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Abstract

In this paper we analyse the convergence properties of two-level, W-cycle and V-cycle
agglomeration-based geometric multigrid schemes for the numerical solution of the linear
system of equations stemming from the lowest order C0-conforming Virtual Element
discretization of two-dimensional second-order elliptic partial differential equations. The
sequence of agglomerated tessellations are nested, but the corresponding multilevel virtual
discrete spaces are generally non-nested thus resulting into non-nested multigrid algorithms.
We prove the uniform convergence of the two-level method with respect to the mesh size
and the uniform convergence of the W-cycle and the V-cycle multigrid algorithms with
respect to the mesh size and the number of levels. Numerical experiments confirm the
theoretical findings.
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1 Introduction
The Virtual Element Method (VEM) is a very recent extension of the Finite Element Method
(FEM) originally introduced in [1] for the discretization of the Poisson problem on fairly general
polytopal meshes. From its original introduction, the VEM has been applied to a variety of
problems [2, 3]. However, the design of efficient solvers for the solution of the linear system
stemming from the virtual element discretization is still a relatively unexplored field of research.
So far, the few existing works in literature have mainly focused on the study of the condition
number of the stiffness matrix due to either the increase in the order of the method or to the
degradation of the quality of the meshes [4, 5] and on the development of preconditioners based
on domain decomposition techniques [6, 7, 8, 9, 10]. Instead, the analysis of multigrid methods
for VEM is much less developed. In particular, [11] presents the development of an efficient
geometric multigrid (GMG) algorithm for the iterative solution of the linear system of equations
stemming from the p-version of the Virtual Element discretization of two-dimensional Poisson
problems, whereas [12] presents the development of an efficient algebraic multigrid (AMG)
method for the solution of the system of equations related to the Virtual Element discretization
of elliptic problems. To the best of our knowledge, the design and analysis of a GMG method
for the h-version of the VEM has not been investigated yet.

In this paper, hinging upon the geometric flexibility of VEM, we consider agglomerated
grids and focus on the analysis of geometric multigrid methods (two-level, W-cycle, V-cycle)
for the h-version of the lowest order virtual element method. It is worth noticing that the
idea of exploiting the flexibility of the element shape has been investigated in [13, 14] where
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multigrid methods for the numerical solution of the linear system of equations stemming from
the discontinuous Galerkin discretization of second-order elliptic partial differential equations
have been analysed.

Throughout this paper we mainly consider nested sequences of agglomerated meshes obtained
from a fine grid of triangles by applying a recursive coarsening strategy. It is crucial to underline
that even if the tessellations are nested, the corresponding multilevel discrete virtual element
spaces are not. Therefore, our approach results into a non-nested multigrid method. A generalized
framework for non-nested multilevel methods was developed by Bramble, Pasciak and Xu in
[15] and later extended by Duan, Gao, Tan and Zhang in [16] to analyze the non-nested V-cycle
methods. Following the so called BPX framework, we study the convergence of our method.
In particular, we prove that, under suitable assumptions on the quality of the agglomerated
coarse grids, our two-level iterative method converges uniformly with respect to the granularity
of the mesh. Moreover, we prove that the W-cycle and V-cycle schemes with non-nested virtual
element spaces converge uniformly with respect to the mesh size and the number of levels. The
theoretical results are confirmed by the numerical experiments.

The outline of the paper is as follows. In Section 2 we describe the model problem and its
Virtual Element discretization. In Section 3 we introduce the two-level, the W-cycle and V-cycle
multigrid virtual element methods. In Section 4 we present the coarsening strategy adopted
to construct the sequence of nested meshes, while in Section 5 we define suitable prolongation
operators that are a key ingredient in multilevel methods. In Section 6 we introduce the BPX
framework for the theoretical convergence analysis of our multigrid schemes, while in Section 7
we analyse the convergence of our virtual element multigrid algorithm and state the main
theoretical results. In Section 8 we present the algebraic counterpart of the algorithm focusing
on its discretization and its implementation. In Section 9 we discuss some numerical results
obtained applying the method to the numerical solution of the linear systems stemming from
the h-version of the lowest order Virtual Element discretization of order k = 1 of the Poisson
equation. Finally, in Section 10 we draw some conclusions.

Throughout this paper, we use the notation x . y and x & y instead of x ≤ Cy and x ≥ Cy,
respectively, where C is a positive constant independent of the mesh size. When needed the
constant will be written explicitly. Moreover, Pl(D) denotes the space of polynomials of degree
less than or equal to l ≥ 1 on the open bounded domain D and [Pl(D)]2 the corresponding
vector-valued space.

2 Model problem
Let Ω ⊂ R2 be a convex polygonal domain with Lipschitz boundary and let f ∈ L2(Ω). We
consider the following model problem: find u ∈ V := H1

0 (Ω) such that

A(u, v) =

∫
Ω

fv ∀v ∈ V, (1)

where A(u, v) := (µ∇u,∇v)L2(Ω) with µ ∈ L∞(Ω) a positive constant. This problem is well-
posed and its unique solution u ∈ H2(Ω) satisfies

‖u‖H2(Ω) . ‖f‖L2(Ω). (2)

For the purposes of this work, we consider a sequence {Tj}Jj=1 of tessellations of the domain
Ω. Therefore, all the parameters characterizing a given tessellation Tj will be denoted by
the subscript j. Each tessellation is made of disjoint open polytopic elements Ej such that
Ω̄ :=

⋃
Ej∈Tj Ēj , j = 1, . . . , J . For each element Ej , we denote by EEj the set of its edges and

by δEj its diameter. The mesh size of Tj is denoted by δj := maxEj∈Tj δEj .
We assume that the elements Ej of each tessellation Tj satisfy the following assumptions

[17].
A1. For any j = 1, . . . , J , every element Ej ∈ Tj is the union of a finite and uniformly bounded
number of star-shaped domains with respect to a disk of radius ρEjδEj and every edge ej ∈ EEj
must be such that |ej | ≥ ρEjδEj , being |ej | its length. Moreover, given a sequence of tessellations
{Tj}Jj=1 there exists a ρ0 independent of the tessellation such that ρEj ≥ ρ0 > 0.
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A2. The sequence of tessellations {Tj}Jj=0 are quasi-uniform, i.e., they are regular and there
exist a constant τ > 0 such that

min
Ej∈Tj

δEj ≥ τδj ∀δj > 0.

Moreover, {Tj}Jj=0 satisfies a bounded variation hypothesis between subsequent levels, i.e., δj−1 .
δj ≤ δj−1 ∀j = 2, . . . , J.

We introduce the h-version of the enhanced Virtual Element Method and we associate to
each Tj the corresponding global virtual element space Vj of order k = 1, constructed from the
local element spaces V Ej defined on each element Ej ∈ Tj .

We define
B1(∂Ej) :=

{
v ∈ C0(∂Ej) : v|ej ∈ P1(ej) ∀ej ∈ EEj

}
,

and the local enhanced virtual element space V Ej of order k = 1 as

V Ej :=
{
v ∈ H1(Ej) : v|∂Ej ∈ B1(∂Ej), ∆v|Ej ∈ P1(Ej),

(v, p)L2(Ej) = (Π∇1,E(v), p)L2(Ej) ∀p ∈ P1(Ej)
}
.

Here, Π∇1,Ej : H1(Ej)→ P1(Ej) is the H1(Ej)-orthogonal operator, defined as

(∇Π∇1,Ej (v),∇p)L2(Ej) = (∇v,∇p)L2(Ej) ∀p ∈ P1(Ej),

(Π∇1,E(v), 1)L2(∂Ej) = (v, 1)L2(∂Ej).

As a basis for the local polynomial space P1(Ej), we choose the set of scaled monomials defined
as

M1(Ej) :=
{
m ∈ P1(Ej) : m(x, y) :=

(x− xEj )αx(y − yEj )αy

δ
αx+αy
Ej

, 0 ≤ αx + αy ≤ 1
}
, (3)

where (xEj , yEj ) are the coordinates of the center of the disk in respect of which the element Ej
is star-shaped. We denote by N1 = 3 the dimension of the local polynomial space P1(Ej).

As set of degrees of freedom of the local virtual element space V Ej , we choose the standard
set consisting of the values of v ∈ V Ej at the vertices of the polygon Ej . We denote by NEj

dof

the total number of degrees of freedom of V Ej and by N (Ej) the set of the indices of the nodes
relative to the element Ej ∈ Tj . Therefore, N

Ej
dof := #N (Ej). Moreover, we denote by

dofi(v) := v(xi) ∀i ∈ N (Ej), (4)

the operator returning the i-th degree of freedom of v ∈ V Ej .
As basis functions for V Ej , we choose the Lagrangian shape functions with respect to the

degrees of freedom of the element Ej , i.e., the ϕ
Ej
i , i ∈ N (Ej) such that

ϕ
Ej
i (xl) = δli ∀i, l ∈ N (Ej).

Consequently, v ∈ V Ej can be written with respect to the local VEM basis as

v =
∑

i∈N (Ej)

dofi(v)ϕ
Ej
i =

∑
i∈N (Ej)

v(xi)ϕ
Ej
i .

In addition, we consider the L2(Ej)-projection Π0
1,Ej

: V Ej → P1(Ej) defined as

(Π0
1,Ejv, p)L2(Ej) = (v, p)L2(Ej) ∀p ∈ P1(Ej),

and the projections of the derivatives Π0
0,Ej

∂
∂x ,Π

0
0,Ej

∂
∂y : V Ej → P0(Ej) such that, ∀v ∈ V Ej(

Π0
0,Ej

∂v

∂x
, p
)
L2(Ej)

=
(∂v
∂x
, p
)
L2(Ej)

∀p ∈ P0(Ej),
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(
Π0

0,Ej

∂v

∂y
, p
)
L2(Ej)

=
(∂v
∂y
, p
)
L2(Ej)

∀p ∈ P0(Ej).

We denote by Π0
0,Ej
∇v the vector having Π0

0,Ej
∂v
∂x and Π0

0,Ej
∂v
∂y as components.

We recall the following result reported in [17].

Lemma 1. For all Ej ∈ Tj and all smooth enough functions u defined on Ej , it holds

‖u−Π0
1,Eju‖L2(Ej) . δsj |u|Hs(Ej) s ∈ N, s = {1, 2}, (5)

where the hidden constant depends on ρ0 defined as in Assumption A1.

The global virtual element space Vj is defined as

Vj := {v ∈ H1
0 (Ω) : v|Ej ∈ V

Ej ∀Ej ∈ Tj}, j = 1, . . . , J. (6)

Its set of degrees of freedom can be defined similarly as done for the local space. We denote
by N j

dof the total number of degrees of freedom of Vj and by N (Tj) := ∪Ej∈TjN (Ej) the set of
the indices of all the nodes of all the elements Ej of the tessellation Tj (excluding the nodes on
the boundary of the domain ∂Ω). Therefore, N j

dof := #N (Tj).
Similarly to the local space, we choose the Lagrangian set ϕji , i ∈ N (Tj) with respect to the

global degrees of freedom as basis functions of Vj . Consequently, v ∈ Vj can be written with
respect to the global VEM basis functions as

v =
∑

i∈N (Tj)

dofi(v)ϕji =
∑

i∈N (Tj)

v(xi)ϕ
j
i .

We point out that ϕji|Ej = ϕ
Ej
i , with ϕEji defined as above.

The VEM for the approximate solution of our model problem on the finest level grid J is:
find uJ ∈ VJ such that

AJ(uJ , vJ) = 〈f, vJ〉 ∀vJ ∈ VJ . (7)

The bilinear form AJ(·, ·) in (7) is defined as

AJ(uJ , vJ) :=
∑

EJ∈TJ

AEJJ (uJ , vJ) :=
∑

EJ∈TJ

(µΠ0
0,EJ∇uJ ,Π

0
0,EJ∇vJ)L2(EJ )

+ ‖µ‖L∞(EJ )S
EJ
(

(I −Π∇1,EJ )uJ , (I −Π∇1,EJ )vJ

)
,

(8)

and the right-hand side 〈f, vJ〉 is defined as

〈f, vJ〉 :=
∑

EJ∈TJ

(f,Π0
0,EJ vJ)L2(EJ ). (9)

For the stabilization form SEJ in (8) we consider the scalar product of the vectors of degrees
of freedom of the two functions

SEJ ((I −Π∇1,EJ )uJ , (I −Π∇1,EJ )vJ) :=∑
i∈N (EJ )

dofi
(

(I −Π∇1,EJ )uJ

)
dofi

(
(I −Π∇1,EJ )vJ

)
,

where dofi(·) is defined as in eq. (4).
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3 Multigrid algorithms
In this section we introduce the h-multigrid two-level, W-cycle and V-cycle schemes to solve the
VEM discrete formulation (7).

Let Vj , j = 1, . . . , J , be the sequence of finite-dimensional virtual element spaces defined
in (6). In order to define the multigrid cycle, we introduce the following intergrid transfer
operators. The prolongation operator (see Section 5) connecting the coarser space Vj−1 to the
finer space Vj , j = 2, . . . , J , is denoted by Ijj−1 : Vj−1 → Vj , whereas the restriction operator
Ij−1
j : Vj → Vj−1 connecting the finer space Vj to the coarser space Vj−1, j = 2, . . . , J , is
defined as the adjoint of Ijj−1 with respect to the inner product (·, ·)j , i.e.,

(Ij−1
j wj , vj−1)j−1 = (wj , I

j
j−1vj−1)j ∀vj−1 ∈ Vj−1,

where (·, ·)j is the L2 scalar product on Vj , j = 1, . . . , J .
Let AJ(·, ·) be the symmetric positive definite discrete bilinear form defined as in (8). On

each level j − 1, with j = 2, . . . , J , we define the symmetric and positive definite bilinear form
Aj−1(·, ·) : Vj−1 × Vj−1 → R as inherited from the form on the level j, i.e.,

Aj−1(u, v) = Aj(Ijj−1u, I
j
j−1v) ∀u, v ∈ Vj−1 and j = 2, . . . , J.

We also introduce the operators Aj : Vj → Vj , defined as

(Ajw, v)j = Aj(w, v) ∀w, v ∈ Vj , j = 1, . . . , J. (10)

For the theoretical analysis, we also need the operator P j−1
j : Vj → Vj−1 for j = 2, . . . , J ,

defined as
Aj(P j−1

j wj , vj−1) = Aj(wj , Ijj−1vj−1) ∀vj−1 ∈ Vj−1, wj ∈ Vj .
As a smoothing scheme, we choose the symmetric Gauss-Seidel method. However, we point

out that other smoothing schemes can be selected. We denote by Rj : Vj → Vj the linear
smoothing operator and by RTj the adjoint operator of Rj with respect to the selected inner
product (·, ·)j . We set

R
(l)
j :=

{
Rj if l is odd,
RTj if l is even.

Now, we are ready to introduce the multigrid method [15]. We denote by ν the number of
smoothing steps. Then, at the level j with j = 1, . . . , J , the multigrid operator Bj : Vj → Vj is
defined by induction in the following way. We set B1 := A−1

1 and given an initial iterate x0, we
define Bjg ∈ Vj for g ∈ Vj as in algorithm 1.

Algorithm 1 Multigrid algorithm (MG) Bjg = MG(p, j, g, x0, ν)

1. Set q0 = 0.

2. Define xl for l = 1, . . . , ν by
xl = xl−1 +R

(l+ν)
j (g −Ajxl−1).

3. Set rj−1 = Ij−1
j (g −Ajxν)

4. Define qi for i = 1, . . . , p by
qi = MG(p, j − 1, rj−1, q

i−1, ν)

5. Set yν = xν + Ijj−1q
p

6. Define yl for l = ν + 1, . . . , 2ν by

yl = yl−1 +R
(l+ν)
j (g −Ajyl−1).

7. Set Bjg = y2ν .

The quantity p is assumed to be a positive integer. We focus on the cases p = 1 and
p = 2 that correspond to the symmetric V -cycle and the symmetric W -cycle, respectively. We
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underline that in Step 2 of the algorithm, we alternate between Rj and RTj , whereas in Step 4,
we use their adjoints applied in the reverse order.

Furthermore, we introduce the following notation that will be useful in the convergence
analysis. We set Kj := I − RjAj , where I is the identity operator, and we define its adjoint
with respect to Aj(·, ·) as K∗j := I −RTj Aj . Moreover, we set

K̃
(ν)
j :=

{
(K∗jKj)

ν
2 if ν is even,

(K∗jKj)
ν−1
2 K∗j if ν is odd.

It can be proved (see [18]) that the following fundamental recursive relation for the multigrid
operators Bj introduced above holds true

I −BjAj = (K̃
(ν)
j )∗[(I − Ijj−1P

j−1
j ) + Ijj−1(I −Bj−1Aj−1)pP j−1

j ]K̃
(ν)
j , j = 1, . . . , J.

The quantity I −BjAj is known as the error propagation operator.

4 Coarsening strategy
In this section, we describe the construction of the sequence of tessellations {Tj}Jj=1 by means
of an agglomeration strategy. Given the open bounded connected domain Ω ⊂ R2, we introduce
a tessellation TJ of triangular elements EJ having characteristic mesh size δJ . Starting from
this tessellation TJ , by agglomeration we generate a sequence of coarser nested meshes {Tj}Jj=1,
where j refers to the level of the agglomeration process. For instance, j = J − 1, denotes the
mesh at level J − 1, i.e. the mesh TJ−1 generated by the agglomeration of the mesh TJ . An
example of coarsening strategy characterized by four levels is reported in Figure 1.

(a) TJ (b) TJ−1 (c) TJ−2 (d) TJ−3

Figure 1: Example of a sequence of agglomerated grids starting from a fine triangle grid TJ
consisting of 511 elements.

The elements of each mesh Tj , j = 1, . . . , J can be expressed as the union of the triangular
elements of the original fine mesh TJ . More formally, each mesh Tj satisfies the following
requirements.

1. Tj−1 represents a disjoint partition of Ω into elements obtained by a suitable cluster of
elements of the mesh Tj .

2. Each element Ej−1 ∈ Tj−1 is an open bounded connected subset of the domain Ω and it is
possible to find a set Ẽj−1

j ⊂ Tj such that Ēj−1 =
⋃
Ej∈Ẽj−1

j
Ēj .

3. For every open polytopic element Ej ∈ Tj there exists ẼjJ ⊂ TJ such that Ēj =
⋃
EJ∈ẼjJ

ĒJ .

Remark 1. Given a fine-level tessellation TJ consisting of uniformly star-shaped triangular
elements, a finite number of agglomeration steps will produce a sequence of tessellations such
that every element Ej ∈ Tj , j = 1, . . . , J − 1, satisfies the above requirements and it is the union
of a finite and uniformly bounded number of star-shaped domains with respect to a disk of
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radius ρEjδEj as required by Assumption A1. In particular, we can select the ρ0 in Assumption
A1 to be the infimum of the values achieved by ρEj on all the considered tessellations Tj .

As explained, the coarse tessellation Tj−1 is obtained by agglomeration of the fine tessellation
Tj and, in practice, each Ej−1 will be given by the bounded union of elements Ej ∈ Tj .
Consequently, in practical applications, the bounded variation hypothesis δj−1 . δj ≤ δj−1, j =
2, . . . , J in Assumption A2 is usually satisfied by construction.

Remark 2. In general, what follows applies also to other nested meshes satisfying the following
boundary compatibility condition, i.e, the edges of the element Ej ∈ Ẽj−1

j that lie on the
boundary of the element Ej−1 share the same nodes of the element Ej−1. In Figure 2, we report
an example of nested elements that satisfy and that do not satisfy the boundary compatibility
condition.

Since the coarse level Tj−1, j = 2, . . . , J , is obtained by agglomeration from Tj , the partitions
{Tj}Jj=1 are nested and this is of fundamental importance for the theoretical analysis that we
will perform. We underline that even if the partitions satisfies a nestedness property, in
general the finite-dimensional spaces {Vj}Jj=1 are non-nested. Indeed, Vj−1 6⊂ Vj , j = 2, . . . , J .
Consequently, the analysis of the proposed method will make use of the general framework of
non-nested multigrid methods.

Ej
Ej

Ej
Ej

Ej

Ej

Ej-1

(a) Admissible nested elements.

Ej-1 Ej

Ej

Ej

Ej

Ej

Ej

Ej

(b) Non admissible nested elements.

Figure 2: Example of (a) admissible nested elements and (b) non-admissible nested elements.
Circles and squares represent the nodes of Ej and Ej−1, respectively. The green cross markers

in (b) highlight nodes violating the boundary compatibility condition.

5 Prolongation operator

We underline that since in general Vj−1 6⊂ Vj , the prolongation operator Ijj−1 cannot be chosen
as the classical injection operator. In order to define the prolongation operator Ijj−1 : Vj−1 → Vj ,
we introduce the following notation.

Let TEj−1 be the tessellation of the element Ej−1 ∈ Tj−1 made of elements Ej ∈ Tj , i.e.,

TEj−1 :=
⋃

{Ej∈Tj : Ej⊂Ej−1}

Ej .

We introduce the virtual element space V Ej−1

j given by a patch of local virtual element
spaces V Ej where Ej ∈ TEj−1

, i.e.,

V
Ej−1

j := {u ∈ H1(Ej−1) ∩ C0(Ej−1) : u|Ej ∈ V
Ej , Ej ∈ TEj−1

}.

We denote by N (TEj−1
) := ∪Ej∈TEj−1

N (Ej) the set of the indices of the nodes of all the
elements Ej ∈ TEj−1

and, finally, by N (TEj−1
\Ej−1) := N (TEj−1

)\N (Ej−1) the set of the
indices of the nodes that belong to the elements Ej ∈ TEj , but not to the element Ej−1. In
Figure 3, we provide a graphic example of the different sets of nodes.
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Ej

Ej

Ej

Ej

Ej

Ej

Ej-1

N  ( Ej-1 )

N  (T  Ej-1\ Ej-1 )

Figure 3: Example of nodes related to the set of indices N (TEj−1\Ej−1) (red squares) and to
the set of indices N (Ej−1) (green circles).

We choose Ijj−1 as the operator locally defined as

Ijj−1uj−1|Ej−1

:=
∑

i∈N (Ej−1)

dofi(uj−1)ϕ
Ej
i +

∑
i∈N (TEj−1

\Ej−1)

dofi(Π0
1,Ej−1

uj−1)ϕ
Ej
i , (11)

with Ijj−1uj−1|Ej−1

∈ V Ej−1

j .
To better clarify the local construction of the prolongation operator, let us consider the

example shown in Figure 3. In this picture the coarse element Ej−1 consists of six elements Ej .
Given the VEM function uj−1 ∈ Vj−1 restricted to the element Ej−1, i.e., uj−1|Ej−1

∈ V Ej−1 ,

the prolongation operator gives the VEM function Ijj−1uj−1|Ej−1

∈ V Ej−1

j . As Ijj−1uj−1|Ej−1

is

a VEM function on V Ej−1

j , then it is also a VEM function of the local virtual element space V Ej
defined on each of the six elements Ej . Therefore, it is locally defined as the linear combination
of the local VEM basis functions ϕEji , i ∈ N (TEj−1

). As coefficients of the linear combination we
select the values assumed by uj−1 in the nodes xi, i ∈ N (Ej−1) (squared nodes) and the values
assumed by its local polynomial projection Π0

1,Ej−1
uj−1 in the nodes xi, i ∈ N (TEj−1

\Ej−1)

(circular nodes).

6 The BPX framework
In the following section, we apply the BPX multigrid framework to the theoretical convergence
analysis of our multigrid virtual element method. The BPX multigrid theory was firstly developed
by Bramble, Pasciak and Xu in [15] for the analysis of multigrid methods with non-nested and
non-inherited quadratic forms. Then, it was later extended in [16].

First, we introduce the assumptions that stands at the basis of the BPX theory and then we
recall the theorems that guarantee the convergence of the method under these assumptions.

The BPX multigrid theory is based on the following assumptions.
A3. Approximation property: ∃CA3 > 0 such that

|Aj((I − Ijj−1P
j−1
j )u, u)| ≤ CA3

‖Aju‖2j
λj

∀u ∈ Vj , j = 2 . . . , J, (12)

where λj is the largest eigenvalue of Aj , CA3 is independent of j, and ‖ · ‖j is the norm induced
by (·, ·)j.
A4. Smoothing property: ∃CA4 > 0 such that

‖u‖2j
λj
≤ CA4(R̃ju, u)j ∀u ∈ Vj , j = 1 . . . , J, (13)

where R̃j = (I −K∗jKj)A
−1
j and CA4 is independent of j.
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The validity of Assumption A4 is proved in Section 7 for the proposed method. Concerning
Assumption A3, in [16] it has been proved that the following assumptions are sufficient for the
validity of Assumption A3. In Section 7, we prove that Hypotheses H1-H7 are satisfied in our
framework involving the elliptic problem (1) satisfying the elliptic regularity assumption (2).
H1. Aj(·, ·) : Vj × Vj → R is a symmetric, positive definite and bounded bilinear form and we
define

|||u|||1,j :=
√
Aj(u, u) ∀u ∈ Vj , ∀j.

H2. There exists an interpolation operator Ii : H2(Ω)→ Vi such that for all j = 2, . . . , J ,

‖u− Iiu‖L2(Ω) + δi
∣∣∣∣∣∣u− Iiu∣∣∣∣∣∣

1,i
≤ Cδ2

i ‖u‖H2(Ω) i = j − 1, j. (14)

H3. For all j = 2, . . . , J , it holds

‖Ijj−1v‖L2(Ω) ≤ CH4 ‖v‖L2(Ω) ∀v ∈ Vj−1. (15)

H4. For all j = 1, . . . , J , it holds

C−1‖v‖L2(Ω) ≤ ‖v‖j ≤ C‖v‖L2(Ω) ∀v ∈ Vj . (16)

H5. For all j = 1, . . . , J , the following inverse inequality holds

|||v|||1,j ≤ Cδ
−1
j ‖v‖L2(Ω) ∀v ∈ Vj . (17)

H6. Let f ∈ L2(Ω). Let u ∈ V and ui ∈ Vi be respectively the solution of

A(u, u) = (f, v)L2(Ω) ∀v ∈ V, Ai(ui, v) = (f, v)L2(Ω) ∀v ∈ Vi. (18)

For all j = 2, . . . , J , we require that

‖u− ui‖L2(Ω) + δi|||u− ui|||1,i ≤ Cδ
2
i ‖f‖L2(Ω) i = j − 1, j.

H7. The following estimate holds true

‖Ijw − Ijj−1I
j−1w‖L2(Ω) ≤ CH7 δ

2
j ‖w‖H2(Ω) ∀w ∈ H2(Ω).

The convergence analysis of the multigrid method is stated in the following two theorems
[15] that prove that under Assumptions A3 and A4, the error propagation operator I −BjAj
satisfies

|Aj((I −BjAj)u, u)| ≤ σAj(u, u) ∀u ∈ Vj , ∀j ≥ 1, (19)

with constant σ < 1. In particular, Theorem 1 states the convergence of the symmetric V-cycle
method, whereas Theorem 2 states the convergence of the symmetric W-cycle method.

Theorem 1. [15, Theorem 2] If Assumptions A3 and A4 hold, then for the V-cycle multigrid
(p = 1) inequality (19) holds true with

σ =
M

M + ν
, (20)

where M depends on CA3 and CA4, and ν is the number of smoothing steps.

Theorem 2. [15, Theorem 3] If Assumptions A3 and A4 hold, then for the W-cycle multigrid
(p = 2) (19) holds true with σ defined as in (20).

In the rest of the paper, we prove the validity of Hypotheses H1-H7 and of Assumption A4
for the two-level method. Therefore, we set J = 2 and we consider the two non-nested spaces
VJ−1 and VJ . Next, we generalize the analysis to the V-cycle and the W-cycle.
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7 Convergence analysis
In this section we prove the validity of all Hypotheses H1-H7 and of Assumption A4. In
Section 7.1 we focus on the convergence of the two-level method and then, in Section 7.2 we
extend the results to the analysis of the convergence of the V-cycle and the W-cycle multigrid
schemes.

7.1 Convergence analysis of the two-level method
Hypothesis H1 is satisfied since by construction the forms Aj(·, ·) are symmetric, positive definite
and bounded bilinear forms for all j.

We set |||u|||1,Ej :=
√
AEjj (u, u). Therefore,

|||u|||21,j =
∑
Ej∈Tj

|||u|||21,Ej =
∑
Ej∈Tj

AEjj (u, u) = Aj(u, u).

In particular, proceeding as in [19], it can be proved that for any u ∈ V Ej , the following
norm equivalence holds

|u|2H1(Ej)
h AEjj (u, u).

As a consequence, we conclude that

|||u|||1,j h |u|H1(Ω), (21)

and we will use this equivalence in the following proofs.
As interpolation operator, we consider the operator Ij : H2(Ω)→ Vj defined as

dofi(u− Iju) = 0 ∀u ∈ Vj , i ∈ N (Tj). (22)

For the enhanced virtual element framework, Hypothesis H2 follows from the following proposition
given in [20].

Proposition 1. Assume that Assumption A1 is satisfied. Then, for Ei ∈ Ti, i = j − 1, j and
for every u ∈ H2(Ei), the interpolant Iiu ∈ Vi defined in (22) satisfies

‖u− Iiu‖L2(Ei) + δi|u− Iiu|H1(Ei) . δ2
i |u|H2(Ei), (23)

the hidden constant depends on ρ0 defined in Assumption A1.

If we choose (·, ·)j as the L2-inner product, then Hypothesis H4 is satisfied. In the following,
we denote by CxiEj−1

the set of elements Ej ∈ TEj−1
having the node xi as vertex and by #CxiEj−1

its cardinality.

Proposition 2. [19, Corollary 4.6] For any u ∈ V Ej , Ej ∈ Tj , the following norm equivalence
holds true

δj

√ ∑
i∈N (Ej)

(
dofi(u)

)2
. ‖u‖L2(Ej) . δj

√ ∑
i∈N (Ej)

(
dofi(u)

)2
. (24)

Moreover, for any u ∈ V Ej−1

j , Ej−1 ∈ Tj−1, the following norm equivalence holds

δ2
j

∑
i∈N (TEj−1

)

#CxiEj−1
|dofi(u)|2 . ‖u‖2L2(Ej−1) . δ2

j

∑
i∈N (TEj−1

)

#CxiEj−1
|dofi(u)|2.

Hypothesis H5 can be proved from the inverse inequality of a VEM function reported in the
following theorem [19].

Theorem 3. [19, Theorem 3.6] The following inverse inequality holds

‖∇u‖L2(Ej) . δ−1
j ‖u‖L2(Ej) ∀v ∈ V Ej . (25)
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Assuming f ∈ H1(Ω), Hypothesis H6 results from (21) and the following theorem reported
in [20].

Theorem 4. [20, Theorem 3] Let u be the solution to the problem A(u, u) = (f, v)L2(Ω), ∀v ∈ V
and let ui ∈ Vi, i = j−1, j be the solution to the discrete problemAi(ui, v) = (f, v)L2(Ω), ∀v ∈ Vi.
Assume further that Ω is convex, that the right-hand side f belongs to H1(Ω), and that the
exact solution u belongs to H2(Ω). Then the following estimate holds

‖u− ui‖L2(Ω) + δi‖u− ui‖H1(Ω) . δ2
i |u|H2(Ω),

where the hidden constant is independent of δi.

Remark 3. We underline that with respect to the standard BPX theory, we need to require
f ∈ H1(Ω) in order to have Hypothesis H6 satisfied.

Now, we show that the stability result of the prolongation operator Ijj−1 in Hypothesis H3
holds true.

Proposition 3. Let Ijj−1 be the prolongation operator defined as in (11). The stability estimate
Hypothesis H3 holds true.

Proof. To begin with, let us focus on the element Ej−1 ∈ Tj−1. We need to show that

‖Ijj−1uj−1‖L2(Ej−1) . ‖uj−1‖L2(Ej−1) ∀uj−1 ∈ Vj−1.

We make us of proposition 2 to ‖Ijj−1uj−1‖L2(Ej−1) and we use the definition of the prolongation
operator Ijj−1

‖Ijj−1uj−1‖2L2(Ej−1) . δ2
j

∑
i∈N (TEj−1

)

#CxiEj−1
|dofi(Ijj−1uj−1)|2

. δ2
j

∑
i∈N (TEj−1

)

#CxiEj−1
|Ijj−1uj−1(xi)|2

. δ2
j max
i∈N (TEj−1

)
#CxiEj−1

∑
i∈N (TEj−1

)

|Ijj−1uj−1(xi)|2

= δ2
j max
i∈N (TEj−1

)
#CxiEj−1

( ∑
i∈N (Ej−1)

|uj−1(xi)|2 +
∑

i∈N (TEj−1
\Ej−1)

|Π0
1,Ej−1

uj−1(xi)|2
)
.

We define #CEj−1
:= maxi∈N (TEj−1

) #CxiEj−1
. Next, we bound each of the two terms on the right-

hand side separately. For the first one, we apply proposition 2 for uj−1 ∈ V Ej−1 , Ej−1 ∈ Tj−1

to obtain ∑
i∈N (Ej−1)

|uj−1(xi)|2 .
1

δ2
j−1

‖uj−1‖2L2(Ej−1). (26)

For the second one, firstly, we add positive quantities and then we make use of proposition 2
and of the L2(Ej−1)-stability of the projection operator Π0

1,Ej−1
.∑

i∈N (TEj−1
\Ej−1)

|Π0
1,Ej−1

uj−1(xi)|2 .
∑

i∈N (TEj−1
)

|Π0
1,Ej−1

uj−1(xi)|2

.
∑

i∈N (TEj−1
)

#CxiEj−1
|Π0

1,Ej−1
uj−1(xi)|2 .

1

δ2
j

‖Π0
1,Ej−1

uj−1‖2L2(Ej−1)

.
1

δ2
j

‖uj−1‖2L2(Ej−1).

(27)

Estimate (26) together with estimate (27) leads to

‖Ijj−1uj−1‖2L2(Ej−1) .
[( δj
δj−1

)2

+ 1
]
#CEj−1

‖uj−1‖2L2(Ej−1).
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Finally, summing on all Ej−1 ∈ Tj−1, we obtain

‖Ijj−1uj−1‖L2(Ω) ≤ CH4‖uj−1‖L2(Ω),

where CH4 = CH4

(
δj
δj−1

,#CEj−1

)
and the proof is complete.

In order to verify Hypothesis H7 we first prove the following preliminary results.

Lemma 2. For any uj−1 ∈ V
Ej−1

j , Ej−1 ∈ Tj−1, the following estimate holds true

‖Π0
1,Ej−1

uj−1 − Ijj−1uj−1‖L2(Ej−1) . ‖Π0
1,Ej−1

uj−1 − uj−1‖L2(Ej−1), (28)

where the hidden constant depends on δj
δj−1

and #CEj−1
.

Proof. To begin with, we apply proposition 2 to the left hand side term of (28) and then we use
the definition of the prolongation operator Ijj−1

‖Π0
1,Ej−1

uj−1 − Ijj−1uj−1‖2L2(Ej−1)

. δ2
j

∑
i∈N (TEj−1

)

#CxiEj−1
|dofi(Π0

1,Ej−1
uj−1 − Ijj−1uj−1)|2

= δ2
j

∑
i∈N (TEj−1

)

#CxiEj−1
|Π0

1,Ej−1
uj−1(xi)− Ijj−1uj−1(xi)|2

. δ2
j max
i∈N (TEj−1

)
#CxiEj−1

∑
i∈N (TEj−1

)

|Π0
1,Ej−1

uj−1(xi)− Ijj−1uj−1(xi)|2

. δ2
j#CEj−1

( ∑
i∈N (Ej−1)

|Π0
1,Ej−1

uj−1(xi)− uj−1(xi)|2

+
∑

i∈N (TEj−1
\Ej−1)

|Π0
1,Ej−1

uj−1(xi)−Π0
1,Ej−1

uj−1(xi)|2
)
.

(29)

The second term of the last inequality of (29) is zero. Therefore, we only need to estimate the
first term. Using proposition 2, we obtain

δ2
j#CEj−1

∑
i∈N (Ej−1)

|Π0
1,Ej−1

uj−1(xi)− uj−1(xi)|2

. #CEj−1

( δj
δj−1

)2

‖uj−1 −Π0
1,Ej−1

uj−1‖2L2(Ej−1) . ‖uj−1 −Π0
1,Ej−1

uj−1‖2L2(Ej−1),

where the hidden constant depends on δj
δj−1

and #CEj−1
.

Lemma 3. For any w ∈ H2(Ej−1), Ej−1 ∈ Tj−1, the following estimate holds true

‖Π0
1,Ej−1

w −Π0
1,Ej−1

Ij−1w‖2L2(Ej−1) . δ4
j ‖w‖2H2(Ej−1), (30)

where the hidden constant depends on δj−1

δj
.

Proof. First, adding and subtracting w − Ij−1w and applying the triangle inequality yields

‖Π0
1,Ej−1

w −Π0
1,Ej−1

Ij−1w‖L2(Ej−1) ≤ ‖w − Ij−1w‖L2(Ej−1)

+ ‖(I −Π0
1,Ej−1

)(w − Ij−1w)‖L2(Ej−1).
(31)

Next, we bound each of the two terms on the right-hand side of (31) separately. For the first
term, since w ∈ H2(Ej−1), we can apply proposition 1. Then

‖Ij−1w − w‖2L2(Ej−1) . δ4
j−1‖w‖2H2(Ej−1)

.
(δj−1

δj

)4

δ4
j ‖w‖2H2(Ej−1) . δ4

j ‖w‖2H2(Ej−1).
(32)
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For the second term, we notice that Ij−1w ∈ Vj−1 ⊂ H1(Ω) and w ∈ H2(Ω). Therefore,
w − Ij−1w ∈ H1(Ej−1). Consequently, we can apply lemma 1

‖(I −Π0
1,Ej−1

)(w − Ij−1w)‖2L2(Ej−1) . δ2
j−1|w − Ij−1w|2H1(Ej−1). (33)

Since w ∈ H2(Ej−1), we can apply proposition 1 and we obtain

δ2
j−1|w − Ij−1w|2H1(Ej−1)2 . δ4

j−1‖w‖2H2(Ej−1)

.
(δj−1

δj

)4

δ4
j ‖w‖2H2(Ej−1) . δ4

j ‖w‖2H2(Ej−1).
(34)

Combining estimates (32), (33) and (34) leads to (30).

Using the previous lemmata, we prove that the following holds true.

Proposition 4. Let Ij be the interpolation operator defined in (22). Then, the approximation
property Hypothesis H7 holds true.

Proof. Let us focus on the element Ej−1 ∈ Tj−1. We want to show that

‖Ijw − Ijj−1I
j−1w‖L2(Ej−1) . δ2

j ‖w‖H2(Ej−1) ∀w ∈ H2(Ω). (35)

By adding and subtracting w −Π0
1,Ej−1

w + Π0
1,Ej−1

Ij−1w and applying the triangle inequality,
we obtain

‖Ijw − Ijj−1I
j−1w‖L2(Ej−1) ≤ ||Ijw − w‖L2(Ej−1)

+ ‖w −Π0
1,Ej−1

w‖L2(Ej−1) + ‖Π0
1,Ej−1

w −Π0
1,Ej−1

Ij−1w‖L2(Ej−1)

+ ‖Π0
1,Ej−1

Ij−1w − Ijj−1I
j−1w‖L2(Ej−1).

(36)

In order to estimate the first term on the right-hand side of (36), we use proposition 1 to
obtain

‖Ijw − w‖2L2(Ej−1) =
∑

Ej∈TEj−1

‖Ijw − w‖2L2(Ej)
.

∑
Ej∈TEj−1

δ4
j |w|2H2(Ej)

.
∑

Ej∈TEj−1

δ4
j ‖w‖2H2(Ej)

. δ4
j ‖w‖2H2(Ej−1).

(37)

To estimate the second term on the right-hand side of (36), we use lemma 1 and get

‖w −Π0
1,Ej−1

w‖2L2(Ej−1) =
∑

Ej∈TEj−1

‖w −Π0
1,Ej−1

w‖2L2(Ej)

.
∑

Ej∈TEj−1

δ4
j ‖w‖2H2(Ej)

. δ4
j ‖w‖2H2(Ej−1).

(38)

To estimate the third term on the right-hand side of (36), we use lemma 3

‖Π0
1,Ej−1

w −Π0
1,Ej−1

Ij−1w‖2L2(Ej−1) . δ4
j ‖w‖2H2(Ej−1). (39)

It remains to estimate the fourth term on the right-hand side of (36). Firstly, we apply
lemma 2, then we add and subtract the term Π0

1,Ej−1
w−w and we apply the triangle inequality,

to obtain

‖Π0
1,Ej−1

Ij−1w − Ijj−1I
j−1w‖L2(Ej−1) . ‖Π0

1,Ej−1
Ij−1w − Ij−1w‖L2(Ej−1)

. ‖Π0
1,Ej−1

Ij−1w −Π0
1,Ej−1

w‖L2(Ej−1) + ‖Π0
1,Ej−1

w − w‖L2(Ej−1)

+ ‖Ij−1w − w‖L2(Ej−1).

(40)

An estimate for the first term on the right hand side of (40) is provided in lemma 3, whereas for
the second term we use lemma 1 as done in (38) and for the third term we use proposition 1.
Therefore, we obtain

‖Π0
1,Ej−1

Ij−1w − Ijj−1I
j−1w‖L2(Ej−1) . δ2

j ‖w‖H2(Ej−1). (41)
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Combining (37), (38), (39) and (41), we obtain (35). Finally, summing on all Ej−1 ∈ Tj−1, we
obtain the thesis with constant CH7 = CH7

(
δj
δj−1

,
δj−1

δj
,#CEj−1

)
.

We prove Assumption A4 relying on the abstract results reported in [21] for smoothing
operators defined in terms of subspace decomposition such Parallel Subspace Correction (PSC)
and Successive Subspace Correction (SSC). Indeed, the Gauss Seidel method can be interpreted
as a SSC method. In view of this, let us consider the following decomposition of the global
virtual element space Vj defined in eq. (6)

Vj =

N jdof∑
i=1

V ij , (42)

where V ij := span{ϕji}. Moreover, let Aj,i : V ij → V ij be defined by (Aj,iv, u)j = (Ajv, u)j ∀v ∈
V ij , and Qij : Vj → V ij be the projection onto V ij with respect to the inner product (·, ·)j . Let
w ∈ Vj . Given the subspace decomposition (42) of Vj , the SSC operator Rj : Vj → Vj is defined
in algorithm 2.

Algorithm 2 Successive subspace correction method (SSC) Rjw = SSC(j, w)

1. Set v0 = 0.

2. Define vi for i = 1, . . . ,N jdof by

vi = vi−1 +A−1
j,iQ

i
j(w −Ajvi−1).

3. Set Rjw = vN j
dof

.

In [21], it is shown that Assumption A4 holds for Rj defined as in algorithm 2.

Theorem 5. [21, Theorem 3.2] Let Rj be defined as in algorithm 2 and let the projection
P ij : Vj → V ij be defined by

(AjP
i
jv, u)j = (Ajv, u)j ∀u ∈ V ij .

Moreover, define

κim =

{
0 if P ijP

m
j = 0,

1 otherwise,

and set n0 = maxi
∑N jdof
m=1 κim.

Assume that the following two conditions hold:

1. The subspaces satisfy a limited interaction property, i.e., n0 ≤ c1, with c1 independent of
j.

2. There exists a positive constant c0 not depending on j such that for each u ∈ Vj , there is

a decomposition u =
∑N jdof
i=1 ui with ui ∈ V ij satisfying

N jdof∑
i=1

||ui||2j ≤ c0||u||2j .

Then (13) holds with
CA4 = (2c0(1 + c21)). (43)

In our particular case, it turns out that κim is different from zero only if Ωij ∩Ωmj 6= ∅, where
we denote by Ωij the support of the Lagrangian basis function ϕji , i = 1, . . . ,N j

dof . Consequently,
we can take c1 as the maximum number of supports {Ωm

j } of the basis functions {ϕjm} that
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intersect Ωi
j . Due to the mesh regularity requirements of Assumption A1, c1 is a bounded

quantity. Moreover, we can set c0 = 1. Therefore, the two conditions stated in 5 are satisfied
and we conclude that Assumption A4 holds with CA4 defined as in (43) in case we choose Rj to
be the linear smoothing operator induced by to the Gauss-Seidel smoother.

7.2 Convergence analysis of the V-cycle and W-cycle methods
In this section we briefly deal with the convergence of V-cycle and W-cycle, i.e., when J > 2,
by generalizing the proof of the convergence of the two-level method. To this aim, let us first
remark that a closer inspection to the proofs of Hypotheses H2, H4, H5 and H6 reveals that the
constants appearing in (14), (16), (17) and (18) depend on the considered level j. Moreover, the
constants CH4 and CH7 appearing in Hypotheses H3 and H7 depend on δj

δj−1
, δj−1

δj
and #CEj−1 ,

respectively. Therefore, we denote by Cj , CjH4 and CjH7 such constants. Since as explained in
Assumption A2, we assume a bounded variation hypothesis between subsequent levels, then
both δj

δj−1
and δj−1

δj
are bounded. Moreover, if the fine tessellation TJ consisting of triangles is

a shape-regular tessellation, then #CEj−1
is uniformly bounded by #CEJ . Indeed, due to the

agglomeration procedure, the cardinality of the set of elements Ej ∈ TEj−1
having a certain node

as vertex cannot increase moving from the finest to the coarsest levels. Hence, all the involved
constants are uniformly bounded independently of the level j. Consequently, Assumption A3
is satisfied setting C = maxj{Cj}, CH4 = maxj{CjH4} and CH7 = maxj{CjH7}. Furthermore,
Assumption A4 is satisfied with CA4 defined as in (43) independently of the level j. To conclude
it is sufficient to invoke Theorems 1 and 2.

8 Implementation details
In this section, we present the algebraic counterpart of the operators introduced in Sections 3
and 5 and we describe the implementation of the multigrid method introduced in Section 3.

In the numerical implementation of the method, when needed, the L2(Ω)-inner product (·, ·)j
introduced in Section 3 will be replaced by the following mesh-dependent inner product

(u, v)j := δ2
j

∑
i∈N (Tj)

dofi(u)dofi(v) ∀u, v ∈ Vj . (44)

In case we select the mesh-dependent inner product (44), Hypothesis H4 is still satisfied.
Indeed, we can make use of the norm equivalence proved in [19] between the L2-norm of a VEM
function and l2-norm of the corresponding vector representation using the degrees of freedom.

The algebraic linear system of equations stemming from the virtual element discretization
(7) of the Poisson equation on the finest grid TJ is in the form

AJuJ = fJ , (45)

where uJ ∈ RN
J
dof represents the vector of the degrees of freedom of uJ ∈ VJ with respect

to the VEM basis, A ∈ RN
J
dof ,N

J
dof represents the matrix associated to the operator AJ

defined in (10) and fJ ∈ RN
J
dof is the vector associated to fJ ∈ Vj defined as (fJ , v)L2(Ω) =∑

EJ∈TJ (f,Π0
0,EJ

v)L2(EJ ) ∀v ∈ VJ .
The algebraic counterpart Ijj−1 ∈ RN

j
dof ,N

j−1
dof of the prolongation operator Ijj−1 : Vj−1 → Vj

is locally defined ∀t ∈ N (Ej−1) as

(Ijj−1)
it

:=


(∑N1

g=1 dofP1(Ej−1)(Π
0
1,Ej−1

ϕ
Ej−1

t )gmg(xi)
)

i ∈ N (TEj−1
\Ej−1),

1 i = t, i ∈ N (Ej−1),

0 i 6= t, i ∈ N (Ej−1),

where dofP1(Ej−1)(·) is the operator returning the degrees of freedom with respect to the basis of
P1(Ej−1) consisting of the set of scaled monomialsM1(Ej−1) introduced in (3).
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Adopting the mesh-dependent inner product (44) the algebraic counterpart
Ij−1
j ∈ RN

j−1
dof ,N

j
dof of the restriction operator Ijj−1 : Vj → Vj−1 is defined as

Ij−1
j :=

( δj
δj−1

)2

(Ijj−1)T .

Similarly, the algebraic counterpart Aj−1 ∈ RN
j−1
dof ,N

j−1
dof of the symmetric and positive

definite bilinear forms Aj−1(·, ·) : Vj−1 × Vj−1 → R, j = 2, . . . , J is defined as

Aj−1 :=
( δj
δj−1

)2

(Ijj−1)TAjI
j
j−1 = Ij−1

j AjI
j
j−1.

Algorithm 3 Two-level Multigrid y = MG2lvl(x
0, ν)

Pre-smoothing:
for l = 1, . . . , ν do

xl = xl−1 +R
(l+ν)
J (fJ −AJx

l−1);
end for

Coarse grid correction:
rJ−1 = IJ−1

J (fJ −AJx
ν);

qJ−1 = A−1
J−1rJ−1;

yν = xν + IJJ−1qJ−1;

Post-smoothing:
for l = ν + 1, . . . , 2ν do

yl = yl−1 +R
(l+ν)
J (fJ −AJy

l−1);
end for

MG2lvl(x
0, ν) = y2ν .

As a smoothing iteration, we have selected the Gauss-Seidel method. To introduce the matrix
formulation of this method, we decompose the given matrix Aj ∈ RN

j
dof ,N

j
dof as follows

Aj = Dj − Lj −Uj ,

where Dj ∈ RN
j
dof ,N

j
dof is a diagonal of Aj , −Lj ∈ RN

j
dof ,N

j
dof and −Uj ∈ RN

j
dof ,N

j
dof are the

strictly lower and the upper triangular parts of the matrix Aj , respectively. Then, the algebraic
counterpart of the operator Rj : Vj → Vj is the matrix Rj ∈ RN

j
dof ,N

j
dof defined as

Rj := (Dj − Lj)
−1,

Adopting the mesh-dependent inner product (44), the algebraic counterpart of the operator RTj
is the matrix RT

j ∈ RN
j
dof ,N

j
dof defined as

RT
j = (Dj −Uj)

−1.

We set

R
(l)
j :=

{
Rj if l is odd,
RT
j if l is even.

Now, we are ready to introduce the algebraic counterpart of the multigrid method introduced
in Section 3.

algorithm 3, represents the solution obtained after one iteration of the two-level method with
initial guess x0 and ν Gauss-Seidel iterations of pre-smoothing and post-smoothing. In algo-
rithm 4, we outline the multigrid iteration algorithm for the computation of uJ . MGp(J, fJ ,uk, ν)
represents either one iteration of the non-nested W-cycle (p = 2) or one iteration of non-nested
V-cycle (p = 1).

In particular, algorithm 5 represents the solution obtained after one iteration of either the
W-cycle (p = 2) or the V-cycle (p = V ) method with initial guess x0 and ν Gauss-Seidel
iterations of pre-smoothing and post-smoothing.
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Algorithm 4 Multigrid iteration for the solution of problem (45)
Initialize u0;
for k = 0, 1, . . . do

uk+1 = MGp(J, fJ ,uk, ν);
uk = uk+1;

end for

Algorithm 5 p-cycle Multigrid (p = 1 or p = 2) y = MGp(j,g,x0, ν)

Set q0 = 0.

if j = 1 then
MGp(1,g,x0, ν) = A−1

1 g.
else

Pre-smoothing:
for l = 1, . . . , ν do

xl = xl−1 +R
(l+ν)
j (g −Ajx

l−1);
end for

Coarse grid correction:
rj−1 = Ij−1

j (g −Ajx
ν);

for i = 1, . . . , p do
qi = MGp(j − 1, rj−1,q

i−1, ν);
end for
yν = xν + Ijj−1q

p;

Post-smoothing:
for l = ν + 1, . . . , 2ν do

yl = yl−1 +R
(l+ν)
j (g −Ajy

l−1);
end for

MGp(j,g,x0, ν) = y2ν .
end if

9 Numerical results
In this section we present some numerical results to assess the convergence properties of our
h-multigrid virtual element algorithm for the solution of the Poisson equation on the unit square
Ω = (0, 1) × (0, 1) with µ = 1, f(x, y) = −2(x(x − 1) + y(y − 1)) and homogeneous Dirichlet
boundary conditions.

We consider the set of agglomerated meshes shown in Figure 4. The coarsening strategy
has been realized through a code developed by the authors. The first row of Figure 4 shows
the sequence of initial fine grids corresponding to decreasing mesh sizes δJ . They consist of
shape-regular triangle tessellations with 511 (Figure 4a), 1034 (Figure 4b), 1939 (Figure 4c)
and 3915 (Figure 4d) elements, respectively. The triangle mesh have been generated using the
Triangle library [22]. The remaining rows of Figure 4 show the sequence of agglomerated nested
coarsened meshes.

Our aim is to analyse the performance of the two-level, the W-cycle and the V-cycle h-
multigrid schemes based on the virtual element method of order k = 1. We set a relative
tolerance of 10−8 as a stopping criterion.

In Table 1, for each of the tessellations of Figure 4, we report the order of the corresponding
stiffness matrix Aj , the mesh size and the number of elements.

In Tables 2 and 3, we report the number of iterations (or cycles) needed to reduce the relative
residue below the chosen tolerance and the computed convergence factor defined as

ρ := exp
( 1

N
ln
‖rN‖2
‖r0‖2

)
,

where rN and r0 are the final and the initial residual vectors, respectively. They are presented
as functions of the number of elements and the number of smoothing steps. The results are
shown for the two-level (TL), the W-cycle and the V-cycle multigrid. From the results of Tables
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Set 1 Set 2 Set 3 Set 4

(a) TJ , 511 (b) TJ , 1034 (c) TJ , 1939 (d) TJ , 3915

(e) TJ−1 (f) TJ−1 (g) TJ−1 (h) TJ−1

(i) TJ−2 (j) TJ−2 (k) TJ−2 (l) TJ−2

(m) T1 (n) T1 (o) T1 (p) T1

Figure 4: Sequences of agglomerated grids for testing the h-multigrid method. The corresponding
fine grids TJ consist of 511 (a), 1034 (b), 1939 (c) and 3915 (d) elements, respectively.
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matrix order mesh size elements
Set 1

Level 1 (a) 234 0.125 511
Level 2 (e) 174 0.313 83
Level 3 (i) 139 0.499 47
Level 4 (m) 114 0.625 28

Set 2
Level 1 (b) 486 0.079 1034
Level 2 (f) 363 0.189 152
Level 3 (j) 286 0.320 78
Level 4 (n) 240 0.470 42

Set 3
Level 1 (c) 923 0.062 1939
Level 2 (g) 695 0.188 284
Level 3 (k) 563 0.224 144
Level 4 (o) 469 0.373 88

Set 4
Level 1 (d) 1895 0.062 3915
Level 2 (h) 1454 0.096 565
Level 3 (l) 1164 0.167 271
Level 4 (p) 972 0.271 152

Table 1: Order of the matrix Aj , mesh size and number of elements for each of the mesh as in
Figure 4: Set 1 (a,e,i,m), Set 2 (b,f,j,n), Set 3 (c,g,k,o) and Set 4 (d,h,l,p).

TL W-cycle TL W-cycle
3 level 4 level 3 level 4 level

Set 1 Set 2
ν = 2 8 (0.092) 8 (0.092) 8 (0.092) 9 (0.107) 9 (0.109) 9 (0.109)
ν = 4 6 (0.035) 6 (0.036) 6 (0.036) 6 (0.045) 6 (0.046) 6 (0.046)
ν = 6 5 (0.022) 5 (0.022) 5 (0.022) 6 (0.027) 6 (0.027) 6 (0.027)
ν = 8 5 (0.017) 5 (0.017) 5 (0.017) 5 (0.017) 5 (0.017) 5 (0.018)

NCG
it = 29, NPCG

it = 21 NCG
it = 71, NPCG

it = 29

TL W-cycle TL W-cycle
3 level 4 level 3 level 4 level

Set 3 Set 4
ν = 2 8 (0.093) 8 (0.094) 8 (0.094) 9 (0.105) 9 (0.105) 9 (0.105)
ν = 4 6 (0.033) 6 (0.033) 6 (0.033) 6 (0.038) 6 (0.038) 6 (0.038)
ν = 6 5 (0.018) 5 (0.018) 5 (0.019) 5 (0.022) 5 (0.022) 5 (0.022)
ν = 8 5 (0.013) 5 (0.013) 5 (0.013) 5 (0.016) 5 (0.016) 5 (0.016)

NCG
it = 102, NPCG

it = 40 NCG
it = 146, NPCG

it = 58

Table 2: Iteration counts and convergence factor (between parentheses) for the h-multigrid
method for both the two-level (TL) and the W-cycle algorithms as function of ν and for the
W-cycle scheme as a function of the number of levels. The results are compared with the
corresponding iteration counts of the CG/PCG methods. The sequence of agglomerated meshes
is shown in Figure 4.

2 and 3, we notice that for a given number of smoothing iterations ν, the number of iterations
needed to reduce the relative residue below the fixed tolerance does not vary significantly with
respect to the dimension of the underlying algebraic system, as predicted by Theorems 2 and 1.
In addition, we notice that as expected the iteration counts decrease for larger values of ν.

In Table 2, for each set of tessellations, we report also the number of iterations NCG
it for the

Conjugate Gradient (CG) method and the number of iterations NPCG
it for the Preconditioned

Conjugate Gradient (PCG) method accelerated with an incomplete Cholesky precoditioner. The
comparison shows that the proposed method outperforms both the CG and the PCG scheme in
terms of number of iterations required to achieve convergence within the prescribed tolerance
even for a small value ν of smoothing steps.

We observe that even if the agglomerated grids obtained by the considered coarsening
strategy, in general, do not necessarily strictly satisfy the quasi-uniformity Assumption A2, the
numerical results agree with the theoretical expected behaviour. This is probably due to the use
of a limited number of agglomeration levels. If a larger number of level j is considered, ad hoc
post-processing techniques can improve the quality of the meshes and enforce the satisfaction of
Assumption A2. This will be the object of further investigations.
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V-cycle V-cycle
3 level 4 level 3 level 4 level

Set 1 Set 2
ν = 2 9 (0.105) 9 (0.128) 10 (0.132) 10 (0.150)
ν = 4 7 (0.050) 7 (0.66) 7 (0.059) 8 (0.073)
ν = 6 6 (0.033) 6 (0.046) 6 (0.034) 7 (0.048)
ν = 8 5 (0.025) 6 (0.034) 5 (0.023) 6 (0.035)

TL V-cycle TL V-cycle
3 level 4 level 3 level 4 level

Set 3 Set 4
ν = 2 9 (0.114) 11 (0.167) 9 (0.118) 10 (0.151)
ν = 4 6 (0.046) 8 (0.077) 7 (0.049) 7 (0.067)
ν = 6 6 (0.029) 7 (0.048) 6 (0.030) 6 (0.042)
ν = 8 5 (0.020) 6 (0.035) 5 (0.021) 6 (0.030)

Table 3: Iteration counts and convergence factor (between parentheses) for the V-cycle scheme
as function of ν and for the V-cycle scheme as a function of the number of levels. The results
are compared with the corresponding iteration counts of the CG/PCG methods. The sequence
of agglomerated meshes is shown in Figure 4.

10 Conclusions
In this work we have proposed two-level, W-cycle and V-cycle geometric multigrid schemes on
agglomeration-based nested polygonal grids and we have theoretically analysed their convergence.
In particular, we have focused on the solution of the linear system stemming from a primal
Virtual Element discretization of order k = 1 of the Poisson equations. The novelty of our
approach lies in exploiting the flexibility of VEM in dealing with rather general element shapes
to generate nested sequences of tessellations via a geometric agglomeration procedure. However,
the nestedness of the tessellation does not guarantee the nestedness of the virtual element spaces.
This crucial aspect has asked for the use of the general BPX framework [15, 16] for non-nested
multigrid methods to prove that our multigrid schemes converge uniformly with respect to the
mesh size and number of levels. Finally, we have validated the effectiveness of our algorithm
though numerical experiments.
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