
MOX-Report No. 93/2023

Optimal surface clothing with elastic nets

Andrini, D.; Magri, M.; Ciarletta, P.

MOX, Dipartimento di Matematica 
Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

mox-dmat@polimi.it https://mox.polimi.it



Optimal surface clothing with elastic nets

D. Andrini, M. Magri and P. Ciarletta

1 MOX, Department of Mathematics, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy

Abstract

The clothing problem aims at identifying the shape of a planar fabric for covering a target surface in
the three-dimensional space. It poses significant challenges in various applications, ranging from fashion
industry to digital manufacturing. Here, we propose a novel inverse design approach to the elastic clothing
problem that is formulated as a constrained optimization problem. We assume that the textile behaves
as an orthotropic, nonlinear elastic surface with fibers distributed along its warp and weft threads, and
we enforce mechanical equilibrium as a variational problem. The target surface is frictionless, except at
its boundary where the textile is pinned, imposing a unilateral obstacle condition for the reactive forces
at the target surface. The constrained optimization problem also accounts for an elongation condition
of the warp and weft fibers, possibly with bounded shearing angle. We numerically solve the resulting
constrained optimization problem by means of a gradient descent algorithm. The numerical results
are first validated against known clothing solutions for Chebyshev nets, taking the limit of inextensible
fibers. We later unravel the interplay between thread and shear stiffness for driving the optimal cloth
shape covering the hemisphere and the hemicatenoid. We show how the metric of these target surfaces
strongly affects the resulting distribution of the reaction forces. When considering the limit of covering
the full sphere, we show how clothing with elastic nets allows to avoid the onset of singularities in the
corresponding Chebyshev net, by developing corners at the cloth boundary.

1 Introduction

The use of elastic nets for clothing a given surface is widespread in several application encountered in
everyday life, as illustrated in Fig. 1. However, covering arbitrary surfaces in a three-dimensional (3D) space
with planar fabrics and textures poses a significant challenge in various industrial and scientific domains,
including the composite [1] and the fashion [2] industries, as well as in the emerging field of 4D printing
[3]. The manufacturing process leading to the final 3D surface may be executed through manual assembly,

Figure 1: Examples of deforming planar elastic nets into three-dimensional surfaces: (a) preform of a textile
reinforcement for composite materials (adapted from [4]); (b) elastic fishnet socks; (c) foam mesh nets for
fruit shock protection.

with or without guide surfaces, or by harnessing diverse actuating systems. Manual assembly methods are
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involved in processes like creating preforms for textile-reinforced composites and crafting garments from
two-dimensional (2D) patterns. Alternatively, automated shape transformation and assembly techniques
can be employed, such as thermal-responsive origami structures [5] and shape-morphing inflatables [6]. The
initially 2D planar material can be manufactured by conventional means like weaving and knitting, or via
3D printing [7]. Whenever the target surface is non-developable, mechanical stresses occur due to elastic
distortions arising in the forming stage.

Designing the shape transformation is often a backward approach from the manufacturing process, where
the shape of the initial planar material is determined starting from the 3D target surface, taking into
account given physical constraints. Hence, the problem is often conceptualized as an inverse design process
[8]. Several theoretical studies has been done on the subject [9, 10] with applications to the design of tires
[11], turbine-blades [12], and bio-mechanical devices [13].

From a continuum mechanics perspective, the inverse design method is grounded on the so-called inverse
deformation problem [14], with the aim to determine the undeformed, stress-free, configuration of a body,
given its deformed state and applied traction and body forces. Over the past decades, numerous theoretical
and computational techniques have been proposed for solving inverse elasto-static problems (e.g. [15, 16,
17, 18]). Among them, Lagrangian approaches impose equilibrium in the deformed configuration [15], while
Lagrangian-Eulerian formulations are able to account for an arbitrary reference configuration [17]. For both
approaches, the resulting non-linear equations can be solved either directly, for example, through the Finite
Element method, or iteratively, by means of optimization algorithms as in [19, 20].

One of the first attempts to solve the inverse design problem of surface clothing by means of textiles dates
back to Chebyshev [21], who developed a purely geometrical model. In Chebyshev nets, the interwoven
fabric is idealized as a network of inextensible threads. Using this simple idea, Chebyshev was able to
derive analytically the shape of a cloth patch covering a hemisphere. Later, Servant [22, 23] showed that
clothing a generic surface with a Chebyshev net involves a system of two hyperbolic partial differential
equations that are difficult to solve analytically, unless for specific shapes such as the surfaces of revolution
[24, 25]. Additional challenges involve the appearance of geometric singularities, particularly those arising
from local fiber collapse, e.g. those inevitably occurring while covering the sphere [26]. Such singularities
can be typically circumvented by assembling the fabrics using multiple patches sewn together. Later, the
Chebyshev net model was enhanced to incorporate the elastic behavior of the fabric [27, 28], accounting
for threads extension [29], shear rigidity [30], bending stiffness [31] and twisting [32]. In addition to the
aforementioned works, significant progress in the mechanical modelling of textiles has been driven by the
composite industry [1] leading to the development of new accurate constitutive laws [33, 34, 35, 36].

Computational modeling of inverse design of textile materials has also received significant attention
from the computer graphics community. A number of studies focused on automatically generating 2D
sewing patterns from a given 3D model of a garment, as in [37, 38, 39, 40]. Most of these studies propose
purely geometrical approaches. A few assume that the cloth is only capable of sustaining ”quasi-isometric”
transformations [41, 42]. Hence, the target 3D surface is divided into patches, designed to minimize a target
measure of their distortion once flattened onto a plane, in order to generate 2D sewing patterns. Geometric
approaches to cloth patch design have also been extended so as to allow for changes in the shear angles
between the threads, by means of Chebyshev nets [43, 44]. In doing so, the authors were able to better
emulate the anisotropic response typical of woven fabrics. Finally, further models considered physically-
based approaches to get a more realistic description of cloth mechanics and cloth-body interactions (e.g.
[45, 46, 47, 48]). Notable contributions considered a strain energy decomposition into in-plane stretch, along
the warp and weft directions, and shear effects to model the mechanics of woven fabrics [45, 47]. On the
contrary, an isotropic hyperelastic membrane model has been proposed for modeling the optimal design of
skintight clothes [48] .

Despite these noticeable results in the state-of-the-art, most existing works rely on multiple approxi-
mations on the mechanical response in order to reduce the computational effort of simulating the fabric
response efficiently. Here, we propose a mechanically rigorous approach to the clothing problem, developing
a robust computational framework to derive an optimal shape of elastic textiles for covering a given surface,
for applications to additive manufacturing and optimal design of conventional textiles.

The remainder of the paper is organized as follows. In Section 2, we set the notation and the functional
setting of our optimal clothing problem. In Section 3, we define the main geometric and mechanical assump-
tions for deriving the corresponding mathematical model as a constrained optimization problem. In Section
4, we describe the numerical implementation of the model. The numerical results are presented in Section 5
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for several test cases. In Section 6, we finally resume some critical discussion and concluding remarks.

2 Optimal clothing problem

2.1 Notation and problem setting

Let us consider an infinitely extended textile T ,M being a bounded region of it by which we aim at covering
a given target surface N .

We model the textile as a two-dimensional continuous body, described by a surface immersed in the three
dimensional Euclidean space E3. We assume its reference relaxed configuration T ⊂ E3 to be planar. Hence,
upon fixing a reference orthonormal basis Ei, i=(1,2,3), for E3, for the ease of notation we identify T with
the subspace of E3 spanned by the basis E1 and E2. In addition, the set T is equipped with two tangent
vector fields v and w whose integral lines represent warp and weft threads of the textile. In particular, we
assume that the warp and weft lines are straight and mutually orthogonal in the reference configuration.
Hence, it is convenient to set v = E1 and w = E2 to fix the spatial orientation of the patch, introducing the
corresponding structural tensors V = E1 ⊗E1 and W = E2 ⊗E2.

The flat patchM undergoes an elastic deformation f :M→ E3 in order to cover the target surface N ,
namely

f(M) = N (target shape condition).

To ensure coverability, the target surface N is assumed to be orientable with unit normal vector denoted
by n. Moreover, we assume that the orientation of n indicates the side of the target surface that can be
covered. Specifically, n is chosen to point towards the region of space through which the textile can approach
N . We denote with X = (X1, X2) the coordinates of the material position in the reference fabric T written
with respect to Eα, α = (1, 2). Moreover, upon introducing the current orthonormal reference frame ei,
i = (1, 2, 3), we indicate with x = (x1, x2, x3) the coordinates for the spatial counterpart of X, i.e. x = f(X).

We then introduce the differential of the map f as F = (∂Xα
fi)ei ⊗ Eα where fi denotes the i-th

component of the map f [49]. There, we embrace the Einstein convention of repeated dummy indices, with
Latin indices ranging in {1, 2, 3} while Greek indices in {1, 2}. Accordingly, C = FTF is the metric tensor
on M. Let us also define the stretches along the threads as λα =

√
CEi ·Ei and the shear deformation

γ =
√
CE1 ·E2/(λ1λ2).

We account for an elastic response through the definition of an elastic free energy. Hence, we define on
T a free energy density W = W (C,V,W) per unit reference area so that the energy EP in the bounded part
P ⊂ T is given by

EP =

∫
P
W (C,V,W)

Finally, the target surface is supposed to exert no friction, except at its boundary ∂N where the textile is
pinned. In mathematical terms, the pinning assumption translates into Dirichlet boundary conditions for the
deformation f , namely, f = f̄ on ∂M. Accordingly, the reaction forces acting on the fabric are everywhere
normal to the target surface, except on its boundary.

2.2 Optimal shape control of the patch

Upon stretching a fabric, there are infinitely many patches that, once pinned on ∂M, can be used to cover a
target surface. Our goal is to search for the optimal shape and pinning of the patch, in the sense that they
minimize a given cost functional C . Thus, we aim at solving the following minimum problem

min
M,f̄

C (M, fM,f̄ ) , (1)

where fM,f̄ is the elastic deformation ensuing from the placement of the patch onto the target surface.
We remark that, since the target surface N is frictionless, only conservative forces act on the system and
hence the mechanical equilibrium is simply obtained by elastic energy minimization. Consequently fM,f̄ is
computed as

fM,f̄ = argmin
f
EM(f) s.t. f(M) = N , f = f̄ on ∂M . (2)

3



Depending on the stretch of the fibers, the fabric can deform in three different manners [29]. If both λ1

and λ2 are larger than one, textile fibres are locally extended and the textile is said to be elongated. On
the contrary, half-slack and slack configurations are obtained when one or both fibre stretches are less than
unity, respectively. The last two cases arise since it is commonly assumed that textile fibres are not capable
of sustaining compressive forces without buckling and wrinkling. To avoid this undesired circumstance, the
optimalM must be searched among those patches ensuring only elongated configurations, namely

λi ≥ 1, i = 1, 2 . (3)

In addition, notice that the shear deformation γ equals the cosine of the angle between the fibres of the
deformed textile. Therefore, by definition, −1 ≤ γ ≤ 1. The case γ = 0 identifies the condition whereby
the two families of fibres remain orthogonal after deformation. On the contrary, initial mutually-orthogonal
fibres become parallel in correspondence of the bounds γ = ±1. Such a limit condition identifies a singular
configuration where the two fibres collapse onto one line and, due to the vanishing of areal deformation√
detC, the textile fails to locally cover the target surface. Moreover, it has been observed that large shear

angles can lead to wrinkling phenomena known as shear locking [50]. Therefore, the optimal patch must be
chosen so that the shear angle is bounded, namely

|γ| ≤ γmax < 1 . (4)

Finally, it is important to remark that the target shape condition corresponds to a bilateral constraint,
preventing a textile from both penetrating the target surface and detaching from it. However, a unilateral
constraint is closer to the physical reality, ensuring reaction forces whose normal component τ has a positive
sign. Thus, the optimal patch must is searched among those satisfying the additional constraint

τ ≥ 0, (5)

which we will refer to as the unilateral obstacle condition.
The goal of the following sections is to precisely formalize and numerically solve the optimal clothing

problem given by Eq. (1) together with the constraints expressed by the equations (2), (3), (4) and (5).

3 Mathematical Model

3.1 Geometric setting

In the following, we assume that bothM and N are smooth closed surfaces with non empty boundaries ∂M
and ∂N , respectively. The latter are assumed to be piece-wise regular. In order to simplify the analysis,
we restrict ourselves to the case where bothM and N feature a disk topology, being described by a single
chart. As illustrated in the commutative diagram of Fig. 2, we parameterize both M and N in the same
parameter space U , by means of two smooth invertible functions ψ : U ⊂ R2 → T and φ : U ⊂ R2 → E3,
respectively. Symbol θ = (θ1, θ2) refers to the curvilinear coordinates of the parameter space U and ∇θ
denotes the gradient with respect to θ.

Since we are interested in determining the shape of the undeformed textile patch, we treat the function ψ
as the unknown of the problem. At the same time, the parametrization φ is fixed and hence the deformation
map f is entirely determined by ψ (see Fig. 2). Accordingly, f can be conveniently rewritten as

f = φ ◦ψ−1 , (6)

showing that our inverse deformation problem is completely ruled by the function ψ.
According to Eq.(6), we can recast the surface deformation gradient in terms of the unknown ψ as follows

F = ∇θφ (∇θψ)−1 , (7)

Similarly, the metric tensor C = FTF rewrites as

C(ψ) = (∇θψ)−T a(∇θψ)−1 , (8)

where a = ∇θφT∇θφ is the first fundamental form of the target surface N . The local change in area between
the reference and deformed textile is measured by the scalar quantity J =

√
detC. Finally, Jψ = det∇θψ

denotes the Jacobian of the unknown ψ.
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Figure 2: Commutative diagram relating the parameter set U , the material manifold M, and the target
surface N

3.2 Mechanical equilibrium

In-plane equilibrium As already anticipated in Eq.(2), the mechanical equilibrium of the patch can be
formulated as a variational problem for the minimization of the elastic energy, namely

min
f∈Vf (M)

E(f) . (9)

where Vf (M) = {f :M→ E3 | f(M) = N , J > 0 and f = f̄ on ∂M}. The definition of the set Vf includes
the previously mentioned target shape condition and Dirichlet conditions on the boundary. Moreover we
require J to be positive so as to guarantee the orientation preserving condition for the map f .

To enforce mechanical equilibrium in the optimization algorithm, it is more convenient to consider the
stationary condition of the problem stated in Eq.(9), as expressed by the principle of virtual displacements.
It reads

find f ∈ Vf (M) such that

∫
M

P : ∇Xv = 0 ∀v ∈ δVf (M) , (10)

where P = DFW denotes the first Piola-Kirchhoff stress tensor, A : B := tr (ATB) is the usual scalar
product between second order tensors, and δVf (M) represents the set of admissible variations of f , actually
the set of virtual displacement. The symbol ∇X denotes the gradient with respect to material coordinates
Xα on the reference patch, and hence ∇Xv = vi,αei ⊗Eα.

Due to the target shape condition, only vector fields tangent to N are allowed inside δVf (M). Moreover,
as a consequence of the Dirichlet boundary conditions, the variations v must vanish on ∂M. Hence, the
space of admissible variations is defined as

δVf (M) = {v :M→ R3 |v(X) ∈ Tf(X)N ∀X ∈ M̊ and v = 0 on ∂M}, (11)

where Tf(X)N denotes the tangent space to N at the point f(X), M̊ being the interior of the setM.

Out-of-plane equilibrium and reaction forces Once the in-plane equilibrium is solved, we can easily
recover the reaction forces τ that the target surface exerts on the textile. This is achieved by relaxing
the kinematic constraints within the space of virtual displacements and offsetting the additional degrees of
freedom by adding the reactive work performed by τ . Hence, we have

find τ such that

∫
M

P : ∇Xv −
∫
M
τ · v = 0 ∀v , (12)
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where the functional spaces for τ and v are left unspecified since, at least on a formal level, no special
requirement is needed at this point. By testing Eq.(12) with v ∈ δVf (M) and exploiting Eq.(10), we
immediately deduce that τ must be of the form τ = τn, n being the normal to N in f(X). Consequently,
we can derive an equation in the unknown τ simply by testing Eq.(12) with v = vn. We finally get

find τ such that

∫
M

P : ∇X(vn)−
∫
M

τv = 0 ∀v , (13)

which allows us to compute the reaction force.

Pull-back into the space of parameters The target shape condition is enforced by writing f as in
Eq. (6). Indeed, we recall that, through ψ, we gain control over both on f and M, thereby fulfilling the
constraint f(M) = N . However, in order to apply this change of variable, it is necessary to pull back Eq.
(10) onto U , as ψ is defined on the space of parameters. From Eqs. (7) and (8), and by means of the chain
rule, we get

∇Xv|ψ(θ) = ∇θv(θ)(∇θψ(θ))−1 , (14)

and, therefore, Eq. (10) can be formulated on U as

find ψ ∈ Vψ(U) such that

∫
U
JψP(∇θψ)−T : ∇θv = 0 ∀v ∈ δVf (U) . (15)

As for the functional spaces, it trivially follows from the definition of Vf (M) and δVf (M) that Vψ(U) = {ψ :

U → T | Jψ > 0 and ψ = ψ̄ on ∂U} and δVf (U) = {v : U → R3 |v(θ) ∈ Tφ(θ)N ∀θ ∈ Ů and v = 0 on ∂U}.
In particular, as it is evident from the definition of δVf (U), the elements of Tφ(θ)N can be expressed solely
in terms of the parametrization φ. Specifically, v is an element of δVf (U) if and only if vi = (∂θαφi)uα for
some vector field u : U → R2, vanishing on ∂U . Hence, by direct application of the chain rule it follows that

∇θv = ∇∥u ,

where, for the ease of notation we introduced the linear operator ∇∥ defined as (∇∥w)iα := (∂θα∂θβφi)wβ +
(∂θβφi)(∂θαwβ). Finally, the variational form of the mechanical equilibrium becomes

find ψ ∈ Vψ(U) such that

∫
U
JψP(∇θψ)−T : ∇∥u = 0 ∀u ∈ U(U) , (16)

where U(U) = {u : U → R2 |u = 0 on ∂U}.
As for Eq.(13), it can be easily pulled back onto U as follows

find τ such that

∫
U
Jψ(N[v]− τv) = 0 ∀v (17)

where, for the ease of notation, we introduced the linear operator N defined as

N[w] = (P∇θψ−T : ∇θn)w +∇θψ−1PTn · ∇θw. (18)

Eqs.(16,17) represent the in-plane and out-of-plane equation of mechanical equilibrium, respectively.

3.3 Constitutive law for the elastic net

In order to model the mechanical behavior of woven fabrics, we choose a strain energy density that is
representative of materials with two families of fibres, i.e. warp and weft threads [51, 52]. Due to our earlier
geometrical assumptions, the strain energy density is assumed to be orthotropic along the directions of the
fibers, namely, E1 and E2. Moreover, we assume that only a membrane energy can be taken into account,
as in most practical applications the bending stiffness of conventional textiles can be disregarded. Hence,
according to [53, 54], W can be expressed as a function of the following independent invariants of C,V,W:

I1 = trC , I4 = E1 · CE1 , I6 = E2 · CE2 , I8 = E1 · CE2 ,
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thus resulting in the general form
W (C,V,W) = W (I1, I4, I6, I8) .

In particular, following [55] we consider an additive splitting of W as follows

W (C,V,W) = W1(λ1) +W2(λ2) +WS(γ) . (19)

where, λ1 =
√
I4, λ2 =

√
I6, and γ = I8/

√
I4I6. As for the three contributions to the elastic energy,

W1(λ1) and W2(λ2) model the energetic contributions associated with fibres extensions along E1 and E2,
respectively, whereas WS(γ) accounts for in-plane shear elastic response.

3.4 Optimization

Since both the shape of M and the deformation f are controlled by ψ, it is sufficient the adopt a cost
functional depending only on ψ. Specifically, we take

C (ψ) =

∫
U
χ(ψ) , (20)

We require that the symmetries of the density χ to be a subgroup of those of the mechanical problem (see
Eq.(10)). Notice that Eq.(10) is only invariant up to translations of ψ, since rotations are ruled out once
we fixed the orientation of the threads along E1 and E2. Hence, χ inherits those minimal symmetries, also
being invariant up to translations of ψ. In light of the symmetries of χ and of the equations (16),(17), (20),
the optimal clothing problem can be recast as

min
ψ∈V̂ψ(U)

C (ψ) subject to: (21)

(i) mechanical equilibrium:

∫
U
JψP(∇θψ)−T : ∇∥u+

∫
U
Jψ(N[v]− τv) = 0 ∀v, ∀u ∈ U(U),

(ii) elongated fiber condition: λ1(θ) ≥ 1 and λ2(θ) ≥ 1, ∀θ ∈ U ,

(iii) shear limit: |γ(θ)| ≤ γmax ∀θ ∈ U ,

(iv) obstacle condition: τ(θ) ≥ 0 ∀θ ∈ U ,

where V̂ψ(U) = {ψ : U → T }/Vtrasl, with Vtrasl the space of translations. Taking the quotient by Vtrasl is
necessary due to the translation invariance of both C and the constraints. Moreover, the newly defined set
V̂ψ(U) does not account either for the conditions Jψ > 0 or for ψ = ψ̄ on ∂U , that are instead provided in
Vψ(U). Indeed, the condition Jψ > 0 directly follows from the constraint (i) and (ii). In addition, we do not
impose any Dirichlet conditions since we want to select the optimal pinning of the textile on the boundary.
This requirement is tantamount to enlarging the set Vψ(U) by including all the possible ψ̄ on ∂U .

4 Numerical implementation

We numerically solve the optimization problem in Eq. (21) by means of a gradient descent algorithm.
Different techniques are employed to handle the four constraints. Specifically, mechanical equilibrium is
enforced exactly by means of Lagrange multipliers, whilst the remaining three algebraic constraints are
enforced through the interior point method [56] to reduce the numerical stiffness. Thus, we search for the
optimal solution as a stationary point of the following augmented Lagrangian

L (ψ,η,Λ) =C (ψ) +

∫
U
JψP(∇θψ)−T : ∇∥η +

∫
U
Jψ(N[Λ]− τΛ)+

2∑
α=1

∫
U
µα log(λα − 1) +

∫
U
µS log(γ2

max − γ2) +

∫
U
µτ log(τ) ,

(22)
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Besides the shape map ψ, symbols η and Λ denote the Lagrange multipliers associated to the constraint
enforcing mechanical equilibrium in the tangential and transversal directions, respectively. Symbols µ1,2,
µS , and µτ are instead tuning coefficients related to the interior point method. Their magnitude must be
be set to ensure a suitable trade-off between numerical stiffness and accuracy: small values guarantee an
accurate approximation of the inequality constraints but result into a stiffer problem.

Solving the nonlinear stationary conditions of L in a one-shot manner, by means of a Newton-Raphson
method, is practically unfeasible due to the difficulty of finding suitable initial guesses for the solution
ensuring convergence of the algorithm. We circumvent this difficulty by allowing ψ to evolve according to a
gradient flow L until a steady state is attained. Specifically, in order to get a regular and smooth evolution,
we solve the following H1

0 (U)-gradient flow

(∂tψ, δψ)H1
0
+DψL [δψ] = 0 ∀δψ ∈ δV̂ψ(U) , (23a)∫

U
JψP(∇θψ)−T : ∇∥u = 0 ∀u ∈ U(U) , (23b)∫

U
Jψ(N[v]− τv) = 0 ∀v . (23c)

Here, t refers to a pseudo-time variable ruling the gradient flow evolution, while (u,v)H1
0 (U) :=

∫
U ∇θu : ∇θv

denotes the H1
0 (U)-scalar product. Notice that, since rigid-body deformations has been ruled out, (·, ·)H1

0 (U)

is indeed a scalar product.
The system of equations (23) is numerically integrated in the pseudo-time variable t using the Backward

Euler Method while spatial discretization is performed through the Finite Element Method. The numerical
implementation of the discretized problem has been carried out in a monolithic fashion using the library FEn-
iCS for solving partial differential equations using Finite Element methods [57]. Specifically, we approximate
ψ with second order elements, η and Λ with first order elements.

Finally, since we handle the unilateral constraints (ii)-(iii)-(iv) through of a logarithmic barrier, it is
essential to select an initial guess ψ(t0) that is consistent with these constraints. To this purpose, we set
ψ(t0) as a suitable reshaping of the parameter space, as detailed case by case for each numerical examples.
Instead, the constraint given by mechanical equilibrium does not require a compatible initialization. It can
be relaxed during the first iterations of the algorithm by replacing the gradient flow in the first centering
step of the interior point method with the following saddle-point dynamics

(∂tψ, δψ)H1
0
− (∂tη,v)H1

0
+Dψ,ηL [δψ,v] = 0 ∀δψ ∈ δV̂ψ(U), ∀v . (24)

Once mechanical consistency is achieved in the first centering step, then the interior point method proceeds
normally as detailed in Algorithm 3.
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Gradient-based optimization algorithm

Choose: µ = (µα, µS , µτ )
Set: ψ(t0) and µ0 > µ
% interior point method

% Solve saddle point dynamics Eq.(24) until steady state, with parameters µ0

while (∂tC ≥ ε) do
Find ψj+1, ηj+1 s.t.
(ψj+1−ψj , δψ)H1

0 (U)− (ηj+1−ηj , δη)H1
0 (U)+∆tD(ψ,η,Λ)L (ψj+1,ηj+1)[δψ, δη, δΛ] = 0 ∀δψ, δη, δΛ

tj+1 = tj +∆t
end while
µ1 = µ0/2
i = 1
while µi > µ do

% centering step: solve Eq.(23) until steady-state with parameters µi

while (∂tC ≥ ε) do
Find ψj+1 s.t. (ψj+1 −ψj , δψ)H1

0 (U) +∆tD(ψ,η,Λ)L (ψj+1)[δψ, δη, δΛ] = 0 ∀δψ, δη, δΛ
tj+1 = tj +∆t

end while
choose µi+1 = µi/2
i← i+ 1

end while

Figure 3: Scheme of the implementation of the optimization algorithm. First, we select a feasible ψ(t0) with
respect to the unilateral constraints (ii)-(iii)-(iv) and choose a value for the barrier parameters µ that ensures
a good trade-off between accuracy and numerical stiffness. Subsequently, we optimize ψ using Eq. (24) to
additionally enforce mechanical equilibrium. Finally, we iterate through multiple centering steps gradually
decreasing the barrier parameters µi until the optimal µ is achieved.
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5 Numerical results

In this section, we illustrate the potential of the proposed optimization tool through a series of numerical
examples. In particular, we consider two different target surfaces: the unit sphere (as a prototype of surface
with positive Gaussian curvature) and the hemicatenoid (as a prototype of surface with negative Gaussian
curvature). We parameterize the former surface using the stereographic projection, namely

φsph(θ1, θ1) =

{
2 r

θ1
1 + r2(θ21 + θ22)

, 2 r
θ2

1 + r2(θ21 + θ22)
,
−1 + r2 (θ21 + θ22)

1 + (θ21 + θ22)

}
,

with θ1 and θ1 belonging to the unit disk. The parameter r is a positive constant that quantifies the amount
of spherical surface to be clothed: r = 1 corresponds to the clothing of a hemisphere, while the whole sphere
is obtained for r →∞. The hemicatenoid is instead described by the explicit parametrization

φcat(θ1, θ1) = {cosh θ2 cos θ1, cosh θ2 sin θ1, θ2} ,

where (θ1, θ2) ∈ (0, π)× (−1, 1).
In all the examples that follow, we assume that the strain-energy density has the following expression

W (C) = Kc (I4 − 1)
2
+Kc (I6 − 1)

2
+KSI

2
8 , (25)

where parameters kc and ks refer to the threads and shear stiffness, respectively. This constitutive choice
ensure that the orthotropic strain energy function is polyconvex [58], thus an elastic solution exists.

Moreover, we take as cost functional the elastic energy itself, namely

C(ψ) =
∫
M

W (C(ψ)) . (26)

For what concerns the barrier coefficients involved in the interior point method, all the simulations have
been finally performed by setting µ0 = 10 and µα = µS = µτ = 0.001.

5.1 Clothing with Chebyshev nets

We first benchmark the proposed optimization algorithm against some known results in the Chebyshev net
theory. According to [25, 59], it is indeed possible to clothe the unit-hemisphere avoiding any geometric
singularity using a Chebyshev net, i.e. an ideal fabric made of inextensible threads and negligible shear
resistance. Consequently, Chebyshev nets have zero elastic energy and then represent a global minimum of
C. Hence, the benchmark consists in verifying that, our optimization procedure using ks = 0 results into a
Chebyshev net.

We can take advantage of the existence of such nets and facilitate the initialization of the algorithm by
getting rid of all the inequality constraints.

Figure 4a shows the shape of the optimal patch covering the hemisphere compared against the one
obtained through the procedure illustrated in [59], relying on the Chebyshev net theory. We remark that,
there are generally many Chebyshev nets covering a given target surface. In order to obtain a specific
solution, it is necessary to impose additional conditions to the optimization problem. For this purpose,
the following results are obtained by requiring the patch to be symmetric with respect to the vertical and
horizontal axes.

From this comparison, it turns out that the optimization indeed converges toward a Chebyshev net as,
predicted, since the curves reported in Fig. 4a are practically identical. In Fig. 4b we represent the patch
in its deformed configuration once it has been placed onto the target surface. Because of the inextensibility
of the threads, the textile exhibits only shear deformations by changing the angle between the initially
orthogonal threads. More precisely, the spatial distribution of the shear γ is plotted in Fig. 5a. We find that
γ vanishes along the axes of symmetry of the patch, where the deformed fibres remains mutually orthogonal.
Conversely, the shear angle undergoes significant variations along the diagonal directions, ensuring that the
fabric conforms effectively to the target surface. In Fig. 5b we plot the profile of γ along the line ab, drawn
on the undeformed patch. Even in this case, the outcomes of the optimization procedure are in perfect
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Figure 4: Clothing a unit-hemisphere with a Chebyshev net. (a) Resulting optimal patch shape compared to
the one obtained from the theoretical Chebyshev net solution. (b) Deformed shape of the optimal textile patch
onto the target surface. A regular array of mutually orthogonal threads have been sketched on the fabric patch
(top left) to mark fabric deformation (right). For the initial condition we set ψ(0) = {0.5 θ1, 0.5 θ2}.

agreement with the Chebyshev net theory, by which the shear deformation yields the following asymptotic
expression [59]

γ(s) ≃ cos

(
π

2
− s2

2
+

s6

144

)
, (27)

s being the arc-length of line ab.

Figure 5: Clothing a unit-hemisphere with a Chebyshev net. (a) Spatial distribution of the shear angle γ for
the optimal patch shape. (b) Plot of the shear deformation γ along the reference line ab and comparison with
the Chebyshev net model Eq. (27). (c) Evolution of the non-dimensional cost function of C/(2πkc) versus
the pseudo-time.

In Fig. 5c we report the decay of the cost function C along the gradient flow to illustrate the performance
of the optimization algorithm. Large values of the cost function are obtained at first, since high values of
thread stretches are required to deform the fabric onto the surface. Subsequently, the algorithm modifies the
shape of the textile patch to release the fibre elongation. The optimal solution is eventually attained for a
non-dimensional strain energy of approximately 1× 10−7, where both λ1 and λ2 are equal to 1 everywhere.
A similar result is found for clothing the hemicatenoid with a Chebyshev net. In Fig. 6 we report the resulting
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optimal shape of the patch along with its corresponding deformed shape, together with the distribution of
the shear angle.

Figure 6: Clothing the hemicatenoid with a Chebyshev net. (a) Resulting optimal patch shape for vanishing
shear rigidity. (b) Deformed shape of the optimal textile patch onto the target surface. (c) Spatial distribution
of the shear angle γ for the optimal patch shape. For the initial condition we set ψ(0) = {0.5 θ1, 0.5 θ2}.

5.2 Clothing with elastic fabrics

In the previous section we considered the limit of Chebyshev nets as ks/kc → 0. In this scenario, the deformed
configuration is solely driven by the geometrical properties of the target surface N : elasticity ceases to be a
factor, as the strain energy vanishes and elastic forces no longer influence the structure.

In this section, we tackle the more general problem of finding optimal covering patches with elastic fabrics.
We will refer to them as optimal elastic patches. For the model at hand, they arise when non-developable
surfaces are clothed with fabrics having non vanishing shear and threads rigidity. Alternatively, they can
also emerge when the shear deformation γ is constrained by an upper limit.

Besides ensuring mechanical equilibrium, our numerical simulation take into account for the constraints
enforcing the tensile condition of the threads and the shear limit. We remark that, at this stage, the shear
bound is implemented solely to prevent singular configurations from appearing along the optimization path
by taking γmax = 0.95. In practice, the optimal solution displays shear deformations well below the upper
limit γmax which then does not affect the shape of the patch. For the sake of clarity, we first disregard the
constraint acting on the reaction force τ , that will be considered in a later step.

In figures 7a and 8a we plot the shape of optimal elastic patches for different values of ks/kc for the cases
of the hemisphere and the hemicatenoid, respectively. Such solutions are depicted against the corresponding
Chebyshev net patch (i.e. ks = 0) to illustrate the effect of the shear rigidity of the fabric on the resulting
patch shape. The optimal patch clothing the hemisphere shrinks as the ratio ks/kc increases. Moreover,
the solution gradually displays a morphological transition from a diamond shape to a squared one. This
behavior is clearly driven by the interplay between the threads stiffness and shear rigidity. In Fig. 7b we
plot the deformed patch for the case ks/kc = 100. By comparing it with Fig. 4b, we see that a higher shear
rigidity promotes smaller shear deformations at the expense of greater fiber stretches. The elongation of the
threads becomes apparent when comparing the dimension of the fabric’s unit cell in the two cases. This
is also apparent in Figs. 7c-d, illustrating the fiber stretch λ1 and shear angle γ for the hemisphere with
ks/kc = 100. We readily see that most of the stretch occurs in the interior of the patch with a maximum of
a 80% elongation of the threads (identical considerations hold for λ2 by spherical symmetry). Conversely,
γ is everywhere very low with extreme values of about ±0.075. Therefore, orthogonality between fibres is
practically preserved in the deformed fabric.

A significant shape change with respect to variations of the the ratio ks/kc is also observed for the
hemicatenoid, as depicted in Fig. 8a. In particular, the area of the patch decreases as we increase the
shear rigidity, and an orthotropic symmetry along the vertical and horizontal axes is gradually established.
Similar considerations to the ones reported for the unit-hemisphere hold concerning the interplay between
shear rigidity and thread stiffness. However, the elongation of the fibers localizes in this case close to the
patch boundaries. Such a difference is correlated with the opposite sign of the Gaussian curvature, which
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Figure 7: Clothing the unit-hemisphere with an elastic fabric. (a) Optimal patch shape resulting for different
values of the ratio ks/kc. (b) Deformed shape of the optimal textile patch onto the target surface in the case of
ks/kc = 100. (c)-(d)-(e) Spatial distribution of the resulting stretch λ1, shear angle γ, and non-dimensional
normal reaction force τ/kc in the case of ks/kc = 100. For the initial condition we set ψ(0) = {0.5 θ1, 0.5 θ2}.
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Figure 8: Clothing the hemicatenoid with an elastic fabric. (a) Optimal patch shape resulting for different
values of the ratio ks/kc. (b) Deformed shape of the optimal textile patch onto the target surface in the case
of ks/kc = 1. (c)-(d)-(e) Spatial distribution of the resulting stretch λ1, shear angle γ, and non-dimensional
normal reaction force τ/kc in the case of ks/kc = 1. For the initial condition we set ψ(0) = {0.5 θ1, 0.5 θ2}.
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imposes a greater fiber stretch to accommodate the local metric of the target surface in proximity to the
boundaries.

We further focus on the analysis of the reaction force exerted by the target surface. In Figs. 7e and 8e,
we plot the spatial distribution of τ/kc for the hemisphere and the hemicatenoid, respectively. In the former
case, τ is everywhere non-negative and attains its maximum value in the center of the patch. Hence, the
obstacle condition is everywhere satisfied. Conversely, the obstacle condition is violated in the case of the
hemicatenoid since τ attains both positive and negative values. The enforcement of the unilateral obstacle
condition in this context will be discussed in a dedicated section.

Finally, we depict in Fig. 9 a convergence plot of the optimization algorithm. The Lagrangian objective
function L exhibits a staircase profile where the jumps in Fig. 9a corresponds to the initiation of each
centering step of the interior point method. In fact, the contributions associated to the barriers change
significantly at each iteration of the parameter µ. The jumps are more pronounced at the beginning of the
simulation, as the absolute variation of µ is bigger. In addition, the objective function attains negative values
in the first iteration of the interior point method (i.e. µ = 10). This happens because the barrier function is
the dominant energetic contribution in the first stages, as shown in Fig. 9b. As the optimization proceeds,
the magnitude of the barrier function progressively decreases, eventually becoming negligible compared to the
cost function. For completeness, Fig. 9b also details the profile of the cost function showing the convergence
toward a local minimum.

Figure 9: Convergence of the optimization algorithm based on the interior point method. (a) Plot of the
non-dimensional objective function L/(2πkc) against pseudo-time. (b) Plot of the non-dimensional cost
function and non-dimensional barrier function against pseudo time. Both the reported results refer to the
hemispherical surface in the case ks/kc = 100.

5.3 Clothing large portions of a sphere

It is worth remarking that the problem of finding a Chebyshev net may not always have a solution, even
for target surfaces topologically equivalent to a disk [60, 61, 62, 63]. Indeed, the presence of singularities
resulting from localized fiber collapse (i.e. γ = ±1) hinders the existence of a global solution. For instance,
covering large portions of the unit sphere leads to the formation of a locus of singularities that, in the (X1,
X2) plane, approximates the hyperbola X2 ≃ ±1.86/X1 [26].
Geometric singularities can be properly detected by our optimization procedure as illustrated in Fig. 10,
where we plot the shape of Chebyshev net patches covering different portions p of the unit-sphere. We find
that increasing p does not significantly alter the shape of the patch with respect to the one obtained for
the hemisphere. The locus of singularities is delineated by a dashed line Fig. 10a, revealing that singular
solutions appear beyond a portion threshold p ≈ 85% . This fact is also confirmed by Fig. 10b, showing
the maximum value of the shear angle for different values of p. In Fig. 10c-e we plot both the deformed

15



and undeformed configurations of a Chebyshev net covering 85% of the sphere. In particular, in Fig. 10c-d,
we can appreciate four geometric singularities localized on the boundary of the patch, where warp and weft
threads locally collapse onto the same line.

Figure 10: Clothing large portions of the unit-sphere with a Chebyshev net. (a) Plot of the patch shapes
obtained for increasing percentage of the covering spherical area. (b) Evolution of the simulated maximum
shear angle for the considered covering patches. (c-d-e) Shape of problem singularities and spatial distribution
of the shear angle for a Chebyshev net covering 85% of a unit-sphere. For the initial condition we set
ψ(0) = {0.1 θ1, 0.1 θ2} in all the considered cases.

The emergence of singularities hinders the fabrication of single-piece covering nets. A common strategy
to avoid fiber collapse consists in covering the target surface with multiple patches sewn together. Cut or
sewn lines can be designed with the aid of optimization procedures as proposed by [44]. Here, we propose
a new strategy to avoid such singularities in single-patch covering by means of elastic fibers. In the context
of our optimization problem this can be achieved by enforcing an upper bound for |γ|, as shown in Fig. 11.
We perform the simulations considering a fabric with vanishing shear rigidity and set the upper bound for
γ at γmax = cosπ/6). For p < 60%, the shear never exceeds γmax and so the optimal elastic patch is the one
obtained for Chebyshev nets (compare Fig. 11a with Fig. 10a). Instead, a significant shape change occurs
when p > 60%, as the unilateral shear constraint becomes active. Moreover, the area of the undeformed
patches does not monotonically increase with p. Specifically, the larger patch is obtained for p ≈ 85%.
Indeed, covering larger areas under the shear constraint, requires a higher thread elongation, which causes
a significant areal reduction of the patch (compare the patch shapes for p = 80% and p = 90% in Fig.
11a). In Figs. 10b-c, we represent the deformed state of an elastic fiber net covering 85% of the sphere:
differently from the Chebyshev net in 10c-d, there are no geometric singularities. Furthermore, it is worth
noting that for high values of p, the optimal patch exhibits a singular boundary with four corners. This
intriguing observation suggests that fiber elasticity may eliminate the net’s singularities and may trigger
singular features in the shape of the patch (compare Fig. 10e with Fig. 11e). Finally, we present stretch
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and stress states of the resulting fabric in Figs. 11d-f.

Figure 11: Clothing large portions of a unit-sphere with an elastic net (ks = 0). (a) Plot of the patch shapes
obtained for increasing percentage of the covering spherical area. (b-c) Side and bottom views of the elastic
net covering 85% of the unit-sphere. (d-e-f) Spatial distribution of the fabric stretch λ1, shear angle γ, and
dimensionless reaction force τ/kc for an elastic net covering 85% of a unit-sphere. For the initial condition
we set ψ(0) = {0.1 θ1, 0.1 θ2} in all the considered cases.

5.4 Application of the unilateral obstacle condition

Among the examples detailed in Sec.5.2, only some of them display a spatial distribution of the normal
reaction force τ consistent with the unilateral obstacle condition (i.e. τ ≥ 0). In particular, in the case of the
hemicatenoid, τ assumes both positive and negative values. To address this issue, we performed additional
numerical simulations for the hemicatenoid under the same conditions adopted in Sec. 5.2, while enforcing
the unilateral constraint τ ≥ 0. We remark that the initial guess for the solution must now be compatible
with the obstacle condition as well. This is in general a non trivial task that must handled carefully in order
to ensure numerical convergence.

In Fig. 12 we compare the shapes of the patches with and without enforcing the unilateral obstacle
condition, for low (ks/kc = 1) and high (ks/kc = 100) values of the relative shear stiffness. For ks/kc = 1,
the two shapes exhibit only minor differences whereas higher ratios lead to great shape variations. The
latter are primarily achieved through a rotation of the patch, which breaks the orthotropic symmetry of the
problem (see Fig. 12c-d). Such a difference might be attributed to the different distribution of the reaction
force shown in Figs. 12a-b. Indeed, the region with incompatible reaction forces (τ < 0) is much smaller for
low shear stiffness and is primarily restricted to the lateral part of the patch. Not surprisingly, the magnitude
of relative rotation continuously increases with the rise of the shear stiffness, as reported in Fig. 13. There
we represent the optimal patch shape constrained with τ ≥ 0 for increasing values of ks/kc.
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Figure 12: Resulting normal reaction force τ/kc for the target hemicatenoid without the unilateral obstacle
condition for (a) ks/kc = 1 and (b) ks/kc = 100. The superposed black curves mark locus of points with
τ = 0. (c-d) Comparison between optimal patch shapes with and without the unilateral obstacle condition
τ > 0 for ks/kc = 1 and ks/kc = 100, respectively. For the initial condition we set ψ(0) = {0.3 θ1, 0.4 θ2}.

Figure 13: (Top) Simulated optimal patch shapes for the target hemicatenoid shown at increasing relative
shear stiffness ks/kc (i.e. ks/kc = 70, 80, 90, 100) along with the obstacle condition τ ≥ 0. (Bottom)
Correspondent shape of the deformed textile for the reported optimal patches with the black arrow indicating
the surface normal n. For the initial condition we set ψ(0) = {0.3 θ1, 0.4 θ2} for all the considered cases.
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6 Discussion and conclusions

This work proposed a novel optimization tool for designing elastic cloths covering a given target surface.
In order to solve the corresponding inverse design problem, we proposed an optimal control method to
identify the initial cloth shape for covering a smooth and rigid surface, minimizing a given a cost functional.
We formulated a constrained optimization problem that is numerically solved using a constrained gradient
descent algorithm. In the test cases under consideration, the cost function is related to the elastic energy of
the textile, that is considered here as a single-patch, anisotropic membrane. The target surface is frictionless,
except at its boundary where the textile is pinned, imposing a unilateral obstacle condition for the reactive
forces at the target surface. The constrained optimization problem also accounts for an elongation condition
of the warp and weft fibers, possibly with bounded shearing angle.

First, we validated our numerical tool by bench-marking the numerical outcomes against the known
theoretical results for Chebyshev net on a unit hemisphere, obtaining an excellent agreement. Second, we
investigated the effect of the fabric elastic properties on the shape of the cloth. Beyond the state-of-the-art,
we showed how geometric singularities, emerging in the Chebyshev net covering a large portion of a unit
sphere, can be avoided whence considering fiber elongation. Remarkably, the optimal elastic patch for an
elastic net covering a sphere develops an edgy shape endowed with four corners that are exactly placed where
the singularities have been removed. Although heuristic, this observation seems to suggest that fiber net
elasticity allow to transfer singularities in the network into singularities in the shape of the patch.

We also investigated the optimal shapes optimal elastic patches for the cases of the hemisphere and the
hemicatenoid at different values of ks/kc. In both cases, we obtain characteristic morphological transitions
of the elastic patch, whose area shrinks as the shear rigidity is increased with respect to the fiber stiffness,
as surface stretching is preferred to shearing. The effect of the different Gaussian curvature is evident in the
spatial distribution of the local stretch, localising at the core of the patch for the hemisphere and at the patch
boundary for the hemicatenoid. Finally, we analyzed the spatial distribution of the normal reaction forces
τ that the surface exerts on the fabric. In particular, we showed that for the hemicatenoid, the orthotropic
symmetry of the patch is broken when considering the unilateral obstacle constraint.

This work proposed a novel optimization method for the inverse design of elastic clothes that is limited by
a few geometric and constitutive assumptions. Further developments of the model will focus on including
out-of-plane constitutive responses typical of nonlinear elastic shells [64], e.g. fabric bending. Non-local
effects can also be captured by considering higher-order deformation measures [52]. This choice would allow
a more accurate simulation of the mesoscopic structure of the textile. Moreover the smoothing effect of the
strain gradient in the free energy could possibly enhance the performance of the optimization algorithm and
ease the numerical solution the mechanical problem. It would be also interesting to integrate the proposed
elastic approach into the geometric framework adopted in [44]. This choice would allow us to widen the focus
from parameterized target surfaces to the processing of discrete, pointwisely defined surfaces. In addition, it
will allow to explore the role of different network topologies of the elastic patch. Finally, we plan to include
multi-physic couplings in the constitutive law of the fabrics, e.g. nonlinear electro-elasticity [65] or active
swelling [66], to apply cloth optimization for the inverse design of smart textiles [67] and 4D printed fabrics
[68].
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[26] É. Ghys. Sur la coupe des vêtements: Variation autour d’un thème de tchebychev. Enseign. Math.,
57:165–208, 2011.

[27] R. S. Rivlin. The deformation of a membrane formed by inextensible cords. Arch. Rational Mech. Anal.,
2:447–476, 1958.

[28] A. C. Pipkin. Equilibrium of tchebychev nets. Arch. Ration. Mech. An., 85:81–87, 1984.

[29] D. J. Steigmann and A. C. Pipkin. Equilibrium of elastic nets. Philos. Trans. Royal Soc. A, 335:419–454,
1991.

[30] A. C. Pipkin. Plane traction problems for inextensible networks. Q. J. Mech. Appl. Math., 34:415–429,
1980.

[31] W. B. Wang and A. C. Pipkin. Inextensible networks with bending stiffness. Q. J. Mech. Appl. Math.,
39:343–359, 1986.

[32] G. Indelicato. The influence of the twist of individual fibers in 2d fibered networks. Int. J. Solids Struct.,
46:912–922, 2009.

[33] X. Peng, Z. Guo, T. Du, and W.R. Yu. A simple anisotropic hyperelastic constitutive model for textile
fabrics with application to forming simulation. Compos. B. Eng., 52:275–281, 2013.

[34] S. Mathieu, N. Hamila, F. Bouillon, and P. Boisse. Enhanced modeling of 3d composite preform
deformations taking into account local fiber bending stiffness. Compos. Sci. Technol., 117:322–333,
2015.
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