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Abstract

This paper addresses the computational challenges inherent in the stochastic characterization and uncer-
tainty quantification of Micro-Electro-Mechanical Systems (MEMS) capacitive accelerometers. Traditional
methods, such as Markov Chain Monte Carlo (MCMC) algorithms, are often constrained by the computa-
tional intensity required for high-fidelity (e.g., finite element) simulations. To overcome these limitations,
we propose to use supervised learning-based surrogate models, specifically artificial neural networks, to ef-
fectively approximate the response of MEMS capacitive accelerometers. Our approach involves training the
surrogate models with data derived from initial high-fidelity finite element analyses (FEA), providing rich
datasets to be generated in an offline phase. The surrogate models replicate the FEA accuracy in predicting
the behavior of the accelerometer under a wide range of fabrication parameters, thereby reducing the online
computational cost without compromising accuracy. This enables extensive and efficient stochastic analyses
of complex MEMS devices, offering a flexible framework for their characterization. A key application of
our framework is demonstrated in estimating the sensitivity of an accelerometer, accounting for unknown
mechanical offsets, over-etching, and thickness variations. We employ an MCMC approach to estimate the
posterior distribution of the device’s unknown fabrication parameters, informed by its response to tran-
sient voltage signals. The integration of surrogate models for mapping fabrication parameters to device
responses, and subsequently to sensitivity measures, greatly enhances both backward and forward uncer-
tainty quantification, yielding accurate results while significantly improving the efficiency and effectiveness
of the characterization process. This process allows for the reconstruction of device sensitivity using only
voltage signals, without the need for direct mechanical acceleration stimuli.

Keywords: Deep Learning, Neural Networks, Uncertainty Quantification, Bayesian Inverse Problems,
MEMS, Computational Mechanics

1. Introduction

Micro-Electro-Mechanical Systems (MEMS) [1, 2] have emerged as one of the most prevalent technolo-
gies in today’s world, manifesting in various forms across numerous devices we use daily. These systems
integrate micro-structural and electronic components to miniaturize a range of functions, such as accelerom-
eters, gyroscopes, magnetometers, and pressure sensors, down to the micron scale. However, the small scale
characteristic of MEMS leads to complex fabrication processes that are influenced by multiple sources of
uncertainty leading, for instance, to geometric discrepancies with respect to the nominal layout prescribed
before fabrication. Fabrication variances can result in up to a 10% deviation from the intended design in
standard MEMS [3, 4], significantly modifying their operational characteristics and thus requiring a com-
prehensive calibration process to ensure accurate measurements [5, 6, 7, 8]. Over the past few decades,
continuous advancements in computational power and the development of algorithms have established nu-
merical simulation as a cornerstone in engineering and applied sciences [9]. This is particularly relevant
for solving complex differential problems, such as those governing the dynamics of MEMS [1]. As a re-
sult, it has become feasible to explore the impact of uncertainties on various design parameters [10, 11].



However, the substantial computational resources required by high-fidelity models often limit their prac-
tical utility, especially for tasks like Uncertainty Quantification (UQ), which are inherently multi-query –
that is, they require repeated queries to a numerical solver. Consequently, lower-fidelity surrogate models
have been increasingly adopted to enhance computational efficiency [12, 13]. While less resource-intensive,
these models still provide an acceptable level of accuracy and expedite repeated computations. Surrogate
models can be categorized into various types [14]: data-fit models (e.g., Kriging models [15, 16, 3, 17]),
hierarchical models (e.g., simplified physics models or coarse discretizations [18]), and reduced-order mod-
els [19, 20, 21, 22, 23, 24, 25, 26, 27]. In the domain of structural mechanics, the most widely adopted
techniques currently rely on reduced-order models that involve the use of modal decompositions or reduced
bases [21]. Modes’ selection can be based on physical insights or system identification procedures [22], such
as Proper Orthogonal Decomposition [20, 24, 28, 29, 30]. Alternatively, approaches are formulated within
the framework of Nonlinear Normal Modes [31, 32, 23, 33], with several developments that have general-
ized the method to arbitrary order expansions and can be directly applied to finite element models, using
the so-called direct parametrization of invariant manifolds (DPIM) [34, 35]. However, in recent years, a
plethora of approaches for constructing data-driven surrogate models [36] have been proposed, often relying
on supervised learning [15], in computational mechanics. Several methodologies have successfully integrated
data-driven deep learning techniques [25] for parameter estimation and uncertainty quantification across
various domains, including cardiac mechanics [37], solid mechanics [38], structural health monitoring [39],
and aero-elastic systems [40], among others. In the field of MEMS devices and uncertainty quantification,
the core challenge lies in determining the relationship between selected device features and the system’s
behavior. Recent results have shown the feasibility of the use of deep learning-based reduced order models
[41, 42] in order to simulate the mechanical behavior of MEMS also involving non-linearities [43], ultimately
comparing the DPIM method with more recent model discovery strategies based on the sparse identification
of nonlinear dynamics [44, 45].

In a production environment for MEMS, various tests are usually carried out to assess each device’s
response and performance under external stimuli [46], also aiming at real-time auto-calibration [6]. How-
ever, inferring device characteristics directly from collected data relying on model-based methodologies often
yields ill-posed problems, whose solution is even more difficult due to the unavoidable measurements’ noise.
Consequently, a probabilistic framework, enabled by Bayesian model updating, emerges as a natural solu-
tion to address these issues. Bayesian model updating, in particular, provides a set of general and robust
strategies for parameter estimation when dealing with physics-based models. Nonetheless, the complexity of
evaluating posterior probability density functions usually calls into play computationally demanding Markov
Chain Monte Carlo (MCMC) methods [47, 48, 49]. These methods require simulating device responses across
different parameter sets through several (thousands of) iterations for each new device. To mitigate the com-
putational burden, the integration of data-driven surrogate models proves highly advantageous, substantially
reducing the cost per iteration. Alternative strategies to lower the computational cost include decreasing the
number of required iterations, as seen in transitional MCMC [50], accelerating the convergence of the chain,
e.g., through Hamiltonian MCMC [51] or the No-U-Turn sampler [52], or employing multi-level simulation
fidelities, like in the case of Multi-Level MCMC methods [53]. The usage of a probabilistic learning frame-
work for quantifying model-form uncertainties in MEMS has been developed in [54]. An approach based on
Bayesian analysis for sensor calibration has been proposed in [55]. Finally, the combination of deep learning
techniques with Bayesian model update has been deeply investigated in [56] or [57]. The employment of
neural networks, specifically Bayesian neural networks, for the purpose of uncertainty quantification has been
explored in [58].

Focusing on a real-life practical case in microsystems’ design, this work aims to characterize and identify
a series of geometrical uncertainties inherent in MEMS axial capacitive accelerometers. The investigation
begins with the design of a numerical test, which involves applying an active voltage to a portion of the ac-
celerometer’s electrodes and determining the device’s response based on its characteristics. A comprehensive
electro-mechanical model of the accelerometer is developed, and the finite element (FE) method is employed
to generate a robust dataset of simulations. These simulations serve as the basis for training a supervised
learning surrogate model, exploiting artificial neural networks (ANNs) [59], to learn the map between input
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features and the device electro-mechanical response to the stimulus. Subsequently, a Bayesian procedure
relying on MCMC methods is employed to infer the posterior distribution of the device’s input features from
noisy data. A second configuration is then subsequently implemented to construct another surrogate model,
this time focusing on predicting the device’s sensitivity, here intended as the device electrical response to a
1g acceleration, based on its features. This approach enables uncertainty quantification of the device’s sensi-
tivity, grounded in the posterior distribution of its features. The novelty of this work lies in the application
of the proposed methodology, meticulously adapted to MEMS accelerometers, and the specifically designed
numerical tests to assess device characteristics. Bayesian analysis for MEMS calibration is indeed still an
area to be greatly investigated [7]. The approach outlined here paves the way for integrating data-driven
deep learning models with Bayesian model updating in the physical characterization of devices. Employing
a data-driven mapping from parameters to responses, developed within a supervised learning framework,
facilitates a significant acceleration in the evolution of the MCMC algorithm. This enhancement is at-
tributed to the immediate assessment of likelihood for each newly generated sample. In contrast, utilizing
FE simulations based on the Euler-Bernoulli approximation [60] would necessitate minutes per sample, while
a comprehensive FE simulation could extend this requirement to hours for each instance. In addition the
accuracy characterizing the developed surrogate model, as assessed in the work, allows to recover the same
performance of the high fidelity models. Eventually, the two-stage procedure, based on the generation of
two distinct surrogate models, allows us to easily forward propagate uncertainties on additional quantities of
interests based on the geometrical parameters of the device. The proposed methodology is broadly applicable
across a wide range of MEMS devices. However, to simplify result analysis, our study is restricted to the
simpler case, yet of significant industrial relevance, of one-dimensional accelerometers.

The paper is organized as follows. Section 2 introduces one-dimensional capacitive accelerometers, high-
lighting their functioning and the role of fabrication inaccuracies. Section 3 details the methodology employed
in this study, starting from the formulation of the model and elaborating on the development of the surrogate
model and Bayesian model updating. Section 4 presents the results of our numerical experiments. After
introducing a full-order model (FOM) for the numerical simulation of a class of devices, we use it to assess
the devices’ behavior under varying unknown features, and to construct a comprehensive numerical dataset.
Then, we discuss the training of the surrogate models and their accuracy. The identification results, ob-
tained from noisy data using Markov Chain Monte Carlo (MCMC) methods, and the forward reconstruction
of the device’s sensitivity are finally illustrated. Section 5 provides a summary of the work, some concluding
remarks, and further perspectives on possible future developments.

2. Capacitive accelerometer: problem description

This section briefly outlines the operational principle of a MEMS capacitive accelerometer and examines
the impact of geometric uncertainties on its performance. Capacitive sensing is the predominant mechanism
in contemporary micro-accelerometers. The geometry of the x-axis MEMS accelerometer is presented in
Figure 1. The device comprises a movable mass, shown in orange with no pattern, which functions as a
rotor and is anchored to the substrate by two supports, depicted in blue with a chequered pattern. The
device’s body is connected to the anchors through springs composed of folded beams, allowing for motion
and compliance. The mass is maintained at a ground voltage. Parallel to the plates of the movable mass
are placed two sets of electrodes acting as a stator and fixed to the electrode layer of the MEMS. These are
denoted as the Left (in red and with a vertical stripes pattern) and Right (in gray and with a squared grid
pattern) electrode groups, with an arbitrary voltage Vl and Vr. The capacitances of these groups, denoted
as Cl and Cr respectively, vary over time in response to the movement of the accelerometer’s body.

With the sole purpose of elucidating the operational mechanism of this type of device, we introduce a
simplified model of a 1D capacitive x-accelerometer, as depicted in Figure 2. This model features a proof
mass. An electrode is attached to this proof mass, positioned equidistantly, at a distance d, from two
conductive plates. These plates, referred to as the left and right electrodes, have an identical area A and are
maintained at potentials Vl and Vr, respectively. If the gap d is much smaller than the dimensions of the
plates, their capacitance may be approximated with the analytical formula C = ϵ0ϵrA/d. Any displacement
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Figure 1: X-axis MEMS accelerometer: (a) Device geometry; (b) Color-coded and pattern-coded representation of device
regions; (c) Device top view.

u of the proof mass along the gap direction induces differential changes in capacitance. To measure the
capacitance change, in our numerical setup we will measure the charge on the electrodes and derive the
value of the capacitance given the prescribed voltage on the electrodes. This can be achieved experimentally
by introducing an additional readout circuit in the device. If Cl and Cr denote the capacitance of the left
and right capacitors, respectively, and u is assumed positive to the right, one has:

∆Cr = ϵrϵ0A

[
1

d− u
− 1

d

]
, ∆Cl = ϵrϵ0A

[
1

d+ u
− 1

d

]
. (1)

It is worth stressing that these formulas are based on the assumption of infinitely large plates, an approxima-
tion that is generally justified when the plate gap is significantly smaller than their area. For more accurate
analytical capacitance estimations, fringe field effects, as described for instance by Palmer’s formula [61],
must be considered. In general, however, to calculate the capacitance variation for general devices and ar-
bitrary configurations, numerical coupled electro-mechanical simulations are required, solving for both the
displacement and electric field, and this approach will be adopted and discussed in Section 3.2. The hardest
obstacles arising in the three dimensional case concern the coupled evaluation of the deformation of the
geometry and the computation electric field when the analytical approximation for the capacitance is not
accurate enough.

Once the capacitance variation is known, the sensitivity S of the accelerometer can be computed, defined
as the ratio between the capacitance change ∆C and the external acceleration a0x:

S :=
∆C

a0x
=

∆Cr −∆Cl

a0x

[
F

g

]
(2)

where formula (2) holds if the response of the device is quasi-static, i.e. if the frequency content of the
external stimulus is much lower than the first eigen-frequency of the accelerometer. Under these conditions,
in the operating regime of the device, the accelerometer behaves linearly. The capacitance change ∆C is
directly proportional to the external acceleration a0x, providing a constant value for S that is independent of
a0x [1]. The sensitivity of a capacitive accelerometer is significantly affected by the material, structural, and
geometric features of the MEMS design. Variations introduced during the fabrication process can alter the
structural configuration of the accelerometer. These variations can influence both the electrode capacitance
and the device’s elastic stiffness, thereby affecting the accelerometer’s overall sensitivity.

The final objective of our research is the development of a cost-effective testing method to be employed
during the production phase of MEMS accelerometers for sensitivity calibration. Typically, sensitivity is
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Figure 2: Parallel-plate sensing model.

determined by conducting mechanical tests, where the devices are subjected to external accelerations and
their displacements are recorded. However, these tests are labor-intensive and require to move accelerometers
to specialized equipment. In contrast, tests based on electrical activation can be more conveniently carried
out due to easier access to electrode potentials. While mechanical testing directly yields sensitivity values,
electrical activation tests can be used to assess first fabrication uncertainties which, in a second stage, can
then be used to deduce the accelerometer’s sensitivity. The methodology specifically developed for addressing
this issue is elaborated in the subsequent section.

2.1. The role of fabrication uncertainties

In our study, we focus our attention on three potential sources of fabrication uncertainty in the accelerom-
eter, as illustrated in Figure 3. The first aspect deals with the mechanical offset U of the device (see Fig.
3-a). This offset can arise from process tolerances, such as uneven gaps between the differential parallel
plates or mechanical stresses induced by wafer bending, which may occur due to temperature gradients dur-
ing processing or operational stresses from wafer bonding. Such factors can cause the accelerometer’s proof
mass to deviate from its nominal centered position, moving it closer to one set of external electrodes. This
displacement can lead to a non-zero output (∆C ̸= 0) even in the absence of external accelerations. In our
analysis, we disregard residual stresses within the accelerometer, concentrating solely on geometrical offsets.

As a second possible fabrication defect, we consider the over-etching of the device (see Fig. 3-b). This
is defined as a deviation in the in-plane geometry of the movable structure, stemming from variations in
temperature and etchant concentration, as outlined in [62]. Such fluctuations result in the device’s actual
geometry differing from its intended design, typically yielding a final structure marginally smaller or larger
than its nominal dimensions in all directions. For the sake of simplicity, we assume a uniform overetch O on
each side of the nominal geometry. This parameter not only affects the device’s capacitance by increasing the
gap between electrodes, but also alters its mechanical characteristics. In particular, it reduces the width of
the commonly incorporated folded beams, thereby adjusting the device’s stiffness and consequently changing
its eigen-frequencies.

Lastly, we consider as unknown the device’s thickness T , defined as the height of the mechanical layer of
the MEMS device and we include it as a further uncertain parameter (Fig. 3-c).

3. Methodology

In this section, we detail the methodology adopted for characterizing a MEMS accelerometer from a me-
chanical point of view. Our primary objective is to investigate the impact of uncertain geometric parameters

5



(a) (b) (c)

Figure 3: Fabrication uncertainties in the MEMS accelerometer: (a) Mechanical offset; (b) Over-etching; (c) Thickness vari-
ability.

on the device’s performance relying on the solution of a parameter estimation problem, enhanced by the use
of neural network (NN) based surrogate models.

To build a comprehensive dataset for training our surrogate models, we performed a series of finite element
analysis (FEA) simulations. These simulations were controlled by two independent input parameters: the
electric voltage of the electrodes (which can differ between the left and right electrodes) and the external
acceleration. We conducted two distinct sets of simulations. In the first set, we focused on the electro-
mechanical response of the device under varying electric voltage stimuli, assuming zero external acceleration.
Specifically, the electric voltage on the left electrodes was maintained at the same level as the proof mass,
while the voltage of the remaining electrodes varied over time. This variation induced movement in the
proof mass due to the electrostatic force, leading to a dynamic change in capacitance between the left and
right electrodes. This capacitance variation was recorded as the response of the device to the external
electric voltage stimulus. In the second set of simulations, we fixed the electric voltage of all electrodes at
an operational value of 0.8 V and applied an external acceleration a0x of 1g . We recorded the resulting
capacitance variation between the left and right electrodes to assess the sensitivity of the device.

Based on these data, we developed two separate surrogate models to approximate the functional relation-
ships between the device parameters and its electro-mechanical responses. Once trained, the first surrogate
model has been employed within a Bayesian model updating procedure to infer the unknown input param-
eters from observed device responses in the case of active voltage stimulus. Compared to a least-square
estimation, a Bayesian framework allows to treat input parameters as random variables themselves, there-
fore providing their posterior probability distributions informed by the data, and not only a point estimate.
This is of key importance not only for the chance to derive any desired statistics from the posterior dis-
tribution (like, e.g., its mean, its covariance, the maximum a posteriori, to name a few examples) but also
– even more importantly – for the possibility to sample from the posterior distribution and propagate the
uncertainty from the (estimated) parameters to any output quantity of interest such as, e.g., the sensitivity
of the device, in the spirit of forward uncertainty quantification. This latter task requires to (i) sample from
the posterior distribution and (ii) exploit the second surrogate model – once trained – for the sake of output
evaluation. Overall, the very rapid evaluation capability of both surrogate models significantly reduces the
computational time required for each sample generation from the posterior distribution, and the subsequent
forward UQ analysis. This efficiency is crucial, considering the potentially high number of iterations needed
to accurately capture the posterior distribution’s characteristics, and the need to quantify uncertainty in
(possibly, several) output quantities of interest. A possible alternative is to assume a fixed shape for the
posterior distribution, which leads to a variational approach typically relying on a multivariate Gaussian
distribution. This generally simplifies the inverse problem and accelerates the resolution. However, thanks
to the efficiency provided by the surrogate model, we can rely on MCMC sampling at similar costs. This
method can characterize a posterior distribution of any shape, providing additional insights. A schematic
description of the methodology is shown in Fig. 4.

We observe that an alternative methodology might involve the direct formulation of a surrogate model
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connecting the device’s sensitivity to electro-mechanical response to the active voltage. However, due to the
presence of multiple and distinct combinations of geometric parameters that yield identical sensitivities but
different responses to voltage stimuli, a direct mapping from sensitivity to voltage response is impracticable.
Consequently, the construction of a singular-stage surrogate model, along with its associated identification
routine, is unviable. The two-stage approach we propose is therefore favoured not only for its operational
flexibility but also for its congruence with the simulation workflow.

3.1. Problem formulation
We start by presenting an overview and establish the formal notation for the modeling principles and

assumptions that constitute the high-fidelity model used throughout our work. Our focus is the electro-
mechanical problem associated to a MEMS device under external stimuli. We start by considering a device
occupying a spatial volume, denoted as Ω0 ⊂ R3, at a null electric potential, specifically V0 = 0 [V]. The
device’s motion is analyzed in a non-inertial reference frame attached to the MEMS system. The spatial
domain in the reference configuration, represented by the material coordinates X, undergoes deformation
characterized by the displacement field x = χ(X) = X+ u(X, t) during the time window t ∈ T = (0, tfinal).
This deformation results in an actual configuration denoted by Ω, see Figure 5, which shows a schematic
representation of the problem in a simplified geometry. The boundary of the reference configuration, ∂Ω0, is
subdivided into two components: the Dirichlet boundary ∂Ω0D and the Neumann boundary ∂Ω0N . Dirichlet
boundary conditions are characterized by the imposition of a null displacement, while Neumann conditions
are associated with the application of electric forces. Hereon, we denote by N and n the normal vector to
the device surface in the material and the current configuration, respectively. Electrostatic potentials are
applied to the external electrodes of the device, thus making it subject to an electric field. The device is
enclosed within an unbounded volume Ω∞, where Gauss’s law is prescribed, and a zero electric flux condition
is assumed on its surface S∞. The governing equations of the system are expressed as follows:

ρ0ü (X, t;µ) +Cu̇ (X, t;µ)−∇X ·P (u (X, t;µ) ;µ) = −ρ0a0 in Ω0 × T , (3)

P (u (X, t;µ) ;µ) ·N(X) = felec(X) on ∂Ω0N × T , (4)

u (X, t) = 0 on ∂Ω0D × T , (5)

u (X, 0) = 0 in Ω0, (6)

u̇ (X, 0) = 0 in Ω0, (7)

div (gradϕ(x)) = 0 in Ω∞ \ Ω× T , (8)

ϕ(x) = Vk(t) on ∂Ωk, (9)

gradϕ(x) · n = 0 on S∞. (10)

Equation (3) represents the rate of change of momentum, where ρ0 represents the initial density in the
reference configuration. The vectors u, u̇, ü ∈ R3 denote displacement, velocity, and acceleration, respec-
tively. The term a0 is the acceleration of the non-inertial frame of reference, as observed from an external
inertial viewpoint. The terms C and P are the damping matrix (built according to the Rayleigh model)
and the Piola-Kirchoff stress tensor, respectively. We assume mass-proportional damping for the Rayleigh
model, such that C = αM. The coefficient α is determined from the quality factor Q of the device. The
damping factor ζ of the device is given by ζ = 2ωα, where ω is the natural frequency of the device. The
quality factor Q is related to the damping ratio by Q = ζ/

√
2πζ. For our analysis, we set Q = 0.55. The

parameter vector µ ∈ P ⊂ Rp encapsulates the set of input parameters of the problem, which include all the
geometrical fabrication uncertainties we want to focus on. These parameters belong to a bounded set rep-
resenting the parameter space, with p denoting the number of parameters. Equations (4) and (5) represent
the Neumann and Dirichlet boundary conditions, respectively.

The electrostatic pressure on the conductor surface, felec, is expressed in the material configuration,
originating from the following spatial formulation:

f̃elec(x) =
1

2ϵ0ϵr

(
ϵ0ϵr

∂ϕ(x)

∂n

)2

n, (11)
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(a) Development and training of supervised learning surrogate models.

(b) Bayesian model updating with experimental data.

Figure 4: The overall methodology of probabilistic identification framework for device geometric features and sensitivity using
surrogate two-stage surrogate modelling.
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Figure 5: Schematic representation of the electro-mechanical problem coordinate scheme and reference quantities of the PDE
system, in a simplified geometry.

where ϵ0 denotes the vacuum dielectric permittivity constant and ϵr is the relative permittivity coefficient of
air, and ϕ the electrostatic potential scalar field. The initial conditions for displacement and velocities are
encapsulated in Equations (6) and (7), assumed to be zero, indicating the device’s commencement from a
rest position. Equation (8) represents Gauss’s law for the external vacuum surrounding the device, whereas
Equations (9) and (10) pertain to the active potentials applied to the fixed electrodes of the device and the
condition of zero electric flux at a surface infinitely distant from the device, respectively. The variables Vk(t)
and a0 are treated as inputs to the model. Conversely, the variables u(X, t) and ϕ(x) are the quantities for
which we solve the equations.

In the context of our study, we adopt the hypothesis of small strains: hence displacements, along with
the shape and volume variations of the solid body, are negligible compared to the body’s dimensions. This
hypothesis is well described by the Saint Venant-Kirchoff constitutive model:

S(X, t) = A(X) : E(X, t) for (X, t) in Ω0 × T (12)

where S is the second Piola-Kirchoff sress, E is the Green-Lagrange strain tensor, which is expressed as
E = 1/2

(
∇Xu(X, t) +∇T

Xu(X, t) +∇T
Xu(X, t) · ∇Xu(X, t)

)
and A is the fourth-order elasticity tensor,

which, in the context of isotropic materials, is determined by specifying the values for the Young’s modulus
E and Poisson’s ratio ν. The components of the tensor A, denoted as Aijkl, are given by:

Aijkl = λδijδkl + µ(δikδjl + δilδjk),

where λ and µ are the Lamé parameters related to E and ν by:

λ =
Eν

(1 + ν)(1− 2ν)
µ =

E

2(1 + ν)
.

Here, δij represents the Kronecker delta, defined as δij = 1 if i = j and 0 if i ̸= j. Consequently, the first
Piola-Kirchoff stress tensor is P = (I+∇Xu(X, t)) · S(X, t).

The problem described so far can be discretized (in both space and time) to obtain a high fidelity solver
relying, e.g., on the FE method. It is noteworthy that our formulation utilizes material coordinates to
describe mechanical equilibrium and spatial coordinates for electrostatic equilibrium, thus adding a further
layer of complexity to the development of intrusive reduced order models. Despite in principle possible, the
use of projection-based reduced order models (ROMs) exploiting, e.g., the proper orthogonal decomposition
for the construction of a low-dimensional subspace and a (Petrov-)Galerkin projection for the generation of
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the reduced-order problem, becomes rather involved in the case of coupled problems, due to the intrusive
character of the method, the need to account for every variable of the problem in the ROM, and the usually
complex parameter dependencies [24]. Recent strategies relying on projection-based ROMs in computational
mechanics can be found, e.g., in [30, 63, 20, 64, 65, 29, 28]. For the aforementioned reasons, and given the
specific need of approximating only input-output relationship in the calibration context at hand, we rather
opt for data-driven surrogate models to approximate the output quantities of interest in this study. Indeed,
in the current case, the output quantities of interest—specifically, the time-varying capacitance variation of
the device and its sensitivity—exhibit a smooth dependency on the input parameters. This characteristic
simplifies the task of approximating this relationship. Nevertheless, the availability of a set of snapshots
from the high-fidelity solver, and the relatively fast training process of the surrogate models at hand, shall
make the construction of further models to approximate different output quantities of interest still depending
on the electro-mechanical behavior of the MEMS at hand quite straightforward.

3.2. The development of surrogate models

We rely therefore on the FE method as high-fidelity numerical solver to generate snapshots data, forecast-
ing the response of our device under various external stimuli. To this aim, we design a numerical experiment
that involves dynamically varying the active potential Vk(t), following a predetermined voltage profile on
one set of the device’s electrodes, while the external acceleration a0x is assumed in this case to be zero.
The resulting electrostatic forces prompt the accelerometer to move towards the activated electrodes even
in absence of external accelerations, causing a time-varying capacitance change ∆C. This output response
is influenced by the device’s uncertain parameters µ (offset, overetch, thickness). We aim to learn a map
(µ, t) 7→ ∆C, in order to assess this relationship efficiently, for several combinations of our input parameters.
To this aim, we employ artificial neural networks trained using the numerical data derived from our high-
fidelity simulations. Once trained, this surrogate model will then be exploited inside a Bayesian sampler for
a more rapid – yet accurate – evaluation of the input-output map for any new input parameters’ value.

Simultaneously, we conduct a numerical simulation to assess the accelerometer’s sensitivity, characterized
by its unknown parameters. This is done under a constant external acceleration a0 and uniform voltage across
all electrode sets. Through this approach, we construct a new input-output relationship (µ) 7→ S, for which
a second surrogate model is developed. The primary application of this second surrogate is to facilitate
forward uncertainty quantification of the device’s sensitivity, utilizing the posterior distribution obtained
from Bayesian sampling.

3.2.1. Artificial neural networks

In this study, we focus on a NN architecture tailored for scalar map regression [59]. This architecture
consists of L hidden layers, each containing Nl neurons, where the variable l specifies the layer number within
the range 1 ≤ l ≤ L. The network employs a nonlinear activation function ψl for each layer. The input
vector xin ∈ Rdin is processed through these layers to produce a scalar output xout ∈ R, prescribing NL = 1.
The inter-layer connectivity is defined by the weights W l

ij , where j and i represent the neuron indices in the

(l−1)-th and l-th layers, respectively. Bias parameters are denoted as bli for the i-th neuron in the l-th layer,
with indices satisfying 1 ≤ j ≤ Nl−1 and 1 ≤ i ≤ Nl. The neural network’s functional mapping from xin to
xout is established through iterative linear transformations and nonlinear activation across each layer. The
output of each neuron in layer l is a combination of the weighted sum of outputs from the previous layer
(l− 1) and the bias, subsequently passed through the nonlinear activation function ψl. Mathematically, this
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process is represented as follows:

x0i (x
in) = xini 1 ≤ i ≤ din (13)

xli(x
in) = ψl

bli + Nnl−1∑
j=1

W l
ijx

l−1
j (xin)

 1 ≤ i ≤ Nnl
, 1 ≤ l < L (14)

xout = bL +

NL−1∑
j=1

WL
j x

L−1
j (xin). (15)

For the problems at hand, we aim to approximate a multivariate scalar function, denoted by xout = f(xin),
using a neural network-based surrogate model, fNN (·;W,b) : Rdin → Rdout . This model is trained on a set
of input-output pairs {(x(k), y(k))}Ndata

k=1 , where W and b encapsulate all the network’s weights and biases,
respectively. The surrogate model is trained by minimizing the Mean Squared Error (MSE) loss function,
augmented with L2 regularization weighted by a regularization coefficient λ. The final loss function L(W,b)
to be minimized is defined as:

L(W,b) =
1

Ndata

Ndata∑
k=1

(
fNN (x(k);W,b)− y(k)

)2

+ λ
∑
i,j

W 2
ij .

The parameter Ndata represents the total number of pairs, derived from FE simulations. This number
coincides with the product of the total simulations count Nsim and the number of time steps per simulation

Nt for the electric response surrogate map (defined as f
(I)
NN ). Conversely, it corresponds to simply Nsim for

the sensitivity surrogate map (defined as f
(II)
NN ).

3.3. Parameter identification and uncertainty quantification

We now introduce and formalize the application of a Bayesian model updating strategy, specifically
tailored for estimating the sensitivity of MEMS accelerometers and providing uncertainty quantification. At
the end of the production line of a device accelerometer, electrical inputs can be easily induced. By monitoring
the electro-mechanical response of the device under electrical stimuli, we can infer the sensitivity of the device
using the following approach, based on the two surrogate models previously developed. Initially, we employ
a Markov Chain Monte Carlo (MCMC) analysis to derive the posterior distribution of the device parameters.
This procedure can characterize the fabrication inaccuracies, starting from an experimental signal acquired
in the factory line. Our analysis is based on numerical data that have been artificially corrupted with
external noise to mimic the experimental data, acknowledging the inherent noise in the observed responses.
The first surrogate model is used to evaluate the likelihood at each MCMC step. Subsequently, repeated
queries to the second surrogate model are performed by drawing samples from the posterior distribution of
the parameters, in order to recover the predictive posterior distribution of the device’s sensitivity, based on
its electro-mechanical response. This two-stage approach—first focusing on parameter estimation, and then
on uncertainty propagation—enables a comprehensive uncertainty quantification of the MEMS device.

3.3.1. Bayesian inference

In our study, we adopt a Bayesian inference approach to infer the posterior distribution of device pa-
rameters. This process relies on the choice of a prior distribution on the input parameters, a set of noisy,
observational data (of the capacitance change) and a likelihood function that assimilates those data points.
The posterior distribution π (µ | ∆C) of the input parameters µ, given the data ∆C, is obtained through
Bayes’ theorem as

π (µ | ∆C) =
π (∆C | µ)π (µ)

π (∆C)
, (16)

where ∆C is the experimental data vector collecting the recorded measurements on the capacitance change
for a tested device charaterized by unknown true parameters µtrue, that in our case it coincides with the

11



vector ∆C(µtrue) := {∆C(µtrue; t)}t=t1,...,tNt
. The value π(µ) represents the prior distribution, π(∆C | µ)

the likelihood function, while π(∆C) is the marginal distribution, acting as a normalization factor.
Regarding the prior, we assume a uniform distribution on the three parameters, within a suitable bound.

Based on the assumptions that measurement errors are present, and that they are independent and identically
normally distributed with zero mean and fixed variance σ2 accounting for noise in measurement acquisitions,
we can approximate the relationship between input parameters and measurements as follows,

∆C(µ; t) = f
(I)
NN (µ; t) + ε

where ε ∼ N(0, σ2) and f
(I)
NN (µ; t) is the response provided by the first surrogate model at time t given µ.

In this case, the likelihood function takes the following form [66]:

π(∆C | µ) :=
(

1

2πσ2

)Nt
2

exp

[
−SSq

2σ2

]
, (17)

where SSq is the sum of the squares error, given by

SSq :=

Nt∑
i=1

[
∆C(µtrue; ti)− f

(I)
NN (µ; ti)

]2
, (18)

and ∆C(µtrue; ti) denotes the measured data at time step ti.
To compute the posterior distribution π(µ | ∆C) without directly determining π(∆C), we rely on a

Monte Carlo Markov Chain method, specifically the Metropolis-Hastings algorithm [67]. This algorithm
sequentially generates a sample series to approximate the desired distribution, with each new sample based
on the previous one. At each iteration i, the algorithm proposes a candidate µ′, based on the current sample
µi. This candidate is either accepted—forming the basis for the next iteration—or rejected, in which case
µi is retained. The acceptance probability is determined by the ratio:

α =
π (∆C | µ′)π (µ′)

π (∆C | µi)π (µi)
, (19)

comparing the proposed and current samples in relation to the desired distribution.
The posterior samples can then be used to estimate the input with the maximum posterior density and to

estimate expectations of functions of interest with respect to the posterior distribution. For instance, in our
case we are interested in the expected value of S over the posterior distribution, which can be approximated
as:

E[S] =
∫
f
(II)
NN (µ)π (µ | ∆C) dµ. (20)

where f
(II)
NN is the map from parameters to device sensitivity given by the second surrogate model.

4. Results and discussion

In this section, we detail the results and validation of our methodology on an x-axis capacitive accelerom-
eter. The investigation is structured as follows: initially, we describe the full-order model (FOM) obtained
through the FE method. Next, we detail the development and accuracy assessment of the introduced sur-
rogate models. Lastly, we present our findings from the parameter identification process and uncertainty
quantification concerning the device’s sensitivity.
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4.1. Problem description and FOM results

Two distinct simulation configurations are employed to characterize the device’s response to an active
voltage signal and to determine its sensitivity. The first configuration represents an electro-mechanical test,
which could be used at the end of the device fabrication process for product characterization. In this setup,
an active voltage is applied to the right electrodes, denoted as Cr, while the left electrodes and the device
body are maintained at ground potential. This active voltage induces an electrostatic force, causing the
device to move towards the active electrodes, and consequently altering the values of both Cl and Cr. The
active voltage profile is designed in the form of two complete sine wave periods, varying from 0 V to 1.8 V.
The mathematical representation of this profile is as follows:

Vr = 0.9× (1− cos (2πft)) [V] for 0 ≤ t ≤ 2T [s], (21)

Vr = 0 [V] for t > 2T [s], (22)

Vl = 0 [V] for t ≥ 0 [s], (23)

where f is the impulse frequency set to 2500 Hz (close to resonant frequency) and T = 1/f = 0.4 ms.
This specific profile has been chosen as a good trade-off between simplicity, as each period of the sine wave
necessitates simulation time, and generated information. The choice of a two-periodic input is instrumental in
enhancing the identifiability of the device’s frequency response, which is highly affected by the device overetch.
Further periods would result in additional information, however augmenting the cost of each simulation and
the complexity of the surrogate model. As a final output of the simulation, we retain the capacitance
difference in time between right and left electrodes, i.e. ∆C(t) := ∆Cr(t) − ∆Cl(t), for t ranging from 0
to 1.5ms = 3.75T , therefore leaving time to the device to come back to the rest position after the periodic
impulse. A second configuration is designed to mimic operating conditions, where both electrode groups are
set at 0.69 V and an external axial acceleration of a0 = 1g is applied to the MEMS accelerometer. This setup
is aimed at determining the device’s sensitivity, which is defined as S := (∆Cfinal −∆C0)/1g [F/g], where
∆C0 stands for the capacitance difference before the acceleration is applied, which has been introduced with
respect to (2) to account for initial asymmetries due to offset, and ∆Cfinal at the equilibrium position when
1g acceleration is present.

Both simulations have been carried out using Coventor MEMS+TM [68]. This software employs Euler-
Bernoulli elements to model the beams and conformal mappings for describing electrostatic forces, using
eight integration points per electrode. For the first configuration, we use the forward Euler scheme damping
the solution every 0.01ms, for a total of Nt := 150 time steps. It is important to note that the predicted
displacements in these simulations are minimal relative to the size of the elements. This allows us to
neglect geometric non-linearities, as the nonlinear effects in this scenario are predominantly induced by
electro-mechanical interactions. The use of the classical beam theory in Coventor MEMS+ accelerates the
simulations by up to 100 times compared to a full FE simulation. Specifically, the speed-up is obtained
since the components of the device are modeled using pre-assembled blocks characterized by predefined
governing equations: the proof mass is treated as a rigid body, while the folded beams are represented
using Euler-Bernoulli beam theory. This approach drastically reduces the number of degrees of freedom
compared to traditional Finite Element simulations, resulting in a total number of dofs in the order of the
number of distinct components of the device. Furthermore, to handle the electric field calculations efficiently,
conformal mapping techniques are employed. Initially, the electrode coupling is resolved in a simple reference
configuration, and then remapped for each new geometric arrangement. This approximation is reasonable in
our case since the displacement is very small and the electrodes have a parallel configuration. This method
simplifies the solution of the electric field problem, which is typically computationally intensive in Finite
Element simulations due to the required high refinement. This acceleration is particularly advantageous in
our scenarios, where the device’s behavior needs to be tested across several geometric parameters to generate
an extensive training dataset. However, the simulation times are still significant, limiting the feasibility of
using this software for repeated iterations, such as during the calibration stage with a MCMC sampler, thus
highlighting once more the need of employing a surrogate model.
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(a) (b)

Figure 6: Numerical results obtained using Coventor MEMS+ for the first simulation configuration: (a) Fixed thickness
T = 30.0µm; (b) Fixed offset U = 0.0µm.

4.1.1. Coventor results

The results illustrating the time-dependent variation of the capacitance (∆C) for a range of thickness
(T ), offset (U), and overetch (O) values, are reported in Figure 6. The plot shows the influence of the offset
parameter mainly translating the steady state value of ∆C, as well as the impact of the overetch on the
capacitance response amplitude to the impulse and frequency. Conversely, the thickness parameter exhibits
a relatively minor effect on the output within the investigated range. This may lead to challenges in its
identification, particularly in scenarios with high noise levels. Snapshots of the solution for the displacement
and voltage field for the second configuration of the simulation at equilibrium, considering a device with
0.5µm overetch, −0.1µm offset and 30µm thickness, are plotted in Figure 7.

4.2. Surrogate model results

In this section, we present the numerical results obtained from the surrogate models applied to two
simulation configurations. For these simulations, fully connected neural networks (FCNN) are employed to
build our surrogate models. The training dataset is made by 800 selected triples in the parameter space

[Uavg − σU , Uavg + σU ]× [Oavg − σO, Oavg + σO]× [Tavg − σT , Tavg + σT ],

accounting for variations in three parameters: mechanical offset U , unilateral overetch O, and thickness
T . Here we choose Uavg = 0.0µm, Oavg = 0.0µm, Tavg = 30.0µm. The beam width that constitutes the
springs, adjusted for the mean overetch value, measures 2.1µm. Sensitivity metrics are normalized against a
baseline sensitivity Savg, which corresponds to a device characterized by mean values of overetch, offset, and
thickness. This normalization is represented by the ratio S, defined as the sensitivity of the device relative
to Savg. Sampling points within these ranges are generated using the Latin hypercube sampling technique.
Due to confidentiality agreements with the company producing the accelerometer at hand, specific values
for these parameters cannot be disclosed.

Neural networks are trained using the Adam optimization algorithm, and a total number of epochs
equal to 100000 which was tuned by hand. The dataset was subdivided in a 80-20 training-validation split
to facilitate hyper-parameter tuning within the training-validation framework. Batch training is employed
using 40 mini-batches. The architectures of the neural networks and the L2 regularization coefficient λ
were calibrated using grid search optimization aimed at minimizing the validation loss, considering both the
mean and variance. Parameters for training were selected through fine hand tuning, as they demonstrated
a secondary influence on the overall model accuracy. Our implementation is based on the TensorFlow
Keras library for deep learning [69]. Detailed information regarding the final structure of the employed NN
architectures are reported in the following Tables 1 and 2.
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(a)

(b) (c)

Figure 7: Snapshots of the numerical solution obtained using Coventor MEMS+ for the second simulation configuration: (a)
Displacement magnitude; (b) Electric field; (c) Electric field, zoom close to the electrodes.

4.2.1. Configuration I: electro-mechanical response to an active voltage signal

In this configuration, the training dataset is made by Nsim = 800 simulation samples, generated us-
ing Coventor MEMS+. The dataset is visualized in Figure 8a. Each sample captures the time-dependent
capacitance variation ∆C, considering time as an additional input parameter for the neural network. Con-
sequently, the network is meant to provide a mapping from the geometric parameters µ := {µU , µO, µT },
consisting of the values of offset, overetch and thickness, respectively, and the discrete time instant tk, to
the corresponding value of the capacitance variation ∆C:

f
(I)
NN : (µU , µO, µT ; tk) 7→ ∆Ci(tk) for k = 1, . . . , Nt.

The training errors for both the training and validation datasets are depicted in Figure 8b, highlighting the
absence of overfitting. Predictions from the surrogate model for two sets of input parameters outside the
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(a) (b)

Figure 8: Training details of the first surrogate model: (a) Simulation samples, divided into training and validation dataset, used
during the training process; (b) Loss function evolution during the training process considering the training and the validation
dataset.

training/validation dataset are illustrated in Figure 9, demonstrating a close match with the testing data.
Using an additional linearly spaced grid of samples for testing, we obtain a Pearson correlation coefficient
of 99.92%. A high number of epochs and accurate fine tuning is needed in particular when very low noise
signals will be the starting point of the parameter identification routine, i.e. the noise is the same order of
the error of the surrogate model.

The performance of the NN models has also been compared against two different supervised learning
strategies: Gaussian Process Regression (GPR) [70] and Long Short-Term Memory networks (LSTM) [71].
The former retains the same network input-output map and generally shows more resistance to overfitting,
albeit at a higher computational cost due to the matrix operations involved at prediction. The latter instead
leverages time-series data during predictions, implemented by integrating an LSTM cell layer within the
network and inputting the complete sequence of sample time values. Performance comparisons among the
three models revealed that Gaussian Process Regression (GPR) encounters challenges due to the curse of
dimensionality. Achieving high accuracy requires a large number of data points, which we addressed using
sparse GP regression, still leading to significant computational costs that are 50 times higher compared to
NN architectures. For the problem at hand, this computational overhead makes GPR less feasible. LSTM
networks and FCNN exhibit minimal performance differences, with FCNN proving advantageous due to its
faster evaluation times, being approximately 10 times quicker than LSTM. Given the simple nature of the
output profile, a shallow NN effectively processes the task by treating time as a direct input parameter,
resulting in slightly quicker evaluation times compared to LSTM.

4.2.2. Configuration II: electro-mechanical response for an external 1g acceleration

In this configuration, we train a surrogate model using the same samples as in the previous setup, but
with the objective of inferring the sensitivity of the device. We recall that sensitivities are determined
by measuring the capacitance variation between the left and right electrodes under a constant external
acceleration of 1g for the various combinations of device parameters. This value remains constant within the
operating regime of the device, as the capacitance variation exhibits a linear relationship with the external
acceleration. Therefore, once characterized, it is used in the future to infer the external acceleration starting
from the recorded capacitance variation. We highlight that the mapping from parameters to sensitivity,
showed in Fig. 10a, is not bijective, unlike the case in the parameter-response map to active electric voltage.
This fact justifies our adoption of a two-stage approach for uncertainty quantification. Accordingly, we
design a second surrogate model to represent the mapping

f
(II)
NN : (µU , µO, µT ) 7→ S.
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Figure 9: Comparison between testing data and surrogate model predictions for two input parameter combination unseen during
training process.

The training dataset is split in the same 80-20 ratio as before. Post-training predictions, shown in Figure
10b, indicate an almost perfect alignment between the surrogate model’s predictions and the actual data.
The architecture of this neural network is detailed in Table 2.

4.3. Bayesian analysis

The results obtained with our proposed methodology and the considered surrogate models are now
examined within the context of an MCMC-based model updating framework. This framework is dedicated
to the calibration of a one-dimensional accelerometer’s sensitivity.

The surrogate model f
(I)
NN is employed to approximate the posterior probability density function π(µ |

∆Cexp
1,...,Nobs

) of the geometric unknown parameters µ = {µU , µO, µT }. The posterior probability is condi-

tioned on the experimental data ∆Cexp
1,...,Nobs

, where Nobs = Nt, representing a time series of the device’s
response to an electrical signal. For experimental observations, we use testing data samples generated via
Coventor MEMS+ that were not included in the training process. These data samples are numerically
corrupted by an additive, independent Gaussian white noise, uncorrelated with time, with zero mean and
a standard deviation defined as σ := nlSavg

√
BW , assuming a constant noise density independent of the

frequency. Here, nl denotes the noise level (in g/
√
Hz), which is the noise density per frequency of the ac-

celerometer, BW represents the total bandwidth of the device (in Hz), and Savg denotes its baseline sensitivity
(in F/g). The artificial corruption introduced represents the noise that may appear due to the interference
of electronic components in the experimental setup for measurements. Conservatively, we assume BW to be
200 Hz, since the resonant frequency of the device is between 2000 and 3000 Hz, and Savg to be the baseline
sensitivity, in accordance with the device features. The same value of the standard deviation is used inside
the likelihood, following the formula in equation (17).

Layer Nr. of neurons Activation Function
1 4 tanh
2 64 tanh
3 64 tanh
4 64 tanh
5 64 tanh
6 64 tanh
7 1 linear

Table 1: Features of dense layers in the FCNN f
(I)
NN . The

total number of parameters is 20800, regularization coef-
ficient is λ = 10−12.

Layer Nr. of neurons Activation Function
1 3 tanh
2 32 tanh
3 32 tanh
4 32 tanh
5 1 linear

Table 2: Features of dense layers in the FCNN f
(II)
NN .

The total number of parameters is 2176, regularization
coefficient is λ = 10−9.
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(a) (b)

Figure 10: Details of the second surrogate model: (a) Scatter plot of sensitivity with respect to overetch and offset features,
highlighting training and validation points; (b) Comparison of the predictions of the model and the reference data at the end
of the training process.

Although an informative prior can offer valuable insights into the device parameters and statistical tools
can be employed to design it, a uniform prior over the whole parameter space, described in section 4.2, is
assumed for all the device parameters µ to prevent potential biases in the results.

For monitoring the convergence of the Markov Chain, the Gelman and Rubin’s convergence diagnostic
R̂ [72] is employed. This statistics is computed from n independent Markov Chains initialized at different
starting points µ0. The R̂ metric assesses the convergence of a multivariate chain by comparing the ratio
of the between-chain variance estimate of samples to the average within-chain variance. Convergence is
considered to be achieved when R̂ falls below a predetermined threshold, typically set at 1.01. Once the

MCMC samples are obtained, we leverage the second surrogate model f
(II)
NN to infer the distribution of the

sensitivity, by evaluating such surrogate model for each sample of the chain.
The Bayesian procedure adopted in this study is implemented using CUQIpy [73], a comprehensive and

open-source Python package designed specifically for computational UQ in inverse problems.

4.3.1. Results

In our Markov Chain Monte Carlo (MCMC) simulations, each chain starts from Nobs = Nt observations
of the time-dependent capacitance difference ∆C, associated with a specific set of input parameters µ =
{µU , µO, µT }. To ensure a comprehensive exploration of the parameter space, we initiate five independent
random chains from distinct starting points. We start performing a least-square optimization, i.e. we
minimize using gradient descent and starting from the 5 random points, the cost function SSq(µ), as defined
by equation (18). The obtained parameters µLS are approximations of the maximum likelihood estimator
and are used as the starting points of the Metropolis Hastings algorithm. The total number of samples in each
chain is adjusted to achieve a Gelman-Rubin statistic R̂ below 1.01, resulting in a collective sample count
of approximately 6,000, with a number of samples tuned by using one case as representative. To mitigate
the effects of initial transients, the first sixth of the samples from each chain are discarded as part of the
burn-in process. Furthermore, to reduce the auto-correlation inherent in the chains, we thin the samples by
retaining only every fifth sample post burn-in. The proposal distribution within the MCMC algorithm is
assumed to be a Gaussian random walk, with covariance matrix defined as the inverse of

(
J(µLS)TJ(µLS)

)
.

Here, µLS is the solution provided by the least square optimization, whereas J is the Jacobian of the least
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(a) (b)

(c) (d)

Figure 11: (a)-(c) Histogram representing densities of the posterior distribution for each input parameter obtained by the
MCMC; (d) Histogram of the final density of the posterior distribution of the sensitivity of the device.

squares cost function SSq evaluated at µLS. Additionally, the width of the random walk is dynamically
adjusted throughout the simulation to maintain an acceptance rate between the optimal thresholds of 0.2
and 0.4.

Ten MCMC analyses are carried out for ten devices characterized by different geometric parameters,
denoted by labels A to L, and the same noise level. The results for device A, derived under a noise factor
of nl = 1000µg/

√
Hz, which represents a realistic value for the noise density of the device, are depicted in

Figure 11. A remarkable observation from the top figures is the narrow confidence intervals for the overetch
and offset parameters under this noise factor, indicating precise parameter estimation. This is particularly
true for the offset, thanks to the high and distinctive effect of this parameter. In Figure 11d we report the
posterior distribution obtained for the sensitivity of the same device, computed by starting from the posterior
distribution of the parameters and evaluating the second surrogate model for each sample. We observe that
the reconstruction error for the sensitivity is very low, and we provide again a narrow range for the confidence
interval confirming the accuracy of the proposed method. We observe in addition that the distributions show
negligible skewness. Indeed, the mean and the mode of each distribution are very close for each parameter
and for the sensitivity, too. Results have been obtained for ten different devices, and the performances in
reconstruction of the sensitivity for the remaining nine devices are reported in the Appendix. The study
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(a) (b)

Figure 12: Posterior distribution details after launching the MCMC: (a) Final posterior distributions of the MCMC samples in
the O-U domain, as obtained for ten distinct devices; (b) Scatter plot of the MCMC samples and corresponding histograms off
the model parameter distributions for device A, white star represent the exact unknown parameters.

investigated the impact of various noise levels on the results. Smaller noise levels correspond to reduced errors
and narrower confidence intervals, whereas higher noise levels exhibit the opposite effect. It is noteworthy
that with very small noise levels, the posterior distribution may not encompass the true parameters due
to the noise approaching the surrogate model’s error, resulting in minimal discrepancy. Additionally, the
results demonstrate robust estimations for noise factors up to 1000.

Figure 12a presents the estimated geometric parameters, specifically overetch and offset, for the ten
devices. In this figure, red stars denote the actual parameter combinations, whereas the point clouds represent
the estimated posterior distributions for each case. We observe that for all devices under investigation,
the estimated parameters closely align with the corresponding MCMC outputs, exhibiting in addition low
variance in the distributions. Figure 12b provides an closer view of the joint distribution between overetch
and offset parameters for device A, illustrating that the multi-component distribution is also characterized
by a Gaussian shape, which is consistent with the assumed noise characteristics. The samples obtained for
the other nine devices can be found in the Appendix. We limit ourselves to show only the overetch and offset
parameters as they are the ones having a higher impact on the sensitivity.

Finally, the predictions obtained for the sensitivity of the ten devices are shown in Figure 13a, where each
box-plot is representative of the MCMC output for each device and is compared to the corresponding real
sensitivity of the device. We can clearly see that in every case the distribution is located very close to the
real sensitivity. Using the mean of the distributions as the predictor for the sensitivity of the device yields
very high accuracy, with a maximum error of 1.1% for case H, in line with industrial required accuracy. In
every case, the confidence interval is very narrow, except for device H, having a total width of 4%.

We can conclude that the employed strategy provides very good performance in terms of accuracy, both
in predicting the geometric parameters of the device and the quantity of interest, and proves to be a potential
strategy to be used in industry for similar scenarios. We remark that finding the optimal hyper-parameters
to optimize the performance of the MCMC is not trivial, with small changes highly affecting the results and
case-to-case differences. As a possible alternative, we propose to rely on Hamiltonian MCMC approaches, like
NUTS, to avoid this problem and accelerating the procedure, too. An additional advantage of incorporating
a neural-network surrogate model in MCMC sampling [74] is its inherent capability for derivative calculation.
This is achieved through backpropagation, enabling straightforward computation of gradients of the model

20



(a) (b)

Figure 13: Performance details for the device sensitivity estimation: (a) Posterior distribution of the sensitivities for ten of the
tested devices; (b) Comparison of the offline and online costs if using the high fidelity FEM model vs the data driven surrogate
model. The offline costs is composed of data generation and training and is related only to the surrogate model, while the
online cost is related to the MCMC procedure and the likelihood evaluation at each Metropolis-Hastings step.

with respect to input parameters. Such gradients are needed for Hamiltonian approaches. In contrast, using
Finite Element Method (FEM) simulations typically necessitates an adjoint solver for derivative calculations,
which is generally non-trivial and adds computational complexity. For the cases we considered, the MCMC
procedure takes about 6 seconds, with a great speed-up in the online phase thanks to the use of both the
surrogate models; these latter completely justify the cost of the offline data generation and training of the
surrogate models. The comparison of the offline and online costs when using an high-fidelity FEM model vs
when using the surrogate model based on a data-driven supervised learning strategy is presented in Fig. 13b.
It is evident that even though the cost of a single high-fidelity simulation is relatively low—approximately 2
seconds for the first configuration and 1 second for the second one—the speedup provided by the surrogate
model is essential during the identification phase. Since the cost of each neural network evaluation is on
the order of milliseconds, the majority of the total cost of identification is attributed to the offline phase,
which consists of data generation and training time. We emphasize that once this phase is completed,
identification can be achieved in just a few seconds for each new instance of a device to be calibrated. Yet,
different sampling strategies with respect to Metropolis Hastings should be investigated in order to reach
faster convergence of the chain and obtain a further decrease the cost – such as, e.g., variational inference
or Laplace approximations, just to mention two instances.

5. Conclusion

In this paper we have carried out an extensive computational characterization and uncertainty analysis of
MEMS capacitive accelerometers. We have merged supervised learning-based surrogate models, specifically
artificial neural networks, with conventional MCMC techniques to construct a thorough and robust char-
acterization framework. Two distinct surrogate models have been developed within this strategy: the first
model is designed to translate fabrication uncertainties into variations in capacitance over time, triggered
by an active voltage signal applied across the MEMS electrodes. This model leverages data from sensors at
the end of the manufacturing process, offering a cost-effective and efficient alternative to traditional device
stimulation methods involving external accelerations. The second model is instead meant to correlate the
manufacturing parameters directly with the device’s electro-mechanical sensitivity.

Ideally, upon the production of a new accelerometer, a new signal is captured, starting a Bayesian model
update process with the initial surrogate model to deduce the posterior distribution of the device’s unknown
fabrication parameters. Following the acquisition of these posterior distributions, each data point is fed
into the secondary surrogate model to derive the predictive posterior distribution concerning the device’s
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sensitivity. This process facilitates the extraction of sensitivity estimators from the distribution, which are
used for calibrating the accelerometer’s readings. Moreover, this methodology provides a quantification of
uncertainty for each parameter, thereby enhancing the interpretability of test outcomes.

The surrogate models developed in this study are trained using data obtained through high-fidelity
Finite Element simulations, thus ensuring accurate predictions of MEMS capacitive accelerometer perfor-
mance across various fabrication conditions. Leveraging a data-driven methodology allows us to reduce
computational requirements significantly, without compromising the precision of the results, and thus en-
abling detailed and efficient stochastic evaluations that are orders of magnitude faster than the ones obtained
with a FOM. These models have successfully estimated accelerometer sensitivities and yielded the charac-
terization of mechanical offsets, over-etching, and thickness discrepancies. Such detailed analyses may be
instrumental in estimating additional parameters of interest, enhancing the overall utility of the models in
practical applications.

Future studies could expand the range of parameters examined and explore a wider variety of MEMS
device configurations. An essential parameter to be included in future analyses is the device’s quality factor,
which significantly affects its behavior and may exhibit considerable variability due to different fabrication
pressures.

The main challenges arising in the presented investigation are the need for a large number of samples
to achieve MCMC convergence and the complexities involved in identifying optimal hyper-parameters for
effective chain mixing. Exploring Hamiltonian Monte Carlo techniques – as well as other alternative estima-
tion procedures – could offer substantial improvements in this regard. Moreover, enhancing the surrogate
models with more complex multi-physics components and incorporating multi-fidelity sampling strategies in
the MCMC framework represent promising avenues for further advancements.
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[11] José Pablo Quesada-Molina and Stefano Mariani. Uncertainty quantification at the microscale: A
data-driven multi-scale approach. Engineering Proceedings, 27(1), 2022. doi: 10.3390/ecsa-9-13351.

[12] Benjamin Peherstorfer, Boris Kramer, and Karen Willcox. Combining multiple surrogate models to
accelerate failure probability estimation with expensive high-fidelity models. Journal of Computational
Physics, 341:61–75, 2017. doi: https://doi.org/10.1016/j.jcp.2017.04.012.

[13] Nicole Aretz-Nellesen, Martin A. Grepl, and Karen Veroy. 3D-VAR for parameterized partial differential
equations: A certified reduced basis approach. Advances in Computational Mathematics, 45(5):2369–
2400, 2019. doi: 10.1007/s10444-019-09713-w.

[14] D. Allaire and K. Willcox. Surrogate Modeling for Uncertainty Assessment with Application to Aviation
Environmental System Models. AIAA Journal, 48(8):1791–1803, 2010. doi: 10.2514/1.J050247.

[15] Mengwu Guo and Jan S. Hesthaven. Reduced order modeling for nonlinear structural analysis using
Gaussian process regression. Computer Methods in Applied Mechanics and Engineering, 341:807–826,
2018. doi: 10.1016/j.cma.2018.07.017.

[16] Ludovica Cicci, Stefania Fresca, Mengwu Guo, Andrea Manzoni, and Paolo Zunino. Uncertainty quan-
tification for nonlinear solid mechanics using reduced order models with Gaussian process regression.
Computers & Mathematics with Applications, 149:1–23, 2023. doi: 10.1016/j.camwa.2023.08.016.

[17] Robert B Gramacy. Surrogates: Gaussian process modeling, design, and optimization for the applied
sciences. CRC press, 2020. doi: 10.1201/9780367815493.

[18] Baskar Ganapathysubramanian and Nicholas Zabaras. Modeling diffusion in random heterogeneous
media: Data-driven models, stochastic collocation and the variational multiscale method. Journal of
Computational Physics, 226(1):326–353, 2007. doi: 10.1016/j.jcp.2007.04.009.

[19] Patricia Astrid, Siep Weiland, Karen Willcox, and Ton Backx. Missing Point Estimation in Models
Described by Proper Orthogonal Decomposition. IEEE Transactions on Automatic Control, 53(10):
2237–2251, 2008. doi: 10.1109/TAC.2008.2006102.

23



[20] G. Kerschen, J.C. Golinval, A.F. Vakakis, and L.A. Bergman. The method of proper orthogonal de-
composition for dynamical characterization and order reduction of mechanical systems: An overview.
Nonlinear Dynamics, 41(1):147–169, 2005. doi: 10.1007/s11071-005-2803-2.

[21] A. Quarteroni, A. Manzoni, and F. Negri. Reduced Basis Methods for Partial Differential Equations:
An Introduction. Springer International Publishing, 2015. doi: 10.1007/978-3-319-15431-2.

[22] Attilio Frangi and Giorgio Gobat. Reduced order modelling of the non-linear stiffness in
MEMS resonators. International Journal of Non-Linear Mechanics, 116:211–218, 2019. doi:
10.1016/j.ijnonlinmec.2019.07.002.
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Appendix A. Comprehensive Posterior Distribution Results

The following figures present comprehensive posterior distribution results obtained from the Markov
Chain Monte Carlo (MCMC) analysis for devices B to L. These results complement the ones presented in
the main body of the paper, where only results for one device were included for simplicity. The additional
results demonstrate the robustness of the proposed approach under different testing conditions.

Figure A.14 shows the final results of the posterior distribution of the sensitivity obtained for 9 addi-
tional devices. The plots show consistent results with those outlined in the paper, characterized by narrow
confidence intervals and small errors. One exception is device ”H,” which displays a more irregular shape of
the distribution, though it still has small errors. This irregularity is likely due to high self-correlation of the
samples, which can be mitigated by increasing sample size and thinning out samples.

Figure A.15 shows the scatter plots of the posterior distributions of the overetch and offset parameters
for devices B to L. In this case, the cloud of points is concentrated very close to the true unknown parameters
and generally has a Gaussian and regular shape, often characterized by non-null correlation between the two
parameters. Device ”H” again shows a more irregular pattern, for which the same considerations as before
apply.
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Figure A.14: Histograms of the posterior distribution of sensitivity for devices B to L. Each subplot shows the distribution of
sensitivity values inferred from the MCMC analysis.
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Figure A.15: Scatter plots of the multi-component posterior distribution of overetch and offset for devices B to L. Each subplot
shows how overetch and offset values covary in the posterior distribution, with the white star indicating the real combination
observed.
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