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Abstract

Several epidemiological models have been proposed to study the evolution of COVID-19 pandemic. In this

paper, we propose an extension of the SUIHTER model, first introduced in [Parolini et al, Proc R. Soc.

A., 2021] to analyse the COVID-19 spreading in Italy, which accounts for the vaccination campaign and the

presence of new variants when they become dominant. In particular, the specific features of the variants (e.g.

their increased transmission rate) and vaccines (e.g. their efficacy to prevent transmission, hospitalization

and death) are modeled, based on clinical evidence. The new model is validated comparing its near-future

forecast capabilities with other epidemiological models and exploring different scenario analyses.
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1. Introduction

Since the beginning of the COVID-19 pandemic in early 2020, the mathematical community has devoted

an unprecedented effort in developing novel mathematical, numerical and statistical tools to investigate the

evolution of the most challenging public health threat in decades. For an overview on recent advances in

mathematical epidemiology, computational modeling, physics-based simulation, data science, and machine

learning applied to the COVID-19 pandemic, we refer the reader to [1]. Even limiting the focus to the Italian

context, several contributions have been proposed to accurately describe the spatio-temporal spreading of the

epidemic in Italy [2, 3, 4, 5, 6], to forecast its future evolution [7, 8, 9] and to quantify (and possibly optimize)

the effects of containing measures, including both pharmaceutical and non-pharmaceutical interventions

(NPIs) [10, 11, 12].

As for every other virus, SARS-CoV-2, the virus responsible of COVID-19, changes in time through muta-

tions that generate variants. Variants may differ from the wild-type virus by transmission rates, capability of

leading to severe disease, response to vaccination. Given the enormous impact that the COVID-19 pandemic

had (and is still having) on global health, economy, environment and society, the appearance and evolution

of SARS-CoV-2 have been carefully tracked since the beginning of the pandemic by collecting sequences on

shared public repositories [13, 14, 15] and monitoring, in particular, the so-called variants of interest (VOI)
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and variants of concern (VOC). In particular, the latter are defined as those variants which may represent an

additional risk due to an increased transmissibility, an increased virulence or a decrease in the effectiveness

of public health and social measures or available diagnostics, vaccines, therapeutics. Since the beginning of

the pandemic, four variants have been classified as VOC by the World Health Organization [16], namely the

Alpha variant (lineage B.1.1.7), designated on December 18, 2020, first documented in United Kingdom in

September 2020, the Beta variant (lineage B.1.351), designated on December 18, 2020, first documented in

South Africa in May 2020, the Gamma variant (lineage P.1), designated on January 11, 2021, first docu-

mented in Brazil in November 2020, and the Delta variant (lineage B.1.617.2), designated on May 11, 2021,

first documented in India in October 2020. Finally, the recent variant Omicron was first documented in

November 24, 2021 in South Africa and designated on November 26, 2021. It is currently subject of an

intense effort by the scientific community to characterize its behaviour in terms of transmissibility, disease

severity, immune escape.

When the prevalence of one (or more) of these variants become relevant, the epidemiological models used

to track the pandemic evolution should take them into account. Several modeling contributions to describe

the effect of variants have been proposed in the literature in the past few months [12, 17, 18, 19].

Another relevant contribution that deserves the attention of the modelling community is the impact of

the vaccination campaign that has now reached, in several countries, a large coverage of the population.

Different vaccines for COVID-19 have been authorized by the public health organizations and introduced in

the market since late 2020. In particular, in the western countries, the most of the vaccination campaign

have been carried out using four products: the Comirnaty vaccine (from Pfizer/BioNTech), the Spikevax

vaccine (from Moderna), the Vaxzevria vaccine (from AstraZeneca) vaccine, and the Janssen vaccine (from

Johnson & Johnson). The first two (Comirnaty and Spikevax) are based on the messenger RNA (mRNA)

technology and similarly behave in terms of efficacy [20]. AstraZeneca and Janssen vaccines are based on the

more traditional viral vector technology. Among the four vaccines, Janssen is the only proposed (at least in

the first phase of the vaccination campaign) with a single dose administration, while the others are supplied

with two doses separated by a time delay ranging between 3 and 6 weeks for mNRA vaccines and between

4 and 12 weeks for Vaxzevria.

SUIHTER is an epidemiological model, first introduced in [8], which is designed to conform to the

epidemiological data that have been made available by the Italian Authorities since the beginning of the

epidemics. The choice of the compartments defining the model has been driven by the assumption that the

model should match as close as possible such available data.

In this paper, we propose an extension of the SUIHTER model able to include both the effect of the

vaccination campaign and of the two variants that appeared and became dominant in Italy during 2021, the

Alpha variant (between February and March 2021) and the Delta variant (between July and August 2021).
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Moreover, coherently with the principle that the model should conform as much as possible to available data,

it has also been adapted to match additional information that meanwhile became available from authorities,

specifically some additional fluxes between compartments (such as new admission in hospital and ICUs). The

analysis does not consider the Omicron variant due to the currently limited knowledge about its increased

transmissibility and low prevalence at present time (mid-December 2021).

Several attempts have been made to propose rigorous evaluation strategies to compare the forecast

capabilities of different models; see, e.g., [21, 22]. Ensemble approaches combining multiple available forecasts

from different models have proved to outperform single models in forecasting the early phases of COVID-19

pandemic [23, 24, 25], as well as influenza [26, 27], dengue fever [28], and Ebola [29] outbreaks. The superior

performance of ensemble forecast have been shown in different disciplines and they are typically associated to

the ability of integrating the information coming from different models producing accurate predictions with

well-calibrated uncertainty [30, 31], avoiding, at the same time, the risk of delayed (or missing) forecasts or

premature interruption of the forecast supply, which may occur when relying on a single specific model.

To evaluate its performance in terms of forecasting capability, the SUIHTER model has joined the

European COVID-19 Forecast Hub [32] since April 2021. The aim of this collaborative project is to provide

decision makers and the general public with reliable estimates of the near-term future evolution of the

COVID-19 pandemic in European countries by collecting forecasts from different models into an ensemble.

A quantitative comparison based on suitable ranking indicators has been carried out, showing that the

SUIHTER model can produce reliable short term forecast on different epidemic quantities of interest.

Moreover, different analyses have been carried out to evaluate at which extent the extended SUIHTER

model accounting for variants and vaccination is able to better identify specific epidemic trends (such as new

outbreak associated to the growth of a more transmissible virus variant) and how it can be used to quantify

the effect of the vaccination campaign (including the effect of the vaccination rate).

The paper is organized as follows: in Section 2 the SUIHTER model including the vaccine compartment is

introduced, and it is later extended in Section 2.1 to also account for an emerging variant. The strategy used

to model multiple scenarios characterized by different NPIs is presented in Section 3. The numerical results

are presented and discussed in Section 4, including a quantitative validation of the forecasting capabilities of

the model and different analyses highlighting the role of the different new features of the model (including

new variants and vaccination effects). Finally, in Section 5, we draw our conclusions and we discuss model’s

limitations and some possible future developments.

2. Mathematical model

The design of the original SUIHTER model, introduced in [8], relied on the criterion that the epidemiological

compartments should match as close as possible the data that were daily made available by the Italian
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authorities. In the present work, we propose an extended version of the SUIHTER model which is able to

exploit a set of additional data that started to be released at a later stage (including, e.g., the number of

new admissions in hospitals and ICUs, as well as data classified by age and clinical status). Moreover, the

new model accounts for the role of the vaccination campaign that is ongoing in most countries since the end

of 2020, by adding three additional compartments collecting vaccinated individuals.

The extended SUIHTER model is defined by the following system of ordinary differential equations:

Ṡ(t) = −S(t)
βU U(t)

N
− v1,

U̇(t) = (S(t) + σ1 V1(t) + σ2 V2(t))
βU U(t)

N
− (δ + ρU )U(t),

İ(t) = δ U(t)− (ρI + ωI + γI) I(t),

Ḣ(t) = ωI I(t)− (ρH + ωH + γH)H(t) + θT T (t),

Ṫ (t) = ωH H(t)− (θT + γT )T (t),

Ė(t) = γI I(t) + γH H(t) + γT T (t),

Ṙ(t) = ρU U(t) + ρI I(t) + ρH H(t)− vR,

V̇1(t) = v1 − v2 − σ1 V1(t)
βU U(t)

N
,

V̇2(t) = v2 − σ2 V2(t)
βU U(t)

N
,

V̇R(t) = vR,

(1)

endowed with suitable initial conditions, where the model compartments are defined as follows (see Figure 1):

� S: number of susceptible (uninfected) individuals;

� U : number of undetected (both asymptomatic and symptomatic) infected individuals;

� I: number of infected individuals isolated at home;

� H: number of infected hospitalized individuals;

� T : number of infected threatened individuals hosted in ICUs;

� E: number of extinct individuals;

� R: number of recovered individuals;

� V1: number of individuals partially vaccinated with only one dose;
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Figure 1: Interactions among compartments in the extended SUIHTER model

� V2: number of individuals fully vaccinated with two doses;

� VR: number of recovered individuals who have been vaccinated,

and N = S+U + I +H +T +E+R+V1 +V2 +VR denotes the total population (assumed constant). Here,

t measures time in days, compartments report figures in units. The system is numerically solved with the

explicit fourth-order Runge-Kutta scheme with time step ∆t = 1 day.

The quantity v1 denotes the number of susceptible individuals per day who acquire immunity from the first

dose. Similarly, v2 denotes the number of individuals per day which are already vaccinated with one dose and

acquire a stronger immunity by the second dose. Moreover, vR denotes the number of recovered individuals

per day who receive a vaccine dose. The number of first doses w1(t) and second doses w2(t) administrated

in Italy are daily recorded on the Italian Government repository [33]. The quantity w1 does not include

the number of vaccine doses wR(t) administrated to (detected) recovered individuals. Unfortunately, these

vaccination rates cannot be directly used in system (1) since during the whole epidemic period a great

number of cases were not identified so that many recovered individuals have been vaccinated as if they were

still susceptible. The number of individuals who recovered before (or without) being detected can be defined

as RU = R−RD, where

RD(t) =

∫ t

t0

(ρII(τ) + ρHH(τ)) dτ,

is the number of individuals who recovered after having been detected and can be obtained by postprocessing

the computed compartments I and H. The indicator RU can be used to estimate the rate of vaccine doses

that have been actually administrated to susceptible individuals, by assuming that recovered individuals

who were not formerly detected have the same probability of being vaccinated as susceptible individuals.

Namely, the rate of first doses administrated to susceptible individuals are estimated as

v1(t) = w1(t− tim)
S

S +RU
,
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where we have assumed that the time required to develop the immunity is tim = 14 days. Similarly, the

second doses administrated to partially vaccinated individuals (V1) are only a fraction of the total number

of second doses, therefore we get

v2(t) = w2(t− tim)
S

S +RU
.

Finally, the total number of doses per day that recovered individuals (either detected or undetected) receive

is given by:

vR(t) = wR(t− tim) + w1(t− tim)
RU

S +RU
,

The model can be initialized at any time t0 prior to the start of the vaccination campaign (December 20,

2020 in Italy) by using the data (for those compartments for which data are available, namely I,H, T,E),

null initial values for V1 and V2, while, as proposed in [34], the Undetected and Recovered compartments are

initialized as

R(t0) =

(
1

IFR(t0)
− 1

)
E(t0), U(t0) =

(
CFR(t0 + d)

IFR(t0)
− 1

)
(I(t0) +H(t0) + T (t0)) ,

where IFR(t) is the Infection Fatality Ratio, CFR(t) is the time-dependent Case Fatality Ratio and d = 13

days denotes the confirmation-to-death delay. In [34], we considered a constant IFR computed as the weighted

average of the age-specific IFR estimates weighted by the population age structure, under the assumption

of equal attack rates across age-groups, as proposed in [35]. A better estimate of the reference IFR(t) at

a specific time can be computed by considering the variable percentage of each age-group among the total

infected over time (data available on [36] since December 8, 2020), namely:

IFR(t) =

m∑
i=1

qi(t) IFRi,

where IFRi denotes the infection fatality ratio for age-group i and qi(t) is the percentage of infected at time t

belonging to age-group i. This correction may be particularly relevant when using the model in a time frame

in which the vaccination campaign is not homogeneous across age-groups, so that the percentage of different

age-groups among the total infected may vary significantly. A further improved estimate for IFR(t) can be

obtained considering the vaccine effectiveness in reducing the mortality for different age-groups, namely:

IFR(t) =

M∑
i=1

qi(t) [(1− vi,1(t)− vi,2(t)) + vi,1(t)mi,1 + vi,2(t)mi,2] IFRi, (2)

where vi,1(t) and vi,2(t) denote the fraction of individuals in age-group i who received one or two doses,

respectively, at time t, while mi,1 and mi,2 denote the reduced probability to die for an isolated infected

individual of age-group i who is vaccinated (with one or two doses, respectively) w.r.t. an unvaccinated

isolated infected individual in the same age-group.
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(a) CFR (b) CFR vs IFR

Figure 2: Time-evolution of the reference CFR(t) since the beginning of the epidemic (left) and a comparison between CFR(t)

and IFR(t) accounting for age-dependent attack rates and vaccine efficacy in preventing death since December 2020 (right)

The time-history of the CFR(t) since the beginning of the epidemic is shown in Figure 2 (left) where the

high values during the first epidemic wave clearly indicates the strong underreporting. In Figure 2 (right),

CFR(t) and reference IFR(t) estimated with (2) (which can be computed based on data available from

December 8, 2020) are compared. The effect of the vaccination campaign during year 2021 is clearly visible

in the reduction of the reference IFR(t).

Model (1) depends on the following parameters (rates):

� βU denotes the transmission rate due to contacts between susceptible and undetected infected individ-

uals;

� ωI denotes the rate at which I-individuals develop clinically relevant symptoms, while ωH denotes the

rate at which H-individuals develop life-threatening symptoms;

� θT denotes the rate at which T -individuals improve their health conditions and return to the less

critical H compartment;

� δ denotes the rate of detection, relative to undetected infected individuals;

� ρU , ρI and ρH denote the rate of recovery for three classes (U , I and H, respectively) of infected

subjects;

� γI , γH and γT denote the mortality rates for the individuals isolated at home, hospitalized and hosted

in ICUs, respectively.

Some of the parameters in system (1) are evaluated starting from the available data. In particular, the

worsening rates ωI and ωH are obtained directly from the new hospitalization and the new admission data

as follows

ωI(t) =
Ĥ+(t)

Î(t)
, ωH(t) =

T̂+(t)

Ĥ(t)
, (3)

7



Figure 3: Time-evolution of the probability pD of being detected

where Ĥ are the daily data provided by the Dipartimento della Protezione Civile (DPC) for hospitalized

individuals, while Ĥ+ and T̂+ are the daily data provided by Istituto Superiore di Sanità (ISS) [36] and

DPC [37] respectively for new hospitalizations and admissions in ICUs. To reduce the effects of the weekly

oscillation associated to irregular data reporting, the values of ωI and ωH used in (1) are the 1-week moving

averages of the time series estimated in (3).

The detection rate δ is also estimated by assuming that at each time the probability pD of being detected

can be related to the ratio between the infection fatality rate and the time-dependent case fatality rate,

namely

pD(t) =
IFR(t)

CFR(t+ d)
.

Assuming a mean detection time tD = 8 days, the detection rate is then computed at each time t as

δ(t) =
pD(t)

tD
.

To avoid spurious oscillations, the time-history of pD(t) is also smoothed taking its weekly moving average.

The time-history of the probability pD of being detected at time t, based on the estimate of IFR(t) given in

(2), is displayed in Figure 3 where we can notice that the at mid July 2021, when the lowest incidence was

achieved, the probability of being detected was almost 100%.

Given an estimate of δ, if we assume that all Undetected individuals can leave the compartment only by
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either being detected or recovering, we can also estimate the Undetected recovery rate ρU as

ρU (t) =
1− tD δ(t)

tR
,

where tR is the mean recovery time for Undetected, which is estimated through the calibration process.

At this stage, the effect of the vaccine in the model is given by the susceptibility of vaccinated individuals

with respect to non-vaccinated individuals, given by the parameters σ1 = 0.3 and σ2 = 0.12 [38] for partially

and completely vaccinated individuals, respectively.

The remaining parameters of the model need to be calibrated to reproduce the epidemic history. Some

parameters can be considered as constant in time throughout the pandemic, while we prescribe the other ones

are piecewise constant over n time phases [tk, tk+1], k = 1, . . . , n of prescribed duration (typically equal to

15 days) in which the simulation time windows [t0, tF ] is subdivided. The parameters chosen to be constant

in time are: tR, γI and γT , while βU,k, ρI,k, ρH,k, θT,k and γH,k, k = 1, . . . , n are constant on the k-th phase

[tk, tk+1]. All these parameters are calibrated through a two-step calibration: a first estimate is obtained

with a least square procedure, this estimate is then used as initial condition for a Monte Carlo Markov Chain

(MCMC) procedure. The prior is a uniform distribution around the least square estimate with ±30% of the

parameter value interval. For a more detailed description of the calibration process, see [8].

2.1. Accounting for virus variants

With the appearance of virus variants featuring a higher transmission rate than the wild type virus [39],

predicting the evolution of the epidemic curve has become more challenging. As a matter of fact, when a

more aggressive variant starts spreading, the epidemiological characteristic could change, even drastically.

When using the model for forecasting the future evolution of the epidemic in the presence of an emerging

variant, it is necessary to include in model (1) the effects of variants. In particular, the model is modified

by splitting the Undetected compartment, in which the contagion occurs, into two new compartments:

� U b: number of Undetected (both asymptomatic and symptomatic) infected with the base variant, that

is the variant being dominant at the initial time of the simulation,

� Uv: number of Undetected (both asymptomatic and symptomatic) infected with the variant of concern

that is spreading faster among the population.

Susceptible individuals have different probabilities of being infected by people belonging to each of these

two compartments, typically the new variant has a higher transmission rate than the base one. For example

the Delta variant has been estimated to be around 50% more transmissible than the Alpha one [40], and, in

turn, it was previously estimated to be 38% more transmissible than the wild type virus [41].
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The model accounting for a virus variant reads:

Ṡ(t) = −S(t)
βb
U U

b(t) + βv
U U

v(t)

N
− v1,

U̇ b(t) =
(
S(t) + σb

1 V1(t) + σb
2 V2(t)

) βb
U U

b(t)

N
− (δ + ρU )U b(t),

U̇v(t) = (S(t) + σv
1 V1(t) + σv

2 V2(t))
βv
U U

v(t)

N
− (δ + ρU )Uv(t),

İ(t) = δ (U b(t) + Uv(t))− (ρI + ω̃I + γ̃I) I(t),

Ḣ(t) = ω̃I I(t)− (ρH + ω̃H + γH)H(t) + θT T (t),

Ṫ (t) = ω̃H H(t)− (θT + γT )T (t),

Ė(t) = γ̃I I(t) + γH H(t) + γT T (t),

Ṙ(t) = ρU (U b(t) + Uv(t)) + ρI I(t) + ρH H(t)− vR,

V̇1(t) = v1 − v2 − σb
1 V1

βb
U U

b(t)

N
− σv

1 V1
βv
U U

v(t)

N
,

V̇2(t) = v2 − σb
2 V2

βb
U U

b(t)

N
− σv

2 V2
βv
U U

v(t)

N
,

V̇R(t) = vR,

(4)

endowed with suitable initial conditions. After calibrating model (1) on a time range [t0, t
f
0 ], model (4) can

be initialized at time tf0 using the parameters of the last phase of the calibration to forecast the epidemic

evolution in the presence of an emergent variant.

Model (4) is initialized at time tf0 with data from DPC if available. In order to allow the model to account

for possible errors in reported data, we introduced a Gaussian error ε ∼ N (0, s2k) on these values, where sk is

the standard deviation of the weekly average data for the compartment k during the whole calibration period.

The other compartments, i.e. Susceptible, Undetected base, Undetected variant, Recovered, Vaccinated with

one dose, Vaccinated with two doses, are initialized with the values at tf0 obtained from the simulation with

model (1).

The initial values for U b and Uv are obtained by splitting the value of U by accounting for the prevalence

of the rising variant pv given by surveillance reports of ISS 1. The transmission rate for the base virus βb
U is

the last calibrated parameter βU at time tf0 , suitably rescaled to take into account the fact that the fraction

pv of infected individuals already contracted the virus variant. Given the increase in transmissibility fv of

1https://www.epicentro.iss.it/coronavirus/sars-cov-2-monitoraggio-varianti-indagini-rapide
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the spreading variant, we obtain the following estimates for the transmission rates at time tf0

βb
U (tf0 ) =

βU (tf0 )

1 + (fv − 1)pv
, (5)

βv
U (tf0 ) = fv β

b
U (tf0 ). (6)

The coefficients σb
1 and σb

2 accounts for the susceptibility of vaccinated individuals w.r.t. the base version

of the virus and their value are the same as σ1 and σ2 introduced in Section 1. The coefficients σv
1 = 0.5

and σv
2 = 0.222 instead are modified to take into account the reduced vaccines effectiveness against virus

variants. The parameters ω̃I , ω̃H and γ̃I are modified parameters to take into account the vaccines effect in

reducing the severity of the disease and the mortality. Based on the vaccines surveillance report of Italian3

and UK governments, we defined the coefficients h1, h2, t1, t2, m1, and m2.

� h1 = 0.655 and h2 = 0.417 denote the probabilities of a isolated infected individual who is vacci-

nated (with one or two doses, respectively) to be hospitalized w.r.t. an unvaccinated isolated infected

individual;

� t1 = 0.63 and t2 = 0.6 denote the probabilities of a hospitalized individual who is vaccinated (with one

or two doses, respectively) to be admitted in ICU w.r.t. an unvaccinated hospitalized individual;

� m1 = 0.724 and m2 = 0.35 denote the probabilities of an isolated infected individual who is vaccinated

(with one or two doses, respectively) to die w.r.t. an unvaccinated isolated infected individual.

Since in model (4), the infected compartments (U , I, H and T ) collect both vaccinated and unvaccinated

individuals, in order to quantify the effect of the vaccination on the worsening and mortality parameters (ωI ,

ωH and γI), we first estimate the partition of new positives coming from either S, V1, or V2 and entering

either Ub or Uv compartments as follows

ubS(t) =
S(t)

Nb(t)
, ub1(t) =

σb
1V1(t)

Nb(t)
, ub2(t) =

σb
2V2(t)

Nb(t)
, (7)

uvS(t) =
S(t)

Nv(t)
, uv1(t)=

σv
1V1(t)

Nv(t)
, uv2(t) =

σv
2V2(t)

Nv(t)
, (8)

where Nb(t) = S(t) + σ1V1(t) + σ2V2(t) and Nb(t) = S(t) + σv
1V1(t) + σv

2V2(t).

The modified worsening and mortality parameters ω̃I , ω̃H and γ̃I including the vaccine effects are then

2https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1000512/

Vaccine_surveillance_report_-_week_27.pdf
3https://www.epicentro.iss.it/vaccini/pdf/report-valutazione-impatto-vaccinazione-covid-19-6-ott-2021-it.

pdf
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obtained as

ω̃I(t) = ωI(tf0 )
us(t) + h1u1(t) + h2u2(t)

us(t
f
0 ) + h1u1(tf0 ) + h2u2(tf0 )

, t > tf0 , (9)

ω̃H(t) = ωH(tf0 )
us(t) + t1u1(t) + t2u2(t)

us(t
f
0 ) + t1u1(tf0 ) + t2u2(tf0 )

, t > tf0 , (10)

γ̃I(t) = γI(tf0 )
us(t) +m1u1(t) +m2u2(t)

us(t
f
0 ) +m1u1(tf0 ) +m2u2(tf0 )

, t > tf0 . (11)

where the total partition (including both base and variant contributions) of new positives coming from S,

V1, or V2 is given by

uS(t) =
ubS(t)Nb(t)U

b(t) + uvS(t)fvNv(t)Uv(t)

Nb(t)U b(t) +Nv(t)fvUv(t)

u1(t) =
ub1(t)Nb(t)U

b(t) + uv1(t)fvNv(t)Uv(t)

Nb(t)U b(t) +Nv(t)fvUv(t)

u2(t) =
ub2(t)Nb(t)U

b(t) + uv2(t)fvNv(t)Uv(t)

Nb(t)U b(t) +Nv(t)fvUv(t)
.

(12)

We notice that, when new variants are not spreading, then the latter equations simply reduce to Eq. (7).

Moreover, we point out that the rescaling in (12) using the partition at the initial time tf0 of the forecast

simulation has been used to account for the fact that the values ωI(tf0 ), ωH(tf0 ) and γI(tf0 ) have been obtained

calibrating the model on data which were already affected by the vaccination campaign (until time tf0 ).

Although more complex models could be devised to deal with the vaccination, for instance by splitting

each infected compartment (U , I, H, T ) in vaccinated and unvaccinated, we preferred to keep the model as

simple as possible, but still able to account for both the reduced susceptibility of vaccinated individuals, as

well as the lower risk of hospitalization and death through relations (9)-(11). Moreover, in the present model

we are neglecting the waning immunity over time, which has been recently highlighted in several studies

[42, 43, 44], since the time-frame considered in the simulations (see Section 4) are limited to the Summer

2021.

3. Forecast Scenarios

The COVID-19 pandemic put a heavy burden on the Italian health system and caused a huge loss

of human lives. During 2020 and early 2021, the Italian Government imposed restrictive measures to the

population, in attempts to restrain and to contain the epidemic waves. Different NPIs have been applied since

the beginning of the COVID-19 epidemic, ranging from basic containment measures (such as the mandatory

use of masks) to drastic ones (full lockdown). All these interventions modified the transmissibility of the

virus by reducing the number of contacts between people or the probability to contagion associated to a

contact. Within epidemiological models, the effect of these NPIs can therefore be accounted for by acting on
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the transmission rate βU . We included in the model the possibility of considering different future scenarios,

corresponding to different possible NPIs or social events that may also lead to a change in the transmission

rate (such as, for instance, school re-openings or holidays). We introduced a transmission coefficient τ that

measures the change of the transmission rate at a given time due to imposition of restrictions (NPIs) or other

social events and occurrences (schools opening, holidays, etc.). The coefficient τ is computed for the scenario

to simulate, as well for the actual conditions in the last phase of the calibration; see Appendix Appendix

A. The transmission rate βU is indeed modulated by considering the change of the restriction coefficient as

follows

βU (t) =
τ(t)

τ(tf0 )
βU (tf0 ), t > tf0 . (13)

We remark that the transmission coefficient τ is used in a relative fashion for predictions, i.e. changes in

NPIs and social activities are encapsulated in the term
τ(t)

τ(tf0 )
that modulates the predicted transmission

rate. Several scenarios can be considered, each one with its own restriction coefficient. Novel restrictions

soon to be implemented can be referred to population belonging to a specific age group (e.g. distance

learning for schools) or to specific places (e.g. restaurants and bars closed). In order to take into account

the heterogeneity of the measures we consider the interactions between people of different age groups in

different contexts and modify them according to the scenario considered. Starting from the matrices of

average number of contacts by age and context obtained from [45], we associate a level of risk to each age

group and context of exposure. SUIHTER is a homogeneous model and does not explicitly accounts for age

or exposition context structure, thus the restriction coefficient is obtained from the restriction matrix by a

weighted mean on the age groups with weights given by the amount of population in each group. Examples

of scenario analyses using this approach to quantify the effect of different NPIs have already been presented

and discussed in [34]. The procedure for computing the restriction coefficient τ for a given NPI scenario is

described Appendix Appendix A. Additional details will be available in a forthcoming paper.

4. Results and discussion

In this section we present the results obtained with the proposed model. In particular, in Section 4.1,

we first provide a validation of the forecast capabilities of the model by comparing with other single model

forecasts as well as ensemble forecasts. The role of the new features introduced in the model, namely variants

and vaccines, are investigated in the numerical results presented in Sections 4.2 and 4.3, respectively. Finally,

in Section 4.4, the results of a scenario analysis related to the introduction of Green Pass restrictions are

presented and discussed.
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4.1. Forecast assessment

The SUIHTER model has been included in the European COVID-19 Forecast Hub [32] which collects

short-term forecasts of COVID-19 cases (i.e. new contagions) and deaths across Europe, obtained by a

multitude of infectious disease modelling teams, under the coordination of the European Centre for Disease

Prevention and Control.

Every week, the different teams upload their forecasts of the cumulative value of incidence cases and

incidence deaths per week for one or several European countries, with a forecast horizon between 1 and 4

weeks. The forecasts are supplied in an interval format, including for each quantity point evaluation and

confidence interval in 23 quantiles ranging from 0.01 to 0.99.

For each forecast the absolute error (AE) and the weighted interval score (WIS), for both cases and

deaths, are computed. The absolute error is simply the absolute value of the difference between the forecast

and the measured data. The weighted interval score is a proper scoring rule proposed in [21] to evaluate and

score forecasts in an interval format. It is a generalization of the absolute error and has three components:

dispersion, overprediction and underprediction. Dispersion is a weighted average of the width of prediction

intervals for different levels of uncertainty, the higher the level the higher the weight. The overprediction

and underprediction are penalties added whenever an observation falls outside a central prediction interval.

The penalties depend on how far the observation fall from the interval and the nominal level of the interval.

For more details on these metrics, see [22].

The number of forecasts supplied by the different teams may be different since some of them joined the

project later than others, or forecasts in certain weeks for some models may be missing. In order to allow

a fair comparison, in [22] a relative measure of forecast performance, called relative WIS (relWIS), was

introduced, taking into account that different teams may not cover the same forecast targets. The relative

WIS is obtained performing a pairwise comparison tournament in which a score ratio between each pair of

models is computed on the set of shared targets. The relative WIS is then obtained as the geometric mean of

these ratios and normalized with the corresponding quantity computed for a reference baseline model. The

forecast of the baseline model is defined with median given by the data measured in the most recent week,

with uncertainty around the median based on changes in the past of the time series (see [22]).

Models with smaller values of relWIS are thus performing better and a value below one means that the

model performs better than the baseline model. The relWIS indicator can then be used to score different

models.

The same procedure can be used to define a second scoring rule, the relative absolute error (relAE), in

which the pairwise comparison tournament is performed based on the absolute error instead of the weighted

interval score (see [22]).

The 1-week horizon forecast obtained with the SUIHTER model has been uploaded weekly on the Eu-
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ropean COVID-19 Forecast Hub [32] since April 2021. The performance metrics over the entire forecast

history (32 weeks from May 2, 2021 to December 11, 2021) are reported in Table 1.

The table reports a comparison between the 1-week forecast obtained with the SUIHTER model, the

baseline forecast and the EuroCOVIDhub-ensemble forecast obtained using all the forecast upload on the hub

for each target. By definition, the baseline forecast has a relWIS and relAE equal to one. As discussed in the

introduction, ensemble forecasts are usually expected to be more accurate and robust than those produced

by single models. The results presented in Table 1 clearly show that the SUIHTER model is able to produce

short-term forecasts which outperforms the ensemble forecasts for both cases and deaths. Moreover, the

results reported for Italy on [32] show that, according to the relWIS scoring indicator, the SUIHTER model

ranked second on cases forecast (behind the MUNI-ARIMA model and second on deaths forecast (behind

the LANL-GrowthRate model) among 24 models.

For the 10 forecasts in the time range from August 28, 2021 to November 2, 2021, multiple horizon fore-

casts (ranging from 1 to 4 weeks) have also been evaluated and compared with the EuroCOVIDhub-ensemble.

The results are presented in Table 2. As expected both the relative weighted interval score and the relative

absolute error increase as longer time horizon are considered. It is worth noticing that the good performances

of the SUIHTER model are confirmed for short term predictions of cases forecast (up 2-weeks horizons),

where the SUIHTER results are found to be better than both the baseline and ensemble forecasts in terms

of absolute error and weighted interval score. Moreover, superior performances of the SUIHTER model for

deaths forecast are found even for longer time horizons (up to 4 weeks), where very low values of both relAE

and relWIS are obtained.

In Figures 4 and 5 we report the forecasts with the predicted median value and 95% prediction interval

along with the actual data of cases and deaths, respectively. The dates on the x-axis denote the target

end date, i.e. the last day of the week for which the forecast has been made. We can note that for the

cases forecast the data fall within the prediction intervals (with only 2 exceptions for longer-time forecasts).

Concerning deaths forecasts, the model fails to supply a reliable forecast in one case (see Figure 5 (f)).

Cases Deaths

Model relAE relWIS relAE relWIS

EuroCOVIDhub-baseline 1 1 1 1

EuroCOVIDhub-ensemble 0.59 0.55 0.48 0.42

SUIHTER 0.31 0.47 0.29 0.36

Table 1: Relative absolute error and relative weighted interval score for the SUIHTER, baseline and ensemble forecast (with

1-week horizon) over the entire forecast history (32 weeks from May 2, 2021 to December 11, 2021)
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Cases Deaths

Model Horizon relAE relWIS relAE relWIS

EuroCOVIDhub-ensemble

1 0.72 0.69 0.78 0.40

2 1.02 0.93 0.59 0.32

3 1.16 1.00 0.52 0.30

4 1.35 1.15 0.64 0.38

SUIHTER

1 0.62 0.60 0.73 0.36

2 0.93 0.89 0.49 0.27

3 1.13 1.21 0.48 0.28

4 1.21 1.39 0.49 0.31

Table 2: Relative absolute error and relative weighted interval score for the SUIHTER and ensemble forecast (with 1 to 4-week

horizons) over the last 10 weeks (from August 28, 2021 to October 30, 2021)

However, we should point out that the reported data for the week ending on October 23, 2021 were biased

by the large number of deaths (28) not previously reported that have been added that week to correct the

data.

4.2. Effect of new variants

During the spreading of a new variant it is fundamental to consider that it is way more transmissible

than the prevalent one. For this reason we tried to predict the evolution of the epidemic when the Delta

variant was spreading in Italy in July 2021, eventually becoming the prevalent one. We performed two

simulations, the first one with model (4) described in section 2.1, initialized with prevalence data provided

by surveillance reports of ISS 4. The second simulation was made with pv = 0, thus assuming that no new

variant was spreading. In this case the calibrated transmission rate βU is not rescaled but used as is. Both

simulations start from July 5, 2021 and last for two months until August 5, 2021. The parameters have been

calibrated taking into account data available from February 20, 2021 to July, 5 2021. The two simulations

are shown in Figure 6 where it is possible to appreciate that considering the Delta variant the model was

able to predict the rise of the epidemic curve occurred in July, which would not be predicted if the role of

the variant would have been neglected.

Note that this case features the effect of summer holidays with people gathering in tourism regions and

contracting the virus. This was accounted for in the simulations by introducing a summer scenario as detailed

4https://www.epicentro.iss.it/coronavirus/sars-cov-2-monitoraggio-varianti-indagini-rapide
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(a) 2021-09-06 (b) 2021-09-13 (c) 2021-09-20

(d) 2021-09-27 (e) 2021-10-04 (f) 2021-10-11

(g) 2021-10-18 (h) 2021-10-25 (i) 2021-11-01

Figure 4: Weekly new cases forecasts computed with the SUIHTER model on a 4-weeks horizon with 95% confidence interval

along with actual data provided by DPC.
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(a) 2021-09-06 (b) 2021-09-13 (c) 2021-09-20

(d) 2021-09-27 (e) 2021-10-04 (f) 2021-10-11

(g) 2021-10-18 (h) 2021-10-25 (i) 2021-11-01

Figure 5: Deaths forecasts computed with the SUIHTER model on a 4-weeks horizon with 95% confidence interval along with

actual data provided by DPC.
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in Section 3, resulting in a 42.7% increase on βU , i.e. such that
τ(t)

τ(tf0 )
= 1.427 in Eq. (13). Should we have

neglected the spreading of the Delta variant (see Figure 6), the summer re-opening scenario alone would not

be enough to justify the number of cases observed. Similarly, we simulated for the same period, with the

same set of parameters, but without accounting for the summer scenario, thus considering only the effect of

the Delta variant. The result is shown in Figure 7 alongside with the simulation including both the Delta

variant and the summer scenario. Also in this case, the Delta variant alone could not make the epidemic

curve rise as it has been observed, thus implying that the phenomenon witnessed in July was very likely due

to a combination of the spreading of the Delta variant as well as the growth in the number social contacts

due to summer vacations.

4.3. Effects of the vaccination

The evolution of the COVID-19 epidemic in 2021 has been strongly influenced by the introduction of

effective vaccines. In the present section we present a set of numerical results to illustrate how the extended

SUIHTER model introduced in Section 2 can improve the forecast quality. To show the effect of the presence

Figure 6: Simulations performed from 5 July to 5 August with (red) and without (blue) taking into account the spreading of

the highly infectious Delta variant
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of vaccinated compartments, we simulated the trend of the epidemic starting from May 22, 2021 and lasting

for two months until July 22, 2021. The parameters are obtained by calibrating the SUIHTER model

on the DPC data from February 20, 2021 to May 22, 2021 including the vaccinated compartments too.

Then, the model has been recalibrated over the same period of time, on the same data, but neglecting the

presence of vaccinated compartments (setting to zero both v1 and v2 as well as the initial values of V1 and

V2). Even though the two simulations yield almost the same values for most of the compartments, the one

without vaccines produces a higher number of deaths. This is due to the fact that it includes the observed

effect of vaccines directly in the calibrated transmission rates so obtaining a similar result on positive cases

but it does not consider the mortality reduction given by vaccines, which is instead considered in model

(4). Furthermore, model (4) can give us an estimation of how positives split into unvaccinated, partially

vaccinated with one dose or fully vaccinated with second dose.

To show the effect of the vaccines on the model and estimate how the epidemic would have evolved

without the vaccines, we compared three simulations obtained with the same set of parameters calibrated

from January 10, 2021 to October 10, 2021. The first simulation is obtained with model (1) described in

Figure 7: Simulations performed from 5 July to 5 August with (red) and without (green) taking into account the summer

openings resulting in an increased number of social contacts
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Figure 8: Comparison between the models with vaccines (red) and without vaccines (blue

in a forecast analysis covering the time interval between May 22, 2021 and July 22, 2021.
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Section 2, used also for calibration, and thus taking into account vaccination compartments and reproduces

faithfully the epidemic history. The simulation is then repeated with the same set of parameters removing

the vaccinated compartments. In Figure 9, we see that the epidemic curves have an uncontrolled exponential

increase from the beginning of July, corresponding to summer openings and spreading of the Delta variant.

Obviously this scenario in unrealistic as some containment measures would have been applied before reaching

a critical level of new cases and hospital beds occupancy. The third analyzed scenario (in green in Figure 9)

considers the imposition of automatic restrictions when critical incidence levels are reached. Three thresholds

are set, based on the guidelines prescribed by the Italian government5. The first restrictions are the ones

imposed in yellow zones and are applied once the weekly incidence is above 50 cases per 100 000 population.

When the incidence reaches 150 cases per 100 000 population, orange zone restrictions are applied and finally

red zone restrictions are imposed once the limit of 250 cases per 100 000 population has been exceeded. Even

though in this scenario the number of cases has been greatly reduced, the containment measures are not

enough to prevent a big epidemic wave in the summer. Analyzing these scenarios we can speculate on how

things would have gone without the vaccination campaign and on how many human lives have been saved.

4.4. Scenario analysis: adoption of Green Pass

Since August 6, 2021, people are required to hold the so-called Green Pass for certain activities, a

document that certifies to have been vaccinated, having been tested negative in the previous 48 hours, or

recovered from COVID-19. The Green Pass started to be required for accessing indoor restaurants, long-

distance travel, and cultural and leisure activities. Starting September 1, 2021, the Green Pass has been

also required to all the personnel working at school (from grade 1 to universities) as well as to university

students. More recently, on October 15, 2021, this rule has been extended to all working categories. The

objective of the measure is clearly to control the spread of the epidemic and to encourage a further extension

of the vaccination campaign to those people which are not yet vaccinated.

In this context, the SUIHTER model has been applied to estimate the effect of the introduction of the

Green Pass at school, with the two-fold objectives:

1. estimating whether the school re-opening in mid September 2021 would have produced a new epidemic

wave (as happened in September 2020);

2. quantifying at which extent a strict control on the Green Pass certification would have been critical to

guarantee a control of the epidemic.

A scenario analysis has been carried out calibrating the SUIHTER model with the data available until

September 10, 2021 and performing a two-months forecast until November 10. In order to account for the

5Decreto Legge 23 luglio 2021, n. 105, https://www.gazzettaufficiale.it/eli/id/2021/09/30/21A05687/sg
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Figure 9: Simulations of the epidemic during vaccination campaign with what-if scenarios neglecting the presence of vaccinated

compartments
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effect of the adoption of the Green Pass in schools, we computed two different contact matrices for each

scenario: one for the vaccinated people (assuming all the people having the Green Pass from vaccination

only) and the other for susceptible individuals. From these matrices, we obtained two different restriction

coefficients, leading to two βU rates, one for the compartment S, accounting for unvaccinated people, and

thus without Green Pass and one for V1 and V2. We considered three different scenarios with increased

βU due to school re-openings, assuming the Green Pass is made compulsory for high schools and university

students and staff:

1. the Green Pass is strictly enforced so that unvaccinated individuals are not entering schools and

universities;

2. the Green Pass is mildly enforced resulting in 50% of unvaccinated individuals still entering schools

and universities;

3. there are no controls on Green Pass so that everyone can enter schools and universities, even though

they are not vaccinated.

The results are shown in Figure 10. In none of the three cases analysed the increase of βU is enough to

produce a new epidemic wave. However, there is a significant difference on the number of positive cases.

This difference may have been important in view of the new epidemic wave that occurred in Italy (as in the

rest of Europe during the Fall 2021, since it allowed to start from a lower incidence level the new exponential

growth phase.

5. Conclusions

In this paper, we have presented a new epidemiological model derived from the original SUIHTER model

introduced in [8] for the analysis of the COVID-19 epidemic in Italy. The range of applicability of the model

has been extended to cover new aspects of the epidemic that became indispensable to be considered for an

accurate description of the phenomenon, namely the emergence of new virus variants and the role of the

vaccination campaign.

In particular, the new model accounts for the presence of different virus variants to describe the transition

phases in which the wild-type virus (or the variant which is predominant at a given time) is replaced by

a new variant characterized by a higher transmission rate. This feature has to be accounted for in order

to capture variant outbreaks, such as the one observed in Italy in Summer 2021 when the Delta variant

increased its prevalence from 22% to 95% in one month.

The variant model can also be combined with the vaccine model by considering different transmission

rate reduction factors (which define to the efficacy of the vaccination in reducing the transmission) for wild

type virus or specific variants.
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Figure 10: Scenario analysis comparing the effect of different levels of imposition of Green Pass in schools
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The reduced transmission is not the only way vaccines contributes in the model. The worsening rates also

account for the increasing number of vaccinated individuals, by including the consequent reduced probability

of developing a serious disease once vaccinated.

The role of the vaccination in controlling the evolution of the epidemic in Italy during the Spring and

Summer 2021 has been quantified through a what-if scenario analysis. The results indicate that, without

the vaccination campaign, the Summer outbreak (mostly due to the Delta variant) would have stroke Italy

with an unprecedented force and, even with strict NPIs restrictions, a new epidemic wave, even stronger

than the previous ones, would have likely occurred.

The reliability of the results produced by the SUIHTER model, in particular concerning forecast analysis,

have also been investigated. The competitive performances of the SUIHTER model in short-term forecasting

have been quantitatively verified by comparison with other single model forecasts that joined the European

COVID-19 Forecast Hub project [32]. These results highlight the capability of our model to supply reliable

near-future forecasts of cases up to two weeks horizon), while longer-term horizon scenarios (up to four

weeks) can be successfully covered when considering forecasts of deaths, thanks to the rich compartmental

structure of the SUIHTER model which includes the number of individuals who are hospitalized and hosted

in ICUs.

The limitation of the original SUIHTER model, which are shared by several models involving a large

number of compartments, were discussed in details in [8]. Most of them, in particular the homogeneous

nature of the model which does not include spatial heterogeneity neither age stratification, also apply to

the extension presented in the present paper. The range of applicability of the new model is broader since

it allows to simulate and forecast the epidemic evolution in the presence of virus variants and vaccines.

The proposed approach to deal with emerging virus variants is rather general and may applied to any new

variant of concern for which an estimate on the increased transmission rate (relative to previous variants)

is available. The vaccination model can be further extended to include the reduction of the vaccine efficacy

over time and the additional booster dose that should be able to guarantee a longer vaccine immunity [46].
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Ages Total Family Home School Work Transport Leisure Other

0-4 16.54 2.30 2.19 5.27 0.00 0.98 3.06 2.75

5-9 20.49 2.27 2.34 8.87 0.00 1.12 4.53 1.37

10-14 27.38 2.21 2.22 11.98 0.05 1.35 5.62 3.80

15-19 29.28 2.05 2.54 13.22 0.05 1.74 6.83 2.87

20-24 22.15 1.49 2.02 1.17 4.49 0.96 7.23 4.80

25-29 21.00 1.04 2.43 2.23 5.21 1.13 6.30 2.66

30-34 18.03 1.26 2.29 0.85 3.92 0.76 5.24 3.72

35-39 21.25 1.75 2.63 0.68 7.78 1.05 3.92 3.45

40-44 22.35 1.63 2.25 2.53 7.00 0.67 4.48 3.79

45-49 19.27 1.50 1.49 2.61 8.24 0.88 1.93 2.64

50-54 22.30 1.38 1.37 5.54 8.05 0.52 2.02 3.41

55-59 18.27 1.11 1.77 1.41 4.60 0.68 3.62 5.06

60-64 18.43 0.91 2.37 1.07 6.05 0.87 3.53 3.63

65-69 12.74 0.71 2.39 0.55 0.48 0.95 3.33 4.33

70+ 10.55 0.71 2.53 0.06 1.04 0.22 4.22 1.77

Table 3: Average number of contacts in Italy by age group and social context of exposition.

Appendix A. Determining the transmission coefficient for NPI scenarios

The transmission coefficient τ introduced in Section 3 (Eq. (13)) encapsulates in a single scalar value

the effect of different NPIs (distancing measures, restriction on leisure activities, distance learning) or social

occurrences and events (school opening and closing, school breaks and holidays) that may be accounted

in forecasting the evolution of the epidemics. Since the NPIs are often involving specific age-groups – like

schools activities – as well as specific contexts of exposition, we evaluate the transmission coefficient τ based

on a multi-age multi-group characterization of the contact matrix. We consider the POLYMOD contact

matrices for Italy proposed in [45], counting the average number of contacts that individuals from different

age-groups (0-4, 5-9, 10-14, 15-19, 20-24, 25-29, 30-34, 35-39, 40-44, 45-49, 50-54, 55-59, 60-64, 65-69, 70+

for a total of Na = 15 groups) have in the different contexts: home, school, work, transport, leisure and

other. We remark that, with respect to the standard table, we use data on the composition of households

obtained from ISTAT (for 2019) [47], to further split the contacts taking place at home into a family context

(in which contacts between family members are counted) and a house context (in which contacts occurring

at home among individuals who are not family members are counted); see [48]. This has the advantage

to account for NIPs limiting visits of non-family members to other households, a restriction that was often
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enforced in Italy during 2020 and early 2021. As example, we limit here to report in Table 3 the average

number of contacts by age group in the Nc = 7 contexts of exposition.

Let us indicate by ckij the (average) number of contacts of individuals in age group i with individuals

in age group j in the context of exposition k, where i, j = 1, . . . , Na = 15 and k = 1, . . . , Nc = 7. Then,

Table 3 represents c̃ki =

Na∑
j=1

ckij , i.e. the average number of contacts of individuals in age group i with other

individuals in the context of exposition k. The transmission coefficient from individuals in the age group i

to other individuals in context of exposition k reads

τ̃ki = c̃ki p
k
i ,

for i = 1, . . . , Na = 15 and k = 1, . . . , Nc = 7, where pki is the probability that a contact of a infectious

individual in age group i is able to expose any other individual in context k. Specifically, we determine pki

as

pki = ra,i f
k
i

(
rkc,i, s

k
i

)
,

where: ra,i is the transmission risk associated to age group i (ra,i = 0.34 for i = 1, 2, 3, ra,i = 1 for i =

4, . . . , 13, and ra,i = 1.47 for i = 1, 2, 3 [49]); rkc,i is the risk of transmission associated to individuals in the age

group i within the exposition context k (for example contacts occurring in context k = 1 “family” are riskier

than those occurring in k = 4 “work”); ski ∈ [0, 1] accounts for NPIs and social occurrences for individuals in

age group i and in context k (for example, during school holidays s3i = 0 for all i = 1, . . . , Na = 15, instead

if NPIs prescribe students in high schools attending only at 50% in presence, then s3i = 0.5); the functions

fki combine the coefficients rkc,i and ski based on age group i and context k. These functions are designed

to account for different subcontexts of exposition within a given k, like it occurs for k = 6 (“leisure”) in

restaurants, bars, sports, etc... or for k = 4 (“work”) for different working environments as healthcare,

manufacturing, etc... The function fki is also used to account for the mismatch between age groups and

grades in school or other contexts; for example, NIPs regarding schools are prescribed in Italy based on

grades, not age. For more details on the definition of the transmission coefficient τ̃ki we refer the interested

reader to [48].

Finally, the transmission coefficient τ used in Eq. (13) is obtained as

τ =

Nc∑
k=1

Na∑
i=1

ςi τ̃
k
i ,

where ςi is the percentage of Italian population within the age group i [47].

References

[1] E. Kuhl, Computational Epidemiology: Data-driven Modeling of Covid-19, Springer Nature, 2021.

URL https://books.google.it/books?id=wGpEEAAAQBAJ

28



[2] G. Giordano, F. Blanchini, R. Bruno, P. Colaneri, A. Di Filippo, A. Di Matteo, M. Colaneri, Modelling

the COVID-19 epidemic and implementation of population-wide interventions in Italy, Nature Medicine

(2020) 1–6.

[3] M. Gatto, E. Bertuzzo, L. Mari, S. Miccoli, L. Carraro, R. Casagrandi, A. Rinaldo, Spread and dynamics

of the COVID-19 epidemic in Italy: Effects of emergency containment measures, Proceedings of the

National Academy of Sciences 117 (19) (2020) 10484–10491. doi:10.1073/pnas.2004978117.

[4] E. Bertuzzo, L. Mari, D. Pasetto, S. Miccoli, R. Casagrandi, M. Gatto, A. Rinaldo, The geography of

COVID-19 spread in italy and implications for the relaxation of confinement measures, Nature Com-

munications 11 (2020) 4264.

[5] F. Della Rossa, D. Salzano, A. Di Meglio, F. De Lellis, M. Coraggio, C. Calabrese, A. Guarino,

R. Cardona-Rivera, P. De Lellis, D. Liuzza, F. Lo Iudice, G. Russo, M. di Bernardo, A network model

of italy shows that intermittent regional strategies can alleviate the COVID-19 epidemic., Nature Com-

munications 11 (5106) (2020).

[6] E. Loli Piccolomini, F. Zama, Monitoring Italian COVID-19 spread by a forced SEIRD model, PLOS

ONE 15 (8) (2020) 1–17. doi:10.1371/journal.pone.0237417.

URL https://doi.org/10.1371/journal.pone.0237417

[7] A. Farcomeni, A. Maruotti, F. Divino, G. Jona-Lasinio, G. Lovison, An ensemble approach to short-

term forecast of COVID-19 intensive care occupancy in Italian regions, Biometrical Journal 63 (3) (2021)

503–513. doi:https://doi.org/10.1002/bimj.202000189.

URL https://onlinelibrary.wiley.com/doi/abs/10.1002/bimj.202000189

[8] N. Parolini, L. Dede’, P. F. Antonietti, G. Ardenghi, A. Manzoni, E. Miglio, A. Pugliese, M. Ve-

rani, A. Quarteroni, SUIHTER: A new mathematical model for covid-19. application to the anal-

ysis of the second epidemic outbreak in italy, Proceeding of The Royal Society A 477 (2021).

doi:10.1098/rspa.2021.0027.

URL http://doi.org/10.1098/rspa.2021.0027

[9] F. Bartolucci, F. Pennoni, A. Mira, A multivariate statistical approach to predict COVID-19 count data

with epidemiological interpretation and uncertainty quantification, Statistics in Medicine 40 (24) (2021)

5351–5372. doi:https://doi.org/10.1002/sim.9129.

URL https://onlinelibrary.wiley.com/doi/abs/10.1002/sim.9129

[10] V. Marziano, G. Guzzetta, B. M. Rondinone, F. Boccuni, F. Riccardo, A. Bella, P. Poletti, F. Trentini,

P. Pezzotti, S. Brusaferro, G. Rezza, S. Iavicoli, M. Ajelli, S. Merler, Retrospective analysis of the Italian

29



exit strategy from COVID-19 lockdown, Proceedings of the National Academy of Sciences 118 (4) (2021).

arXiv:https://www.pnas.org/content/118/4/e2019617118.full.pdf, doi:10.1073/pnas.2019617118.

URL https://www.pnas.org/content/118/4/e2019617118

[11] G. Bonifazi, L. Lista, D. Menasce, M. Mezzetto, D. Pedrini, R. Spighi, A. Zoccoli, Study on the effects

of the restrictive measures for containment of the covid-19 pandemic on the reproduction number rt in

italian regions (2021). arXiv:2106.02603.

[12] G. Giordano, M. Colaneri, A. D. Filippo, F. Blanchini, P. Bolzern, G. D. Nicolao, P. Sacchi, P. Colaneri,

R. Bruno, Modeling vaccination rollouts, sars-cov-2 variants and the requirement for non-pharmaceutical

interventions in italy, Nature Medicine 27 (2021) 993–998. doi:10.1038/s41591-021-01334-5.

URL https://doi.org/10.1038/s41591-021-01334-5

[13] PANGO Lineages: Latest epidemiological lineages of SARS-CoV-2, https://cov-lineages.org/ (last ac-

cessed November 20, 2021).

[14] Nextstrain: Real-time tracking of pathogen evolution, https://nextstrain.org/ (last accessed November

20, 2021).

[15] GISAID, https://www.gisaid.org/ (last accessed November 20, 2021).

[16] W. H. Organization, Tracking sars-cov-2 variants, https://www.who.int/en/activities/tracking-SARS-

CoV-2-variants/ (last accessed November 9, 2021).
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