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RECONSTRUCTING RELAXED CONFIGURATIONS IN ELASTIC BODIES:

MATHEMATICAL FORMULATION AND NUMERICAL METHODS FOR

CARDIAC MODELING

N. A. BARNAFI1, F. REGAZZONI2, AND D. RICCOBELLI2

Abstract. Modeling the behavior of biological tissues and organs often necessitates the knowledge

of their shape in the absence of external loads. However, when their geometry is acquired in-vivo

through imaging techniques, bodies are typically subject to mechanical deformation due to the presence
of external forces, and the load-free configuration needs to be reconstructed. This paper addresses

this crucial and frequently overlooked topic, known as the inverse elasticity problem (IEP), by delving
into both theoretical and numerical aspects, with a particular focus on cardiac mechanics. In this

work, we extend Shield’s seminal work to determine the structure of the IEP with arbitrary material

inhomogeneities and in the presence of both body and active forces. These aspects are fundamental
in computational cardiology, and we show that they may break the variational structure of the inverse

problem. In addition, we show that the inverse problem might be ill-posed, even in the presence of

constant Neumann boundary conditions and a polyconvex strain energy functional. We then present
the results of extensive numerical tests to validate our theoretical framework, and to characterize the

computational challenges associated with a direct numerical approximation of the IEP. Specifically, we

show that this framework outperforms existing approaches both in terms of robustness and optimality,
such as Sellier’s iterative procedure, even when the latter is improved with acceleration techniques. A

notable discovery is that multigrid preconditioners are, in contrast to standard elasticity, not efficient,

and domain decomposition methods provide a much more reliable alternative. Finally, we successfully
address the IEP for a full-heart geometry, demonstrating that the IEP formulation can compute the

stress-free configuration in real-life scenarios where Sellier’s algorithm proves inadequate.

1. Introduction

The objects we observe are rarely free from external mechanical stresses. For example, all bodies
around us are subject to gravity. While such a force usually induces small displacements in stiffer
materials, it can lead to large deformations in soft matter [42, 54, 41]. Furthermore, in biomedical
applications, the shape of organs and tissues observed through medical imaging techniques are affected
by the presence of mechanical forces that can significantly deform them. An important example in this
respect is the heart: the presence of the ribcage and surrounding organs, as well as the blood pressure in
the chambers, produce large deformations and it is not possible to observe its relaxed shape in-vivo. In
fact, directly observing the configuration of an elastic body in the absence of external forces is far from
being a trivial task.

In nonlinear elasticity, the task of reconstructing the relaxed configuration of a body subject to
mechanical loads, hereafter referred to as the inverse elasticity problem (IEP), is a long-standing and
largely overlooked problem, which is briefly cited in the Truesdell and Noll book as the free shape
problem [61]. The problem has received little attention from the continuum mechanics community: it
has been originally addressed by Shield [57] for homogeneous bodies in the absence of body forces, and
has been extended by Merodio and Ogden [39] to take into account body forces. Up to our knowledge,
Shield’s theory has never been extended to the inhomogeneous case, despite it being fundamental in
several application areas, including computational cardiology, since the fiber direction changes within
the myocardium. Shield’s theory has been exploited as a tool to identify analytical solutions in non-linear
elasticity [15, 44, 30, 31, 14], but the structure of the IEP as a boundary value problem remains largely
unexplored.

The IEP has received some more attention in the scientific computing community [38], where it is
known as inverse design problem [28] or prestress problem [25]. Its role in the specific case of cardiac
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modeling, and in biomechanics in general, is pivotal, as a reliable identification of the relaxed config-
uration is fundamental to correctly describe the stress distribution in soft tissues [37, 51]. A possible
solution approach, based on a fixed-point algorithm, was proposed by Sellier [56] and allows for solving
the inverse problem by leveraging only a solver for the direct problem. This approach is particularly
attractive, as it allows to re-use existing software. However, when applied to real-life problems such as
four-chamber cardiac geometries, it often presents convergence issues. To mitigate them, Sellier’s method
has been improved through adaptive continuation methods [51] and acceleration techniques [48, 37]. We
highlight that the Sellier’s method is not only relevant for cardiac simulations, and it has indeed also
been used for modeling the eyes [40], aorta [25], and brain [43].

In this work, we study the IEP, with a special focus on the context of cardiac modeling. Our scope is
twofold: on one hand, we study the mathematical structure of the IEP, extending Shield’s theory to the
case of inhomogeneous bodies subject to active forces. On the other hand, we thoroughly characterize this
problem numerically for increasing levels of complexity and compare a direct numerical approximation of
the latter with the Sellier method in terms of robustness with respect to external loads and its optimality.

The paper is organized as follows. In Section 2, we review some basic facts of non-linear elasticity
and we derive the IEP, together with some remarks on the mathematical structure and some elementary
examples. In Section 3, we derive the weak formulation for both the direct and the inverse elasticity
problems. In Section 4, we show with simple examples the mechanisms through which the IEP problem
can give rise to self-intersections. In Section 5 we describe all the algorithms that we consider for this
study, which are (a) the Sellier method, (b) the Aitken accelerated Sellier method, (c) the Anderson
accelerated Sellier method, and (d) the direct numerical approximation of the IEP. In Section 6 we
provide several numerical tests with the scope of (a) validating our theoretical claims, (b) characterizing
the computational burden of IEP, and (c) testing the methods in realistic cardiac contexts. We conclude
our work in Section 7.

2. Problem description

In this section we describe both the direct elasticity problem (DEP) and the inverse elasticity problem
(IEP). For the latter, we show how it can be re-cast in terms of the Eshelby tensor, which will provide
a way to guarantee the existence of solutions of the IEP under some special conditions.

2.1. The direct problem of non-linear elasticity. We assume that a body occupies a given region
Ω0 of the three dimensional Euclidean space E3. Let Ω ⊂ E3 be the current configuration of the body,
which is given by a deformation field χ such that Ω = χ(Ω0). Specifically, the current position of the
generic material point X ∈ Ω0 is denoted by x, i.e. x = χ(X). The displacement field is thus defined
as u(X) := χ(X)−X. We denote by Grad and grad the gradient operators with respect to X and x,
respectively. Similarly, we denote by Div and div the corresponding divergence operators.

We introduce the deformation gradient F := Gradχ = I + Gradu, together with the local volume
change described by J := detF. Let P be the Piola-Kirchhoff stress tensor, then under the assumption
of quasi-static deformations, the balance of the linear momentum reads

(1) DivP+B = 0, in Ω0,

where B is the density of body forces in the reference configuration. Such a balance equation can be
also cast in current configuration by means of the Cauchy stress tensor

(2) T = J−1PFT .

More specifically, we get

(3) divT+ b = 0,

where b is the density of body force in the current configuration. The material and the spatial densities
of force B and b are related by B = Jb. For illustrative purposes, in this section, we assume that
the boundary ∂Ω0 is composed of two distinct subsets, ΓD

0 and ΓN
0 , such that on ΓD

0 we prescribe the
displacement field uD, and on we assume that

(4) PN = t0 on ΓN
0 ,

where the traction load t0 is a (known) vector field over ΓN
0 . The Eulerian counterpart of (4) is

(5) Tn = t on ΓN,

where t = J−1∥FTn∥t0 and the normal vectors are related by n = ∥F−TN∥−1F−TN .
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In the context of hyperelasticity, we postulate the existence of a strain energy density Ψ = Ψ(X, F).
Thus, by means of the Clausius-Duhem inequality, we obtain

P = P(X, F) =
∂Ψ

∂F
, Pij =

∂Ψ

∂Fij
.

In the next section, we discuss the inverse counterpart of the problem described in this section, the so
called inverse elasticity problem (IEP).

2.2. The inverse elasticity problem. In solid mechanics, the DEP consists in reconstructing the
current configuration given the reference configuration by solving (1), complemented by appropriate
boundary conditions and by the constitutive assumptions on the material response. In what follows we
are interested in the IEP instead: the reconstruction of the relaxed configuration Ω0 given the current
configuration Ω and the external loads. Consider the inverse deformation χ̂ = χ−1, so that X = χ̂(x)
and the inverse displacement is defined similarly to u as û(x) = χ̂(x)−x. The fields u and û are related
through the deformation fields as

u = −û ◦ χ, û = −u ◦ χ̂.

Remark 1. In what follows, for the sake of conciseness, we will omit the composition with χ and χ̂, when
this will be clear from the context, and we will simply write, for instance, u = −û.

Remark 2. Unless specified differently, we restrict our attention to the situation in which the reference
configuration coincides with the relaxed configuration, namely if F is the identity I, we have

P(X, I) = 0.

We highlight that this might be restrictive, especially for living tissues, for which a relaxed configuration
might not exist. Indeed, a variety of processes, such as growth [55, 18, 27], active phenomena [34, 59, 4,
53], and plastic deformations [35, 36], might produce local distortions that are geometrically incompatible.
This leads to the generation of a stress state in the body even in the absence of external loads. The
correct identification of the relaxed state of elastic bodies subject to these phenomena require specific
treatments which go beyond the scope of the present article. Nonetheless, a remarkable case in which the
theory described in this Section can be directly applied is the active stress approach, a method usually
exploited to model contractility in muscle tissue. Such aspects are treated in Section 2.4.

We denote the inverse deformation gradient by F̂ = grad χ̂ = I+grad û. The two deformation gradient

tensors are related by F̂ = F−1.
From (3), the IEP can be cast as finding û such that

(6)


divT(x, F̂−1) + b = 0 in Ω,

T(x, F̂−1)n = t on ΓN,

û = −uD on ΓD.

It is well known that the direct problem has a variational structure, where the displacement field must
minimize the functional

(7) F [u] =
∫
Ω0

Ψ(X, F) dX −
∫
ΓN
0

t0 · udS −
∫
Ω0

B · u dX.

We shall assume that Ψ is polyconvex, namely there exists a convex function g : Lin+(R3)×Lin+(R3)×
R+ → R ∪ {+∞} such that

Ψ(F) = g(F, Cof F, J).

This condition, plus some growth conditions [9], guarantee that the DEP (1)-(4) admits a solution
represented by a minimum of the functional (7). In what follows, we will show that the situation is more
complex for the inverse problem (6).

2.2.1. Shield’s transformation and convexity properties. Under the assumption of material homogeneity,
the variational structure of the problem follows from Shield’s transformation [57]. Such a transformation
leads to an equivalent formulation of (3), where the Eshelby stress tensor Σ takes the place of the
Cauchy stress T. As noticed by Chadwick [16], such a correspondence suggests a duality between the
Eshelby and the Cauchy stress tensors. In this section, we expand Shield’s initial findings to encompass
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inhomogeneous materials, employing a methodology akin to that elucidated in [39]. A simple change of
variable shows that ∫

Ω0

Ψ(X, F) dX =

∫
Ω

J−1Ψ(χ−1(x), F) dx.

Thus, we introduce the dual energy density Ψ̂ = Ψ̂(x, F̂), defined as

(8) Ψ̂(x, F̂) = ĴΨ(χ̂(x), F̂−1).

Equation (8) is the Shield transformation of Ψ . We then introduce the spatial Eshelby stress Σ, defined
as

(9) Σ :=
∂Ψ̂

∂F̂
= Ĵ F̂−T

(
Ψ I− PF̂−T

)
= F̂−T

(
Ψ̂ I− T

)
.

Since

d

dxi
Ψ̂(x, F̂(x)) =

∂Ψ̂

∂xi
+

3∑
h,k=1

∂Ψ̂

∂F̂hk

∂F̂hk

∂xi
=
∂Ψ̂

∂xi
+

3∑
h,k=1

Σhk
∂F̂hk

∂xi
,

and

∂

∂xj

(
3∑

h=1

F̂hiΣhj

)
=

3∑
h=1

(
∂F̂hi

∂xj
Σhj + F̂hi

∂Σhj

∂xj

)
=

=

3∑
h=1

(
∂Ψ̂

∂F̂hj

∂F̂hi

∂xj
+ F̂hi

∂Σhj

∂xj

)
=

=

3∑
h=1

(
∂Ψ̂

∂F̂hj

∂F̂hj

∂xi
+ F̂hi

∂Σhj

∂xj

)
,

from (9) we can rewrite the momentum equation in terms of the Eshelby stress tensor:

(10)

divT = div(Ψ̂ I)− div(F̂TΣ) =

= grad Ψ̂ − div(F̂TΣ) =

=
∂Ψ̂

∂x
+ Σ : grad F̂− Σ : grad F̂− F̂T divΣ =

=
∂Ψ̂

∂x
− F̂T divΣ,

where ∂Ψ̂/∂x is the partial derivative of Ψ̂(x, F̂(x)) with respect to its first argument. Thus, the problem
(6) is equivalent to the following one expressed in terms of the Eshelby stress tensor

(11)


divΣ+ β = 0 in Ω,

Σn = σ on ΓN,

û = −uD on ΓD,

where, from (9) and (10), we have

(12) β = −F̂−T

(
b+

∂Ψ̂

∂x

)
, σ = F̂−T (Ψ̂n− t).

We remark that such a formulation holds for any constitutive assumptions and, up to our knowledge,
it has not been reported elsewhere. Previous derivations all assume that the body is homogeneous, i.e.

Ψ̂ does not depend on x. This is relevant for anisotropic materials, and more so in cardiac mechanics
since the direction of the fibers usually depends on x, rendering the term β in (11) not zero even in the
absence of body forces. We have summarized the main quantities involved in the direct and the inverse
formulations in Table 1.

In the particular case of homogeneous materials (∂Ψ̂/∂x = 0), problem (11) can be written as a
minimization problem assuming that β and σ are measurable functions depending only on space:

(13) β : Ω → R3, σ : Ω → R3.
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Quantity Direct Inverse (Cauchy) Inverse (Eshelby)

Energy Ψ(F) – Ψ̂(F̂) = ĴΨ(F̂−1)

Stress P(F) T(F̂−1) = ĴP(F̂−1)F̂−T Σ(F̂) = F̂−T
(
Ψ̂(F̂)I− T(F̂−1)

)
Volume load B b = ĴB β = −F̂−T

(
b+ ∂Ψ̂/∂x

)
Surface load t0 t = Ĵ∥FTn∥t0 σ = F̂−T (Ψ̂n− t)

Table 1. Energy, stress, and load terms in all three formulations: DEP (1), IEP in
terms of the Cauchy stress (6) and of the Eshelby stress (11). We omit the explicit
dependence on X and x.

Then, under these assumptions, it can be seen that (11) is equivalent to finding the stationary points of
the functional

(14) F̂ [û] =
∫
Ω

Ψ̂(F̂) dx−
∫
ΓN

σ(x) · û(x) dS −
∫
Ω

β(x) · û(x) dx.

Remarkably, Shield’s transformation (8) preserves polyconvexity or rank-1 convexity if Ψ is polyconvex
or rank-1 convex as well, see Proposition 17.6.2 in [58]. Ball’s theorem on the existence of energy
minimizers [9] can then be used to prove the existence of minimizers (14).

However, in practical applications, this is almost never the case. Indeed, the existence theorem can
be applied if β and σ are functions of x only, as assumed in (13), but, in most applications, β and σ

depend on F̂ as well, and (11) is not anymore equivalent to finding the stationary points of (14). This
aspect can create some issues as shown in the following two examples.

2.2.2. Elastic disk subject to an external pressure: non-existence of radially symmetric solutions. Con-
sider now the circular domain Ω = B(O, ro) ⊂ E2 representing the current configuration, where B(O, ro)
is the disk of center O and radius ro. Let (R, Θ) and (r, θ) be the reference and the spatial polar coor-
dinates of a generic point about the origin O. We assume that the sphere is subject to a pressure pext,
so that

(15) Ter = −pexter,
where (eR, eΘ) and (er, eθ) are the polar basis in the reference and in the current configuration, respec-
tively. We assume that the material behaves as a compressible Neo-Hookean material, given by a strain
energy density defined as

(16) Ψ(F) =
µ

2
(tr(FTF)− 2 log J − 2) +

λ

2
(log J)2,

where λ and µ are the (linear) Lame’s parameters. Under such assumptions, the Cauchy stress tensor
reads

(17) T =
1

J

(
µFFT + (λ log J − µ)I

)
.

We assume polar symmetry, so that r = r(R) and θ = Θ. The deformation gradient is given by

F = r′er ⊗ eR +
r

R
eθ ⊗ eΘ.

Due to the symmetries of the deformation field, the balance of linear momentum (3) reduces to the
following ordinary differential equation

(18)
dTrr
dr

+
Trr − Tθθ

r
= 0.

We observe that r = roR/Ro satisfies (18). Here, Ro ∈ R is the reference radius of the disk that can be
found by enforcing the boundary condition (15), obtaining

(19)
R2

o

r2o
λ log

(
r2o
R2

o

)
+

(
1− R2

o

r2o

)
µ = −pext,

whose solution can be expressed as

R2
o = (µ+ pext)

(
λW0

(
eµ/λ(µ+ pext)

λ

))−1

r2o,
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where W0 is the principal branch of the Lambert function (w = W0(z) is the solution of wew = z, with
z being a complex number), see Fig. 1. In the special case λ = 0, the solution of (19) is given by

R2
o =

µ+ pext
µ

.

10-1-2-3-4-5

0.5

1

1.5

Figure 1. Plot of Ro/ro as a function of pext/µ for λ/µ = 0, 1, . . . , 10. The arrow
denotes the direction in which λ/µ increases.

We observe that depending on the value of the applied pressure, the inverse problem may not have
solutions with radial symmetry. In particular, Ro = 0 is a solution for the inverse problem for

pext = −µ.
and for all the values of λ. This is a limit case where the reference configuration shrinks to a single point
for a finite value of the external pressure. Thus, the IEP might be ill-posed even if we apply constant
Neumann boundary conditions and if we choose a polyconvex strain energy density.

2.3. Injectivity of the inverse deformation. Usually, the deformation field is supposed to be bijective
to avoid self-intersections of the body. However, requiring that χ̂ be bijective might be too strict for
the free body problem. Indeed, if we take two S-shaped pieces, we can imagine to glue them together,
as shown in Fig. 2, and the relaxed state of the body requires a self-intersection. This situation is not
uncommon and, as shown in the following paragraphs, applies to the heart as well.

Figure 2. Left: representation of two symmetric S-shaped pieces in their relaxed con-
figuration. Right: relaxed state of the two pieces after they are glued together; the
relaxed state of the body exhibits a self-intersection.

Thus, the relaxed configuration of the body can not in general be achievable in reality due to a global
geometric incompatibility, i.e. χ̂ is not injective. The analysis proposed in this section is still valid since
χ is locally invertible due to the inverse function theorem (J = detGradχ > 0).
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Some issues may arise if we want to describe a further deformation of Ω to Ω with Ω = χ(Ω). In such a
case, the relaxed configuration Ω0 cannot be used as a reference configuration due to the self-intersection
of the body. A possible strategy to solve such a problem is to take Ω as a reference configuration. In
such a case, similarly to the multiplicative decomposition of the deformation gradient exploited to model
plasticity [35, 36], growth and remodelling [55, 20], we introduce

Fe = FF̂−1,

where F = gradχ and Fe is the elastic distortion from the relaxed state to the configuration Ω. Then,
the strain energy density per unit volume of Ω is given by

ψ(F) = (det F̂)Ψ(Fe).

This underlines the possibility to treat local and global geometric incompatibilities in a unique way. The

local incompatibilities manifest themselves as a non-compatible F̂, i.e. there does not exist a function

χ̂ such that F̂ = grad χ̂ [52], while a global geometric incompatibility is a non-injectivity of χ̂. The
inclusion of local geometric incompatibilities of the relaxed state in the IEP is left as a possible future
study.

2.4. Active stress. When modeling biological tissues, and the myocardium in particular, it is important
to take into account the active forces that are involved during muscle contraction. One of these approaches
is the so called active stress. Usually it is assumed that there exists a reference configuration Ω0 that
is stress free in the abscence of active forces [4, 53]. Let Ψpas(X, F), be the strain energy density of the
passive material, and we introduce the passive first Piola-Kirchhoff stress tensors, defined as

(20) Ppas(X, F) :=
∂Ψpas

∂F
.

We require Ppas to satisfy

Ppas(X, I) = 0 ∀X ∈ Ω0.

Let Pact(X, F; Ta) be a tensor-valued function representing the active stress generated by the muslce
fiber contractility. Here, Ta is a parameter describing the tension generated by the muscle, which is zero
in the passive case. Hence, we assume that Pact(X, F; 0) = 0. The active stress approach envisages
writing first Piola–Kirchhoff stress tensor as

(21) P = Ppas + Pact.

In conclusion, when considering active materials, the IEP shall be regarded as that of finding the configu-
ration assumed by the body in the absence of both passive and active stress, that is when Ppas = Pact = 0.

2.4.1. Active stress in cardiac mechanics problems. As it is standard in the cardiac modeling literature,
we consider an orthonormal triplet (ef , es, en) of fibers, sheets, sheet-normal directions [46, 12]. The
fiber architecture plays a role in determining both the passive and the active response of the tissue. A
common choice for the active stress tensor is

(22) Pact = Sf (∥Fef∥;Ta)
Fef ⊗ ef
∥Fef∥

+ Sn(∥Fen∥; Ta)
Fen ⊗ en
∥Fen∥

,

where Sf and Sn are scalar functions. We remark that, if Sf and Sn are integrable with respect to ∥Fef∥
and ∥Fen∥, respectively, and ψf and ψn are their primitives, we have [26, 50], 1

(23) Pact =
∂ψf

∂F
+
∂ψs

∂F
=
ψ′
f (∥Fef∥;Ta)
∥Fef∥

Fef ⊗ ef +
ψ′
n(∥Fen∥; Ta)
∥Fen∥

Fen ⊗ en,

where ′ denotes the differentiation with respect to the first argument. Thus, the total (passive and active)
stress tensor can be associated with the strain energy density:

(24) Ψ(X, F; Ta) = Ψpas(F) + Ψf (∥Fef∥;Ta) + Ψn(∥Fen∥; Ta).

In light of this observation, the procedure exposed in Section 2.2.1 can be applied to the energy ψ defined
in (24).

1As shown for skeletal muscles where a single family of fiber is present [26], such an approach is equivalent to model
the tissue as a mixture of passive and active elements, for details see [53].
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3. Numerical approximation

In this section, we provide the details to solve numerically equation (6). For this, we provide (i) the
weak formulation, (ii) a detailed description of the IEP formulation for cardiac modeling, and (iii) a
simple implementation of the IEP to show that an existing DEP solver can be turned into an IEP solver
with little modifications.

3.1. Weak formulation. The weak formulation of the DEP (1) can then be stated as finding u ∈ V uD
0

such that

(25)

∫
Ω0

P(X, F) : Gradv dX +

∫
ΓN
0

t0 · v dS =

∫
Ω0

B · v dX, ∀v ∈ V0,

where we have defined the trial and test function spaces:

V uD
0 = {v ∈ H1(Ω0;R3) s.t. v = uD on ΓD

0 },
V0 = {v ∈ H1(Ω0;R3) s.t. v = 0 on ΓD

0 },
and the weak formulation of the IEP can be stated as finding û ∈ V uD such that

(26)

∫
Ω

T(x, F̂−1) : gradv dx+

∫
ΓN

t · v ds =

∫
Ω

b · v dx, ∀v ∈ V,

where

V uD = {v ∈ H1(Ω;R3) s.t. v = −uD on ΓD},
V = {v ∈ H1(Ω;R3) s.t. v = 0 on ΓD},

and we recall that
T(x, F̂−1) = ĴP(χ̂(x), F̂−1)F̂−T .

Similarly, an equivalent weak formulation of (26) using the strong formulation (11) reads

(27)

∫
Ω

Σ(x, F̂) : gradv dx+

∫
ΓN

σ · vds =
∫
Ω

β · v dx, ∀v ∈ V,

where the Eshelby stress tensor Σ is defined in (9).

3.2. Cardiac inverse model. In this section, we derive the IEP in the setting of cardiac modeling.
Specifically, we account for the presence of an active stress and of cardiac fibers, and we consider boundary
conditions often used to account for the interactions of the heart with the blood and with the surrounding
organs.

3.2.1. The direct problem.
Geometry. Let Ω0 be the stress-free configuration of the passive myocardium, and Ω the deformed
configuration. We include in the domain also segments of the main vessels connecting the heart to
the circulatory system (aorta, pulmonary artery and main veins). Typically, geometries available from
medical imaging are acquired at diastasis, namely one of the last phases of diastole, right before the atrial
kick (the beginning of atrial systole). This phase of the heartbeat is the one in which the heart is most
stationary, thus facilitating the medical imaging acquisition process. Furthermore, being inertial forces
negligible, a quasi-static assumption is well motivated at this stage. At diastasis, the blood pressures in
the four chambers are relatively small, compared to the rest of the heartbeat, and active forces are also
small. These features facilitate the IEP resolution.
Constitutive assumptions. We use the active stress approach described in Section 2.4 to model my-
ocardium contractility. Specifically, we adopt the active stress tensor as in (22)-(23), where we choose [51]

(28) ψf (∥Fef∥) = Ta∥Fef∥, ψs(∥Fes∥) = αnTa∥Fes∥,
where Ta denotes the active tension, acting mainly in the direction of fibers ef . The fibers are not
perfectly aligned due to fiber dispersion. This is modeled through the introduction of the constant
parameter 0 < αn < 1 in (28). The Piola-Kirchhoff stress tensor thus reads [26, 51]

P =
∂Ψpas(X, F)

∂F
+ Ta

[
Fef ⊗ ef
∥Fef∥

+ αn
Fen ⊗ en
∥Fen∥

]
,

We remark that, while solving the IEP for cardiac models, the active stress term is often neglected.
However, it is important to notice that in any moment of the heartbeat (even at diastasis), a non-
negligible amount of active tension is present, known as diastolic tension [32, 49]. Hence, it is crucial to
account for the active stress during the stress-free configuration recovery procedure.
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As a constitutive choice for the passive contribution to the strain energy density (see (20)-(21)), we use
a function Ψpas(X, F), where the explicit dependence on X is necessary to account for the anisotropic
behaviour induced by the presence of muscle fibers. We use different expressions for Ψpas, which are
explicitly specified in what follows.
Boundary conditions. We split the boundary ∂Ω0 of the domain in different subsets, and apply boundary
conditions depending on the interacting tissues within each subset. The internal boundaries of the
myocardium are in contact with blood, which exerts a pressure on the myocardium. We considerNcav = 6
cavities (namely the four cardiac chambers, the aorta and the pulmonary artery), in which the blood
pressure can be reasonably considered constant. For each cavity i (with i = 1, . . . , Ncav), we denote its

boundary in the reference configuration by Γ endo,i
0 ⊂ ∂Ω0. We model the action of the blood on the

cavity surfaces as a constant hydrostatic pressure pi:

PN = −piJF−TN on Γ endo,i
0 .

The epicardium, that is the external surface of the heart, is instead in contact with the pericardium, a
tough fibroelastic sac containing the heart and the roots of the great vessels. We model the interaction
of the heart with the pericardium by applying (anisotropic) linear springs on the pericardial surface

Γ epi
0 [51, 45]:

(29) PN= −Kn(N ⊗N)u−Kt(I−N ⊗N)u on Γ epi
0 ,

where the positive coefficients Kn and Kt account for the elastic response of the pericardium and the
surrounding organs in the normal and tangent direction, respectively.

Finally, we apply homogeneous Dirichlet boundary conditions on the artificial boundaries originating
where arteries and veins are truncated, which we denote by ΓD

0 .
Weak formulation. In conclusion, the weak formulation of the DEP consists in finding u ∈ V0 = {v ∈
H1(Ω0;R3) s.t. v = 0 on ΓD

0 } such that∫
Ω0

P(F) : Gradv dx =−
Ncav∑
i=1

∫
Γ endo,i
0

piJF
−TN · v ds

−
∫
Γ epi
0

Ktu · v ds

−
∫
Γ epi
0

(Kn −Kt) (N · u) (N · v) ds

(30)

for all v ∈ V0.

3.2.2. The inverse problem. By proceeding as above, we derive the following IEP formulation for the
cardiac model: we look for û ∈ V = {v ∈ H1(Ω;R3) s.t. v = 0 on ΓD} such that∫

Ω

ĴP(F̂−1)F̂−T : gradv dx = −
Ncav∑
i=1

∫
Γ endo,i

pin · v ds

+

∫
Γ epi

KtĴ∥F̂−Tn∥û · v ds

+

∫
Γ epi

(Kn −Kt)
Ĵ

∥F̂−Tn∥

(
F̂−Tn · û

)(
F̂−Tn · v

)
ds

(31)

for all v ∈ V .

3.3. Remarks on implementation. In this section, we show that it is very simple to modify a solver
for problem (25) to obtain a solver for problem (26), at least when relying on an automatic differentia-
tion engine. To show this, we will provide an example using the Unified Form Language (UFL) [3], but
the concepts are still valid for other equivalent systems. We start by looking at how a simple formu-
lation of nonlinear elasticity could look like in Listing 1, which can be found among the demos at the
documentation of FEniCS [2].

To convert this formulation, we need to (i) push forward the objects in the integrals and (ii) recast
the kinematic quantities in terms of the inverse displacement. For this we have to observe that the
Piola-Kirchhoff tensor is still the derivative of Ψ with respect to F. This yields the formulation shown
in Listing 2, where it can be seen that the difference between both codes is limited.
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V = VectorFunctionSpace(mesh , ’CG’, 1)

u = Function(V)

v = TestFunction(V)

F = variable(grad(u) + Identity (3)) # Compute original one to diff

J = det(F)

Cbar = J**( -2/3) * F.T * F

E, nu = 1.0e4, 0.3

mu = Constant(E/(2*(1 + nu)))

lmbda = Constant(E*nu/((1 + nu)*(1 - 2*nu)))

psi = (mu / 2) * (tr(Cbar) - 3) + 0.5 * lmbda * (J-1) * ln(J)

P = diff(psi , F)

residual = inner(P, grad(v)) * dx - dot(Constant ((0,0,-1)), v)* dx

bcs = DirichletBC(V, Constant ((0,0,0)), "on_boundary")

solve(residual ==0, u, bcs=bcs)

Listing 1. UFL formulation of (25).

V = VectorFunctionSpace(mesh , ’CG’, 1)

u_hat = Function(V)

v = TestFunction(V)

F_hat = Identity (3) + grad(u_hat) # Inverse tensor for inverse problem

J_hat = det(F_hat)

F = variable(inv(F_hat)) # Compute original one to differentiate

J = det(F)

Cbar = J**( -2/3) * F.T * F

E, nu = 1.0e4, 0.3

mu = Constant(E/(2*(1 + nu)))

lmbda = Constant(E*nu/((1 + nu)*(1 - 2*nu)))

psi = (mu / 2) * (tr(Cbar) - 3) + 0.5 * lmbda * (J-1) * ln(J)

P = diff(psi , F)

residual = (J_hat * inner(P, grad(v) * inv(F_hat )) * dx

- J_hat * dot(Constant ((0,0,-1)), v)* dx)

bcs = DirichletBC(V, Constant ((0,0,0)), "on_boundary")

solve(residual ==0, u_hat , bcs=bcs)

Listing 2. UFL formulation of (26).

4. Self-intersection of the stress-free state

In this section, we discuss several aspects regarding the existence of a stress-free configuration. For
this, we consider two simple geometries that represent a transverse cut of an idealized left ventricle as
displayed in Figure 3. We refer to them as (a) the semi-circle and (b) the eclipse.

(a) (b)

Figure 3. (a) Semi-circle and (b) eclipse meshes used to study self-intersection mech-
anisms in the inverse displacement problem.
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As discussed in Section 2.3, a global geometric incompatibility can result into self-intersecting re-
laxed states. We show two mechanisms under which this phenomenon can be seen, namely inner self-
intersections and outer self-intersections. We show this in the presented geometries by considering the
inner surface as an endocardium where a given pressure is known, and on the epicardium we consider
the elastic response that arises from the interaction with the pericardium.

We first load the semi-circle geometry with an endocardial pressure of 400Pa, and we solve under
these conditions the inverse displacement problem (26). The solution is displayed in Figure 4, where the
thicker part of the geometry virtually does not deform, and indeed all deformation is obtained from the
thinner part of the geometry. This results in an endocardial interpenetration. We proceed analogously
with the eclipse, where we depict the solution in Figure 5. In contrast to the semi-circle case, here we
see that there is a self-intersection through the epicardium.

(a) 200Pa (b) 400Pa

Figure 4. Solution of the inverse displacement problem on the semi-circle geometry.
The stress-free configuration is computed for (a) 200Pa and (b) 400Pa.

These two examples of self-intersection represent a global geometric incompatibilities as detailed in
Section 2.3, but they are still the solution obtained through the inverse displacement problem (26). This
means that, unless a contact formulation is used, there is no guarantee that the stress-free configuration
will avoid self-penetrations. Furthermore, it is not trivial to formulate a contact inverse displacement
problem that is compatible with the forward problem.

5. Algorithms for solving the inverse problem

There are essentially two approaches for solving (26). The first one is to solve the weak formulation
associated with the inverse problem (26), e.g. by the Newton-Raphson method, and the second one is
to leverage only (25), known as the Sellier method. The target problem is computationally challenging
in both formulations, so we use a simple homotopy strategy to increase the loading terms with a fixed
step size, i.e. by ramping the loads. We will denote this operation with a pseudo-time parameter, such
that a load f becomes f(t) = tf , with t in [0, 1] being the ramp parameter. The desired solution
is obtained when t = 1. We show how to solve the inverse displacement problem with this strategy
in Algorithm 1, where the solution of problem (26) is done with a Newton algorithm. Unless stated
otherwise, all nonlinear algorithms consider as initial guess the solution at the previous step.

The most widely used method to compute the solution of (26) is known as the Sellier method [56].
If we consider a relaxation parameter α > 0 and an initial displacement u(0), Denoting by Ω(Xk)
the configuration obtained in the Xk coordinates, the algorithm is displayed in Algorithm 2. This
method is a fixed-point iteration, which are in general prone to instabilities and lack of convergence.
This has been alleviated by including an acceleration technique known as Aitken acceleration [48], and
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(a) 0.25 · 105 Pa (b) 0.5 · 105 Pa

Figure 5. Solution of the inverse displacement problem on the eclipse geometry. The
stress-free configuration is computed for (a) 0.25 · 105 Pa and (b) 0.5 · 105 Pa.

Algorithm 1 Inverse displacement method with load ramp.

1: Input: Initial point u0, N
2: Set error = 1, k = 0, ∆t = 1/N , t = ∆t, uk = u0

3: while t ≤ 1 do
4: Compute solution dk of (26) at pseudo-instant t.
5: t← t+∆t
6: end while
7: return Solution d = dk

further improved by an Armijo line search strategy [37]. We will refer to the latter as the Aitken-
Armijo strategy. The resulting method enjoys improved robustness, which makes it more reliable for
data intensive applications. Still, it has been observed that Anderson acceleration performs better than
Aitken acceleration in most practical applications (see for example [13, 17]). This can be explained mainly
by two things: on one hand, Anderson acceleration can be regarded as a nonlinear variant of the GMRES
algorithm, so it has better mathematical foundations. On the other hand, it uses an arbitrary number of
previous iterations, whereas Aitken uses only one previous solution. We propose a single algorithm that
can be used to choose between the Armijo-Aitken strategy and Anderson acceleration in Algorithm 3,
where we have observed that combining both Aitken and Anderson never yields a better solver (not
reported). One possible explanation for this is that Anderson is not capable of accelerating arbitrary
fixed point iterations. Indeed, it has been shown that it can accelerate linearly converging sequences,
that quadratically convergent sequences may worsen their performance and anything in between is still
an open problem [21].

Convergence of the Sellier method (all the three variants previously shown) is established when the
deformed geometry is sufficiently close to the original one, or when the increments are sufficiently small.
The latter can lead to stagnation, which we have observed to happen sometimes with Aitken acceleration.
For this, we have set a minimum relaxation of 0.5 that truncates smaller values.

6. Numerical tests

We perform the numerical tests in four different geometries:

(1) A 2D square domain.
(2) A 3D rectangular geometry, commonly referred to as slab in the computational cardiology com-

munity, subject to surface and volume loads to validate our solvers.
12



Algorithm 2 Sellier method with load ramp.

1: Input: Initial point u0, relaxation α > 0, tolerance tol, and maximum iterations maxit
2: Set error = 1, k = 0, uk = u0

3: while t < 1 do
4: while error > tol and k < maxit do
5: Compute forward displacement dk at t in Ω(Xk)
6: Compute the incremental displacement δk = Xk + dk −X0

7: Deform the geometry with displacement −δk
8: Update error, k ← k + 1
9: end while

10: t← t+∆t
11: end while
12: return Solution d = dk

Algorithm 3 Generalized Sellier method with load ramp.

1: Input: Initial point u0, relaxation α > 0, tolerance tol, and maximum iterations maxit
2: Set error = 1, k = 0, uk = u0

3: while t ≤ 1 do
4: while error > tol and k < maxit do
5: if Do Armijo: then
6: for ℓ in {1, 1/2, . . . , ℓmin} do
7: Compute forward displacement dℓ at t in Ω(Xk)
8: Compute increment δℓ = Xℓ + dℓ −X0

9: If k > 0, set αℓ = −α<δk−1,δℓ−δk−1>
|δℓ−δk−1|2

10: Compute Xℓ = Xk − ℓαℓδℓ

11: Compute line search error errorℓ
12: If k = 0 or errorℓ < error: break
13: end for // for ℓ
14: Find ℓ∗ with minimum errorℓ
15: Update displacement dk = dℓ∗ and α = αℓ

16: else
17: Compute forward displacement dk at t in Ω(XK)
18: end if // Do Armijo
19: if Do Anderson: then
20: Compute accelerated solution dk = AA(dk, . . . ,dk−m)
21: end if // Do Anderson
22: Compute the incremental displacement δk = Xk + dk −X0

23: Deform the geometry with displacement −αδk
24: Update error, k ← k + 1
25: end while
26: t← t+∆t
27: end while
28: return Solution d = dk

(3) A simplified left ventricle (LV) geometry subject to an endocardial pressure and an active stress
force.

(4) A realistic full-heart geometry with given physiological values of atrial and ventricular pressures.

The scope of this section is to clarify the following points: (i) to understand whether it is advantageous
to solve the IEP using the Cauchy formulation or the Eshelby one, (ii) to compare the performance of
IEP by using its direct solution or a Sellier approach in terms of its robustness (behavior with varying
parameters) and optimality (sensitivity on problem size), and (iii) to characterize the computational
effort of the IEP with respect to the DEP, i.e. which problem is most computationally challenging, and
how to measure this aspect. For these aims, the numerical tests we propose are the following.
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(1) A numerical convergence test for the Cauchy and Eshelby formulations for varying degrees of
approximation. This test will help us conclude which of the two formulations should be used in
practice.

(2) A robustness test where we vary the load of the slab and the endocardial pressure/active stress
of the idealized LV. This test measures the sensitivity of the solvers with respect to external
loads.

(3) An optimality test in which, for fixed loads, we increase the degrees of freedom of each problem.
This test measures the sensitivity of the solvers with respect to the problem size.

(4) A preconditioning test, where we study the performance of both algebraic multigrid (AMG) and
domain decomposition (DD) methods for the IEP formulation.

(5) A formulation comparison test, in which we study whether the backward or forward problems
are more computationally demanding.

(6) A real-case scenario where we can test our conclusions in a full-heart model.

In what follows, we will use the term inverse displacement method to denote a direct numerical
approximation of the IEP, based either on a finite element approximation of the Cauchy version (26) or
the Eshelby one (27). The inverse displacement method is thus a way, alternative to the Sellier’s method,
to solve the IEP, and should not be confused with the latter.

To avoid ambiguity, we will consider the nonlinear iterations to be the number of iterations required
for each method to converge. For the inverse displacement method, this will be the number of Newton
iterations. Instead, for the Sellier method, this will refer to the fixed point iterations required for
convergence. Given that at each fixed point iteration this method incurs on the solution of a nonlinear
elasticity problem, we will refer to such iterations as the inner nonlinear iterations. Whenever more than
one ramp step is used, we will report the average number of iterations. The implementation of all tests
on the slab and on the idealized LV have been implemented with the FEniCS library [2] and visualized
with Paraview [29]. The preconditioning tests have been performed with the Firedrake library [47]. In
addition, unless stated otherwise, all linear systems are solved using the MUMPS library [5], which uses
a direct method. This avoids the additional complexity of considering the challenges associated with
the linear system resolution whenever quantifying the computational burden of the IEP. The real-case
scenario was performed with the high-performance c++ library lifex (see2 and [1]), built upon the finite
element core deal.II (see3 and [7]).

6.1. Numerical convergence test. In this section, we propose a simple convergence analysis of the
discretized counterparts of the weak formulations (26)-(27). We consider the 2D square domain Ω =
[0, L]× [0, L], and assume that the body is homogeneous and composed of a material with Neo-Hookean
strain energy (16). We construct the fields b and t such that

(32) û(x) = A sin(2πx1)e2

is a solution of the inverse problem. In (32), x = x1e1 + x2e2 and (e1, e2) is the canonical basis in R2.
We can now compute the corresponding Cauchy stress tensor through (17) and, by applying (3) we

can recover the corresponding fields b and t. Similarly, from (12) we can recover the expressions of β
and σ such that (32) is a solution of (11).

We use this analytical solution to perform the convergence analysis of the discretized problem. We
exploit a Galerkin approximation and the finite element method. We construct a triangular, structured
mesh Ωh of the domain Ω, with h being the diagonal of the elements. We use P 1, P 2 and P 3 elements
to discretize the field û and we denote by ûh the discrete counterpart. The nonlinear problem is solved
by means of a Newton method.

In Figure 6, we show a logarithmic plot of the error norm ∥û − ûh∥H1(Ω,R2) for A = 0.1L. We
observe that the error is O(hn) for the element Pn as h→ 0. The errors measured using the weak forms
(26) and (27) are very close, even though the formulation using the Eshelby stress (27) requires much
more iterations. Indeed, for the formulation with the Cauchy stress tensor, we can solve the problem
with a single Newton algorithm which requires an average of 5.2 inner iterations. Conversely, with the
Eshelby stress the direct application of the Newton method may fail and we need to use a ramp where
we iteratively increase the value of A, see Table 2. Therefore, in the remaining part of this work, we will
focus our attention on the Cauchy stress weak form (26).

2https://lifex.gitlab.io/
3https://www.dealii.org
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Figure 6. Results of the convergence analysis for the problem described in Section 6.1.
Here we show E, i.e. the error norm ∥û − ûh∥H1 non-dimensionalized with respect to
the length-scale L, as a function of h/L for the weak formulations (26) (left) and (27)
(right) for λ/µ = 1000. The blue, orange, and green markers correspond to the solutions
obtained with P 1, P 2, and P 3 elements, respectively. The two plots are almost identical
and we do not have significant differences in the marker positions.

Cauchy formulation Eshelby formulation

n Element Newton iterations Ramp steps Newton iterations

4 P1 5 2 6.5
8 P1 5 2 7.0
16 P1 5 2 10.0
32 P1 5 9 5.3
64 P1 5 10 5.7

4 P2 5 3 8.0
8 P2 5 4 9.0
16 P2 5 7 7.1
32 P2 5 11 5.7
64 P2 6 12 5.7

4 P3 5 4 7.8
8 P3 5 10 5.5
16 P3 5 11 5.6
32 P3 6 12 5.7
64 P3 6 13 5.6

Table 2. Average number of Newton iterations per ramp step and ramp steps necessary
for solving the problem described in Section 6.1. Here, we use just one ramp step for the
Cauchy formulation and n is the number of element for each side of the square domain.

6.2. Slab tests. The slab consists in a prism cut going from the endocardium to the epicardium, given
by Ω := (0, 10−2 m) × (0, 3 · 10−3 m) × (0, 3 · 10−3 m). On it, we consider the exponential constitutive
law of Usyk [62], detailed in Section 6.5, with homogeneous Dirichlet conditions on {x = 0} and null
traction conditions elsewhere. We display the solution of the inverse displacement problem in Figure 7,
which we computed for various volumetric and surface loads, given by b and t respectively in (3). We
note that both solutions were computed using 10 ramp steps for the loads, and the maximum load used
for each display was such that twice bigger loads would yield a divergent iterative procedure using the
IEP formulation.

6.2.1. Robustness. We study the robustness with respect to volumetric loads. To measure the perfor-
mance, we look at the number of nonlinear iterations required for convergence. All tests were performed
with a Newton method using absolute and relative tolerances of 10−14 and 10−6 respectively for the
inverse problem. The Sellier methods use equal absolute and relative tolerances of 10−6. The tangent
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(a) Varying volumetric load. (b) Varying surface load.

Figure 7. Solution of the inverse displacement problem computed on a slab. In
Figure (a), we compute the stress-free configuration for forces b = −bêz with
b ∈ {10Pam−1, 20Pam−1, 30Pam−1, 40Pam−1, 50Pam−1} with surface load t =
0. In Figure (b) we do the same for b = 0 and t = −têz with t ∈
{5Pa, 10Pa, 15Pa, 20Pa, 25Pa}.

systems were inverted with MUMPS, a parallel direct solver. The geometry was discretized with 24
subdivisions in the x direction, and 8 subdivisions in the y and z directions, resulting in roughly 6 000
degrees of freedom.

We show the results of this test in Table 3. We first note that the inverse displacement method is
much more robust than the Sellier methods in general, being able to yield a solution for load values more
roughly 10 times larger than those of Sellier methods, in only one ramp step, and 4 times larger if Sellier
uses 100 ramp steps. Among Sellier methods, we note that they all converge in the same scenarios,
meaning that acceleration does not make a difference in this test. Still, in can be appreciated how the
Armijo strategy yields a more robust method, which can be greatly improved by using instead Anderson
acceleration. Indeed, the latter can sometimes yield convergence in roughly half the number of nonlinear
iterations. Still, the superiority of this strategy is less obvious when looking at the inner nonlinear
iterations, which increase as the accelerated methods perform larger steps. Naturally, this nested solver
problem is not present in the inverse displacement method.

6.2.2. Optimality. In this section, we study the sensitivity of the slab problem as the number of de-
grees of freedom increases. For this, we consider two volumetric loads given by b = −be3 for b in
{10Pam−1, 20Pam−1}, and we divide the x, y, and z axes into 3k, k, and k elements respectively, for
k in {2, 4, 8, 16, 24, 32, 40}, solved in one ramp step. We show the results in Table 4, where we highlight
the following results: (i) as is typical of Newton methods, the IEP formulation behaves optimally, with
its number of nonlinear iterations remaining constant as the number of degrees of freedom increase [33].
(ii) For the smaller load test, the pure Sellier and its Armijo variant are vastly more reliable than the
Anderson accelerated variant. Still, for larger loads they all behave very erratically, and there is no
obvious better option.

6.2.3. Performance comparison. In this section we compare the CPU times (also referred to as walltime)
of the methods under consideration. For this, we present them for the first scenario considered in the
optimality test, i.e. for the load b = −10Pam−1e3, and report them in Table 5. We note that the inverse
displacement method provides and clear improvement over the Sellier method, representing roughly a
speed-up of an 87%. We highlight that, whenever the Anderson method converges, it is faster than both
Sellier variants present in literature. Additionally, we confirm the overall superiority of the Armijo line
search strategy for this case, as it is both more robust and faster than plain Sellier.
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Vol load ID Sellier

1 10 100 1 10 100

1 3 2 2 2.0 (2.3) 1.0 (2.0) 1.0 (1.9)
10 4 3 2 8.0 (3.3) 3.7 (2.5) 2.0 (2.0)

25 5 3 3 – 17.0 (3.0) 8.0 (2.5)
50 6 4 3 – – –
75 7 4 3 – – –

100 – 4.1 3 – – –

Vol load Sellier Armijo Sellier Anderson

1 10 100 1 10 100

1 2.0 (2.3) 1.0 (2.0) 1.0 (1.9) 2.0 (2.3) 1.0 (2.0) 1.0 (1.9)

10 9.0 (3.2) 3.9 (2.5) 2.0 (2.0) 4.0 (4.0) 3.2 (2.5) 2.0 (2.0)
25 – 12.0 (4.5) 6.5 (3.6) – 4.7 (3.2) 3.5 (2.6)

50 – – – – – –
75 – – – – – –

100 – – – – – –

Table 3. Slab robustness. Average number of nonlinear iterations (average inner non-
linear iterations in parenthesis) when increasing the volumetric load with 1 ramp step,
10 ramp steps and 100 ramp steps. ID: Inverse displacement, and Anderson acceleration
is used with a depth of 3.

N DoFs ID Sellier Sellier Armijo Sellier Anderson

2 189 4.0 5.0 (3.0) 5.0 (3.0) 3.0 (3.5)
4 975 4.0 6.0 (3.1) 7.0 (2.9) 4.0 (3.4)
8 6075 4.0 8.0 (3.3) 9.0 (3.2) 4.0 (4.0)
16 42483 4.0 8.0 (3.2) 9.0 (3.2) –
24 136875 4.0 8.0 (3.2) 9.0 (3.1) 4.0 (4.8)
32 316899 4.0 8.0 (3.2) 9.0 (3.2) –
40 610203 4.0 7.0 (3.4) 8.0 (3.3) –

(a) Results with b = −10e3.

N DoFs ID Sellier Sellier Armijo Sellier Anderson

2 189 4.0 – 10.0 (3.1) 5.0 (3.8)
4 975 4.0 17.0 (3.6) – 7.0 (3.5)
8 6075 5.0 – – 8.0 (4.9)
16 42483 5.0 31.0 (3.8) 25.0 (5.9) –
24 136875 5.0 – – –
32 316899 5.0 – – –
40 610203 5.0 – – –

(b) Results with b = −20e3.

Table 4. Slab optimality. Average number of nonlinear iterations (and inner nonlinear
iterstions) when increasing the number of degrees of freedom. (DoFs) Degrees of free-
dom, (ID) inverse displacement.

6.2.4. Computational effort of IEP and DEP. For measuring which formulation is the most challenging
at the numerical level, we use as an indicator the number of nonlinear iterations incurred by the nonlinear
solver, if it converges. We do so in three scenarios: (i) the IEP formulation (26), (ii) the DEP formulation
from the stress-free configuration (25), and (iii) the DEP from the current configuration (25). The
distinction between the last two is important because they represent two conceptually different scenarios.
In scenario (ii), we compare the inverse and forward problems in a physically consistent setting. In
problem (iii), the scope is purely methodological, as we compare the computational effort of the inverse
problem with respect to what is done by the Sellier method. As a matter of fact, the fixed-point iterations
of the Sellier method envisage a sequence of DEPs, moving from (iii) to (ii). This should provide further

17



DoFs ID Sellier Sellier Armijo Sellier Anderson

189 0.03 0.08 0.08 0.05
975 0.06 0.30 0.31 0.20
6075 0.45 3.20 3.37 1.82

42483 8.37 63.89 70.20 –
136875 60.36 398.87 422.18 281.60
316899 248.85 1636.14 1720.43 –
610203 735.73 5844.36 5275.55 –

Table 5. Slab performance. Total CPU time employed to solve the problem for each
method under consideration. (DoFs) Degrees of freedom, (ID) inverse displacement.

Vol load ID ID-forw Forward

1 2.0 2.0 2.0
10 3.0 3.0 3.0
25 3.0 3.9 3.9
50 4.0 4.0 4.0
75 4.0 4.9 4.0
100 4.1 – 4.3

Table 6. Computational effort study. The numbers stand for the average number of
nonlinear iterations incurred by the Newton solver. (ID) Inverse displacement problem,
(ID-forw) Forward problem from stress-free configuration, and (Forward) is the forward
problem from the current configuration.

evidence for the lack of convergence of the Sellier method, justified additionally by the requirement of
solving a challenging nonlinear problem at each iteration. We fix the load to be b = −10Pam−1e3.

We show the results in Table 6. Albeit unintuitive, we note that the easiest problem is the inverse one,
which has a consistently lower number of nonlinear iterations than the other two problems. Interestingly,
the forward problem from the stress-free configuration in this problem is slightly harder than the one
posed on the current geometry. We remark that, in this test case, we only focus on the nonlinear solver,
and we disregard the challenges associated with the inner linear systems, as we are employing a direct
linear solver. This aspect will be addressed later in Sections 6.4 and 6.5.

6.3. Simplified cardiac model. In this section, we study as in Section 6.2 the robustness, optimality,
performance, and computational effort of the inverse displacement formulation against standard and
accelerated Sellier schemes on an idealized LV geometry. We consider the same physical model as in the
slab test, with the only difference of having the physiologically motivated boundary condition of (29) on
the epicardium.

We focus on two types of loads, which are the main ones present in cardiac simulations: (i) a pressure
acting uniformly on the endocardium and (ii) the active stress, which we depict respectively in Figures 8
and 9 respectively.

6.3.1. Robustness. In this section we study the robustness of the methods with respect to an endocardial
pressure going from 0.1 kPa to 10 kPa for 1, 10, and 100 ramp steps. Then, we do the same computation
for an active stress magnitude given going from 1 kPa up to 40 kPa.

The computed results are shown in Tables 7 and 8 for the endocardial pressure and the active stress,
respectively. First, we note that again the inverse displacement method is the most robust in all scenarios
under consideration. There is no significant advantage in augmenting the standard Sellier method with
the Armijo strategy, but instead Anderson acceleration provides a consistently more robust solver in both
the number of nonlinear iterations and the scenarios in which it converges. We also highlight that the
inverse displacement formulation and the Anderson accelerated Sellier method yield the same robustness
when using 100 ramp steps.

6.3.2. Optimality. In this section we study the performance of all methods under consideration as the
number of degrees of freedom increases. We consider two scenarios: one with a fixed endocardial pressure
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Figure 8. Stress-free configuration computed for pressures of 1 kPa (blue), 5 kPa
(green), and 10 kPa (yellow).

Figure 9. Stress-free configuration computed for active stress peaks given by 5 kPa
(blue), 10 kPa (green), and 20 kPa (yellow).

Pa ID Sellier

1 10 100 1 10 100

100 3.0 2.0 2.0 2.0 (2.3) 1.0 (2.0) 1.0 (1.9)

1000 8.0 3.3 2.4 – 7.4 (2.6) 3.7 (2.1)
2500 – 4.2 3.0 – 13.1 (2.7) 6.5 (2.3)

5000 – 4.5 3.0 – – 6.8 (2.3)

10000 – – 3.0 – – –

Pa Sellier Armijo Sellier Anderson

1 10 100 1 10 100

100 2.0 (2.3) 1.0 (2.0) 1.0 (1.9) 2.0 (2.3) 1.0 (2.0) 1.0 (1.9)
1000 – 7.2 (2.6) 3.6 (2.2) – 4.4 (2.7) 2.9 (2.2)
2500 – 10.9 (2.8) 6.5 (2.4) – 7.6 (2.8) 4.8 (2.4)

5000 – – 6.7 (2.9) – – 5.6 (2.3)
10000 – – – – – 6.6 (2.4)

Table 7. Left ventricle robustness with respect to endocardial pressures. Average
number of nonlinear iterations (average inner nonlinear iterations in parenthesis) when
increasing the volumetric load with 1, 10, and 100 ramp steps. (ID) Inverse displacement,
and Anderson acceleration is used with a depth of 3.

of 0.2 kPa and another one with a fixed active stress peak of 5 kPa, with the results in Table 9. We note
that in all considered scenarios, the inverse displacement method yields a more robust performance. Still,
we highlight that Anderson acceleration performs roughly the same average inner nonlinear iterations as
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Pa ID Sellier

1 10 100 1 10 100

1000 4.0 3.0 2.0 3.0 (3.0) 1.9 (2.3) 1.0 (2.0)
5000 – 3.2 2.5 – 5.1 (2.6) 2.9 (2.1)

10000 – 3.4 2.6 – 11.8 (2.6) 6.4 (2.1)
20000 – 3.8 2.7 – – –
40000 – – 2.7 – – –

Pa Sellier Armijo Sellier Anderson

1 10 100 1 10 100

1000 4.0 (2.8) 1.9 (2.3) 1.0 (2.0) 3.0 (3.0) 1.9 (2.3) 1.0 (2.0)

5000 – 6.3 (3.8) 3.6 (2.8) – 4.1 (2.6) 2.7 (2.2)

10000 – 6.9 (3.9) 4.4 (3.1) – 5.5 (2.7) 3.6 (2.2)
20000 – – – – – 4.6 (2.4)

40000 – – – – – 4.9 (2.4)

Table 8. Left ventricle robustness with respect to the peak active stress. Average
number of nonlinear iterations (average inner nonlinear iterations in parenthesis) when
increasing the volumetric load with 1, 10, and 100 ramp steps. (ID) Inverse displacement,
and Anderson acceleration is used with a depth of 3.

DoFs ID Sellier Sellier Armijo Sellier Anderson

9375 3.0 1.4 (2.0) 1.4 (2.0) 1.4 (2.0)
20709 3.0 1.3 (2.0) 1.3 (2.0) 1.3 (2.0)
60081 3.0 1.1 (2.5) 1.1 (2.5) 1.1 (2.5)
149511 3.1 2.2 (2.6) 2.0 (3.0) 1.9 (2.6)

(a) Endocardial pressure of 0.2 kPa.

DoFs ID Sellier Sellier Armijo Sellier Anderson

9375 3.4 5.1 (2.6) 6.3 (3.8) 4.1 (2.6)
20709 3.4 4.5 (2.7) 5.7 (3.6) 4.0 (2.7)
60081 3.4 5.5 (2.8) – 4.0 (2.9)
149511 3.6 4.6 (3.1) 5.9 (4.6) 3.9 (3.2)

(b) Peak active stress of 5 kPa.

Table 9. LV optimality. We show the average nonlinear iterations (and average inner
nonlinear iterations) in ten ramp steps, with an endocardial pressure of 0.2 kPa.

pure Sellier, with reduced nonlinear iterations. In the active stress case, the Armijo strategy is instead
both more costly and less robust. Still, there is no significant difference among the methods tested.

6.3.3. Performance comparison. In this section, we compare the CPU times and report them in Table 10.
In terms of execution time, we note that pure Sellier is the worst, and inverse displacement yields the
best performance, yielding roughly a 60% reduction in time with respect to pure Sellier. Between the
two methods reside the Armijo and Anderson accelerated Sellier methods, which yield roughly a 7% and
a 10% walltime reduction with respect to a pure Sellier method in the endocardial test. In the active
stress case, Sellier Armijo is more expensive, whereas Anderson yields again a 10% time save.

6.3.4. Computational effort of the problem. In this section, we aim to study whether the inverse or
forward problems are more computationally demanding as is Section 6.2.4 by considering the same three
scenarios. In this case, as in the previous sections, we consider separately the effect of an endocardial
pressure and that of an active stress force, shown in Table 11. We note that, as in the slab tests, the
inverse displacement method requires the lowest number of iterations in almost all scenarios, except
for some instances of active stress. Interestingly, in contrast to the slab case, this test shows that
the forward problem from the computed stress-free configuration is easier than the one posed on the
deformed configuration for all values considered. This is consistent with experience in cardiac modeling,
and shows two things: on one hand, solving the problem from a stress-free configuration is easier, as it
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DoFs ID Sellier Sellier Armijo Sellier Anderson

9375 18.0 30.2 30.4 29.3
20709 52.8 83.1 85.8 86.1
60081 152.3 261.3 264.6 267.6

149511 540.4 1412.6 1325.1 1280.3

(a) Endocardial pressure.

DoFs ID Sellier Sellier Armijo Sellier Anderson

9375 19.0 93.9 106.3 79.8
20709 57.5 277.4 294.7 251.1
60081 170.8 930.1 – 728.5

149511 618.0 3005.0 3623.4 2697.3

(b) Peak active stress.

Table 10. LV CPU times in seconds. (DoFs) Degrees of freedom, (ID) inverse dis-
placement, and Anderson acceleration was used with a depth of 3.

Pa ID ID-forw Forward

100 2.0 2.0 2.0
1000 3.3 3.5 3.7
2500 4.2 4.3 4.7
5000 4.5 – –

(a) Varying endocardial pressure.

Pa ID ID-forw Forward

1000 3.0 3.0 3.0
5000 3.2 3.0 3.7
10000 3.4 3.4 3.8
20000 3.8 3.6 3.9

(b) Varying active stress.

Table 11. Computational effort study on LV. (ID) Inverse displacement problem, (ID-
forw) Forward problem from stress-free configuration, and (Forward) is the forward
problem from the current configuration.

is more physically accurate for the given geometry. On the other hand, it shows why it is more difficult
to get the Sellier method to converge. This suggest that the Sellier method could be made more robust
by adding further ramping strategies to the inner nonlinear problem, which would result in even larger
computational costs.

6.4. Preconditioning. The main strategy so far to compute preconditioners for nonlinear elasticity has
been to devise optimal preconditioners for the linearized formulation, and then use such techniques for
the nonlinear scenario. This usually yields satisfactory results in the nonlinear regime, but in this section
we show that this approach is not equally valid for the inverse displacement problem. For this, consider
the slab problem shown in Section 6.2 with a volumetric load given by b = −32Pam−1e3, which we have
observed to be sufficiently large to challenge the numerical solvers. In contrast to all previous numerical
tests, where we have used a direct solver (MUMPS) for all linear systems, we display the average number
of GMRES iterations using the well-established Algebraic Multigrid implementation from HYPRE [22]
for an increasing number of degrees of freedom. This solver is an excellent choice for nonlinear elasticity,
and its efficiency has been thoroughly studied for cardiac elasticity as well [11].

We compare its performance with a very simple one-level Additive Schwartz preconditioner with
minimal overlap and an incomplete LU (ILU) factorization as a local solver, and show the performance
with 16 subdomains (16 MPI processes) in Table 12. We see that, surprisingly, AMG is particularly not
suitable for this problem, and an AS/ILU preconditioner provides a better alternative. Moreover, we
test the GDSW preconditioner [19] available in PETSc [8] under the same conditions. We provide the
results in Table 12, where a much improved performance is obtained in terms of linear iterations, albeit
not optimal. We report the PETSc options to use these preconditioners in A. We note that none of the
tested preconditioners are optimal, and that obtaining an optimal preconditioner, at least in practice,
for the inverse displacement formulation is beyond the scope of this work.

6.5. Realistic four-chamber heart. We now turn to the case of a realistic full-heart model, introduced
in Section 3.2. We consider the Zygote Solid 3D Heart Model [63], an anatomically accurate CAD model
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DoFs AMG AS GDSW

975 30 62 14
6075 55 118 18

42483 101 287 29
316889 – 1418 53
2446275 – – 100

Table 12. Average number of GMRES iterations incurred in one ramp step by each
of the preconditioners considered: (AMG) Algebraic Multigrid, (AS) Additive Schwartz
with ILU on 8 sub-domains, and (GDSW) Generalized Driya-Smith-Widlund. Here, “–”
denotes a solver that diverged as it attained 5000 linear iterations in one of the Newton
steps.

of the whole human heart, obtained from high-resolution CT scans and representing an average healthy
male subject, displayed in Figure 10a. We consider a computational mesh with an average cell diameter
of 1.18mm and accounting for 2.75 ·106 tetrahedra (see Figure 10b), generated relying on the algorithms
proposed in [24], implemented in the open source software vmtk [6].

Figure 10. Full heart model: (a) computational domain and (b) computational mesh.
The mesh is finer in the conductive regions of the myocardium.

We generate the fiber architecture by relying on the Laplace-Dirichlet rule-based method for whole
heart geometries proposed in [46] and further refined in [23]. In the myocardium, we consider the
exponential constitutive law of Usyk [62], with a volumetric term enforcing quasi-incompressibility:
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C

2

(
eQ − 1

)
+
B

2
(J − 1) log(J)

where C is the material stiffness, B is the bulk modulus, and
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(
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)
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Eab = Eea · eb, for a, b ∈ {f, s, n},

where E = 1
2 (C− I) is the Green-Lagrange strain energy tensor, being C = FTF the right Cauchy-Green

deformation tensor. See the aforementioned reference for the parameter values. In the vessels, instead,
we use the Neo-Hookean model:
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Left ventricle pressure 13.1mmHg
Right ventricle pressure 6.0mmHg
Left atrium pressure 9.0mmHg
Right atrium pressure 5.6mmHg
Ascending aorta pressure 71.2mmHg
Pulmonary trunk pressure 12.8mmHg
Active tension 7.5 kPa

Table 13. Load values considered in the full-heart test case.

We employ the parameters values reported in [23]. We consider a factor αn = 0.4 to account for the effect
of microscale fiber dispersion on the active stress. Concerning the epicardium boundary conditions, we
set Kt = 0 and Kn = 2 · 105 Pam−1.

To define the IEP, we consider the pressures and diastolic tension reported in Table 13. We consider
two load cases, namely 50% and 100% of the values reported in Table 13.

In this test case, we consider both the IEP (that we address with the inverse displacement method
and with the Sellier method), and the DEP after having computed the stress-free configuration. Both
problems are considerably challenging, due to the highly-nonlinear constitutive law and to the nontrivial
geometric features of the considered domain. As a matter of fact, none of the solution methods considered
is able to reach convergence with a single load step. Hence, we consider a load-ramp approach by
increasing simultaneously both the cavity pressures and the active tension. In such a challenging problem,
as the ramp approaches the target value, smaller and smaller steps are typically required to avoid
convergence failures, especially when the Sellier method is considered [51]. Hence, to avoid the need of
manually tuning the ramp step, we implement the adaptive ramp algorithm of [51], by which the ramp
step size is automatically decreased (by a factor 0.7) in case of failure, while it is increased (by a factor
1.2, with a maximum of 0.2 relative step length) in case of success.

The considered problem is challenging also because of the ill-conditioning of the linear systems arising
from each Newton iteration. Hence, in order to mitigate the computational burden, we consider, besides
the standard Newton algorithm, an Inexact Newton algorithm that employs a loose tolerance for the
linear solver in the first nonlinear solver iteration, and progressively reduces it during the iterations. This
strategy has been shown to reduce CPU times in cardiac simulations [10] without sacrificing robustness
nor optimality. Moreover, we employ the GMRES method by setting a large maximum number of
iterations (namely 104). We consider both an algebraic multigrid (AMG) preconditioner, and an additive
Schwarz method with an ILU approximate solve as inner solver, based on the parallel partitioning
(AS/ILU) as shown in Section 6.4. For linear algebra operations we rely on the Trilinos library [60].
Simulations are run on a parallel computing cluster on 92 cores (Lenovo SR950 192-Core Intel Xeon
Platinum 8160, 2100 MHz and 1.7TB RAM) at MOX, Department of Mathematics, Politecnico di Milano.

We report in Table 14 the results in terms of convergence success, wall time, number of iterations. First,
we notice that the Inexact Newton approach brings in all the considered cases a significant advantage
(between 2x and 8x speedup).

Instead, the two considered preconditioners behave very differently depending on the differential prob-
lem being solved (namely (25) or (26)). As shown in Section 6.4, AMG shows to be ineffective for the
IEP, since the maximum number of GMRES iterations is very often reached, despite the fact that the
adaptive algorithm leads to smaller and smaller steps in the ramps. Instead, the AS/ILU method pro-
vides a more robust preconditioner for this problem. In contrast, when we consider the DEP or the
Sellier method for the IEP (which, at each step, solves a DEP), the choice of preconditioner does not
determine the ability to reach convergence or not, but it impacts the wall time. Comparing the results
obtained with AMG and AS/ILU, we see that the number of Newton steps is virtually identical, but the
wall time is roughly half using AMG. The only exception is in the case of the Sellier method with the
traditional Newton algorithm, for which using AS/ILU the nonlinear solver performs about 50% more
iterations, meaning that GMRES fails more often than with AMG. In any case, for solving the DEP
(25), AMG proves preferable to AS/ILU.

Finally, we compare the inverse displacement method with the Sellier method in solving the IEP. We
observe that the Sellier method is unable to reach convergence in this real-life test case when 100% of
the load is considered, regardless the nonlinear and linear solvers employed. When we consider a 50%
reduction of the load, both methods converge, but the inverse displacement method is remarkably more
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efficient (12 minutes against 41 minutes in the best case, that is with AS/ILU and AMG, respectively).
The inverse displacement requires the resolution of more demanding linear systems (28.8s against 15.4s),
but this is compensated by a significantly smaller number of Newton steps (25 against 160).

We conclude this section by showing the results obtained in the real-life full heart model. In Figure 11
we show the magnitude of the displacement from the stress-free configuration and the deformed one.
In Figure 12 we report several views of the deformed and the stress-free configuration. As expected,
the cardiac chambers are deflated, because of the pressures acting on the endocardium. In addition,
the chambers that are deformed the most are those with a thinner wall, since they are more prone to
being stretched by pressure, and thus the stress-free configuration is more distant from the deformed one.
Atria are deflated to a remarkable degree, an aspect that makes calculating the stress-free configuration
particularly challenging in this test case. Such deflation induces a rotation in the right atrium auricle,
so that a self-penetration of the domain occurs, both of the atrium into the ventricle and of the opposite
walls of the atrium. The self-penetration of the relaxed configuration is the manifestation of a global
geometric incompatibility, as discussed in Section 2.3.

Figure 11. Inverse displacement magnitude in the full heart test case. We report: (a)
a frontal view; (b) a top view showing the atria; (c) a section, showing the endocardium.

7. Conclusions

In this paper, we have delved into the complex task of reconstructing the stress-free configuration of
an elastic body, terming this challenge the inverse elasticity problem.

In Section 2, we have demonstrated that obtaining the inverse deformation map involves solving a
mixed boundary value problem that shares structural similarities with the classical problem of hypere-
lasticity. Expanding upon Shield’s pioneering findings [57], we have extended our analysis to encompass
the impact of material inhomogeneities, body and active forces.

Although our investigation has revealed that the existence of solutions can be ensured under stringent
assumptions, we have uncovered that, even for a simple scenario involving a two-dimensional disk com-
posed of Neo-Hookean material and subjected to external pressure, the problem can yield one, multiple,
or even zero solutions depending on the applied pressure.

Furthermore, we have conducted an analysis of potential global geometric incompatibilities, leading
to a non-injective inverse deformation. While injectivity of the deformation is pivotal in the direct
problem to avoid self-intersections, we have shown that this characteristic is not mandatory for the inverse
deformation, and characterized numerically two different mechanisms in which this phenomenon can
arise. Nevertheless, the resulting self-intersecting relaxed state of the body could pose issues, rendering
the domain unsuitable as a reference configuration. To counteract this challenge, we have proposed
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Figure 12. Original domain (left) and stress-free configuration (right) in the full heart
test case. We show: (a) a frontal view; (b) a top view; (c) a section, showing the
endocardium; (d) a section, showing the atria.

a novel approach outlined in Section 2.3, based on a multiplicative decomposition of the deformation
gradient tensor.

We have then thoroughly studied the inverse displacement method in terms of its numerical behavior,
both independently and in comparison to alternative fixed-point (Sellier) algorithms. Our numerical
evidence suggests that

(i) the inverse displacement method outperforms the Sellier methods in terms of convergence speed
and robustness,

(ii) the Sellier algorithm can be slightly enhanced with Anderson acceleration, but the advantage is
negligible when compared against using the inverse displacement method,

(iii) the inverse displacement problem can be equivalently formulated in terms of the Cauchy and
Eshelby stress tensors, but using the Cauchy formulation requires a smaller computational effort,

(iv) in terms of nonlinear solvers, the inverse displacement problem behaves similarly to the standard
elasticity problem, and

(v) preconditioning the inverse displacement problem is significantly more challenging, and we have
shown that domain decomposition preconditioners are significantly more effective than AMG.

We have challenged both the inverse displacement method and the Sellier method in a real-life full
heart test case, characterized by detailed anatomical features and by a computational mesh having
2.75 · 106 tetrahedra. The most striking result in this test case is the higher robustness and better
performance of the inverse displacement method compared to the Sellier method, the latter being the
only one being used at present – to our knowledge – in the cardiac modeling community. As a matter of
fact, by relying on the inverse displacement method we were able to recover the stress-free configuration
for a realistic load. To the best of our knowledge, this is the first result of this kind in the scientific
literature, for a geometry of comparable complexity. Remarkably, the computation took only 19m 30s
on 92 cores, that is only 40% more than solving the direct elasticity problem on the same mesh for the
same load.
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"snes_type": "newtonls",

"snes_atol": 1e-12,

"snes_rtol": 1e-6,

"snes_stol": 0.0,

"snes_linesearch_type": "basic",

"ksp_type": "gmres",

"ksp_atol": 0.0,

"ksp_rtol": 1e-6,

"ksp_max_it": 5000,

"ksp_norm_type": "unpreconditioned",

"ksp_gmres_restart": 1000,

"pc_type": "hypre"

Listing 3. PETSc commands to use AMG.

"snes_type": "newtonls",

"snes_atol": 1e-12,

"snes_rtol": 1e-6,

"snes_stol": 0.0,

"snes_linesearch_type": "basic",

"ksp_type": "gmres",

"ksp_atol": 0.0,

"ksp_rtol": 1e-6,

"ksp_max_it": 5000,

"ksp_norm_type": "unpreconditioned",

"ksp_gmres_restart": 1000,

"pc_type": "asm",

"sub_ksp_type": "preonly",

"sub_pc_type": "ilu"

Listing 4. PETSc commands to use AS.

"snes_type": "newtonls",

"snes_atol": 1e-12,

"snes_rtol": 1e-6,

"snes_stol": 0.0,

"snes_linesearch_type": "basic",

"ksp_type": "gmres",

"ksp_atol": 0.0,

"ksp_rtol": 1e-6,

"ksp_max_it": 5000,

"ksp_norm_type": "unpreconditioned",

"ksp_gmres_restart": 1000,

"pc_type": "mg",

"pc_mg_galerkin": None ,

"pc_mg_levels": 2,

"pc_mg_adapt_interp_coarse_space": "gdsw",

"mg_levels_pc_type": "asm"

Listing 5. PETSc commands to use GDSW.

Appendix A. PETSc options for preconditioners

In Listings 3-5, we report the PETSc options used to test the preconditioners AMG, ILU, and GDSW
in Section 6.4.
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