; is
an ALE mapping such that A;*(89;) = I UT*® UT¥. We have used the ALE
form for the Navier-Stokes equations since it is best suited in view of the numerical
solution, as it will be detailed in the next section.

We may then recognise the sources of the coupling between the fluid and the
structure models, which are twofold (in view of a possible iterative solution strat-
egy):

e fluid — structure. The fluid solution provides the value of H, which is
function of the fluid stresses at the wall.

e structure — fluid. The movement of the vessel wall changes the geometry on
which the fluid equations must be solved. In addition, the proper boundary
conditions for the fluid velocity in correspondence to vessel wall are not
anymore homogeneous Dirichlet conditions, but they impose the equality
between the fluid and the structure velocity. They express the fact that the
fluid particle in correspondence of the vessel wall should move at the same
velocity as the wall.

Note that we have made some changes with respect to the nomenclature used in
(2.27) to indicate that the domain is now moving. We rewrite the expression of the
forcing term H, given in (4.15), by noting that while the fluid velocity and pressure
are written in the current configuration, H lives in the reference configuration for
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the vessel wall I'§’. Therefore, following the nomenclature introduced in the previous
subsection, we write

—~—

(5.17) 1 =L |G )~ 207(D(w) 0 e, |

5.2.1. Energy inequality for the coupled problem. In this section we will obtain an
a-priori inequality for the coupled fluid-structure problem just presented. We will
consider only the case of homogeneous boundary conditions, that is

g=0, a=p=0,
for the coupled problem (5.12)—(5.16).

Lemma 5.1. The coupled problem (5.12)—(5.16) with g = 0 and a = 3 = 0
satisfies the following energy equality for allt € I

d

6.18) 5 [5luOlae, + 0] +29 [ vD(w) Do) +el - 2 s,

+c_u/ |u|2u-n:w/f-u,
2 Jpom Q,

where e; was defined in (4.29) and
p
5.19 w= .
( ) Pwho
Moreover, if we assume that the net kinetic energy flux is non-negative on the
outlet section, i.e.

(5.20) / lufu-n>0 Vtel
ry

we obtain the a-priori energy estimate

(5.21)

w t t 6277
§”u(t)“L2(Qt) + e5(t) + Crwro /to ||VU(T)||%2(Q,)dT + C/ ||m(7)||%2(rg)dT

w
5”“0”]’_,2(9 ) +es tO ||L2(Q )dT tel.

Proof. We recall expression (4.32) and we recast the r1ght hand side on the current
configuration I'y’. By exploiting (4.4) and (4.5) we have

on p / R _ on
CHZ L p- —2gu(D(u) -n)-e,|
ot dog = pwhO - [RO (p pezt) gy( (11) Il) er:| ot dog
= w/au [(ﬁ— Pegt)N * €, — 21/(D?1_1\)_Tn) . eT] —Zngao =

o [ 6= peor)n —20(D(0) )] Gigdrs = 0 [ 1= pestn = 20(Dw) - )

where we have used the interface conditions (5.16). Then,

1 deg 8%n

(5.22) s c||a 6t”L2 ry) = w/rw [(p — Pezt)n — 2v(D(u) « n)] - udo.

As for the fluid equations, we follow the same route of Lemma, 3.4. In particular,
we begin by multiplying (5.12) by u and integrating over (), obtaining

A
(5.23) /Qu-%u+/9u-[(u—w)-V]u+/ u- (Vp-2vdivD(u)) = (f,u).

Qq
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We now analyse each term in turn. By exploiting the ALE transport theorem
(5.10) we may derive that

DA _ou 1 o)
24 Rl Jou 1 _
(5.24) /Qt“ Dt /QO T 5 =5 o Te=5

1 2 2 / 2
| Bt =3 [ = [ i,

The convective term gives

(5.25) /u-[(u—w)-V]u:
1 . 1 . 1 ,
— =/ Juffdiva+ = [ Juf*divw + = [u*(u—w) n=
2 Jq, 2Ja, 2 Joq,

1 1
5/{2t|u|2 divw + §/p;m lul*u . n,

since divu = 0 in € while w =uon I'}’ and w = 0 on 08 \ T'Y.
The other terms provide

(5.26)
/ u - Vp = (since peyr =const.) / u-V(p—pest) = —/ (p — Pegt) divu+
o Q o
/ (p_pewt)u'n = / (p_pezt)u'n+/ (P—Pezt)ll n
0 | e w
and

(5.27) /Qtuu-divD(u):—/QtuVu:D(u)—i—/ vu-D(u)-n=

O

—/QtuD(u):D(u)—%/ vu:-D(u) - n

2192

:—/Qtumu) :D(u)+/mv(D<u)-n)-u+/f v(D(u) ) - 4,

re

where we have exploited again the symmetry of D(u).
Using the results obtained in (5.24), (5.25), (5.26) and (5.27) into (5.23), rear-
ranging the terms and recalling the boundary condition (5.15a) we can write

1d 2 1 2
—— 2 D :D - .
il +2[ D) D15 [l

[(p — peat)n — 2vD(u) -n]-u= [ f-u
ry Q

We now recall expression (5.22) and recognise the equivalence of the integrals over
Ty, which express the exchange of power (rate of energy) between fluid and struc-
ture. We multiply then the last equality by w and add it to (5.22), obtaining
(5.18).
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Using (5.20), (3.2) and the fact that v > vy > 0,

d Tw
L0l ) + (8] + 2Ckmoll Va2 <
d rTw
it 3100 lua +ex] +20 [ /(0 D@ 4l ey <
w w
A f.u S 4—€||f||]2;2(9t) +w€||u||i2(gi) S 4_€||f||i2(91) + C]%&)E”Vll”iQ(Qi);

for any positive €. To derive the last inequality we have applied the Poincaré
inequality (3.1).

The desired result is then obtained by taking € = "OC# and integrating in time
between tg and ¢. i O

This last result shows that the energy associated to the coupled problem is
bounded, at any time, by quantities which depend only on the initial condition and
the applied volume forces. Moreover, since in blood flow simulation we neglect the
volume force term f in the Navier-Stokes equations, estimate (5.21) simplifies into

w t t 62’!7
—[|u(®)|l2 s(t)+2C Vu(7)||2q, ) d ~—— (T) |3 2r0 \d
S IOl + e20) + 20kmo [ IV R+ [ 152 s ar

w
< 5”“0”1,2(90 +es(to), Vtel.

Remark 5.1. We may note that the non-linear convective term in the Navier-Stokes
equations is crucial to obtain the stability result, because it generates a boundary
term which compensates that coming from the treatment of the velocity time de-
rivative. These two contributions are indeed only present in the case of a moving
boundary.

¢
Remark 5.2. Should we replace the boundary condition (5.15a) by

1
(5.28) 2vD(u) *n — (P — Pest + §|u|2)n =0 onT™ tel,

we would obtain the stability results without the restrictions on the outlet velocity
(5.20).

Let us note that the above boundary condition amounts to imposing a zero value
for the total stress at the outflow surface.

%

Remark 5.3. Under slightly different assumptions, that is periodic boundary condi—
tions in space and the presence of a further dissipative term proportional to a in
the generalised string model, H. Beirdo da Veiga has recently proven [3] an existence
result of strong solutions to the coupled fluid-structure problem.

¢

The hypothesis (5.20) is obviously satisfied if T is indeed an outflow section,
i.e. u-n > 0forall x € I'®. As already pointed out, this is seldom true for vascular
flow, particularly in large arteries.

We may observe that the “viscoelastic term” —c% in (4.23) allows to obtain
the appropriate regularity of the velocity field u on the boundary (see [36]).

In the derivation of the energy inequality (5.21), we have considered homogeneous
boundary conditions both for the fluid and the structure. However, the conditions
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n =0 at z =0 and z = L, which correspond to hold the wall fixed at the two
ends, are not realistic in the context of blood flow. Since the model (4.23) for the
structure is of propagative type, the first order absorbing boundary conditions

(5.29) % - \/E% =0 at z =0,
(5.30) %+\/a%=0 atz=1L

look more suited to the problem at hand. An inequality of the type (5.21) could
still be proven. Indeed the boundary term which appears in (4.31) would now read

_ [ non & an]ZZL _
z=0

“o-0t " “ozot ot
on 2 on 2 ¢ ~d on 2 on 2
ve l(a o) (i) |+ 5ve | (G ) + (G) |
This term, integrated in time, would eventually appear on the left hand side of

inequality (5.21). We may note, however, that we obtain both for z =0 and z = L
the following expression

(5.31) Ja t: (%(7))2d7+ g\/g (%(t))Q - 5\/2 (%(t@)z.

This additional term is positive and depends only on initial conditions.

Yet, conditions (5.29) and (5.30) are not compatible with the homogeneous
Dirichlet boundary conditions for the fluid; indeed, if 9],—¢ # 0 and u = 0 on
I'™ | the trace of u on the boundary is discontinuous and thus not compatible with
the regularity required on the solution of (5.12) (see. e.g. [43]).

A possible remedy consists of changing the condition u = 0 on ' into

u-e, =goA!
T-n—(T-n)-e,=0

on I'"" where g is a given function defined on I'#*, with g = 0 on OT'%'. Here T is the
stress tensor defined in (2.24). An energy inequality for the coupled problem can
be derived also in this case with standard calculations, taking a suitable harmonic
extension § of the non homogeneous data g. The calculations are here omitted for
the sake of brevity.

5.3. An iterative algorithm to solve the coupled fluid-structure problem.
In this section we outline an algorithm that at each time-level allows the decoupling
of the sub-problem related to the fluid from that related to the vessel wall. As usual,
t* k =0,1,... denotes the k-th discrete time level; At > 0 is the time-step, while
v* is the approximation of the function (scalar or vector) v at time #*.

The numerical solution of the fluid-structure interaction problem (5.12)-(5.13)
will be carried out by constructing a suitable finite element approximation of each
sub-problem. In particular, for the fluid we need to devise a finite element formula-
tion suitable for moving domains (or, more precisely, moving grids). In this respect,
the ALE formulation will provide an appropriate framework.

To better illustrate the situation we refer to Fig. 22 where we have drawn a 2D
fluid structure interaction problem. The fluid domain is Q; and the movement of
its upper boundary I'}’ is governed by a generalised string model. This geometry
could be derived from an axisymmetric model of the flow inside a cylindrical vessel.
However, in this case we should employ the Navier-Stokes equations in axisymmetric
coordinates. Since this example is only for the purpose of illustrating a possible set-
up a coupled fluid structure algorithm, for the sake of simplicity we consider here a
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two-dimensional fluid structure problem governed by equations (5.12)-(5.13), with
interface conditions (5.16), initial and boundary conditions (5.14) and the additional
condition

ll|1"0 = 0, t e I.
The algorithm here presented may be readily extended to three dimensional prob-
lems.

FIGURE 22. A simple fluid-structure interaction problem.

The structure on I'j’ will be discretised by means of a finite element triangulation
T:, like the one we illustrate in Fig. 23. We have considered the space S}, of piece-
wise linear continuous (P1) finite elements functions to represent the approximate
vessel wall displacement 7;,. In the same figure we show the position at time ¢ of the
discretised vessel wall boundary I'}’),, corresponding to a given value of the discrete
displacement field 7, € Sy,. Consequently, the fluid domain will be represented at
every time by a polygon, which we indicate by € . Its triangulation 7;{; will be
constructed as the image by an appropriate ALE mapping A; of a triangulation
76{ p of o, as shown in Fig. 24. Correspondingly, €, = AiQon, where Qg p

is the approximation of Q¢ induced by the triangulation 7;fh (clearly, if Qg has a

polygonal boundary we have Qg , = €g.) The trace of 75’5 , on I'y will coincide with
the “triangulation” 7,° of the vessel wall, thus we consider geometrically conforming
finite elements between the fluid and the structure. The possibility of using a
geometrically non-conforming finite element representation has been investigated
in [26].

We then have to face the following problem. Suppose that we know at ¢t =
tk+1 5 discrete displacement field n’,i“ and thus the corresponding position of the
domain boundary 0k+1 5. How to build a map Asx+1 such that Atk+1(7:)]j p) is
an acceptable finite element mesh for the fluid domain? This task is in general
not simple. However, if we can assume that (2 j is convex for all ¢ and that the
displacements are relatively small, the technique known as harmonic extension may
well serve the purpose. Let X, be the P1 finite element vector space associated to
T¢ 1, while

Xg = {Wh e Xy : Wh|390)h = 0}
and let gy, : 00,5 — 0Qr+1 p, be the function describing the fluid domain boundary.
We build the map by seeking y;, € X}, such that

Vyp : Vz, =0 Vz, € X9,
(5.32) Q% Yh: Veh “h h
Yh =8h, on 0Qop,

and then setting As;e+1(Y) = yp(Y), VY € Q. This technique has indeed been
adopted for the mesh in Fig. 24. From a practical point of view, the value of y; in
correspondence to the nodes of 76]: 5 gives the position of the corresponding node
in 7;fh at time t**!. A more general discussion on the construction of the ALE
mapping may be found in [17, 36] as well as in [23].
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Remark 5.4. Adopting P1 elements for the construction of the ALE map ensures
that the triangles of 77lf o are mapped into triangles, thus 77{ . is a valid triangulation,
under the requirement of invertibility of the map (which is assured if the domain is
convex and the wall displacements are small).

¢

As for the time evolution, we may adopt a linear time variation within each time
slab [tF, t*+1] by setting

_ 4k _ k1

t Af Apsr — t t A, te [t .
Then, the corresponding domain velomty wj, will be constant on each time slab.

We are now in the position of describing a possible finite element scheme for
both the structure and the fluid problem, to be adopted in the sub-structuring
algorithm. We first give more details on the adopted finite element discretisation.

Ay =

5.3.1. Discretisation of the structure. For the structure we consider a mid-point
scheme. We introduce the additional variable #* which is the approximation of the
displacement velocity at time ¢*.

The time advancing scheme reads:

VEk > 0 find n**+' and n**! that satisfy the following system

k+1 k ck+1
-t i+

5.33
(5.33a) A7 5

ck+1 -k 2 .k k+1 k+1 k 2 ok+1 -k

=1 9" n"+n "+ o* " 41 .

. — — 055 —¢czs——"1 =H
(5:380) xR "9gm 3 T3 ‘02" 2 o
with
(5.34a) 1" =0 = a(t*t), 0"t |.—p = B,
and
. ) d

(5'34b) nk+1|z:0 = aa(tk—‘rl)a nk+1|z:L = aﬂ(tk—‘rl)a

while the value of n° and 7° are given by the initial conditions.

Here, H**3 is a suitable approximation of H at time ¢* + LAt which in the
context of a sub-structuring iteration for the coupled problem is a known quantity
and whose calculation from the Navier-Stokes data will be made precise later.

System (5.33) is then discretised in space by taking n¥ € S, and 7} € S,. We
set S) = {sp € Sp, : s,(0) =0, sp(L) = 0} and the finite element problem reads

For all k > 0 find nk+1 € Sy, and nk+1 € Sy, that satisfy the following system

(5.35a) it — At sp) = 20F + Atk sp),
1 . [ 8nk+1 6nk+1 Osny _
1 b 0 ony 0Os
(¥, 50) + (i + o) — (a8 4 o2 o)

Vs € SY, together with the boundary conditions
(5363') n§+1|z:0 = a(tk+1)a nl}i+1|z:L = ﬂ(tk+1)a

9 gk,

. )
(5.36b) 0t o = 5

3t (tk+1) 77}’:+1|2=L =

and the initial conditions

0 __ 0 0 __ 0
Ny = Ts,M Nh = TS,1 >
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being 7" the standard interpolation operator upon Sh.

5.3.2. Discretisation of the fluid problem. In the frame of our splitting scheme the
velocity field at I'}’ as well as the current domain configuration are provided by
the calculation of 7,; they can thus be considered as given data. We consider the
following finite element spaces. Q 1 is the space of continuous piece-wise linear finite
elements, while ﬂ is that of vector functions whose components are in the space
Vi, of continuous piece-wise quadratic (or P1-isoP2) finite elements. Both refer to
the triangulation 75f 5 of Q. For a precise definition of these finite element spaces
the reader may refer to [43] or [5].
We will also need to define

V2 ={%€Vi: Vilpgore =0,}

and the space "‘/‘-’f S formed by function in I'§’ which are the trace of a function in
Vh.
The corresponding spaces on the current configuration will be given by

Qni={an: ano A €Qnl,

Vh,t = {Vh I vpo At S \th},
and analogously for V9 ,.

Remark 5.5. The functions belonging to ()5, ; and V}, ; depend also on time through
the ALE mapping. A thorough presentation of finite element spaces in an ALE
framework is contained in [17] and [36].

%

We will employ an implicit Euler time advancing scheme with a semi-explicit
treatment of the convective term. Let us assume that the solution (uf,p¥) at time
step t* is known, as well as the domain configuration Q+1 5, at time t**! (and thus
the corresponding ALE map).

The numerical solution at t**! can be computed as follows:

Find quH € Vp x+1 and pflﬂ € Qp p++1 such that

1

~ 1 ~ ~

Kt(uk“,vh)kﬂ — 1 (WHE dM 9 4 e (b, ut L V) +

(5.37a) dk+% (WH% ,uftt, Vi) + bk+1(vh,Pk+1) + ak+1(uk+1ﬁh) =
~ 1 - - ~

(fk+1,vh)k+1 + E(uk,vh)k, Vv, € Vg
(5.37b) bryr (W, Gn) =0, Vgh € Qn,
and
(5.38a) wtt =gt onT#h,,,

(5.38b) aft = (M) o Ak ey, on T,
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We have defined

(W, 9 =/Q w (3o AL,

cr(w,2,¥) = /Q (- V)z) - (70 A7),

du(w,2,9) = [ (divw)a- (¥ o 7)),

th

be(w, ) = / divw (Go ALY, bu(F,q) = / div(% o A3l g,
tk tk

ap(w,V) :/Q 2vD(w) :D(VoAt_,cl).

t

The function g}t is the finite element interpolant of the boundary data g(t#+1)

on the space of restrictions of V;, ju+1 on T'% .. Moreover, Hl,zz’” 1Sy — 17,{ o is the
interpolation operator required to project the discrete vessel velocity computed by
the structure solver on the trace space of discrete fluid velocity on the vessel wall.
Since we are using geometrically conforming finite elements, this operator is quite
simple to build up.

It is understood that when the approximation of u and w in (5.37) are not
evaluated at the same time as the integral, they need to be mapped on the correct
domain by means of the ALE transformation.

Remark 5.6. The term involving the domain velocity w has been computed on the
intermediate geometry th +1 in order to satisfy the so-called Geometric Conserva-
tion Law (GCL) [27]. A discussion on the significance of the GCL for the problem
at hand may be found in [36].

%

5.3.3. Recovering the forcing term for the vessel wall. We need now to compute
the forcing term H**2 in (5.35) as the residual of the discrete momentum equation
(5.37b) for time step t*1. Let us define

~ ~ 1 ~
By (W) = (B, Fa)gn + 7 (uf, 9a)i — g (aF
k

1 ~ ~
s (WHF2 uM L T) — o (uf, 0, ) -

1 o~
u V) k1 +

k+1 k+1

diy s (WH2, 0 ) — by (0, ) — ap (W, 3), WL € V.
Note that R¥T!(¥,) = 0, for all ¥, € \N/'g We define the following operator
boldsymbolSy, : Sy, — \~fh, Spsp = [Rh(l'[ig) sh)ler,
where Ry, : IN/hF RN 17;1 is a finite element extension operator such that
(Rrvn)|rg =vn, Vop € Vo,

for instance the one obtained by extending by zero at all internal nodes (see [44]).
We then take

W
(5.39) (H* 2, 5) = 3 [REY! (Snsn) + RE(Shsn)]
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5.3.4. The algorithm. We are now in the position of describing an iteration algo-
rithm for the solution of the coupled problem. As usual, we assume to have all
quantities available at t = t*¥, k > 0, provided either by previous calculations or
by the initial data and we wish to advance to the new time step t**'. For ease of
notation we here omit the subscript h, with the understanding that we are referring
exclusively to finite element quantities.

The algorithm requires to choose a tolerance 7 > 0, which is used to test the
convergence of the procedure, and a relaxation parameter 0 < 8 < 1. In the
following, the subscript 7 > 0 denotes the sub-iteration counter.

The algorithm reads:

A1l Extrapolate the vessel wall structure displacements and velocity:
eyt =" + Ak, att =ik,
A2 Set j =0.
A2.1 By using nf;)rl compute the new grid for the fluid domain Q; and the
ALE map by solving (5.32).

A2.2 Solve the Navier-Stokes problem (5.37) to compute ué“.tfl) and p(gc +11),
+

using as velocity on the wall boundary the one calculated from Gy -
A2.3 Solve (5.35) to compute n¥t! and 5*+! using as forcing term the one
recovered from uéc;jrll) and py; +11) using (5.39).

k+1

A2.4 Unless ||pk+! — 776-) lL2qrwy + [t — ’7(+1||L2(F‘") <7, set

k+1 0nk+1 (1= Q)+t ket kA1 | k41

NGy = ) 77(]_,_1) 977(]) + (1 =60)n",
and j « j + 1. Then return to step 2a.
A3 Set
nt =gt gt =gt
= uglh, pk =0y
If the algorithm converges, lim;_, u(]+)1 = uf*! and lim; 77?51 = pktl,
where u**! and 7¥*! are the solution at time step t**! of the coupled problem.

The algorithm entails, at each sub-iteration, the computation of the generalised
string equation (5.35)—(5.36), the Navier-Stokes equations and the solution of two
Laplace equations (5.32), one for every displacement component.
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FIGURE 23. Position of the discretised vessel wall corresponding
to a possible value of n,.
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FIGURE 24. The triangulation used for the fluid problem at each
time ¢ is the the image through a map A; of a mesh constructed
on Qo.
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6. ONE DIMENSIONAL MODELS OF BLOOD FLOW IN ARTERIES

In this Section we introduce a simple 1D model to describe the flow motion in
arteries and its interaction with the wall displacement. In the absence of branching,
a short section of an artery may be considered as a cylindrical compliant tube. As
before we denote by I = (tg,¢1) the time interval of interest and by {2; the spatial
domain which is supposed to be a circular cylinder filled with blood.

As already done in Sect. 4, we will employ cylindrical coordinates and indicate
with e,, ey and e, the radial, circumferential and axial unit vectors, respectively,
and with (r,0, 2) the corresponding coordinates system. The vessel extends from
z =0 to z = L and the vessel length L is constant with time.

The basic model is deduced by making the following assumptions, some of which
are analogous to the ones made in Sect. 4.

Al Azial symmetry. All quantities are independent from the angular coordi-
nate 6. As a consequence, every axial section z =const remains circular
during the wall motion. The tube radius R is a function of z and ¢.

A2 Radial displacements. The wall displaces along the radial direction solely,
thus at each point on the tube surface we may write 7 = ne,, where n =
R — Ry is the displacement with respect to the reference radius Rg.

A3 Constant pressure. We assume that the pressure P is constant on each
section, so that it depends only on z and t.

A4 No body forces. We neglect body forces (the inclusion of the gravity force, if
needed, is straightforward); thus we put f = 0 in the momentum equation
(3.5a).

A5 Dominance of axial velocity. The velocity components orthogonal to the
z axis are negligible compared to the component along z. The latter is
indicated by u, and its expression in cylindrical coordinates reads

6.1) u(t,r,2) =u(t,2)s (RZz))

where @ is the mean velocity on each axial section and s : R — R is a
velocity profile®.

A generic axial section will be indicated by S = S(, z). Its measure A is given by

(6.2) A(t,z) = meas(S(t, 2)) = 2rR%(t, 2) = 2w (Ro(2) + n(t, 2))?.
The mean velocity @ is then given by
u=A"1 / u,do,
s

and from (6.1) it follows that

/ sdo = A.
S

We will indicate with o the momentum-flux correction coefficient, (sometimes
called Coriolis coefficient) defined as
(6.3) a= Js uida = Js SQdU,
Au A
where the dependence of the various quantities on the spatial and time coordinates
is understood. It is immediate to verify that o > 1. In general this coeflicient will
vary in time and space, yet in our model is taken constant as a consequence of (6.1).

6The fact that the velocity profile does not vary is in contrast with experimental observations
and numerical results carried out with full scale models. However, it is a necessary assumption
for the derivation of the reduced model. One may then think s as being a profile representative
of an average flow configuration.
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One possible choice for the profile law is the parabolic profile s(y) = 2(1 — y?),
which corresponds to the Poiseuille solution characteristic of steady flow in circular
tubes. In this case we have a = %. However, for blood flow in arteries it has been
found that the velocity profile is, on average, rather flat. Indeed, a profile law often
used for blood flow in arteries (see for instance [53]) is a power law of the type
s(y) = v (v + 2)(1 — y7), with typically v = 9 (the value v = 2 gives again the
parabolic profile). Correspondingly, we have @ = 1.1. Furthermore, we will see
that the choice a = 1, which indicates a completely flat velocity profile, would lead
to a certain simplification in our analysis.

The mean flux @), defined as

Q= / u,do = Au,
s
is one of the main variables of our problem, together with A and the pressure P.

6.1. The derivation of the model. There are (at least) three ways of deriving
our model. The first one moves from the incompressible Navier-Stokes equations
with constant viscosity and performs an asymptotic analysis by assuming that the
ratio % is small, thus discarding the higher order terms with respect to % (see
[2]). The second approach derives the model directly from the basic conservation
laws written in integral form. The third approach consists of integrating the Navier-
Stokes equations on a generic section S.

We will indicate with I'} the wall boundary of €2y, which now reads
Iy ={(r,0,2) : r = R(z,t),0 € [0,27) z € (0, L)}

while n is the outwardly oriented normal to 9;. Under the previous assumption,
the momentum and continuity equations along z are

T 10P
(6.4a) 86% + div(u,u) + ;?‘3—z —vAu, =0, z€(0,L),tel
(6.4b) divu=0, ze(0,L),tel,

and on the tube wall we have
u=1, onI'}y, tel

We have written the convective term in divergence form, like in (2.23), because it
simplifies the further derivation.

To ease notation, in this section we will omit to explicitly indicate the time
dependence, with the understanding that all variables are considered at time ¢. Let
us consider the portion P of €, sketched in Fig. 25, comprised between z = 2* — %
and z = z* + %, with z* € (0,L) and dz > 0 small enough so that 2* + % < L
and 2* — % > 0. The part of 9P laying on the tube wall is indicated by ¥. The
reduced model is derived by integrating (6.4b) and (6.4a) on P and passing to the
limit as dz — 0, assuming that all quantities are smooth enough

We will first illustrate a result derived from the application of the ALE transport
theorem (Theorem 5.1) to P.

of

Lemma 6.1. Let f : Q; x I — R be an axisymmetric function, i.e. — = 0. Let

06

us indicate by f,, the value of f on the wall boundary and by f its mean value on
each azial section, defined by

F= At /S fdo.

We have the following relation
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Nn
1 dz

| €
7— dz/2 z*T & 7+ dz/2

P

FIGURE 25. A longitudinal section (6 =const.) of the tube and

the portion between z = 2z* — % and z = 2* + % used for the

derivation of the 1D reduced model.

9, - af
. —(Af) = A— + 27Rnf,-
(65) £H(AT) = ASE + 2mRif
In particular taking f = 1 yields
0A
. — = 27w Rn.
(6.6) 5 R
Proof. The application of (5.10) to P gives
d of
6.7 — = = .
(67) aLi=L%+] ren
where g denotes the velocity of the boundary of P, i.e.
1 onIlp,
6.8 =
©8) s {o on 9P \ T}.

Then, by applying the mean-value theorem to both sides of (6.7) we have

%[A(z*)f(z*)dz +o(dz)] = Ag +o(dz) + e fre, -n.

We recall relation (4.6), already used in the derivation of the models for the wall
structure dynamics, to write

(6.9) fne, -n=

I

2r pz+4z
/0 / R dzdd = [2m(2" R(2") fu(2*)dz + o(d2)].

*_dz
2

By substituting into (6.7), dividing by dz and passing to the limit as dz — 0 we
obtain the desired result. O
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We are now ready to derive our reduced model. We start first from the continuity
equation. Using the divergence theorem, we obtain

(6.10) Oz/divuz—/ uz+/ uz—}—/ u-n=
P - s+ ®
—/ uz+/ uz+/ 7-n.

We have exploited (6.8) and the fact that n = —e, on S~ while n = e, on ST.
Now, since 1) = ne,, we deduce

/rw 1 -n=[2nmR(z*)dz + o(dz)] = (by (6.6)) = %A(z*)dz + o(dz).

By substituting into (6.10), using the definition of @), and passing to the limit as
dz — 0, we finally obtain

A  8Q
ot T, 7Y

which is the reduced form of the continuity equation.

We will now consider all terms in the momentum equation in turn. Again, we
will integrate them over P and consider the limit as dz tends to zero.

% 4 [ ugen=if
p Ot dt)p ° Jop © dt Jp °

In order to eliminate the boundary integral we have exploited the fact that u, = 0
onT¥ and g =0 on S~ and ST. We may then write
0 0
Ous = —[A(z")u(2%)dz + o(dz)] = —Q(z*)dz + o(dz).
p Ot ot

ot
Moreover, we have

/div(uzu):/ Uzu'n:_/ uz2+/ Uz2+/ g n=
P op s- S+ w

d
afA(z* + ;)EQ(z* + —

Again, we have exploited the condition u, = 0 on L’

Since the pressure is assumed to be constant on each section, we obtain

(6.11) B_P:_/ P+/ P+ | Pn,=
p 0z - S+ I
d

2 dz
A(Z* + Z2)P(z" + —
(z+2)(z+2

/ n, =0,
aP

n; + o(dz) = —P(z*)/ . n, +o(dz) =
OP\LY
— P(z")(A(z* + d?z) —A(z" - %)) + o(dz)

)—A(z*— —)P(z*— —)+ Pn,

Since

we may write that

Pn. = P(2") /

Iy Iy
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By substituting the last result into (6.11) we have

orP

op dz
p Oz

2

% dz dz

A"+ —)P(z" + 5 )—A(z* — =)P(z* — —)—

P(z*)[A(z* + %) —A(z* — %)] + o(dz)
__O0(AP) ~OA _ 0P
= T(z Ydz — P(z )g(z Ydz + o(dz) = Aa(z )dz + o(dz).

We finally consider the viscous term,

0 0
/Auzz Vu, -n=— uz+ Uz+ Vu, - n.
P P s- 0z s+ 02 Iy

Ou . .. .
We neglect 8—z by assuming that its variation along z is small compared to the
2
other terms. Moreover, we split n into two vector components, the radial component
n, = n,e, and n, = n—n,. Owing to the cylindrical geometry, n has no component
along the circumpherential coordinate and, consequently, n, is indeed oriented
along z. We may thus write

[ dua= [ (Ve + Vi eonn) o
P I

ou
Again, we neglect the term Vu, . n,, which is proportional to £. We recall

0z

relation (6.1) to write

z*+%
/ Au, = / n,.Vu, « e,do = / R 's'(1)n-e,do = 27r/ us'(1)dz,
P ¥ ¥ -4z

where we have used the relation n,.do = 2rRdz and indicated by s’ the first deriv-
ative of s.
Then,

/ Au, ~ 20%(2%)s' (1)dz.
P
By substituting all results into (6.4a), dividing all terms by dz and passing to

the limit as dz — 0, we may finally write the momentum equation of our one
dimensional model as follows
0Q n (aAu®) AOP

- a. a5 Kr_z )
ot 0z —‘_p@z+ u=0

where
K, = —27vs'(1)
is a friction parameter, which depends on the type of profile chosen, i.e. on the choice
of the function s in (6.1). For a profile law given by s(y) = v (v +2)(1 —y7) we
have K, = 2wv(y + 2). In particular, for a parabolic profile K, = 8rv, while for
v =9 we obtain K, = 227v.
To conclude, the final system of equations reads

04 0Q _

12 —— L),tel
(6.12a) 5% T3, =% z€(0,L),tel,

0Q . 0 (Q*\  AoP Q\ _
(6.12b) 6t+aaz<A>+paz+K"(A =0, z€(0,L),tel,

where the unknowns are A, @) and P and « is here taken constant.
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6.2. Accounting for the vessel wall displacement. In order to close system
(6.12) we provide a relation for the pressure. A possibility is to resort to an algebraic
relation linking pressure to the wall deformation and consequently to the vessel
section A.

More generally, we may assume that the pressure satisfies a relation like

(6.13) P(t,2) = Peat = ¢Y(A(t, 2); Ao(2), B(2)),
where we have outlined that the pressure will in general depend also on Ag = wR2
and on a set of coefficients 8 = (Bo, 81,--- , Bp), related to physical and mechanical

properties, that are, in general, given functions of z. Here P.,; indicates, as in
Sect. 4, the external pressure. We require that 1 be (at least) a C! function of all
its arguments and be defined for all A > 0 and Ag > 0, while the range of variation
of B will depend by the particular mechanical model chosen for the vessel wall.
Furthermore, we require that for all allowable values of A, Ay and 3
oY

(614) a—A >0, and ¢(A0;A0,ﬂ) =0.

By exploiting the linear elastic law provided in (4.17), with the additional sim-
plifying assumption (4.16), and using the fact that

(6.15) n=A-A)/V/r

we can obtain the following expression for 1)

(6.16) V(s A0, ) = o LA

0
We have identified 8 with the single parameter 5y = l’ihé’zE. The latter depends
on z only in those cases where the Young modulus E or the vessels thickness hg are
not constant.

For ease of notation, the dependence of A, Ag and B from their arguments will
be understood. It is immediate to verify that all the requirements in (6.14) are
indeed satisfied.

Another commonly used expression for the pressure-area relationship is given by

[28, 53]

P(A4; Ao, B) = Bo

In this case, 8 = (B, 1), where Sy > 0 is an elastic coefficient while 8; > 0 is
normally obtained by fitting the stress-strain response curves obtained by experi-
ments.

Another alternative formulation [32] is

V(i 40,) = fotan |1 (2220

where again the coefficients vector 8 reduces to the single coefficient fy.

In the following, whenever not strictly necessary we will omit to indicate the
dependence of the various quantities on Ag and @, which is however always under-
stood.

6.3. The final model. By exploiting relation (6.13) we may eliminate the pres-
sure P from the momentum equation. To that purpose we will indicate by ¢; =
c1(A; Ag, B) the following quantity

Aoy
(6.17) €1 = 2 9A’
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which has the dimension of a velocity and, as we will see later on, is related to the
speed of propagation of simple waves along the tube.
By simple manipulations (6.12) may be written in quasi-linear form as follows

0 oUu
(6.18) EU-'_H(U)E +B({U)=0, z€(0,L),tel
where,
A
U= ,
il
0 1 0 1
6190  HU)= A0 =], R\ . @,
2 04 au-  2a0u  —a a1 QQZ
and
0

A ? Ay dz p 0B dz
Clearly, if Ag and 3 are constant the expression for B becomes simpler. A conser-
vation form for (6.18) may be found as well and reads

POI= |y (9) + a2 tho 400 45

oU OF
2 = =
(6.20) 5% T 5, U)+S8U) =0,
where
’ ]
F{U) = 2
= |ue’ 6
is the vector of fluxes,
0

S(WU) = BU) - | 9C: d4y | 9C1 dB
04y dz 0B dz’
and C] is a primitive of ¢ with respect to A, given by
A
Ci(4i40,B) = [ (7 Ao,)
Ao
Again, if Ay and B are constant, the source term S simplifies and becomes S = B.

System (6.20) allows to identify the vector U as the the conservation variables of
our problem.

Remark 6.1. In the case we use relation (6.16) we have

_ | B 41 _ Po 3
(621) c1 = 2pA0A4, Ch = 3pA0A2
¢

Lemma 6.2. If A > 0, the matrix H possesses two real eigenvalues. Furthermore,
if A > 0 the two eigenvalues are distinct and (6.18) is a strictly hyperbolic system
of partial differential equations.

Proof. By straightforward computations we have the following expression for the
eigenvalues of H

(6.22) /\1,2 = au % ¢4,

ca =/ +Wa(a—1).

where
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Since a > 1, ¢, is a real number. If ¢, > 0 the two eigenvalues are distinct. A
sufficient condition to have ¢, > 0 is ¢; > 0 and, thanks to the definition of ¢; and
(6.14), this is always true if A > 0. If @ = 1, this condition is also necessary.

The existence of a complete set of (right and left) eigenvectors is an immediate
consequence of H having distinct eigenvalues. O

Remark 6.2. System (6.12) shares many analogies with the 1D compressible Euler
equations, after identifying the section area A with the density. The equivalence is

not complete since the term 2 in the Euler equations is here replaced by A%—I:.

0z
¢

6.3.1. Characteristics analysis. Let (11, 12) and (r1, ra) be two couples of left and
right eigenvectors of the matrix H in (6.19), respectively. The matrices L, R and
A are defined as

17 0 X

Since right and left eigenvectors are mutually orthogonal, without loss of generality
we choose them so that LR = I. Matrix H may then be decomposed as

6.23) L= [lf], R=[r r], A=diag(,l)= [Al 0].

(6.24) H = RAL,
and system (6.18) written in the equivalent form
oUu oUu
(6.25) L—+AL—+LB{U)=0, ze (0,L),tel.
ot 0z
If there exist two quantities W; and Wy which satisfy
oWy oWy
6.26 =1 —_£ =1
( ) 6U 15 aU 2

we will call them characteristic variables of our hyperbolic system. We point out
that in the case where the coefficients Ay and 3 are not constant, W7 and W5 are
not autonomous functions of U.

By setting W = [Wy1, W] system (6.25) may be elaborated into

ow oW
.2 — — =
(6.27) 5 +A6z +G=0, ze€(0,L),tel,
where
A
(6.28) GZLB_aWd 0_6Wdﬂ

0Ao dz B dz’

In the case where B = 0 and the coefficients Ag and 3 are constant, (6.27) takes
the simpler form

ow ow
2 — +A— = L I
(6.29) 8t+ 5 0, ze€(0,L),tel,
which component-wise reads
ow; f )
(6.30) +)\,~6W =0, z€((0,L),tel,i=1,2

ot 0z
Remark 6.3. From definition (6.26) and the fact that the left and right eigenvectors
1;, and r; are mutually orthogonal it follows that
o,
U
thus W is a 2-Riemann invariant of our hyperbolic system [25]. Analogously, one
may show that W5 is a 1-Riemann invariant.

U) -x2(U) =0,
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¢

From (6.30) we have that W, and W, are constant along the two characteristic
curves in the (z,t) plane described by the differential equations

dz dz
E = )\1 and d_ = )\2,

respectively. In the more general case (6.27) we may easily show that W; and W,
satisfy a coupled system of ordinary differential equations.

The expression for the left eigenvectors 1; and 15 is given by
Co — QU _ —Co — QU
11 - C [ 1 :| ) 12 - C |: 1 :| ’

where ( = ((A,w) is any arbitrary smooth function of its arguments with ¢ > 0.
Here we have expressed 1; and 1, as functions of (A,%) instead of (4, () as is more
convenient for the next developments. Thus, relations (6.26) become

oW, oW,

(6.31a) I (fea-uta-1], 204
(6.31b) aaw 2 _ (lmca—T(a—1)], 5;;2 —cA.

For a hyperbolic system of two equations is always possible to find the char-
acteristic variables (or, equivalently, the Riemann invariants) locally, that is in a
sufficiently small neighbourhood of any point U [25, 33], yet the existence of global
characteristic variables is not in general guaranteed. However, in the special case
a =1, (6.31) takes the much simpler form

oW, oWy
FZUR T

OWs _ oWy

U R

Let us show that a set of global characteristic variables for our problem does exist
in this case. We remind that the characteristic variable W7 exists if and only if

o*Wy  0*Wh

0Adu  OudA’
for all allowable values of A and @. Since now ¢; does not depend on @, the above
condition yields

s = Ay

In order to satisfy this relation, it is sufficient to take { = ((A) such that ¢ = —A%.
A possible instance is { = A71. The resulting differential form is

c
oWy = ZlaA + o,

and by proceeding in the same way for W» we have

OWy = =04+ 01,

To integrate it in the (A, %) plane we need to fix the value at a reference state, for
instance Wy = Wy = 0 for (A,u) = (Ao, 0). We finally obtain

A A
(6.32) Wy = ﬂ+/ Dy wy = —/ a4,
T Ao

Ao T

o)
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Remark 6.4. If we adopt relation (6.16) and use the expression for ¢; given in (6.21),
after simple computations we have

(633) W1 =u-+ 4(01 - Cl,O); W2 =u— 4(01 — 01’0),
where ¢; o is the value of ¢; corresponding to the reference vessel area Ag.

%

Under physiological conditions, typical values of the flow velocity and mechanical
characteristics of the vessel wall are such that ¢, >> au. Consequently A\ > 0 and
Ay < 0, i.e. the flow is sub-critical everywhere. Furthermore, the flow is smooth.
Discontinuities, which would normally appear when treating a non-linear hyperbolic
system, do not have indeed the time to form in our context because of the pulsatility
of the boundary conditions. It may be shown [7] that, for the typical values of the
mechanical and geometric parameters in physiological conditions and the typical
vessel lengths in the arterial tree, the solution of our hyperbolic system remains
smooth, in accordance to what happens in the actual physical problem (which is
however dissipative, a feature which has been neglected in our one-dimensional
model).

In the light of the previous considerations, from now on we will always assume
sub-critical regime and smooth solutions.

6.3.2. Boundary conditions. System (6.12) must be supplemented by proper bound-
ary conditions. The number of conditions to apply at each end equals the number
of characteristics entering the domain though that boundary. Since we are only
considering sub-critical flows we need to impose exactly one boundary condition at
both z =0 and z = L.

An important class of boundary conditions, called non-reflecting or ’absorbing’,
are those that allow the simple wave associated to the outgoing characteristic to
exit the computational domain with no reflections. Following [56, 29] non-reflecting
boundary conditions for one dimensional systems of non-linear hyperbolic equation
like (6.20) may be written as

| (8—U+S(U)) =0atz=0, 1 (aa—(tj%—S(U)) =0atz=1L,

for allt € I. When S = 0 these conditions are equivalent to impose a constant value
(typically set to zero) to the incoming characteristic variable. When S # 0 they
take into account the “natural variation” of the characteristic variables due to the
presence of the source term. A boundary condition of this type is quite convenient
at the outlet section.

At the inlet instead one usually desires to impose values of pressure or mass flux
derived from measurements or other means. Let us suppose that z = 0 is an inlet
section (the following discussion may be readily extended to the boundary z = L).
Whenever an explicit formulation of the characteristic variables is available, the
boundary condition may be expressed directly in terms of the entering characteristic
variable Wy, i.e., for all t € T

(6.34) Wi(t) = ¢1(¢t) at z =0,

g1 being a given function. However, seldomly one has directly g at disposal,
as the available boundary data is normally given in terms of physical variables.
Let us suppose that we know the time variation of both pressure and mass flux
at that boundary (for instance taken from measurements). We may derive the
corresponding value of g1 using directly the definition of the characteristic variable
Wi. If Py, = Py(t) and @, = Qm(t) are the measured average pressure and mass
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flux at z = 0 for t € I and Wy (A4, Q) indicates the characteristic variable Wy as
function of A and (), we may pose

gl(t) =W (w_l(Pm(t) - Pe:ct)a Qm(t)) , tel,

in (6.34). This means that P, and @,, are not imposed exactly at z = 0 (this
would not be possible since our system accounts for only one boundary condition
at each end of the computational domain), yet we require that at all times ¢ the
value of A and @ at z = 0 lies on the curve in the (A, Q) plane defined by

Wi(4,Q) = Wi (™ (P (t) = Pezt), Qum(t)) = 0.

If instead one has at disposal the time history ¢(t) of a just one physical variable
¢ = ¢(A, Q) the boundary condition

(A1), Q1) =q(t), Vtel, atz=0,

is admissible under certain restrictions [43], which in our case reduce to exclude
the case where ¢ may be expressed as function of only Ws5. In particular, it may
be found that for the problem at hand the imposition of either average pressure or
mass flux are both admissible.

Remark 6.5. If the integration of (6.26) is not feasible (as, for instance, in the case
a # 1), one may resort to the pseudo-characteristic variables [43], Z = [Z1, Z5]T,
defined by linearising (6.26) around an appropriately chosen reference state. One
obtains

(6.35) Z=Z+L{U)(U-17)

where U is the chosen reference state and Z the corresponding value for Z. One
may then use the pseudo-characteristic variables instead of W, by imposing

Zi(t) =g1(t) at 2 =0, Z(t) =0 at z=L.

In the context of a time advancing scheme for the numerical solution of (6.20)
the pseudo-characteristics are normally computed linearising around the solution
computed at the previous time step.

¢

Remark 6.6. When considering the numerical discretisation, we need in general to
provide an additional equation at each end point in order to close the resulting alge-
braic system. Typically, this extra relation is provided by the so-called compatibility
conditions [43], which read as follows

o} oU
. ' ZU+H-—Z+B) = = I
(6.36a) 2 <8t 52 ) 0, 2=0,tel,
0 oU
T _ _
(6.36b) 1 (_8t U+Ho—+ B) =0, z=L,tel

¢

6.3.3. Energy conservation for the 1D model. Most of the results presented in this
section are taken from [15] and [7].

Lemma 6.3. Let us consider the hyperbolic problem (6.18) and assume that the
initial and boundary conditions are such that Vz € (0, L)

A(0,2) >0, and A(t,0) >0,A(t,L) >0,Vtel,

and that the solution U is smooth for all (t,z) € I x (0,L). Then A(t,z) > 0 for
all (t,2) € I x(0,L).
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Proof. Let us suppose that we have A(t*,z*) = 0 at a generic point (t*,z*) €
Ix(0,L). From the definition of A\; and Ay the line I = {(¢, 2)| 2z = 2,(¢)} satisfying

B t) =t 2 (0)

and ending at the point (t*,2*), lies between the two characteristic curves passing
through the same point. Therefore, it completely lies inside the domain of depen-
dence of (t*,2*) and either intersects the segment z € (0, L) at ¢t = 0 or one of the
two semi-lines z = 0 or z = L at ¢t > 0. We indicate this intersection point by
(t,%). The corresponding value of A, call it A4, is positive by hypothesis. From the
continuity equation, A satisfies along the line [ the following ordinary differential
equation

dA ou

dt 02’
where here the ‘fi—f indicates the directional derivative along I. Therefore,

_ ou
At 2%) = A/ TU o eu(r))dr >0,
i oz
in contradiction with the hypothesis. Therefore we must have A > 0. a

Here we derive now an a priori estimate for the solution of system (6.18) under
the hypotheses of a = 1, sub-critical smooth flow, and A > 0. We will consider the
following initial and boundary conditions

(6.37) initial conditions A(0,2) = A%2), Q(0,2) = Q%) z€(0,L)

Wl(t,O) = gl(t), tel

(6.38) boundary conditions Wa(t,L) = go(t), tel

Let the quantity e be defined as

(6.39) e= gAEQ + T
where ¥ = ¥(A) is given by

A
(6.40) ¥(A) = . P(¢)dC.

Here and in what follows we omit to indicate the dependence of ¥ on Ay and 3,
since it is not relevant to obtain the desired result, which can be however extended
also to the general case where the coefficients Ag and 8 depend on z.

An energy of the 1D model is given by

L
(6.41) £(t) = / e(t. 2)dz, tel.
0
Indeed, owing to the assumptions we have made on ¢ in (6.14), we may observe
that ¢ attains a minimum at A = Ay, since
l:[’(A()) = lI’I(z‘lo) =0 and l:[’”(14) >0 VA>0.

it follows that ¥(A) > 0, VA > 0. Consequently, £(t) is a positive function for
all @ and A > 0 and, moreover,

g(t) =0 iff (A(ta z),Q(t,z)) = (AO;O): Vz € (O,L)
The following Lemma holds
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Lemma 6.4. In the special case a = 1, system (6.12), supplied with an algebraic
pressure-area relationship of the form (6.13) and under conditions (6.14), satisfies
the following conservation property, ¥t € 1

t pL 4 L
(6.42) £(t) + pKn / / Wdedr+ [ Q (P~ Peat) | = £0),

to/ 0 to
where £(0) depends only on the initial data A° and Q°, while Py = P + Lpu® is
the fluid total pressure.

Proof. Let us multiply the second equation of (6.12) by @ and integrate over (0, L).
We will analyse separately the four terms that are obtained.

e First term

L
(6.43) I, = /6 /Aa /%_Zdzz

1d [ 1 (F .84
= Aw? — [ w22
Zdt/o udz+2/0u6tdz

e Second term

L g g2 L
(6.44) I, =a/ %ﬂdz:al 8(;; 2dz+/ Au —dz] =
0

1 [t o(4n)_, 8A_3 3 _,0u |
a|§/0 52 udz+§ | Bz dz+2/0 Au gdz =

1 2aQ._, O(Aw®)
akoézd 2A —
Now, using the continuity equation we obtain
(6.45) [ / ——2dz + (Aw®) |0

e Third term

Aap 1 o
4 = =2 AZ(P-P,)udz =
(6.46) I /o paz p/o 5z ( eat) Uz

Lo
—A-gwmw+w—ammﬂ

Again, using the first of (6.12) we have

L=l|[ %4 (A)dz + (P = Pop)Q|*| = 2 i/L\p(A)d +(P = Pu)Qt
3 = P 3t 2 ext 0 — P dt o 74 ext 0
e Fourth term
L 0 L
(6.47) I4=/ Kr—ﬂdzzKr/ w’dz
0 A 0

By summing the four terms and multiplying by p, we obtain the following equal-
ity when a =1,

1 d [ d [* L L
(6.48) —p— / Auldz + — / T(A)dz + pKr/ %2dz 4+ Q (Pyot — Pogt)| =0

Integrating equation (6.48) in time between to and t leads to the desired result.
O
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In order to draw an energy inequality from (6.42), we need to investigate the
sign of the last term on the left hand side. With this aim, let us first analyse the
homogeneous case g1 = g2 = 0.

We will rewrite the boundary term in (6.42) as a function of A, ¥(A) and ¢
(which, in its turn, depends on A, see (6.17)).
If g1 = g2 = 0 in (6.38), then

B Y -1 (O v [ra©
atz=20 Wl—u+/AO c d¢=0 = @(t,0)= /Ao R d¢
A A
atz=L W,= ﬂ—/ cléodc =0 = altlL)= / Cléodc
Ao Ao
and thus
(6.49) Q (Pt = Poat) | = F(A(,0) + F(A(:, 1),
where
(6.50) F(A)—A/A © g |pay + /A e(Q) ¢ i
' Tl ¢ 2"\ /s ¢

From our assumption of sub-critical flow we have |[u| < ¢; which implies that at
z =0 and z = L we have

(6.51) ‘ /A * Cléo dc‘ < 1 (A)

We are now in the position to conclude with the following result.

Lemma 6.5. If the function pressure-area relationship P = (A) is such that
F(A) > 0 whenever (6.51) is satisfied, then inequality

(6.52) Et) + pK, /t t /0 " w2 dzdr < £(0)

holds for system (6.12), provided homogeneous conditions on the characteristic vari-
ables, W1 =0 and Wy = 0, are imposed at z =0 and z = L, respectively.

Proof. It is an immediate consequence of (6.42), (6.49) and (6.50). O

By straightforward computations one may verify that the pressure-area relation-
ship given in (6.16) satisfies the hypotheses of Lemma 6.5 (see [15]). Therefore, in
that case the 1D model satisfies the energy inequality (6.52).

Under relation (6.16), we can prove a more general energy estimate, valid also in
the case of non homogeneous boundary conditions. We state the following result.

Lemma 6.6. If the pressure-area relationship is given by (6.16), and the boundary
data satisfy
(6.53) g1(t) > —4c10(0) and  ga2(t) < 4e1,0(L) Vtel,

where ¢10(2) = ﬁonz)Ao(z)_% is the value of c1 at the reference vessel area, then

there exists a positive quantity G(t) which continuously depends on the boundary
data g1 (t) and ga(t), as well as on the values of the coefficients Ag and B, at z =0
and z = L, such that, for allt € I

(6.54) E£(t) + pK, /t t /0 " Pdadr < £(0) 1 /0 "Gy,



MODELLING THE CARDIOVASCULAR SYSTEM 85

Proof. We will consider only the case where g1 # 0 and g2 = 0, since the most
general case may be derived in a similar fashion. We recall that relationship (6.16)
together with the assumption of sub-critical flow, complies with the conditions
stated for F(A) in Lemma 6.5. Then from (6.48) we obtain the following inequality

d b _ 1
(659) Ge+ok, [ ads < QP — P | _ < (Aulloa)] + goaial) |
0 z= z=

At z = 0, we have from (6.33) that
u+ 4(01 — 61,0) =gi.
On the other hand, the condition \; =u + ¢; > 0 gives

1
(6.56) a < g(gl +4cy0)-

Since c; is a non-negative quantity, we must necessarily have g; > —4c; 9. We now
note that from (6.16) and the definition of ¢1,0 we may write

P(A) = 2p(c}(A) — 1 )
which together with (6.56) and the fact that ¢; o is a positive function, allows us to
state that, at z = 0,

2
(6.57) B(A) < (97 + 156 +8g1c1.0) = fula),

where f; is a positive continuous function depending parametrically on the values
of Ag and By at z = 0. Furthermore, condition |u| < ¢; together with inequality
(6.56) imply that

[a] < fa(gr),
being fo another positive and continuous function. Finally, from the definition of
¥ and ¢1,0 we have

A2
A= ,6’ )+ VA P*(A) + 4) <
0

2
2;) (f2(g1) + Ao) = f3(qn),

where we have exploited (6.57). By combining all previous inequalities we deduce
that the right hand side in (6.55) may be bounded by a positive and continuous
function of the boundary data g; that depend parametrically on the value of Ag
and By at z = 0. By repeating a similar argument for the boundary conditions at
z = L we then obtain the desired stability inequality. a

6.3.4. Weak form. We consider the hyperbolic system (6.20) with initial condition
U = Uy, att = tg, and appropriate boundary conditions at 2z = 0 and z = L.
We indicate by C&((0,L) x [to,t1)) the set of functions which are the restriction to
(0,L) X [to, t1) of C! functions with compact support in (0, L) x (—oo, t1). We will
assume that Uy is a bounded measurable function in (0, L).

A function U € [L®°((0,L) x [to,t1))]? is a weak solution of the equation in
conservation form (6.20) if for all ¢ € [CL((0,L) X [to,t1))]* we have

L
(6.58) /t/< —+F(U).%—S(U).¢>dzdt+/o Us - Blieo = O.

Moreover, we will require that U complies given boundary conditions.

A solution of (6.58) is called a weak solution of our hyperbolic system. Clearly
“classical” smooth solutions of (6.20) are also weak solutions. Conversely, it may
be shown that a smooth weak solution, i.e. belonging to [C*((0,L) x [to,t1))]?, is
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also solution of (6.20) in a classical sense. However, the weak form accommodates
also for less regular U. In particular, weak solutions of our hyperbolic problem may
be discontinuous. The weak form is furthermore the basis of a class of numerical
schemes, in particular the finite element method, as already seen for the Navier-
Stokes equations.

Remark 6.7. The conservation formulation (6.20) accounts also for mechanical prop-
erties which vary smoothly along 2. However, there are some fundamental difficul-
ties in extending it to the case of discontinuous mechanical characteristics (e.g.
discontinuous 3). On the other hand, this situation has a certain practical rele-
vance, for instance in stented arteries or in the presence of a vascular prosthesis.
A stent is a metal meshed wire structure inserted into a stenotic artery (typically
a coronary) by angioplasty, in order to restore the original lumen dimension. Vas-
cular prostheses are used to treat degenerative pathologies, such as aneurysms, or
when angioplasty is not possible.

A possibility [19] is to model the sharp variation of the Young modulus at the
interface between the artery and the prosthesis by a regular function. Fig 26 il-
lustrates a possible description of the change in the Young modulus due to the
presence of a prosthesis. One may argue what would happen when the parameter
0 in figure tends to zero. Numerical experiments have shown that the solution
remains bounded although it becomes discontinuous at the location of the discon-
tinuity in the Young modulus. This fact has been recently investigated in [6] where
an expression for the jump of mass flow and area across the discontinuity is derived
by computing a particular limit of weak solutions of a regularised problem. More
details are found in the cited reference.

¢

Cit a
0 25 25 L2

FIGURE 26. The sharp variation of the Young Modulus E from
the value Ey to the value Fy, due to the presence of a prosthesis, is
modeled by a smooth function. One may argue what would happen
when the parameter § in figure tends to zero.

6.3.5. An entropy function for the 1D model. Let us consider the hyperbolic system
written in quasi-linear form (6.18). A pair of functionse : R? - Rand F, : R - R
is called entropy pair for the system if e is a convex function of U (called entropy)
and the following condition is satisfied

de
W)TH(U) =

OF,
ou

(6.59) (

for all admissible values of U.
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F, is the entropy flur associated to the entropy e. If the hyperbolic system
admits an entropy pair then the entropy function satisfies a conservation law of the
form

de OF,

S+ s + B(U) =0,
where d OF, dA, OF, dB
€ e 0 e
B.(U) =% . BU) - _OF.dB
=35 PO~ 54,2 ~ 98 4=

is a source term. The last two terms in the previous expression account for the
possible dependence of the coefficients Ag and 8 on z.

The existence of an entropy pair is of a certain importance when studying the
weak solution of the hyperbolic problem and in particular discontinuous solutions
(more details in [33] and [25]). Although we have here considered only smooth
solutions, the identification of an entropy for our problem is important to set the
basis for the extension of the model to more general situations.

In the case a =1,

1, 1 Q?
e= 2pAu + T(A) = 5P 1 + T(A)
is indeed an entropy for the problem at hand, with associated flux

F, = Q <¢(A) + %pﬂ2) = Q(Ptot - Pext)-

Indeed, we have

_ 0
de _ +(A) oF, _ Qa—ﬁ(A)—Pﬂ3

— = 9 ,

and we may directly verify condition (6.59) by recalling (6.19). Furthermore B, =
pK,@? and the entropy balance equation thus read

(6.60) % (%pAﬂQ + \IJ(A)) + % [Q (1/)(A) + %pﬂz)] + pK,u* = 0.

It is valid for any smooth solution of our hyperbolic model. Furthermore, the
following Lemma ensures the convexity of e.

Lemma 6.7. The entropy
e(4,Q) =

N

Q2
R +P(A)
is convez for all A > 0.

Proof. By a straightforward calculation one finds that the Hessian of e is given by
0%e 0%e
_| 942 940Q| _p [+ -u
He=| g2¢ g% _A[—ﬂ 1]
0A0Q  0Q?

Its eigenvalues are

A+at+1++/(F +a%+1)2 -4
2A
The condition for the discriminant to be positive is

4c} < (& +u® +1)?
Since ¢; > 0 whenever A > 0, this inequality is equivalent to impose that

E+u+1-2¢=(c1 —1)2+7* >0,

/\1,2(He) =p
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which it is always true. Therefore, the two eigenvalues are strictly positive for all
A > 0. This completes our proof. a

6.4. More complex wall laws that account for inertia and viscoelasticity.
The algebraic relation (6.13) assumes that the wall is instantaneously in equilibrium
with the pressure forces acting on it. Indeed, this approach correspond to the
independent ring model introduced in Sect. 4.

At the price of some approximations it is possible to maintain the simple struc-
ture of a two-equations system while introducing effects, such as the inertia, which
depend on the time derivative of the wall displacement.

We will consider as starting point relation (4.18) where we account for the inertia
term and we model the viscoelastic property of the wall by adding a term propor-
tional to the displacement rate, while we will still use the approximation (4.16) for
the forcing term. We may thus write

d? on
(6.61) P—Pet =7 6t2 trng t+ ¥(4; Ao, B),

where 7o = pwho, 11 = 7> and the last term is the elastic response, modelled is
the same way as done before. Here + is the same viscoelasticity coefficient of (4.18)
and 7 is the wall displacement, linked to A by (6.2).
In the following, we indicate by A and A the first and second time derivative of
A. We will substitute the following identities
- 2 .. -

@:;A, @:ﬂé(LA_LAZ),

ot 2rA ot? VA 4/A3
that are derived from (6.2), into (6.61) to obtain a relation that links the pressure
also to the time derivatives of A, which we write in all generality as

P — Pepy = ,LZ(AJA’A7 AO) + ¢(A;Ao,ﬂ),

where ¢ is a non-linear function which derives from the treatment of the terms
containing the time derivative of 7. Since it may be assumed that the contribution
to the pressure is in fact dominated by the term 1, we will simplify this relationship
by linearising 1 around the state A = Ay, A=A =0. By doing that, after some
simple algebraic manipulations, one finds

6.62 P— P = i A+ 0(4; 4, B),

Replacing this expression for the pressure in the momentum equation requires
to compute the term
AoOP YA 834 mA 0*A Aoy
00z 2pnA, 0202 | 2p\/nA, 020t p 0z
The last term in this equality may be treated as previously, while the first two

terms may be further elaborated by exploiting the continuity equation. Indeed, we
have

*4A  2*Q kA 2PQ
020t 0227 02012 OtO22
Therefore, the momentum equation with the additional terms deriving from

inertia and viscoelastic forces becomes

0Q  0F nA  2PQ nA  9Q
Bt T Bz 2p/mAg 01022 2p\/mA, 022
where with F5 and S» we have indicated the second component of F' and S, respec-
tively.

(6.63) +8,=0
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Remark 6.8. This analysis puts into evidence that the wall inertia introduces a dis-
persive term into the momentum equation, while the viscoelasticity has a diffusion
effect.

%

6.5. Some further extensions. More general one dimensional models may be
derived by accounting for vessel curvature. This may be accomplished by enriching
the description of the velocity field on each vessel section to allow asymmetries of
the velocity profile to develop.

Another enhancement of the model is to account for vessel branching. By em-
ploying domain decomposition techniques, each branch is simulated by a separate
one dimensional model and interface conditions are used to account for the ap-
propriate “transfer” of mass and momentum across the branching point. All these
aspects are not covered in these notes. They are subject of current research and
preliminary results may be found in [16].

Beside providing valuable information about average pressure and mass flux
along an arterial segment, a one-dimensional model of blood flow may be used in
the context of a multiscale/multimodel description of the cardiovascular system.
In the multiscale framework, models of different level of complexity of the various
cardiovascular elements are coupled together with the objective of simulating the
whole cardiovascular system. Only the elements of major interest for the problem
under study will be simulated at the highest level of detail (e.g. by employing a three
dimensional fluid-structure interaction model), while reduced models are adopted
in the remaining parts. This technique allows us to account (at least partially)
for the complex feedback mechanisms of the complete cardiovascular system, while
keeping the overall computational costs at a resonable level. More details on this
technique may be found in [20, 15, 39] while in [38] a first example on the use of
this multiscale approach for a realistic clinical application is presented.
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7. SOME NUMERICAL RESULTS

We provide some numerical results to illustrate applications of the techniques
discussed in the previous sections. The aim here is to show the potential of the
numerical modelling to reproduce realistic flow fields relevant for medical investi-
gations. Many of the results here presented are substantially taken from previous
works of the authors, in particular from [42], [15] and [19]. More details and other
examples may be found in the cited references.

7.1. Compliant pipe. Here we consider two examples of a fluid structure-interaction
problem like the one presented in subsection 5.3, namely a 2D and a 3D computa-
tion of a pressure wave in a compliant tube.

In the 2D case, we have considered a rectangular domain of height 1cm and
length L = 6¢m. The fluid is initially at rest and an over pressure of 15mmHg
(2-10* dynes/cm?) has been imposed at the inlet for 0.005 seconds. The viscosity
of the fluid is equal to 0.035 poise, its density is 1 g/cm?, the Young modulus of the
structure is equal to 0.75 - 106 dynes/cm?, its Poisson coefficient is 0.5, its density
is 1.1 g/cm?® and its thickness is 0.1 cm.

In the 3D case, our computation has been made on a cylindrical domain of
radius Ry = 0.5¢m and length L = 5¢m, with the following physical parameters:
fluid viscosity: 0.03 poise, fluid density: 1g/cm?, Young modulus of the structure:
3-10% dynes/cm?, Poisson coefficient: 0.3 and structure density: 1.2 g/cm®. Again,
an over-pressure of 10mmHg (1.3332 - 10* dynes/cm?) is imposed at the inlet for
0.005 seconds.

The fluid equations are solved using the ALE approach, with a piecewise linear
finite element space discretisation. More precisely, for the 2D case the pressure is
piecewise linear on triangular elements and the velocity is linear over each of the
four sub-triangles obtained by joining the midpoints of the edges of each pressure
triangle (this is the so called P1lisoP2-P1 discretisation). We have employed the
Yosida technique illustrated in subsection 3.7.2. For the 3D case we have used a
stabilised scheme [31] and piecewise linear elements for both velocity and pressure.

For the 2D case, the equation for the structure displacement (5.13) has been
solved using a P! finite element space discretisation, with nodes coincident with
the ones of the pressure discretisation. In the 3D case, we have used a shell-
type formulation [51, 52] to describe the dynamics of the wall structure. In both
cases, the coupling scheme adopts a sub-iterations strategy of the type illustrated
in subsection 5.3.

In order to reduce spurious wave reflections at the outlet, we have coupled the
fluid-structure interaction problem with a one dimensional system of the type de-
scribed in Sect. 6. For more details on this technique see [15], as well as [18].

Figures 27 and 28 show the fluid pressure and the domain deformation in the
2D and the 3D case respectively. For the sake of clarity, the displacements shown
in Fig. 28 are magnified by a factor 10.

7.2. Anastomosis models. Anastomosis is the a surgical operation by which the
functionality of a blocked artery (typically a coronary) is restored thanks to by-
pass. The flow condition when the blood in the by-pass re-joins the main artery
may be critical. If we have a large recirculation area, the higher latency time of
blood particles there may favor plaque growing and cause a new blockage further
downstream.
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t=1ms
t=6ms
t=11ms
t=16ms
t=21ms
t =26ms

FIGURE 27. Pressure pulse entering at the inflow. A non-reflecting
boundary condition at the outlet has been obtained by the coupling
with a 1D hyperbolic model. Solutions every 5ms .

The simulations here presented aim at highlight the problem. We illustrate the
flow in the median plane of a 3D model of an anastomosis. 7. The junction angle
is 15 degrees. The diameter of the occluded branch (below) is 1 cm, and the one
of the by-pass (above) is 0.96 cm. The simulations have been carried out setting
the dynamic viscosity g = 0.04 g cm™! s~ and the density p = 1 g cm™3. In
this simulation the vessel wall has been assumed fixed and the boundary conditions
prescribe null velocity on the walls and on the upstream section of the stenotic
branch (100% stenosis), while a parabolic velocity profile has been prescribed at
the inlet section with a peak velocity of 56 cm s, corresponding to a flow rate of
1320 ml min~!. On the downstream section a Neumann—type condition has been
assigned.

Fig. 29 clearly illustrates the appearance and the evolution of the flow recircu-
lation zones during the different phases of the heart beat.

7.3. Pressure wave modification caused by a prosthesis. Here we present a
numerical simulation obtained using the one dimensional model (6.12) to investigate

"The model geometry has been provided by the Vascular Surgery Skejby Sygheus of the Aahrus
University Hospital in Denmark.
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time=0.004 s

Coupling with
1D hyperbolic model

time=0.014 s

Coupling with
1D hyperbolic model

time=0.026 s

Coupling with
1D hyperbolic model

time=0.01s

Coupling with
1D hyperbolic model

time=0.02s

Coupling with
1D hyperbolic model

time=0.034s

Coupling with
1D hyperbolic model

FIGURE 28. A pressure pulse traveling in a 3D compliant vessel.
The displacement of the structure has been magnified by a factor
10. A non-reflecting boundary condition at the outlet has been
obtained by the coupling with a 1D hyperbolic model (not shown

in the picture).
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FIGURE 29. A model of a coronary by-pass anastomosis (top) and
the velocity vector field on the median plane at four different in-
stants of the heart beat. Flow at systole (top, left), initial decel-
eration phase (top, right), beginning of diastole (bottom, left) and
end of diastole (bottom, right). The recirculation regions upstream
and downstream of the junction are evident.

the effect of a prosthesis in an artery, in particular with respect to the alteration of
the pressure wave pattern. To that purpose we have considered the portion of an
artery of length L and a prosthesis of length [ (see Fig. 30) and a Young modulus
varying as already illustrated in Fig. 26.
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Prosthesis
Eo E;=kEy  / Eo

P M D
o o o
z=0.25L z=0.5L z=0.75L
T T
- I -
z=0 z=a, z=a, z=L

Ficure 30. The layout of our numerical experiment. The points
P, M and D are used as 'monitoring stations’ to assess the modi-
fications on the pressure wave caused by the prosthesis.

In order to assess the effect of the changes in vessel wall elastic characteristic on
the pressure pattern, we have devised several numerical experiments. Two types
of pressure input have been imposed at z = 0, namely an impulse input, that is
a single sine wave with a small time period and a single sine wave with a more
realistic time period (see Fig. 31). The impulse has been used to better highlight
the reflections induced by the vascular prosthesis.

w w4
20000. 20000.
(dyne/fcm”2) (dyne/cm”2)
(o) ‘ 0.0025 Time (s) (o) Time (s)

0.165

FIGURE 31. The two types of pressure input profiles used in the
numerical experiments: an impulse (left) and a more realistic sine
wave (right).

The part that simulates the presence of the prosthesis or stent of length L is
comprised between coordinates a; and a;. The corresponding Young’s modulus
has been taken as a multiple of the basis Young’s modulus Ey associated to the
physiological tissue.

Three locations along the vessel have been identified and indicated by the letters
D (distal), M (medium) and P (proximal). They will be taken as monitoring point
for the pressure variation. Different prosthesis length L have been considered; in
all cases points P and D are located outside the region occupied by the prosthesis.
Table 1 indicates the basic data which have been used in all numerical experiments.
In this numerical experiment we have considered the the conservation form (6.20)
setting the friction term K, to zero. The numerical scheme adopted is a second
order Taylor-Galerkin [13]. A time step At = 2 x 107%s and the initial values
A = Ay and @ = 0 have been used throughout.

At the outlet boundary z = L we have kept W5 constant and equal to its initial
value (non-reflecting boundary condition). At the inlet boundary we have imposed
the chosen pressure input in an approximate fashion, following a technique of the
type illustrated in subsection 6.3.2.

7.3.1. Case of an impulsive pressure wave. In Fig. 32 we show the results obtained
for the case of a pressure impulse. We compare the results obtained with uniform



96 A. QUARTERONI AND L. FORMAGGIA

TABLE 1. Data used in the numerical experiments.

| || Parameters | Value |
Input Pressure Amplitude | 20x103dyne/cm?
FLUID Viscosity, v 0.035poise
Density, p 1g/cm?
Young’s Modulus, Ey 3x10%dyne/cm?
STRUCTURE || Wall Thickness, h 0.05cm
Reference Radius, Ry 0.5cm

Young’s modulus Ey and the corresponding solution when E; = 100Ey, [ = 5cm
and the transition zone between healthy artery and prosthesis is § = 0.5cm. We
have taken L = 15cm and a non uniform mesh of 105 finite elements, refined around
the points a; and a;. When the Young modulus is uniform, the impulse travels
along the tube undisturbed. The numerical solution shows a little dissipation and
dispersion due to the numerical scheme. In the case of variable E the situation
changes dramatically. Indeed, as soon as the wave enters the region at higher
Young’s modulus it gets partially reflected (the reflection is registered by the posi-
tive pressure value at point P and ¢ =~ 0.015s) and it accelerates. Another reflection
occurs at the exit of the ‘prosthesis’, when F returns to its reference value Ey. The
point M indeed registers an oscillatory pressure which corresponds to the waves
that are reflected back and forth between the two ends of the prosthesis. The wave
at point D is much weaker, because part of the energy has been reflected back and
part of it has been ‘captured’ inside the prosthesis itself.

7.3.2. Case of a sine wave. Now, we present the case of the pressure input given
by the sine wave with a larger period shown in Fig. 31, which describes a situation
closer to reality than the impulse. We present again the results for both cases of a
constant and a variable E. All other problem data have been left unchanged from
the previous simulation. Now, the interaction among the reflected waves is more
complex and eventually results in a less oscillatory solution (see Fig. 33). The major
effect of the presence of the stent is a pressure increase at the proximal point P,
where the maximum pressure is approximately 2500dynes/cm? higher than in the
constant case. At a closer inspection one may note that the interaction between the
incoming and reflected waves shows up in discontinuities in the slope, particularly
for the pressure history at point P. In addition, the wave is clearly accelerated
inside the region where F is larger.

In Table 2 we show the effect of a change in the length of the prosthesis by
comparing the maximum pressure value recorded for a prosthesis of 4, 14 and 24
cm, respectively. The values shown are the maximal values in the whole vessel, over
one period. Here, we have taken L = 60cm, § = 1cm, a mesh of 240 elements and
we have positioned in the three cases the prosthesis in the middle of the model.
The maximum value is always reached at a point upstream the prosthesis. In the
table we give the normalised distance between the upstream prosthesis section and
of the point where the pressure attains its maximum.

Finally, we have investigated the variation of the pressure pattern due to an
increase of k = E/Ey. Fig. 34 shows the result corresponding to L = 20cm and
6 = lcm and various values for k. The numerical result confirms the fact that a
stiffer prosthesis causes a higher excess pressure in the proximal region, a fact that
may have negative effects on the heart.
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pressure (dyne/cmz)

i i i i i i
o 0.005 0.01 0.015 0.02 0.025 0.03 0.035
Time (secs)

pressure (dyne/cmz)

o 0.005 0.01 0.015 0.02 0.025 0.03 0.035
Time (secs)

FIGURE 32. Pressure history at points P, M and D of figure 30,
for an impulsive input pressure, in the case of constant (upper)
and variable (lower) E.

TABLE 2. Maximum pressure value for prosthesis of different length.

Prosthesis Mazimal Mazimum
length pressure location
(cm) (dyne/cm?) | Zmax/l
4 23.5 x 10° 0.16
14 27.8 x 10° 0.11
24 30.0 x 103 0.09
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FIGURE 33. Pressure history at points P, M and D of Fig. 30,
for a sine wave input pressure, in the case of constant (upper) and
variable (lower) E.
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FIGURE 34. Pressure history at point P of Fig. 30, for a sine wave
input pressure and different Young’s moduli £ = kEj.
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