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Abstract

We present a new parallel computational framework for the efficient solution of
a class of L2/L1-regularized optimal control problems governed by semi-linear
elliptic partial differential equations (PDEs). The main difficulty in solving this
type of problem is the nonlinearity and non-smoothness of the L1-term in the
cost functional, which we address by employing a combination of several tools.
First, we approximate the non-differentiable projection operator appearing in the
optimality system by an appropriately chosen regularized operator and establish
convergence of the resulting system’s solutions. Second, we apply a continua-
tion strategy to control the regularization parameter to improve the behavior of
(damped) Newton methods. Third, we combine Newton’s method with a domain-
decomposition-based nonlinear preconditioning, which improves its robustness
properties and allows for parallelization. The efficiency of the proposed numerical
framework is demonstrated by extensive numerical experiments.

Keywords: optimal control of elliptic PDEs, non-smooth optimization, nonlinear
preconditioning, regularization, Schwarz methods, domain decomposition methods
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1 Introduction

In this paper, we combine a smoothing-continuation technique and domain-decompo-
sition-based nonlinear preconditioning of Newton’s method to obtain a novel, robust,
efficient computational framework for finding stationary points of the semi-linear
elliptic optimal control problem

minimize J(y, u) :=
1

2

∥∥y − yd
∥∥2
L2 +

ν

2

∥∥u∥∥2
L2 + µ

∥∥u∥∥
L1 , (1a)

s.t. (y, u) ∈ H1
0 (Ω)× L2(Ω) (1b)

Ay + φ(y) = f + u in H−1(Ω). (1c)

Here Ω ⊆ Rn is a bounded Lipschitz domain, y ∈ H1
0 (Ω) and u ∈ L2(Ω) are the

state- and control function, respectively, yd ∈ L2(Ω) is a desired state, the operator
A : H1

0 (Ω) → H−1(Ω) is a linear, self-adjoint, elliptic differential operator (in weak
form) and φ is a nonlinear real function. The parameters ν, µ > 0 act as weights for
the regularization terms in the cost functional.

This class of problems is particularly interesting because of the non-smooth L1-
type regularization term in the cost function, which promotes sparsity in the optimal
controls’ support but requires solution techniques that are able to cope with its
non-differentiability. Sparsity in the control solution is desirable, e.g., in actuator-
and sensor placement problems, see, e.g., the introduction of [1], where optimality
conditions and the structure of optimal solutions for a box-constrained, linear(elliptic)-
quadratic problem with L1-type cost functional are examined. Other relevant works
considering problems with L1-type cost functional include [2], where advanced com-
putational aspects, including convergence results and error estimates, are discussed.
The authors of [3] derive a-priori discretization-error estimates for problems with L1-
cost and semi-linear elliptic PDEs. Additionally, L1-type terms (often applied to the
gradient of a function) frequently appear in image denoising and impainting problems,
see [4–8] and in quantum control problems, see [9, 10]. In multiobjective optimiza-
tion, a problem governed by a parabolic, semi-linear PDE constraint and L1-type
non-smoothness in the cost functional is treated by set-oriented methods in [11]. The
authors of [12] apply a continuation method (in a different sense than it is understood
in our work) to a bicriterial optimization problem, where the L1-regularization is one
of the objectives to be minimized. Other continuation approaches for optimal control
problems can be found in [2, 13].

Our analysis of problem (1) is based on the refined optimality conditions in [3].
While standard necessary first-order optimality conditions for problem (1) can easily
be derived by applying Clarke’s subdifferential calculus, the authors of [3] derived an
explicit, non-smooth (but Lipschitz-continuous) representation of the subderivative
that corresponds to the non-smooth L1-part of the cost functional. Applying this
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technique to problem (1), we obtain the first-order necessary optimality system

Aȳ + φ(ȳ) = f + ū in H−1(Ω), (2a)(
A+ φ′(ȳ)

)
p̄ = ȳ − yd in H−1(Ω), (2b)

p̄+ νū+ µproj[−1,1]

(
− p̄

µ

)
= 0 in Ω, (2c)

with ū ∈ L2(Ω), ȳ, p̄ ∈ H1
0 (Ω). The standard approach for solving (2) is the application

of a damped semi-smooth Newton method. In contrast, our proposed computational
framework is built on a parameter continuation technique (see, e.g., [14]) for a smooth-
ing parameter combined with an extension of the domain-decomposition nonlinear
preconditioning approach initially presented in [15] for solving elliptic PDEs; see also
[16–19]. Specifically, to improve robustness and numerical performance, we propose
to regularize the problem by replacing the non-smooth Nemytskii-type projection
operator

proj[−1,1](x) =


x for x ∈ [−1, 1],

1 for x > 1,

−1 for x < −1.

for x ∈ R in (2c) with a smoothed approximation Pε and to solve the smoothed ver-
sions of the problem efficiently using preconditioned Newton-Krylov methods as part
of a continuation strategy for the smoothing parameter ε, where the subproblems of
the continuation strategy are solved using an extension of the Restricted Additive
Schwarz Preconditioned Exact Newton method (RASPEN, [15]), which is the appli-
cation of Newton’s method to the fixed-point equation derived from the nonlinear
Restricted Additive Schwarz (RAS) iteration for the regularized first-order system
(2). Nonlinear RAS is a domain decomposition method that computes the solution
to a given problem defined on a domain Ω by iteratively solving smaller subproblems
defined on subdomains of Ω, allowing for parallelization across the subdomains.

Note that a similar nonlinear preconditioning approach has been proposed in [20]
for elliptic-PDE-constrained optimization problems and in [21] for economic parabolic
control problems. However, these approaches are based on a different domain decom-
position method using Robin-type transmission conditions applied directly to the
non-smooth optimality system.

This work is organized as follows. In Section 2, we fix the required notation,
state the main assumptions used in this work and collect preliminary results includ-
ing the fundamental first-order optimality system (2). In Section 3, we introduce
the regularization of the optimality system and prove that there exist solutions by
showing that it corresponds to a necessary first-order optimality system of a solv-
able smooth optimization problem. Section 3.3 focuses on the convergence analysis of
the regularized systems’ solutions to the solution of the original non-smooth system
(2). In Section 4, we introduce and extend the RAS and RASPEN preconditioning
techniques for systems of PDEs. Finally, Section 5 investigates and compares the
efficiency of the numerical approaches. Specifically, we examine the influence of intro-
ducing combinations of the regularization, the parameter continuation and (non-)linear
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RAS preconditioning on the performance of solvers on the outer (Newton) and inner
(GMRES) level with respect to number of iterations, stability of numbers of iterations
and computation time. A short conclusion of our findings is presented in Section 6.

2 Notation, assumptions and preliminary results

As long as the meaning is clear from context, a Nemytskii operator associated to a
real function is denoted by the same symbol. The Nemytskii operator of the non-
linearity φ : R → R in the PDE-constraint is understood to map L2 into itself. All
norms on Hilbert spaces (H, ⟨·, ·⟩) are assumed to be induced by the scalar prod-
uct unless stated otherwise. The space H1

0 (Ω) is endowed with the inner product
⟨u, v⟩H1

0
=
∫
Ω
∇u · ∇v + uv dx. The corresponding dual space is denoted as H1

0 (Ω)
′ =

H−1(Ω). When elements in H1
0 (Ω) are interpreted as elements of H−1(Ω), this always

means the Gelfand-type identification via the embedding into L2(Ω) and the L2-Riesz
mapping.
Assumption 1.
1. The set Ω ⊆ Rn for n ∈ {2, 3} is a bounded domain with C0,1 boundary (see, e.g.,

[22, Section 6.2]).
2. The functions f, yd are in L2(Ω) and µ, ν ∈ R>0.
3. The operator A : H1

0 (Ω) → H−1(Ω) is linear and elliptic with corresponding strong

differential form Ay := −
n∑

i,j=1

∂xj
(aij∂xi

y) + a0y, a0, aij ∈ L∞(Ω), a0 ≥ 0 and

aij = aji. Moreover, there exists a CA > 0 such that
n∑

i,j=1

aij(x)ξiξj ≥ CA|ξ|2 for

all ξ ∈ Rn and for a.a. x in Ω.
4. The function φ ∈ C2(R) is monotonically increasing and φ′′ is locally Lipschitz

continuous.
Assumption 1 guarantees that there exists a well-defined solution operator to the

constraining PDE (1b) and its adjoint form.
Lemma 1 (The solution operator S). For every u ∈ L2(Ω), there exists a unique
solution y = y(u) ∈ H1

0 (Ω) ∩ L∞(Ω) of (1b). Thus, the map S : L2(Ω) → H1
0 (Ω) ∩

L∞(Ω), S(u) := y(u) is well defined and there exist two constants C,L > 0 such that,
for all u, u1, u2 ∈ L2(Ω), it holds that∥∥S(u)∥∥

H1 +
∥∥S(u)∥∥

L∞ ≤ C
∥∥f + u− φ(0)

∥∥
L2 , (3)∥∥S(u1)− S(u2)

∥∥
H1 +

∥∥S(u1)− S(u2)
∥∥
L∞ ≤ L

∥∥u1 − u2
∥∥
L2 . (4)

Proof. The claim is proved in [23, Section 4] for Neumann and Robin boundary con-
ditions. In particular, [23, Theorems 4.4, 4.5] show the existence of solutions and the
boundedness result (3) for bounded φ with φ(0) = 0, and [23, Theorems 4.7, 4.8] show
that the latter assumptions can be actually dropped to obtain the claim. All results
transfer to homogeneous Dirichlet boundary conditions, in which case the bilinear
form is naturally coercive. The Lipschitz continuity (4) is proved in [23, Theorem 4.16]
and also carries over immediately.
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Lemma 2 (The adjoint problem). Let y ∈ H1(Ω)∩L∞(Ω). Then for every v ∈ L2(Ω),
there exists a unique solution p = p(v) ∈ H1

0 (Ω) ∩ L∞(Ω) to the problem(
A+ φ′(y)

)
p = v in H−1(Ω). (5)

Moreover, there exist two constants C,L > 0, independent of y, such that∥∥p(v)∥∥
H1 +

∥∥p(v)∥∥
L∞ ≤ C

∥∥v∥∥
L2 ,∥∥p(v1)− p(v2)

∥∥
H1 +

∥∥p(v1)− p(v2)
∥∥
L∞ ≤ L

∥∥v1 − v2
∥∥
L2 ,

for all v, v1, v2 ∈ L2(Ω).

Proof. First, we know that φ′ ≥ 0. Since y is in L∞(Ω), continuity of φ′ yields that

φ′(y) ∈ L∞(Ω). Accordingly, we can define the operator Ã = A+φ′(y) and φ̃ ≡ 0 and

the adjoint problem (5) is obviously equivalent to Ãp + φ̃p = v and we can proceed
analogously to the proof of Lemma 1. In the proofs of the theorems from [23], we
notice that the constants can be chosen independently of y because the part of φ′ can
be dropped in any of the estimates due to coercivity of A.

Further, the existence of at least one global minimizer can be obtained using
standard arguments, cf. [23, Sec 4.4.2].
Lemma 3 (Existence of minimizers). Let Assumption 1 be satisfied. Then there exists
at least one global minimizer for problem (1).

Now, we can state the first-order necessary optimality condition.
Theorem 1 (First-order optimality system). Let ū ∈ L2(Ω) be a local minimizer of
(1). Then there exist unique ȳ, p̄ ∈ H1

0 (Ω) ∩ L∞(Ω) and a λ̄ ∈ ∂C∥ū∥L1(Ω) (where ∂C
denotes Clarke’s generalized differential; see [24, Sec. 2.1]) that satisfy

Aȳ + φ(ȳ) = f + ū in H−1(Ω),(
A+ φ′(ȳ)

)
p̄ = ȳ − yd in H−1(Ω),

p̄+ νū+ µλ̄ = 0 in L2(Ω).

(6)

Proof. The result follows using Clarke’s generalized differential to deal with the non-
Gâteaux-differentiability of the function u 7→ ∥u∥L1(Ω), and the abstract optimality
conditions derived in [24, Chap. 2] and [25], cf. [3].

Because of the inclusion λ̄ ∈ ∂C∥ū∥L1(Ω), the last equation in (6) is not easy to be
treated numerically. However, a projection formula for λ̄ has been proved in [3, Cor.
3.2] using an explicit representation of the subdifferential ∂C∥ū∥L1(Ω), which carries
over to our setting.
Lemma 4 (Explicit form and fixed point equation for λ̄). Assume the setting of
Theorem 1. Then the generalized derivative λ̄ ∈ ∂C∥ū∥L1(Ω) satisfies

λ̄ = proj[−1,1]

(
− p̄

µ

)
= proj[−1,1]

(
ν

µ
ū+ λ̄

)
∈ L∞(Ω). (7)
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Here, the second equality is an immediate result of the last condition in (6). Note
that Lemma 4 especially implies the uniqueness of the subderivative λ̄ for the given
minimizer ū. Moreover, using the last condition in (6) yields that ū ∈ L∞(Ω). Fur-
thermore, (7) can be used to reduce the first-order optimality system (6) solely to the
state and adjoint variables, i.e., to the system

Ay + φ(y) = f − 1

ν

(
p+ µproj[−1,1]

(
− p

µ

))
in H−1(Ω),(

A+ φ′(y)
)
p = y − yd in H−1(Ω).

(8)

This is a non-smooth system of coupled PDEs (the non-smoothness being introduced
by the projection operator) with unknowns y, p ∈ H1

0 (Ω).

3 Smoothed optimality systems

The optimality system (8) includes the Nemytskii operator corresponding to the (non-
smooth) projection applied to the adjoint state. Numerically, this non-smoothness
and nonlinearity is the main difficulty to deal with. In this section, we introduce a
smoothing approach for the operator proj[−1,1], show the existence of solutions to the
smoothed system, and prove the convergence of solutions of the smoothed system to
solutions of the original system (8) as the smoothing parameter tends to zero.

3.1 Smoothing of the projection operator

We regularize the projection on the real numbers that defines the Nemytskioperator by
rewriting proj[−1,1] =

1
2 (|x+1|−|x−1|) for x ∈ R and applying the ε-shifted square root

regularization to the absolute value terms. This leads to the smooth approximation
Pε : R → R of proj[−1,1] : R → R given by

Pε(x) :=
1

2

(√
(x+ 1)2 + ε−

√
(x− 1)2 + ε

)
(9)

and its derivative

P ′
ε(x) =

1

2

(
x+ 1√

(x+ 1)2 + ε
− x− 1√

(x− 1)2 + ε

)
(10)

for ε ≥ 0. Both functions are depicted in Figure 1, and some of their properties are
given in the following lemma.
Lemma 5 (Properties of Pε and P ′

ε).
1. For every ε > 0, Pε ∈ C∞(R, [−1, 1]) with lim

x→±∞
Pε(x) = ±1 and Pε is strictly

monotonically increasing. Additionally, Pε(x)
ε↘0−−−→ proj[−1,1](x) for all x ∈ R.
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Fig. 1 Pε and P ′
ε for ε ∈ {0, 0.5, 3, 10}.

2. For all x in R, the derivative P ′
ε(x) ∈ (0, 1/

√
1 + ε]. Moreover,

P ′
ε(x)

ε↘0−−−→


1 for |x| < 1,

1/2 for |x| = 1,

0 for |x| > 1.

3. The associated Nemytskii operators Pε, P
′
ε : L

2(Ω) → L∞(Ω) are well defined and
Pε is globally Lipschitz as an operator mapping L2(Ω) into itself.

4. We have
|proj[−1,1](x)− Pε(x)| ≤

√
ε ∀x ∈ R

and
∥proj[−1,1](v)− Pε(v)∥L2(Ω) ≤ |Ω|

√
ε ∀v ∈ L2(Ω) (11)

for the respective Nemytski operators.

Proof. Point 1. The regularity and the pointwise approximation property are given by
construction. For the boundedness, observe that Pε(x) < 0 (= 0 or > 0) if and only
if x < 0 (x = 0 or x > 0). For x > 0, Pε(x) is monotonically decreasing in ε (since
∂εPε(x) =

1
4 [((x+1)2+ ε)−

1
2 − ((x− 1)2+ ε)−

1
2 ] < 0). Hence Pε(x) ↗ proj[−1,1](x) as

ε ↘ 0 for x > 0, proving that Pε(x) ∈ (0, 1] for x > 0. The fact that Pε(x) ∈ [−1, 0)
for x < 0 follows analogously. The limits of Pε as x→ ±∞ follow from the identity

Pε(x) =
2x√

(x+ 1)2 + ε+
√

(x− 1)2 + ε
.

The monotonicity is an immediate consequence of the claim in 2 proved below.

Point 2. Direct computations show that P ′
ε(x) ̸= 0 ∀x ∈ R and P ′

ε(x)
x→±∞−−−−−→ 0.

Using the second derivative P ′′
ε , we obtain that P ′

ε attains its unique maximum at x = 0
with the value P ′

ε(0) =
1√
1+ε

. Further, we have that P ′
ε(x) → 1

2 (sign(x+1)−sign(x−1))

pointwise as ε↘ 0.
Point 3. Since the real-valued functions Pε and P

′
ε are bounded, the corresponding

operators map into L∞(Ω). Pε ∈ C∞(R) is globally Lipschitz, since P ′
ε is bounded.
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Hence the operator Pε : L
2(Ω) → L2(Ω) is globally Lipschitz because Ω is bounded.

Point 4. Using the mean-value theorem we have for x ∈ R

|proj[−1,1](x)− Pε(x)| ≤
∫ ε

0

∣∣∣∣ ∂∂εPs(x)
∣∣∣∣ds (12)

with the partial derivative

∂

∂ε
Ps(x) =

1

4

[
1√

(x+ 1)2 + s
− 1√

(x− 1)2 + s

]
where we can estimate the right-hand side as∣∣∣∣ ∂∂εPs(x)

∣∣∣∣ ≤ 1

4

(
1√

(x+ 1)2 + s
+

1√
(x− 1)2 + s

)
=

1

2
√
s
. (13)

The result follows now by computing the integral in (12). The estimate in (11) is a
direct consequence of the previous estimate and the boundedness of the domain.

3.2 Solutions to the smoothed optimality systems

Replacing proj[−1,1] with Pε in (9), we obtain the smoothed optimality system

Ay + φ(y) = f + u in H−1(Ω), (14a)(
A+ φ′(y)

)
p = y − yd in H−1(Ω), (14b)

p+ νu+ µPε

(
− p

µ

)
= 0 in L2(Ω), (14c)

for the triple (u, y, p) ∈ L2(Ω)×H1
0 (Ω)×H1

0 (Ω) and its reduced form

Ay + φ(y) = f − 1

ν

(
p+ µPε

(
− p

µ

))
in H−1(Ω),(

A+ φ′(y)
)
p = y − yd in H−1(Ω)

(15)

for y, p ∈ H1
0 (Ω). Note that, since the real function p ∈ R 7→ Pε(− p

µ ) is monotoni-
cally decreasing, the reduced system is a non-monotone, semi-linear system, i.e., we
cannot prove the existence of solutions applying techniques from the theory of mono-
tone operators. Instead, we will construct a smooth optimal control problem, whose
optimality system coincides with (14). The auxiliary optimality system is obtained by
replacing the non-smooth L1-term in the cost function of our original problem with
an appropriate differentiable. This approach is nontrivial because the regularization
operator is applied to the adjoint state p, while the cost functional of the regularized,
auxiliary problem can only include terms in u and y.
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Thus, we begin with the ansatz

Jε(u) =
1

2

∥∥S(u)− yd
∥∥2
L2 +

ν

2

∥∥u∥∥2
L2 + µDε(u) (16)

with a differentiable functional Dε : L2(Ω) → R. Provided some assumptions on Dε,
which we will specify later, one can find a necessary first-order optimality system for
minimizers of the functional Jε over controls u ∈ L2(Ω) using standard techniques. The
optimality system unsurprisingly consists of the lines (14a)-(14b) and an (L2-gradient)
stationarity condition, which reads as

p+ νu+ µ∇Dε(u) = 0 in L2(Ω). (17)

Accordingly, the smoothed system (14) and the optimality system of (16) coincide in
the first two equations. We now construct a Dε such that the relation

∇Dε(u) = Pε

(
− p

µ

)
(18)

is satisfied for u and p satisfying (17) and for ε > 0, establishing a clear connection
between (17) and the smoothed stationarity condition (14c). Note that (18) is a smooth
counterpart to the explicit form of the Clarke-subderivative λ̄ in (7). Using (17), we
obtain that (18) holds if Dε satisfies the fixed-point condition

∇Dε(u) = Pε

(
− p

µ

)
= Pε

(
∇Dε(u) +

ν

µ
u

)
. (19)

We begin showing the existence of such a functional Dε starting from (19) by
proving the existence of a scalar function dε that satisfies the scalar counterpart to
(19), that is

dε(x) = Pε

(
dε(x) +

ν

µ
x

)
(20)

for every x ∈ R and for ε > 0. Here, dε plays the role of ∇Dε(ū) in a pointwise sense.
Once dε in R is obtained, Dε(ū) is given as the Nemytskii operator of the antiderivative
of dε.
Lemma 6 (Existence and properties of dε). For every ε > 0, there exists a unique,
strictly monotonically increasing function dε ∈ C∞(R, [−1, 1]) satisfying (20) for all
x ∈ R. It has the following properties:
1. lim

x→±∞
dε(x) = ±1;

2. dε(x) = 0 if and only if x = 0;
3. d′ε(x) > 0 for all x ∈ R;
4. d′ε is bounded and therefore dε is globally Lipschitz continuous.
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Proof. For x ∈ R, we define the function Fx : R → R via Fx(d) := Pε(d +
ν
µx) and,

using Lemma 5–2, we obtain the bound

|F ′
x(d)| = |P ′

ε(d+
ν

µ
x)| ≤

∥∥P ′
ε

∥∥
∞ =

1√
1 + ε

< 1.

Therefore, the mean value theorem yields that

|Fx(d1)− Fx(d2)| ≤ |F ′
x(d̄)||d1 − d2| ≤

1√
1 + ε

|d1 − d2|

for all x, d1, d2 ∈ R and ε > 0. Hence, the Banach fixed-point theorem yields a unique
fixed point dε(x) satisfying (20), which defines the unique function dε.

The boundedness of dε(x) ∈ [−1, 1] follows from the fixed-point equation (20) and

the boundedness of Pε. Using the boundedness of dε, we see that dε(x) +
ν
µx

x→±∞−−−−−→
±∞, which implies that dε(x) = Pε

(
dε(x)+

ν
µx
)
→ ±1 as x→ ±∞ by Lemma 5 Point

1.
To obtain the regularity of dε, we apply the implicit function theorem to the smooth

function I(x, d) := d−Pε
(
d+ ν

µx
)
for (x, d) ∈ R× [−1, 1]. Indeed, by construction, we

have that I(x, dε(x)) = 0 for all x ∈ R. For the partial derivative of I in d, we have that

∂dI(x, d) = 1− P ′
ε

(
d+

ν

µ
x

)
> 1− 1√

1 + ε
> 0

for all x, d ∈ R. For every arbitrary x0 ∈ R, we obtain a δ > 0 and a unique, smooth
function s : (x0 − δ, x0 + δ) → [−1, 1] with I(x, s(x)) = 0 for all x ∈ (x0 − δ, x0 + δ)
from the implicit function theorem. Because of the uniqueness of dε, we have dε = s on
(x0 − δ, x0 + δ). Since x0 is arbitrarily chosen, we get dε ∈ C∞(R, [−1, 1]). It remains
to show points 2, 3 and 4 and the monotonicity of dε. Differentiation of (20) gives

d′ε(x) =
ν

µ
P ′
ε

(
dε(x) +

ν

µ
x

)(
1− P ′

ε

(
dε(x) +

ν

µ
x

))−1

. (21)

Note that P ′
ε maps into (0, 1) and is bounded away from 1 for fixed ε by Point 2

in Lemma 5, this immediately implies the boundedness and the positivity of d′ε and
hence the strict monotonicity of dε. This implies that dε has exactly one root, which
has to be at x = 0 because dε(x) = 0 implies Pε(

ν
µx) = 0, which is exactly the case

when x = 0.

Lemma 7 (The antiderivative Dε). Let Dε(x) :=
x∫
0

dε(s)ds for x ∈ R. Then Dε is

bounded from below by 0, strictly convex, non-expansive and Dε(0) = 0.

Proof. By definition of Dε and Lemma 6, we have D′′
ε (x) = d′ε(x) > 0, hence Dε

is strictly convex. Further, the monotonicity of dε and (22) in Lemma 6 imply that
D′
ε(x) = dε(x) < 0 (= 0 or > 0) if and only if x < 0 (x = 0 or x > 0). Thus Dε is

strictly decreasing for x < 0 and strictly increasing for x > 0. Since Dε is continuous

10



with Dε(0) = 0 by construction, Dε is bounded from below by 0. Global Lipschitz
continuity with constant L = 1 is a direct consequence of the boundedness of dε.

Now, the goal is to extend the constructed real functions dε and Dε into functional
operators on the space L2(Ω). To this end, we define the operator Dε : L2(Ω) → R as

Dε(u) :=
∫
Ω

Dε(u(x)) dx, (22)

whose properties are studied in the following lemma.
Lemma 8 (Properties of Dε). The operator Dε is strictly convex, weakly lower
semi-continuous, bounded from below, globally Lipschitz continuous and continuously
Fréchet differentiable at u ∈ L2(Ω) with

D′
ε(u)h =

∫
Ω

D′
ε(u(x))h(x) dx =

∫
Ω

dε(u(x))h(x) dx ∀h ∈ L2(Ω). (23)

Moreover, Dε(0) = 0 and D′
ε : L

2(Ω) → L2(Ω)′ is Lipschitz continuous.

Proof. Convexity and boundedness of Dε follow from the properties of Dε proven in
Lemma 7. Lipschitz continuity is a consequence of the Lipschitz continuity of Dε and
the continuous embedding of L2(Ω) into L1(Ω). Similarly, Dε(0) = 0 is immediately
clear from Point 2 in Lemma 6.

Let us now focus on differentiability and semi-continuity. We begin with the dif-
ferentiability. First, the boundedness of D′

ε = dε by ±1 from Lemma 6 implies
that

∥D′
ε ◦ u∥L2 ≤ |Ω| <∞ (24)

for all u ∈ L2(Ω), i.e., the operator is well defined. Now, for u, h ∈ L2(Ω), we have∣∣∣∣Dε(u+h)−Dε(u)−D′
ε(u)h

∣∣∣∣=∣∣∣∣∫
Ω

Dε

(
u(x)+h(x)

)
−Dε

(
u(x)

)
−D′

ε

(
u(x)

)
h dx

∣∣∣∣. (25)

For almost every x ∈ Ω, the mean value theorem yields δ(x) ∈ (0, 1) such that

Dε

(
u(x) + h(x)

)
−Dε

(
u(x)

)
= D′

ε

(
u(x) + δ(x)h(x)

)
h(x).

Inserting this in (25) and denoting by Ldε the Lipschitz constant of dε, we obtain that∣∣∣∣Dε(u+ h)−Dε(u)−D′
ε(u)h

∣∣∣∣ = ∣∣∣∣ ∫
Ω

(
D′
ε

(
u(x) + δ(x)h(x)

)
−D′

ε

(
u(x)

))
h(x) dx

∣∣∣∣
≤
∫
Ω

∣∣dε(u(x) + δ(x)h(x)
)
− dε

(
u(x)

)∣∣ |h(x)| dx

≤ Ldε

∫
Ω

|δ(x)| |h(x)|2 dx ≤ Ldε∥h∥2L2(Ω),

showing the differentiability result.
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Further, we show that the map D′
ε : L

2(Ω) → L2(Ω)′ is Lipschitz continuous. By
Lemma 6, dε = D′

ε is globally Lipschitz. Thus

∥D′
ε(u)−D′

ε(v)∥L2(Ω)′ = sup
∥z∥L2=1

∣∣∣∣ ∫
Ω

(
D′
ε

(
u(x)

)
−D′

ε

(
v(x)

))
z dx

∣∣∣∣
≤ ∥D′

ε ◦ u−D′
ε ◦ v

∥∥
L2(Ω)

≤ Ldε∥u− v∥L2(Ω)

for u, v ∈ L2(Ω). Hence, Dε is continuously differentiable. The weak lower semi-
continuity follows from the fact that Dε is convex and continuous.

We can finally prove the existence of a solution to the smoothed optimality system.
Theorem 2 (Solvability of the smoothed optimality system (14)). For all ε > 0, the
auxiliary optimal control problem

min
u∈L2(Ω)

Jε(u) =
1

2

∥∥S(u)− yd
∥∥2
L2 +

ν

2

∥∥u∥∥2
L2 + µDε(u) (26)

admits a global solution u ∈ L2(Ω) and y, p ∈ H1
0 (Ω)∩L∞(Ω) that is a solution to the

smoothed optimality system (14).

Proof. Using the properties of Dε from Lemma 8, we see that (26) is well-posed and
admits a solution, cf. Lemma 3 and, again, [23, Sec. 4.4.2]. Necessarily, its first-order
optimality system admits a solution u ∈ L2(Ω) and y, p ∈ H1(Ω) ∩ L∞(Ω), cf. also
Lemmas 1 and 2. This system is given by the state and adjoint equation and the
optimality condition

p+ νu+ µ∇Dε(u) = 0 in L2(Ω). (27)

With D′
ε(u) given by (23), we have that ∇Dε(u) = D′

ε◦u ∈ L2(Ω) and by construction
of D′

ε = dε via (20), (27) implies

D′
ε(u) = Pε

(
D′
ε(u) +

ν

µ
u

)
= Pε

(
− p

µ

)
∈ L2(Ω). (28)

Therefore the solvable optimality system of (26) coincides with (14).

Remark 1. Due to the fixed-point approach of defining dε, we do not obtain an explicit
representation for Dε. Numerically, one can observe that Dε behaves like a smoothing
of the absolute value function.

3.3 Convergence analysis

In this section, we study the behavior of solutions to the regularized system (14) as
the smoothing parameter ε tends to 0. In particular, we prove that these converge
weakly to a solution to the original non-smooth system (6) in the sense that weak
accumulation points of sequences of the regularized solutions are solutions of the non-
smooth optimality system (6).
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Theorem 3. Let (yn)n∈N, (pn)n∈N ⊆ H1
0 (Ω) ∩ L∞(Ω) be sequences of solutions of

(15) for ε = εn ↘ 0 as n→ ∞ and let y and p be weak H1(Ω)-accumulation points of
these sequences, respectively. Then y and p are solutions of (8), and any subsequences
of (yn)n∈N, (pn)n∈N converging weakly to y and p, respectively, converge strongly in
H1

0 (Ω) ∩ L∞(Ω).

Proof. We extract weakly convergent subsequences (which we tacitly denote with the
same symbols as the original sequences) that satisfy (15) for ε = εn, i.e.,

Ayn + φ(yn) = f − 1

ν

(
pn + µPεn

(
−pn
µ

))
in H−1(Ω),(

A+ φ′(yn)
)
pn = yn − yd in H−1(Ω),

(29)

and such that yn ⇀ y and pn ⇀ p inH1
0 (Ω). By Rellich’s compact embedding theorem,

we obtain that yn → y and pn → p strongly in L2(Ω). This especially implies that
− 1
ν

(
pn+µPεn(−

pn
µ )
)
is uniformly bounded in L2(Ω). Thus, using the a-priori estimate

in Lemma 1, we obtain that there exists an Mp > 0 such that

∥yn∥H1 + ∥yn∥L∞ ≤ C

∥∥∥∥f − 1

ν

(
pn + µPεn

(
− pn

µ

))
− φ(0)

∥∥∥∥
L2

≤My.

The corresponding a-priori estimate for the adjoint equation in Lemma 2 yields
∥pn∥H1+∥pn∥L∞ ≤ C∥yn−yd∥L2 ≤Mp, for anMp > 0. DefiningM := max(My,Mp),
the set {v ∈ H1

0 (Ω)∩L∞(Ω) : ∥v∥L∞ ≤M} is convex and closed in theH1(Ω)-topology
and therefore weakly closed in H1(Ω). Hence, we obtain that

∥yn∥L∞ , ∥pn∥L∞ , ∥y∥L∞ , ∥p∥L∞ ≤M ∀n ∈ N. (30)

By [23, Lemma 4.11], the Nemytskii operator φ : L∞(Ω) → L∞(Ω) associated with φ
satisfies

∥φ(yn)− φ(y)∥L2 ≤ Kφ(M)∥yn − y∥L2
n→∞−−−−→0

for a Kφ(M) > 0, i.e., φ(yn) → φ(y) in L2(Ω). Since ψ((y, p) ∈ R2) := φ′(y)p ∈ R is
continuously differentiable and therefore locally Lipschitz, a direct modification to [23,
Lemma 4.11] to account for functions ψ : R2 → R yields that the associated Nemytskii
operator ψ : L∞(Ω)2 → L∞(Ω) satisfies

∥ψ(yn, pn)− ψ(y, p)∥L2 ≤ Kψ(M)∥(yn, pn)− (y, p)∥L2 → 0,

for a Kψ(M) > 0, i.e., ψ(yn, pn) → ψ(y, p) in L2(Ω).
Since A is linear and bounded from H1

0 (Ω) to H
−1(Ω), we know that A is weakly

continuous, which implies that Ayn ⇀ Ay and Apn ⇀ Ap in H−1(Ω). Finally, using
the Lipschitz property of Pεn in Lemma 5, we obtain that∥∥∥∥Pεn(− pn

µ

)
− proj[−1,1]

(
− p

µ

)∥∥∥∥
L2
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≤
∥∥∥∥Pεn(− pn

µ

)
− Pεn

(
− p

µ

)∥∥∥∥
L2

+

∥∥∥∥Pεn(− p

µ

)
− proj[−1,1]

(
− p

µ

)∥∥∥∥
L2

≤L
∥∥∥∥pn − p

∥∥∥∥
L2

+

∥∥∥∥Pεn(− p

µ

)
− proj[−1,1]

(
− p

µ

)∥∥∥∥
L2

→ 0,

where we used dominated convergence for the second term, since by Lemma 5 we have
the pointwise convergence, and the integrand is bounded. Summarizing, we have

Ayn ⇀ Ay and Apn ⇀ Ap in H−1(Ω),

yn → y and pn → p in L2(Ω),

Pεn

(
− pn

µ

)
→ proj[−1,1]

(
− p

µ

)
in L2(Ω),

φ(yn) → φ(y) and ψ(yn, pn) → ψ(y, p) in L2(Ω).

(31)

Using (31), we can take the limit in (29) and obtain that y, p are solutions of (15).
With the Lipschitz property of the solution operator S in Lemma 1, we obtain strong
convergence in H1

0 (Ω) ∩ L∞(Ω), because

∥∥y−yn∥∥H1 +
∥∥y−yn∥∥L∞ ≤L

ν

∥∥∥∥p−pn+µ(proj[−1,1]

(
− p

µ

)
−Pεn

(
−pn
µ

))∥∥∥∥
L2

→0.

Similarly, the strong convergence of pn → p in H1(Ω) ∩ L∞(Ω) follows from the
corresponding Lipschitz condition in Lemma 2.

Remark 2 (L∞(Ω)-convergence of (un)n∈N). Because pn → p in L∞(Ω) and un =
− 1
ν (pn+µPεn(−

pn
µ )), the continuity of Pεn : L

∞(Ω) → L∞(Ω) even yields convergence

un → u in L∞(Ω).
The following technical lemma guarantees that there in fact exist sequences of

solutions to the smoothed optimality systems that possess accumulation points.
Lemma 9 (Existence of weak accumulation points). Let εn ↘ 0. Then there exist
sequences (un)n∈N ⊆ L2(Ω) and (yn)n∈N, (pn)n∈N ⊆ H1(Ω) ∩ L∞(Ω) of global solu-
tions to the auxiliary optimization problems (26) (and its necessary optimality system
(14)) for each ε = εn, such that (un)n∈N has a weak L2-accumulation point u and
(yn)n∈N, (pn)n∈N have weak H1-accumulation points y, p ∈ H1(Ω) ∩ L∞(Ω).

Proof. The sequences exist because of Theorem 2, and we have that yn = S(un).
Since un is a global minimizer for Jεn (thus Jεn(un) ≤ Jεn(0)) and using the identity
Dεn(0) = 0 from Lemma 8, we obtain

ν

2

∥∥un∥∥2L2 ≤ Jεn(un) ≤ Jεn(0) = J(S(0), 0) =
1

2

∥∥S(0)− yd
∥∥2
L2 <∞. (32)

Thus, (un)n∈N is uniformly bounded in L2(Ω). Using the a-priori estimates for yn
from Lemma 1, we get

∥∥yn∥∥H1+
∥∥yn∥∥L∞ ≤ C

∥∥f + un − φ(0)
∥∥
L2 . Hence, (yn)n∈N is

uniformly bounded in H1
0 (Ω). By the corresponding a-priori estimate of Lemma 2, we
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get that (pn)n∈N is uniformly bounded in H1
0 (Ω). The existence of weak accumulation

points follows from the reflexivity of Hilbert spaces.

Now, we are interested in the question whether or not the convergence rate of
order

√
ε from Lemma 5 (see (11)) carries over to the convergence of the solutions

to the regularized optimality systems, cf. Theorem 3. Consider the product space
V = H1

0 (Ω)
2, its dual V ′ = H−1(Ω)2 and let x = (y, p) ∈ V . We introduce the

(ε-regularized) map F : V × [0,∞) → V ′ as

F (x, ε) :=

[
Ay + φ(y)− f + 1

ν

(
p+ µPε(− p

µ )
)

Ap+ φ′(y)p− y + yd

]
.

Thus, the optimality system (15) reads as

F (x, ε) = 0 in V ′. (33)

Well-posedness is guaranteed by Theorem 2 and we denote the solution for ε > 0 by
x(ε) = (y(ε), p(ε)). The partial derivatives of F are

∂

∂x
F (x, ε) =

[
A+ φ′(y) 1

ν (I− P ′
ε(−

p
µ ))

φ′′(y)p− I A+ φ′(y)

]
∈ L(V, V ′),

∂

∂ε
F (x, ε) =

[
µ
ν
∂
∂εPε(−

p
ν )

0

]
∈ L([0,∞), V ′).

We have the following sufficient condition for the convergence rate of the regularized
solutions.
Theorem 4. Assume that ∂

∂εF (x(ε), ε) is continuously invertible for all ε > 0 and its
inverse is bounded independently of ε. Then, for x(ε) and its V -limit x, we have the
asymptotic

∥x− x(ε)∥H1
0 (Ω)2 = O(

√
ε) as ε→ 0.

Proof. Given the assumption, we can apply the implicit function theorem to
F (x(ε), ε) = 0 and write

0 =
d

dε
F (x(ε), ε) =

∂

∂x
F (x, ε)ẋ(ε) +

∂

∂ε
F (x(ε), ε)

and therefore

ẋ(ε) = − ∂

∂x
F (x(ε), ε)−1Fε(x(ε), ε). (34)

Hence, ε 7→ x(ε) is continuously differentiable, and we can apply the fundamental
theorem of calculus to obtain

∥x(ε)− x∥V ≤
∫ ε

0

∥ẋ(s)∥L(R,V )ds,
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Since ∂
∂εF (x(ε), ε)

−1 is assumed to be bounded independently of ε, we have∥∥∥ẋ(s)∥∥∥
L(R,V )

=
∥∥∥ ∂
∂x
F (x(s), s)−1 ∂

∂ε
F (x(s), s)

∥∥∥
L(R,V )

≤ C
∥∥∥ ∂
∂ε
F (x(s), s)

∥∥∥
L(R,V ′)

= C
∥∥∥ ∂
∂ε
F (x(s), s)

∥∥∥
V ′

= C µ
ν

∥∥∥ ∂
∂εPs(−

p
ν )
∥∥∥
H−1(Ω)

= C µ
ν sup

∥v∥L2(Ω)=1

|⟨ ∂∂εPs(−
p
ν ), v⟩L2(Ω)|

≤ C µ
ν

∥∥∥ ∂
∂εPs(−

p
ν )
∥∥∥
L2(Ω)

≤ C|Ω|µ
2ν

1√
s
,

where we used the estimate (13) in the last inequality. Now the claim follows by
integrating the estimate.

Corollary 1. Under the additional assumption that ν is sufficiently large and that
x(ε) is a global solution for ε > 0, we have

∥x− x(ε)∥H1
0 (Ω)2 = O(

√
ε) as ε→ 0.

Proof. We show that for ν large enough, the derivative ∂
∂xF (x(ε), ε) is continuously

invertible and its inverse is bounded independently of ε. In order to do that, we consider
the Schur complement of ∂

∂xF (x(ε), ε) given by

S = (A+ φ′(y)) + 1
ν (I− P ′

ε(−
p
µ )(A+ φ′(y))−1(φ′′(y)p− I) (35)

Since the sequence x(ε) of global minimizers is uniformly bounded in V w.r.t. ν and
ε (by similar arguments as in Lemma 9), there exists ν > 0 that ensures∥∥ 1

ν (I− P ′
ε(−

p
µ )(A+ φ′(y))−1(φ′′(y)p− I)

∥∥ ≤ q∥(A+ φ′(y))−1∥−1 (36)

for some q ∈ (0, 1). Using convergence of the corresponding Neumann series, this
implies that S is invertible with ∥S−1∥ ≤ 1

1−q∥(A+φ′(y))−1∥ bounded independently
of ε.

Note that the interplay of the two regularization parameters ν and µ ultimately
determines the sparsity pattern of the optimal control, where increasing ν yields a more
distributed support of a smeared optimizer and increasing µ decreasing its support
with less diffusive behavior in the solution. In the smoothed case, the regularization
parameter additionally influences the sparsity pattern of the solutions to the regular-
ized optimality system, as one can tell from the smoothed stationarity condition in
the last line of (29). However, for decreasing the smoothing parameter, the sparsity
structure of the limiting solution to the nonsmooth system is typically recovered. See
Figure 2 for the resulting optimal controls for the test configuration corresponding to
[1, Example 1] for different values of the L1-penalization parameter µ and different
values of the regularization parameter ε. When ε is rather large (ε = 1, first row) the
sparsity structure of the limiting control is essentially lost. However, for the chosen
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Fig. 2 Optimal control functions for test configuration [1, Example 1] corresponding to µ ∈
{10−5, 10−4, 10−3} (from left to right) and to ε ∈ {1, 10−2, 10−3, 10−11 } (from top to bottom).

smaller values the correct sparsity is immediately recovered. For ε = 10−2 (second
row), the boundary of the sparsity region (support of the optimal control functions)
is not yet sharp, but for ε = 10−3 and smaller regularization, the correct structure
(third row) is obtained and, visually, the results can not be distinguished from the
results corresponding to very small values of ε, like ε = 10−11.

4 Computational framework and numerical results

In this section, we present the main components of our approach for finding solutions
to the (smoothed) optimality system(s). These are Newton methods, continuation
strategies, and domain-decomposition (linear/nonlinear) preconditioning. Specifically,
in Subsection 4.1, we discuss the use of a damped Newton method for the (mono-
lithic) solution of the smoothed system. When the smoothing parameter ε is small,
the behavior to be expected from the damped Newton is the same as that of a damped
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semi-smooth Newton method to the unsmoothed system. Thus, we propose a continu-
ation strategy in the smoothing parameter and address the benefits of augmenting the
straightforward Newton approach by this technique. This idea will be combined with
a nonlinear preconditioning approach based on the RASPEN domain decomposition
method in Subsection 4.2. In order to facilitate a fair comparison to a sophisticated
computational framework without nonlinear preconditioning, we will employ the RAS
method as a linear preconditioner for solving the linear systems within the monolithic
Newton.

We will investigate the algorithmic and numeric performance of the combinations
of these approaches. We employ a model problem to examine the performance. Specif-
ically, we fix the unit square domain Ω = (0, 1)2, the laplacian A = −∆ and the
nonlinearity φ(y) = κ(y3 + exp(κy)). The problem parameters are set to κ = 0.1,
ν = 10−6 and µ = 1. We fix f ≡ 0, set

p̄(x1, x2) = 1.3µ sin(2πk̃x1) sin(2πk̃x2), (37)

for k̃ = 5 and compute ȳ as the solution of

Aȳ + φ(ȳ)− f − 1

ν

(
p̄+ µPε

(
− p̄

µ

))
= 0,

for ε = 10−15 and set yd as

yd = −Ap− φ′(y)p̄+ ȳ.

The constructed quantities are depicted in Figure 3. Proceeding this way guarantees
that ȳ and p̄ are solutions to the first-order optimality system and by choosing p̄, we
can guarantee that the nonlinearity and non-differentiability in the projection operator
become relevant, as p crosses the thresholds of −1 and 1 in various sections of the
domain. Our setting is discretized using finite differences with N = 450 discretization
points per dimension and P1 finite elements.

4.1 Damped Newton and continuation

In this section, we present a damped Newton method for the solution of the regularized
optimality system (33) and a continuation strategy in the smoothing parameter ε. We
will denote Fε(x) = F (ε, x) for x ∈ V for the remainder of this paper. Owing to the
regularization, the map Fε is differentiable and it is possible to use a classical damped
Newton method to solve (33). Given an iterate xk, the new approximation xk+1 is
obtained as

xk+1 = xk + αk d
k. (38)

Here, the direction dk is computed by solving the Newton system

F ′
ε(x

k)dk = −Fε(xk). (39)
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Fig. 3 The constructed optimal control ū, optimal state ȳ and optimal adjoint state p̄ and desired
state yd.

In (38), αk ∈ (0, 1] is a damping parameter that is computed by a backtracking
approach to satisfy the condition

∥Fε(xk + αk d
k)∥ ≤ σ∥Fε(xk)∥, (40)

where σ ≥ 1 is a relaxation parameter. Note that (40) has the the goal of avoiding
excessively large growth of the residual value Fε(x

k+αk d
k) and is less restrictive than

the requirement that it must decay monotonically along the iterations.
The first and second rows of Table 1 show the number of Newton iterations needed

to solve (33) up to absolute or relative tolerance tol = 10−10 for different values of the
smoothing parameter ε = εmin. Seeing as the number of required Newton iterations
increases as ε decreases, it is apparent that the smoothing has a regularizing effect.
This suggests that using a continuation approach on the regularization parameter ε
can be beneficial for the overall performance of the method. Specifically, for a given
target value εmin ∈ (0, 1] of the smoothing parameter, we modify the computations
(38)–(39) in the Newton iteration by starting with a rather large initial smoothing
parameter ε0 = 1 and successively reducing ε at each iteration using the update
εk+1 = max{γεk, εmin}, where γ ∈ (0, 1) is a parameter controlling the rate at which
the sequence (εk)k decays towards εmin. This procedure is summarized in Algorithm 1.
Note that if ε0 = εmin is chosen, then no continuation is performed and Algorithm 1
corresponds exactly to the Newton method (38)-(39) applied to the system (33) with
ε = ε0.

The computational cost of one iteration of Algorithm 1 is dominated by the cost
of solving the linear system (39) in Step 3. An efficient approach to solving the system
is using iterative Krylov methods like MINRES or more generally GMRES (see, e.g.,
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Algorithm 1 Monolithic Newton with ε-continuation and relaxed backtracking
linesearch

Input: Initial guess x0 , backtracking relaxation σ ≥ 1 , initial value ε0 > 0 , target
regularization εmin , continuation parameter γ ∈ (0, 1], tolerance of convergence
tol > 0.

1: Set k = 0.
2: while ∥Fεk(xk)∥ > max{tol, tol∥Fε0(x0)∥} and k ≤ kmax do
3: Solve F ′

εk
(xk)dk = −Fεk(xk).

4: Set αk = 1.
5: while ∥Fεk(xk + αkd)∥ > σ∥Fεk(xk)∥ do
6: αk = αk

2 .
7: end while
8: Update xk+1 = xk + αk d

k, εk+1 = max{γεk, εmin}, and k = k + 1.
9: end while

Method\ εmin 1 1e-3 1e-5 1e-10 1e-13 1e-15

Newton 11 31 35 41 40 40
Newtonε 11 22 20 21 21 23

Table 1 Iterations of monolithic Newton method (Newton)
with fixed values ε = εmin and monolithic Newton method with
continuation (Newtonε) starting from ε = 1 down to εmin

according to Algorithm 1.

Method\ εmin 1 1e-3 1e-5 1e-10 1e-13 1e-15

Newton 866 1247 1261 1328 1341 1341
Newtonε 866 1166 1153 1162 1167 1128
NewtonRAS 28 33 32 33 33 33
NewtonRAS,ε 28 32 32 32 32 31

Table 2 Average GMRES iterations of monolithic Newton
(Newton), monolithic Newton with continuation (Newtonε),
(linearly) RAS-preconditioned monolithic (NewtonRAS) and
(linearly) RAS-preconditioned Newton with continuation
(NewtonRAS,ε ) starting from 1 to εmin for a 2× 2-subdomain
decomposition of Ω.

[26]), which was employed as the solver in the results of Table 1. In order to improve
the performance of GMRES, we incorporate a RAS preconditioner. Table 2 reports the
average number of GMRES iterations, with and without the use of the RAS precon-
ditioner, corresponding to the same problem solved in Table 1. While a side effect of
the continuation strategy appears to be a minimal reduction of the number of average
GMRES iterations, the effect is obviously much larger for the RAS preconditioning.

4.2 Nonlinearly preconditioned Newton

While linear domain decomposition preconditioners can be used to compute the update
direction dk more efficiently, they do not generate better search directions. As a result,
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they cannot improve the performance of the Newton method e.g. when the initial
guess is far from the solution. A related approach to accelerate and robustify the
solution procedure with respect to initial guesses is to employ a nonlinear precondi-
tioner. In this approach, one directly transforms the nonlinear system (33) and then
applies Newton’s method on the new transformed problem. This way, different search
directions are obtained that generally improve the convergence behavior of Newton’s
method; see, e.g., [15]. Here, we will outline how to extend the nonlinear RAS precon-
ditioner originally proposed for solving nonlinear PDEs in [15] to the solution of our
(regularized) optimal control problem.

In the Schwarz method for solving (33), one begins with a non-overlapping decom-

position of Ω into I ∈ N subdomains Ω̃i, i.e., Ω = ∪Ii=1Ω̃i. Each non-overlapping

subdomain Ω̃i is enlarged by an overlap to obtain a new subdomain Ωi containing
Ω̃i. The subdomains Ωi give rise to an overlapping decomposition: Ω = ∪Ii=1Ωi. Thus,
given an initial guess x0i = (y0i , p

0
i ) ∈ Vi := H1(Ωi)

2, one iteratively solves the weak
form of the local subproblems

Ayki + φ(yki ) = f − 1

ν

(
pki + µPε

(
− pki

µ

))
in Ωi,(

A+ φ′(yki )
)
pki = yki − yd in Ωi,

yki = pki = 0 on ∂Ωi ∩ ∂Ω,
yki = yk−1

j , pki = pk−1
j on ∂Ωi ∩ Ωj (j ̸= i),

(41)

on the subdomains Ωi yielding x
k
i = (yki , p

k
i ) ∈ Vi. The approximation xk in the entire

domain Ω is obtained as the recombination xk =
∑I

i=1 P̃ix
k
i with the prolongation

operators P̃i : Vi → L2(Ω)2 defined, for any v = (vy, vp) ∈ Vi and w ∈ H1(Ωi), as

P̃i(v) :=

[
P̃i(vy)
P̃i(vp)

]
with P̃i(w) :=

{
w a.e. in Ω̃i,

0 otherwise.

To obtain an abstract version of the weak form of (41), we introduce the prolongation
operator Pi : Vi → L2(Ω)2 defined, for any v = (vy, vp) ∈ Vi and w ∈ H1(Ωi), as

Pi(v) :=

[
Pi(vy)
Pi(vp)

]
with Pi(w) :=

{
w a.e. in Ωi,

0 otherwise,

and the restriction operator Ri : L
2(Ω)2 → L2(Ωi) defined, for any v = (vy, vp) ∈

L2(Ω)2 and w ∈ L2(Ω), as

Ri(v) :=

[
Ri(vy)
Ri(vp)

]
with Ri(w) := w|Ωi

.
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Note that Ri maps H1(Ω) into H1(Ωi) and that RiPi = IVi for i = 1, . . . , I and
I∑
i=1

P̃iRi = IV , where IVi and IV are identity operators.

Now, given any pair x̂, x̃ in V , it is clear that

PiRix̂+ (IV − PiRi)x̃ =

{
x̂|Ωi in Ωi,

x̃|Ω\Ωi
in Ω \ Ωi.

Accordingly, for any Nemytskii operator associated to a function ψ : R2 → R2, we
have that

Riψ(PiRix̂+ (IV − PiRi)x̃) = Riψ(PiRix̂).

Hence, letting T : V ′ → V denote the canonical Riesz representation map, a direct
calculation shows that

RiTFε(PiRix
k + (IV − PiRi)x

k−1) = RiTFε(PiRix
k) +RiT

[
A 0
0 A

]
(IV − PiRi)x

k−1,

where it is clear that, as in (41), xk−1 is not affected by the (nonlinear) functions φ
and Pε, but only by the operator A. Thus, the second term in the right-hand side of
the above equation represents a weak formulation of the transmission condition in (41)
written in the residual form. Accordingly, the weak form of (41) can be written as

RiTFε(PiRix
k + (IV − PiRi)x

k−1) = 0, (42)

which we assume to be well-posed in the sense that there exists an xk ∈ V such that
PiRix

k + (IV − PiRi)x
k−1 ∈ V .

Now, we denote by Ci(x
k−1) ∈ Vi, for i = 1, . . . , I, the solutions to the subproblems

(42), i.e., they satisfy

Ki(Ci(x
k−1)) := RiTFε(PiCi(x

k−1) + (IV − PiRi)x
k−1) = 0. (43)

The Ci(x
k−1) are the local corrections of the Schwarz iteration that can be computed

in parallel and that are used to obtain the new approximation as the recombination

xk = xk−1 +

I∑
i=1

P̃iCi(x
k−1), (44)

yielding a RAS-type fixed-point iteration.1 If this iteration converges, then the limit
point x satisfies

F ′
ε(x) =

I∑
i=1

P̃iCi(x) = 0. (45)

1Note that at the discrete level (using, e.g., finite differences of P 1 finite elements) it is possible to obtain
an equivalence between parallel Schwarz method iterations (41) and the RAS residual form; see, e.g., [27].
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This equation is the RAS preconditioned form of the original smoothed problem (33),
and solving it is equivalent to solving (33) directly. Newton’s method applied to (45)
is called one-level RASPEN.

The Newton routine requires the computation of the Jacobian of Fε. Using (45),
we get that

F ′
ε(x) =

I∑
i=1

P̃iC
′
i(x). (46)

Thus, we compute the derivatives of Ci(x), i = 1, ..., I, by differentiating (43) in
x = xk−1 to obtain

C ′
i(x) = −

(
RiTF

′
ε

(
x(i)
)
Pi

)−1

RiF
′
ε

(
x(i)
)
= −K ′

i(Ci(x))
−1RiF

′
ε

(
x(i)
)

(47)

with x(i) = x+PiCi(x), where we used that the Jacobian of Ki with respect to Ci(x)
is K ′

i(Ci(x)) = RiTF
′
ε(x

(i))Pi. With the derivative (46), one RASPEN step is given
by solving the Newton system

F ′
ε(x

k−1)dk = −Fε(xk−1) (48)

and updating the iterate via
xk = xk−1 + dk. (49)

The whole RASPEN procedure is detailed in Algorithm 2. Note that we apply the
ε-continuation strategy only for the solution of the inner problems (43), since in our
numerical experiments RASPEN only needed a few outer iterations to converge (see
Table 6 in Section 5.2). There are two parts dominating the computational cost of one
RASPEN iteration. The first is the evaluation of Fε(xk−1) via (45) (see Algorithm 3),
which means solving the small, local systems (43) for Ci(x

k−1) in parallel by using a
Newton-type solver on the inner level, e.g., Algorithm 1. The second part is solving the
Newton linear system (48). This can be done efficiently using a (matrix-free) Krylov
subspace method. The corrections Ci(x

k−1) are stored and used again for the assembly
of the function d 7→ F ′(xk−1)d (see Algorithm 4). In every GMRES iteration in
solving the global linear system of the RASPEN iterations, the action of d 7→ F ′(xk)d
is needed, so according to (46), we can solve for C ′

i(x
k)d in parallel (see Algorithm 4).

The local linear systems of the inner Newton procedure are small in size and can be
solved using direct solvers for sparse matrices (we apply Matlab’s mldivide operation).

5 Numerical experiments

In this section, numerical experiments are performed to assess the efficiency of
the proposed computational framework. We compare the following six methods:
Monolithic Newton with and without ε−continuation (Newton, Newtonε) (see Algo-
rithm 1), linear RAS preconditioned Newton with and without ε−continuation
(NewtonRAS, NewtonRAS,ε), nonlinear RAS preconditioned Newton with and without
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Algorithm 2 One-level RASPEN with ε-continuation in the inner Newton

Input: initial guess x0, tolerance tol, maximum number of iterations kmax, target
regularization ε.

1: Initialize k = 0.
2: Assemble Fε(x0) via Algorithm 3 for εmin = ε and store the corrections(

Ci(x
0)
)I
i=0

.

3: while ∥Fε(xk)∥ > max{tol, tol∥Fε(x0)} and k < kmax do
4: Compute dk by solving F ′

ε(x
k)dk = −Fε(xk) via a matrix-free Krylov method,

where the map (d 7→ F ′
ε(x

k)d) is assembled using
(
Ci(x

k)
)I
i=0

in Algorithm 4.

5: Update xk+1 = xk + dk.
6: Set k = k + 1.
7: Assemble Fε(xk) by Algorithm 3 for εmin = ε and store the corrections(

Ci(x
k)
)I
i=0

.
8: end while
9: Output: xk.

Algorithm 3 Evaluation of Fε: x→ Fε(x)
Input: iterate x, target regularization εmin.
1: for i = 1, . . . , I in parallel do
2: Solve the local systems (43) for Ci(x) using Algorithm 1 with or without

continuation up to εmin.
3: end for
4: Assemble Fε(x) using (45).

5: Output: Fε(x),
(
Ci(x)

)I
i=1

.

Algorithm 4 Action of F ′
ε(x) : d→ F ′

ε(x)d

Input: iterate x, direction d, corrections
(
Ci(x)

)I
i=1

.
1: for i = 1, . . . , I in parallel do
2: Solve the linear system arising from (47) for C ′

i(x)d.
3: end for
4: Assemble F ′

ε(x)d via (46).
5:

6: Output: F ′
ε(x)d.

ε−continuation in the first inner iteration (RASPEN, RASPENε) (see Algorithm 2).
Note that for the RASPEN methods, we consider the continuation strategy only in
the first inner Newton iterations, as the bulk of the computation time for the inner
Newton is concentrated there. In particular, in Section 5.1, we study the performance
of the monolithic Newton method and the effect of our continuation strategy and
linear RAS preconditioning. This study provides important insights for the behavior
of inner subdomain iterations of the nonlinear preconditioner (RASPEN), which is
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εmin 1 1e-5 1e-10 1e-15

Newton 11 - 866 - 1.5e4 35 - 1261 - 1.1e5 41 - 1328 - 1.4e5 40 - 1341 - 1.5e5
Newtonε 11 - 866 - 1.3e4 20 - 1153 - 4.6e4 21 - 1162 - 5.0e4 23 - 1128 - 5.1e4
NewtonRAS 11 - 28 - 2.7e2 35 - 32 - 9.9e2 41 - 33 - 1.2e3 40 - 33 - 1.2e3
NewtonRAS,ε 11 - 28 - 2.7e2 20 - 32 - 5.5e2 21 - 32 - 5.9e2 23 - 31 - 6.4e2

Table 3 Outer Newton iterations - average GMRES iterations - computational times [s]
of four configurations of monolithic Newton for different values of ε = εmin and a
2× 2-subdomain decomposition.

then studied in Section 5.2. Further, a comparison of all presented methods is given
in Section 5.2. All numerical tests are performed on problem (1) with the settings
reported in Section 4. Throughout the numerical experiments, we use an outer toler-
ance tol = 10−10 and for the inner Newton methods in RASPEN an inner tolerance
of 10−8. The initial regularization is chosen to be ε0 = 1 and the continuation rate as
γ = 1

5 . We consider N = 450 discretization points per dimension, leading to a system

of size 2N2 = 405000. The initial guess for all experiments is x0 = 0 ∈ R2N2

and we
choose a backtracking parameter of σ = 1.1. The overlap for the domain decomposition
is set to mh for m = 2 and the mesh-size h = 1

N+1 .

5.1 Monolithic Newton and linear preconditioning

This section is concerned with numerical experiments to assess the performance of the
monolithic Newton method as a baseline and the effect of both regularization/con-
tinuation and linear preconditioning. To this purpose, we first set a 2× 2 subdomain
decomposition and report in Table 3 number of Newton iterations, (average) number
of GMRES iterations and computational times (in seconds) of four different configu-
rations: Newton, Newtonε, NewtonRAS and NewtonRAS,ε for different values of final
continuation values εmin. The results of Table 3 show clearly the beneficial effect of
both linear preconditioning and continuation. On the one hand, RAS linear precondi-
tioning impacts only the number of GMRES iterations, reducing them by a factor of
about 10. On the other hand, the continuation strategy is capable of reducing substan-
tially the number of outer Newton iterations (by a factor of 2-3 for ε equal to 10−5,
10−10, and 10−15), while also leading to a reduction of number of GMRES iterations
(even for the linearly preconditioned case (NewtonRAS,ε). All these beneficial effects
are clearly visible in the computational times. Next, we study the robustness of lin-
ear RAS preconditioner and continuation with respect to the number of subdomains.
Therefore we decompose the domain Ω = (0, 1)2 into 2 × s overlapping subdomains,
for s = 2, . . . , 8. In Table 4, we report the average number of GMRES iterations for
the three configurations Newton, NewtonRAS and NewtonRAS,ε and different values
of εmin. We observe that the number of GMRES iterations increases with the number
of subdomains especially for small regularization parameters. Moreover, the number
of GMRES iterations grow also with respect to εmin. The beneficial effect of both
linear RAS preconditioner and continuation is evident. The computational times cor-
responding to the cases are reported in Table 5. These also show the benefit of our
continuation and preconditioning strategies.
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# sub/ εmin 1 1e-5 1e-10 1e-15

2× 2 866 - 28 - 28 1247 - 33 - 32 1261 - 32 - 32 1328 - 33 - 32
2× 3 866 - 34 - 34 1247 - 45 - 44 1261 - 43 - 43 1328 - 44 - 42
2× 4 866 - 37 - 37 1247 - 55 - 52 1261 - 52 - 50 1328 - 53 - 50
2× 5 866 - 33 - 33 1247 - 47 - 45 1261 - 44 - 43 1328 - 46 - 43
2× 6 866 - 38 - 38 1247 - 56 - 53 1261 - 53 - 51 1328 - 54 - 51
2× 7 866 - 40 - 40 1247 - 60 - 57 1261 - 56 - 54 1328 - 58 - 54
2× 8 866 - 40 - 40 1247 - 66 - 62 1261 - 62 - 59 1328 - 64 - 59

Table 4 Average GMRES iterations for Newton- NewtonRAS- NewtonRAS,ε,
N = 450, and different subdomain decompositions.

# sub/ εmin 1 1e-5 1e-10 1e-15

2× 2 1.5e4 - 2.7e2 - 2.7e2 1e5 - 9.1e2 - 6.3e2 1.1e5 - 9.9e2 - 5.5e2 1.4e5 - 1.2e3 - 5.9e2
2× 3 1.5e4 - 2.0e2 - 2.0e2 1e5 - 7.3e2 - 5.1e2 1.1e5 - 8e2 - 4.5e2 1.4e5 - 9.6e2 - 4.6e2
2× 4 1.5e4 - 1.6e2 - 1.6e2 1e5 - 7.1e2 - 4.8e2 1.1e5 - 7.4e2 - 4.2e2 1.4e5 - 9.1e2 - 4.3e2
2× 5 1.5e4 - 1.3e2 - 1.2e2 1e5 - 5.3e2 - 3.4e2 1.1e5 - 5.4e2 - 3e2 1.4e5 - 6.7e2 - 3.2e2
2× 6 1.5e4 - 1.7e2 - 1.4e2 1e5 - 6.0e2 - 3.9e2 1.1e5 - 6.1e2 - 3.3e2 1.4e5 - 7.3e2 - 3.4e2
2× 7 1.5e4 - 1.2e2 - 1.3e2 1e5 - 5.8e2 - 4.3e2 1.1e5 - 6.2e2 - 3.6e2 1.4e5 - 7.6e2 - 3.7e2
2× 8 1.5e4 - 1.3e2 - 1.3e2 1e5 - 6.9e2 - 4.6e2 1.1e5 - 7.1e2 - 4.1e2 1.4e5 - 8.7e2 - 4.2e2

Table 5 Computational times [s] for Newton- NewtonRAS- NewtonRAS,ε, and different subdomain
decompositions.

5.2 RASPEN

Here, we focus on our strategies based on the RASPEN approach, and we present
corresponding results of numerical experiments to assess the performance of RASPEN,
and RASPENε. As in Section 5.1, we first set a 2 × 2 subdomain decomposition and
report in Table 6 number of outer RASPEN iterations, average number of parallel inner
(subdomain) iterations, (average) number of GMRES iterations, and computational
times (in seconds). The results of Table 6 show clearly the benefit of using the

εmin 1 1e-5 1e-10 1e-15

RASPEN 3 - 6 - 33 - 174 3 - 14 - 35 - 362 3 - 15 - 34 - 389 3 - 15 - 34 - 381
RASPENε 3 - 6 - 33 - 176 3 - 5 - 35 - 161 3 - 7 - 34 - 213 3 - 8 - 34 - 231

Table 6 Outer iterations - average parallel inner iterations - average outer
GMRES iterations - computational times [s] for different values of ε = εmin

and a 2× 2 decomposition .

continuation strategy in the first inner iteration. While the number of outer iterations
is essentially constant (equal to 3), the number of parallel inner iterations is reduced
by a factor of 2 when the continuation is used. The number of average outer GMRES
iterations is stable in all cases and not influenced by the continuation. Finally, the
computational times are lower when the continuation is used, in agreement with the
lower number of inner iterations. Therefore, according to Section 5.1 and Table 6 the
continuation strategy improves both the performance of monolithic Newton methods
(with and without linear preconditioning) as well as the nonlinear preconditioned
method due to the improvement in the inner Newton.
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Next, we study the behavior of our numerical frameworks with respect to the
number of subdomains and perform numerical experiments using the same settings
of Section 5.1. Table 7 shows the number of outer iterations, from which it is clear

# sub/ εmin 1 1e-5 1e-10 1e-15

2× 2 3 - 3 3 - 3 3 - 3 3 - 3
2× 3 5 - 5 5 - 5 5 - 5 5 - 5
2× 4 5 - 5 5 - 5 5 - 5 5 - 5
2× 5 3 - 3 3 - 3 3 - 3 3 - 3
2× 6 5 - 5 5 - 5 5 - 5 5 - 5
2× 7 5 - 5 5 - 5 5 - 5 5 - 5
2× 8 5 - 5 5 - 5 5 - 5 5 - 5

Table 7 Outer iterations for RASPEN -
RASPENε.

that all methods are robust against the number of subdomains and the regulariza-
tion parameter εmin. To further investigate the performances, we report in Table 8
the average number of inner iterations in dependence on the number of subdomains
and the regularization parameter. As before, one can observe the benefit of the

# sub/ εmin 1 1e-5 1e-10 1e-15

2× 2 5 - 5 13 - 4 15 - 7 14 - 8
2× 3 4 - 4 9 - 4 10 - 5 9 - 6
2× 4 5 - 5 9 - 4 9 - 5 9 - 6
2× 5 6 - 6 14 - 5 15 - 7 15 - 8
2× 6 5 - 5 9 - 4 10 - 5 9 - 6
2× 7 5 - 5 9 - 4 10 - 6 10 - 7
2× 8 5 - 5 9 - 4 10 - 5 10 - 6

Table 8 Average parallel inner iterations for
RASPEN - RASPENε.

continuation approach, resulting in a reduction in parallel iterations by up to half
(for εmin = 10−5, 10−10, 10−15). Table 9 shows the number of average GMRES iter-
ations, which grow with increasing number of subdomains, but stay almost constant
for decreasing εmin. As εmin decreases, the advantage of the continuation strategy

#sub/εmin 1 1e-5 1e-10 1e-15

2× 2 29 - 29 28 - 28 27 - 27 27 - 27
2× 3 34 - 34 38 - 38 39 - 39 39 - 39
2× 4 36 - 36 39 - 39 39 - 39 39 - 39
2× 5 33 - 33 35 - 35 34 - 34 34 - 34
2× 6 37 - 37 43 - 43 42 - 42 41 - 41
2× 7 38 - 38 43 - 43 42 - 42 43 - 43
2× 8 39 - 39 44 - 44 44 - 44 43 - 43

Table 9 Average GMRES iterations for
RASPEN - RASPENε.
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becomes evident. Additionally, the benefit of parallelization becomes apparent when
more subdomains are used. Finally, we compare all methods in Table 5.2 for two sub-

#sub/εmin 1 1e-5 1e-10 1e-15

2× 2 335 - 331 762 - 294 865 - 433 811 - 486
2× 3 353 - 354 674 - 355 703 - 444 683 - 464
2× 4 297 - 300 506 - 293 523 - 337 518 - 383
2× 5 174 - 176 362 - 161 389 - 213 381 - 231
2× 6 230 - 234 385 - 224 394 - 264 378 - 277
2× 7 224 - 221 354 - 218 367 - 257 363 - 277
2× 8 221 - 220 331 - 221 338 - 238 335 - 260

Table 10 Computational times [s] for RASPEN
- RASPENε.

domain decompositions 2×2 and 2×5. In our experiments, we observe that nonlinearly
preconditioned methods are more efficient than linearly preconditioned ones. Addi-
tionally, methods with continuation outperform those without in terms of computation
time. Further, in Table 12, we compare NewtonRAS,ε and RASPENε for subdomain
decompositions s×s for s = 2 . . . , 8. While the outer iterations (and parallel inner iter-
ations) stay nearly constant for both methods, the outer GMRES iterations increase
with an increasing number of subdomains. Also in most cases, RASPENε is superior
to NewtonRAS,ε in terms of computation time.

2× 2 Newton Newtonε NewtonRAS NewtonRAS,ε RASPENRASPENε

Outer it. 40 23 40 23 3 3
Average outer GMRES it. 1341 1128 33 31 27 27
Average parallel inner it. - - - - 14 8
Time [s] 145009 51406 1179 640 811 486

2× 5 Newton Newtonε NewtonRAS NewtonRAS,ε RASPENRASPENε

Outer it. 40 23 40 23 3 3
Average outer GMRES it. 1341 1128 47 43 34 34
Average parallel inner it. - - - - 15 8
Time [s] 145009 51406 676 344 381 231

Table 11 Comparison of all methods for a subdomain decomposition of 2× 2, 2× 5 and

εmin = 10−15.

6 Conclusion

In this contribution, we considered smooth approximations of optimality systems for
L1-regularized, semilinear optimal control problems. On a theoretical level, we estab-
lished the solvability of the smoothed system and proved the convergence of the
solution towards the solution of the nonsmooth system with convergence order. These
considerations gave rise to a continuation approach which was combined with both lin-
ear and nonlinear RAS preconditioned Newton methods. The numerical experiments
showed on the one hand the efficiency of the continuation approach for both linear and
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RASPENε 2× 2 3× 3 4× 4 5× 5 6× 6 7× 7 8× 8

Outer it. 5 6 5 3 6 5 5
Average outer GMRES it. 27 41 45 36 51 55 57
Average parallel inner it. 8 7 7 8 27 7 7
Time [s] 489 468 276 162 637 417 577

NewtonRAS,ε 2× 2 3× 3 4× 4 5× 5 6× 6 7× 7 8× 8

Outer it. 23 23 23 23 23 23 23
Average outer GMRES it. 31 45 57 46 56 64 70
Average parallel inner it. - - - - - - -
Time [s] 501 403 421 301 413 567 742

Table 12 Comparison of NewtonRAS,ε and RASPENε for

different decompositions and εmin = 10−15.

nonlinear preconditioning and on the other hand showed that it can be of advantage
to consider nonlinear preconditioned approaches over linear ones.
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