
MOX-Report No. 87/2021

Iterative splitting schemes for a soft material
poromechanics model

Both, J.W.; Barnafi, N.A.; Radu, F.A.; Zunino, P.; Quarteroni,

A.

MOX, Dipartimento di Matematica 
Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

mox-dmat@polimi.it http://mox.polimi.it



Iterative splitting schemes for a soft material poromechanics model

J. W. Botha,d, N. A. Barnafib,d, F. A. Radua, P. Zuninoc, A. Quarteronic

aPMG, Department of Mathematics, University of Bergen, Norway
bDepartment of Mathematics “F. Enriques”, University of Milan, Italy

cMOX, Department of Mathematics, Politecnico di Milano, Italy
dThe first two authors have equally contributed to the work.

Abstract

We address numerical solvers for a poromechanics model particularly adapted for soft materials, as it generally respects
thermodynamics principles and energy balance. Considering the multi-physics nature of the problem, which involves
solid and fluid species, interacting on the basis of mass balance and momentum conservation, we decide to adopt a
solution strategy of the discrete problem based on iterative splitting schemes. As the model is similar (but not equivalent
to) the Biot poromechanics problem, we follow the abundant literature for solvers of the latter equations, developing two
approaches that resemble the well known undrained and fixed-stress splits for the Biot model. A thorough convergence
analysis of the proposed schemes is performed. In particular, the undrained-like split is developed and analyzed in the
framework of generalized gradient flows, whereas the fixed-stress-like split is understood as block-diagonal L2-type
stabilization and analyzed by means of a relative stability analysis. In addition, the application of Anderson acceleration
is suggested, improving the robustness of the split schemes. Finally, we test these methods on different benchmark tests,
and we also compare their performance with respect to a monolithic approach. Together with the theoretical analysis,
the numerical examples provide guidelines to appropriately choose what split scheme shall be used to address realistic
applications of the soft material poromechanics model.

Keywords: poromechanics of soft materials, iterative splitting schemes, undrained split, fixed-stress split, convergence
analysis

1. Introduction

Poromechanics addresses the behavior of fluid-saturated permeable porous materials, and in particular the interaction
of their mechanical deformation and the fluid flow. Since its origin in the context of civil engineering [1, 2, 3, 4], most
commonly known as Biot’s theory of poroelasticity, it has been used for countless applications of societal and industrial
relevance, e.g., in reservoir geomechanics, hydrology and soil mechanics, and material sciences (see the review [5] and
the references therein). More recently, it has also captured the attention of researchers interested in the behavior of
highly deformable, soft biological tissues [6, 7, 8]; a prominent example is the perfusion of the heart [9, 10, 11, 12].

The classical theory of poroelasticity and resulting models were originally developed for civil engineering applica-
tions and therefore accordingly often incorporate simplifying assumptions. These are not always met in the context of
biomedical applications. For instance soft tissues, as the heart, may simultaneously undergo both large deformations
and perfusion with potentially moderate flow rates, larger than in common subsurface applications, [13, 14, 15, 16].
Ultimately, this has called for more general formulations obeying the fundamental principles of continuum mechanics
and thermodynamics [17], which renders these models applicable to a broader range of scenarios. We also emphasize
that several biomedical applications, e.g., in the context of bone poroelasticity [18] or brain mechanics [19, 20, 21, 22],
can be addressed by standard models as the Biot equations or their extension to multiple permeability networks.

Among various advances, we particularly highlight the development of a general, thermodynamically consistent
poromechanics model by Chapelle and Moireau [23], which also serves as basis for this work. The model is based on a
thermodynamic derivation combined with thermodynamically consistent constitutive laws. It couples the balance of
linear momentum for the solid and fluid phases including the viscous dissipation governed by the interaction of both
phases due to friction, as well as the conservation of mass. Most importantly, in contrast to the classical quasi-static
Biot consolidation model, the aforementioned model satisfies an energy-dissipation identity, predicting the dissipation

Preprint submitted to CMAME December 14, 2021



of the combination of the kinetic and Helmholtz free energy. A further difference between the two approaches is that
the former considers the absolute fluid velocity instead of the relative one.

The analysis of the well-posedness, stability and numerical approximation of this class of poromechanics models is
still largely open. Among recent advances, we highlight the development and analysis of an implicit time discretization
preserving the dissipation-energy identity at the discrete level [23]; an energy-preserving implicit-explicit time
discretization incorporating a (non-iterative) operator splitting, decoupling solid and flow computations [24]; an
energy-stable space and time discretization for a linearized model with focus on quasi-incompressible solids [25]; and
finally, a space and time discretization for the same linearized model, exploiting a generalized saddle point structure
and ultimately suggesting the use of Taylor-Hood type finite elements [26].

Motivated by the success of block-partitioned solvers for the related, classical quasi-static Biot equations, the
main objective of this work is to develop and analyze for the first time iterative coupling strategies for the general,
thermodynamically consistent poromechanics model proposed in [23]. Similar to previous theoretical works in this
context, see for example [25, 26], a linearized model is considered for the numerical analysis. The particular structure
of the problem prevents direct application of previous results for the Biot equations and requires new developments
taking into account a more involved coupled nature and the presence of dynamic terms.

In general, solvers decoupling different physics allow the employment of methods tailored to the separate sub-
problems, as flow and elasticity. However, a sequential-implicit solution requires iterating until convergence at each
time step. In contrast, fully-implicit approaches, solving the fully-coupled problem at once, yield unconditional stability
but require advanced and efficient preconditioners. Here it is worth to mention that robust iterative coupling strategies
can effectively guide the design of scalable preconditioners for the monolithic solution by Krylov subspace methods.

For robust iterative coupling, in general, a problem-specific strategy is required; yet, we can learn from the
well-studied, related Biot equations. For the latter, solvers based upon a sequential-implicit solution of the flow and
mechanics sub-problem have been studied since over two decades [27]. The most popular iterative schemes are the
undrained split [28] and the fixed-stress split [27], both relying on additional stabilization to one of the sub-problems.
Due to suitable choices of stabilization, both have been shown to be unconditionally stable [29, 30, 31] with theoretical
convergence rates depending on stabilization and model parameters, but independent on mesh properties; inf-sup
stability of the discretization even allows robust convergence in the fluid-incompressible and quasi-impermeable
regime [32]. Moreover, the fixed-stress split has been successfully generalized to several complex extensions of the
quasi-static Biot equations. In view of biomedical applications, we emphasize work on large deformations [33] and
multiple-network poroelasticity models often applied in brain applications [20, 22]. For optimal performance of
the iterative solvers, the choice of the stabilization is well-known to be vital. This choice does depend on several
factors [32] as problem parameters, but also boundary conditions and geometry, which are difficult to quantify. To
alleviate this, it has been shown in [34] that Anderson acceleration [35] greatly relaxes the requirement of optimal
stabilization. Furthermore, utilizing the fact that stabilized split schemes are equivalent to a preconditioned Richardson
iteration [30], they provide a basis to design efficient block preconditioners for the fully-implicit approach [36], next to
alternative efficient preconditioners [37, 38, 39, 40, 41]. In this context, the need for optimal stabilization is similarly
relaxed. Hence, after all, stabilization parameters derived in theoretical analyses offer a practical choice. An interesting
alternative approach using a hybridized discontinuous discretization has been shown to yield a parameter-robust solver
[42].

In this work, we develop and analyze splitting schemes for a linearization of the general poromechanics model [23],
previously introduced and analyzed in [25, 26]. This (linearized) model resembles Biot’s equations, but presents
fundamental differences, most importantly, new terms in the momentum equations of the fluid and solid phases due
to inertia, and a structurally different saddle-point structure, compared to a double saddle point structure of the Biot
equations. Still, iterative coupling concepts can be adapted to the new setting. Ultimately, we present schemes similar
to the undrained split and the fixed-stress split. In particular, the undrained-like split is developed and analyzed in the
framework of generalized gradient flows and alternating minimization following [43], whereas the fixed-stress-like
split is understood as block-diagonal L2-type stabilization and analyzed by means of a relative stability analysis. In
practice, additional application of Anderson acceleration is suggested, motivated by associated works in the literature
and the here presented numerical examples.

This work is structured as follows. In Section 2, we present the general model of interest and its linearized version.
In Section 3 and Section 4, we present respectively the alternating minimization split and the diagonally L2–stabilized
split. The convergence of both schemes is analyzed in Section 5. In Section 6, an extensive numerical study is presented
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which validates the theoretical results. Finally, we close with concluding remarks in Section 7.

2. The thermodynamically consistent poromechanics model

The purpose of this work is to develop efficient solution strategies for the linearized and discretized version of the
thermodynamically consistent poromechanics model originally developed by Chapelle and Moireau in [23], further
described below. Two main steps are essential to reach this objective. One is the discretization of the equations (in this
work we consider finite difference schemes in time and finite elements for the space discretization) and the other is the
linearization of the model through a Newton-Raphson method. It is natural to operate the linearization on the discrete
version of the problem, obtaining a discrete tangent problem to which the solution strategies proposed later on will be
applied. This can be named the discretize then linearize strategy.

We remark that in the definition of the tangent problem the shape derivatives are neglected, namely the physical
domain Ωt is identified with the reference one Ω0. As in this case the tangent problem depends only on the Fréchét
derivatives of the mathematical operators that govern the nonlinear problem, the discrete tangent problem obtained
by means of the discretize then linearize approach is equivalent to the one that would be derived from the linearize
then discretize strategy. The latter strategy corresponds to address the linearization of the continuous problem first,
giving rise to a fully continuous tangent problem. Then, we address the numerical discretization of such problem and
we develop the numerical solvers for it, based on the splitting into several sub-problems. We choose to follow the latter
approach, because it is much simpler as it allows us to work with the strong formulation of the equations.

2.1. The general model for finite deformations
The model assumes that two phases, a fluid ( f ) and a solid (s), coexist at each point of the domain of interest. Let

us denote by φ the volume fraction of the fluid. We use Lagrangian (reference) and Eulerian (physical) coordinate
frames, denoting by Ω0 the domain in the Lagrangian frame and by Ωt the same domain in the deformed configuration.
In the same way, we denote with the subindex (0) the operators defined in the Lagrangian frame. For example, given
the displacement field in the Lagrangian frame, namely us(x0, t) such that x = x0 + us(x0, t) for any x ∈ Ωt, x0 ∈ Ω0, the
deformation gradient tensor is F = I+∇0us and its determinant is J = detF. We also introduce the symbol Js = J(1−φ).
One of the primary variables of the model is the added mass m = ρf(Jφ − φ0) that is the fluid mass added to the system
due to pore deformation. To define the constitutive laws of the model, we introduce Ψ(F, Js) which is a suitable free
energy of the solid.

In view of the linearization of the problem, we formulate the equations on the following abstract form: Find the
velocity of the solid phase vs, the velocity of the fluid phase vf and the added mass (per unit volume) m, such that

S(vs, vf ,m) = 0; F (vs, vf ,m) = 0; M(vs, vf ,m) = 0;

where the operators S(·), F (·), M(·) correspond to the momentum conservation in the solid and fluid phases, and the
mass balance, respectively. More precisely, referring to the strong formulation of the model presented in [25], the
operators S(·), F (·), M(·) correspond to the following sub-problems:

Given vf , m and f in Ω0, find vs in Ω0 such that

S(vs, vf ,m) = ρs(1 − φ0)
∂vs

∂t
− ∇0 · Ps + (1 − φ)JF−T∇0 p − Jφ2 k−1

f (vf − vs) − ρs(1 − φ0)f = 0

complemented by the following constitutive laws

Ps =
∂Ψ(F, Js)

∂F
, p =

∂Ψ(F, Js)
∂Js

.

Given vs, m and f in Ωt, find vf in Ωt such that

F (vs, vf ,m) =
1
J

d
dt

(ρf Jφvf) + ∇ · (ρfφvf ⊗ ρf(vf − vs)) − ∇ · (φσ f ) − θvf + φ∇p

+ φ2 k−1
f (vf − vs) − ρfφf = 0.
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Given vs, vf in Ωt find m in Ωt such that

M(vs, vf ,m) =
1
J

dm
dt

+ ∇ · (ρfφ(vf − vs)) − θ = 0 .

Here, ρs and ρf constitute (spatially and temporally) constant densities of the solid and fluid phases, respectively, kf
denotes the fluid mobility (absolute permeability divided by the fluid viscosity). Potentially, φ0, kf , and κs are spatially
varying, and the source f is varying in space and time.

The problem must be complemented by boundary and initial conditions. For the boundary constraints many options
are possible, as discussed for example in [25]. For the sake of simplicity, we present here only one of the possible
variants. Let us split the whole boundary ∂Ωt into two distinct non-intersecting parts, ΓD

t and ΓN
t , where we enforce

Dirichlet and Neumann type conditions, respectively. Let vD
s , vD

f , t, be assigned velocities and traction for boundary
conditions, and let v0

s , v0
f be the assigned initial values, under the assumption that Ωt = Ω0 at t = 0, We define the

boundary and initial conditions as follows,

vs = vD
s on ΓD

0 × (0,T ),

vf = vD
f on ΓD

t × (0,T ),

(Ps − (1 − φ)pJF−T )n0 = t0 on ΓN
0 × (0,T ),

φ(σf − pI)n = t on ΓN
t × (0,T ),

vs = v0
s in Ω0 × {0},

vf = v0
f in Ω0 × {0},

m = 0 in Ω0 × {0}.

2.2. Derivation of the tangent problem
Using the previous abstract form of the problem, we formally derive the tangent problem. To this purpose, we denote

byDuA the derivative of a generic operatorA with respect to the field u. The nonlinear problem is approximated, at
the point vs, vf ,m, by the following linear problem, called the tangent problem: given vs, vf ,m, such that the boundary
and initial conditions of the nonlinear problem are satisfied, calculate δvs, δvf , δm, solution of the following system of
linear equations,DvsS DvfS DmS

DvsF DvfF DmF

DvsM DvfM DmM


δvs
δvf
δm

 = −

S(vs, vf ,m)
F (vs, vf ,m)
M(vs, vf ,m)

 ,
where the system must be solved using boundary and initial conditions of the same type of the nonlinear problem, but
with homogeneous (null) data.

We point out that the derivativeDuA should account for the classical Fréchét derivative of the operator, combined
with the shape derivatives due to deformations of the domain. For example in classical fluid-structure interaction
problems the termDvsF can be interpreted as the directional derivative of fluid equations with respect to fluid-domain
perturbations, [44], and it is usually the most difficult term to calculate. The central hypothesis in the definition of
the tangent problem, as proposed in [25], is that we neglect the shape derivatives, limiting ourselves to account for
the Fréchét ones. This can be justified observing that in our setting the fluid is constrained within the pores of the
solid phase. As a result, the Reynolds number of the flow is very low. The main effect of the domain deformation in
DvsF is given by the advection term due to the solid velocity (namely (vs · ∇)v f ), after recasting the fluid momentum
equation in the reference configuration. This effect is small for low Reynolds numbers, which is in fact the main
hypothesis underlying the porous media equations. For this reason, we conclude that neglecting the shape derivatives in
poromechanics is a less intrusive simplification than for fluid-structure interaction problems in haemodynamics, [45].

In practice, such hypothesis tuns out to identify the physical domain, Ωt, with the reference one, Ω0 (and for
simplicity we drop the subindices 0, t, denoting Ωt and Ω0 both by Ω).

In [25] an approximate yet explicit expression of the tangent problem is provided. More precisely, the nonlinear
problem is linearized around the configuration at rest, namely vs, vf ,m = 0. As a result we have m = 0 and φ = φ0 , 0.
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Concerning the fluid phase, Newtonian and incompressible behavior is assumed, which yields σ f (vf) = 2µfε(vf), being
ε(v) = 1

2 (∇v +∇vT ) the symmetric deformation gradient. As in [25], we denote by vs, vf , m the increments with respect
to such state and use an additive decomposition of the free energy, with a Saint-Venant Kirchhoff component for the
mechanics and a quadratic potential for the volumetric deformation of the solid phase Js, which reads

Ψ(F, Js) =
λ

2
(tr E)2 + µE : E +

κs

2

(
Js

1 − φ0
− 1

)2

,

where E = 1
2

(
FT + F + FT F

)
denotes the Green-Lagrangian strain tensor, also µ, λ are the Lamé constants and κs is the

bulk modulus. Under small deformations we have that E ≈ ε(us) and J ≈ 1 + ∇ · us, which give

Ps =
∂Ψ

∂F
≈ σs(us) = Cε(us) = λ tr ε(us) + 2µε(us),

p =
∂Ψ

∂Js
≈

κs

(1 − φ0)2

(
m
ρf
− ∇ · us

)
,

where C is a fourth order constant tensor (symmetric, positive definite), known as Hooke tensor. In the linearized
setting it is possible to reformulate the problem in terms of the (more commonly used) variable p instead of the added
mass. As a result, the approximate tangent problem for the configuration at rest reads as follows: find us, vf , p such that

ρs(1 − φ0)∂ttus − ∇ · σs(us) + (1 − φ0)∇p − φ2
0 k−1

f (vf − ∂tus) = ρs(1 − φ0) f , (2.1a)

ρfφ0∂tvf − ∇ · (φ0σf(vf)) − θvf + φ0∇p + φ2
0 k−1

f (vf − ∂tus) = ρfφ0 f , (2.1b)

ρf(1 − φ0)2

κs
∂t p + ∇ · (ρfφ0vf) + ∇ · (ρf (1 − φ0) ∂tus) = θ. (2.1c)

For simplicity, in what follows we assume θ = 0. The system (2.1) is closed with appropriate boundary conditions
naturally following from the ones of the nonlinear problem. For the sake of clarity we report them here

us = uD
s on ΓD × (0,T ), (2.2a)

vf = vD on ΓD × (0,T ), (2.2b)

(Cε(us) − (1 − φ0)pI) n = t on ΓN × (0,T ), (2.2c)

φ0 (σf(vf) − pI) · n = t on ΓN × (0,T ), (2.2d)

us = u0
s in Ω × {0}, (2.2e)

∂tus = v0
s in Ω × {0}, (2.2f)

vf = v0
f in Ω × {0}, (2.2g)

p = p0, in Ω × {0}. (2.2h)

2.3. Numerical approximation of the tangent problem

We start form the time discretization, based on a simple backward Euler approach. We will discuss later on how
higher order time discretizations are also viable and the resulting discrete problem maintains its fundamental traits,
such that the numerical solvers developed in what follows will still be applicable.

We consider a partition of the time interval of interest (0,T ), given by 0 = t0 < t1 < ... < tn < ... < tN = T with, for
simplicity, constant time step size ∆t = tn − tn−1. The temporal derivatives within the model (2.1) are approximated by
finite differences

∂tus(tn) ≈
un

s − un−1
s

∆t
, ∂ttus(tn) ≈

un
s − 2un−1

s + un−2
s

∆t2 , ∂tvf(tn) ≈
vn

f − vn−1
f

∆t
.
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We assume that besides the initial data the first time step has been already determined. From the second time step the
fully dynamic linearized model can then be approximated by the Implicit Euler discretization using the above finite
difference approximations: For n ≥ 2, given un−1

s ,un−2
s , pn−1, vn−1

f , find un
s , pn, vn

f such that

ρs(1 − φ0)
un

s − 2un−1
s + un−2

s

∆t2 − ∇ · σs(un
s ) + (1 − φ0)∇pn − φ2

0 k−1
f

(
vn

f −
un

s − un−1
s

∆t

)
= ρs(1 − φ0) f n, (2.3a)

ρfφ0
vn

f − vn−1
f

∆t
− ∇ ·

(
φ0σf(vn

f )
)

+ φ0∇pn + φ2
0 k−1

f

(
vn

f −
un

s − un−1
s

∆t

)
= ρfφ0 f n, (2.3b)

(1 − φ0)2

κs

pn − pn−1

∆t
+ ∇ ·

(
φ0vn

f

)
+ ∇ ·

(
(1 − φ0)

un
s − un−1

s

∆t

)
= 0. (2.3c)

Such problem must satisfy the same boundary conditions of (2.1) at each time tn, where f n, uD,n
s etc. denote

suitable approximations of the external problem data at time tn. In what follows we will apply the lifting technique to
non-homogeneous Dirichlet boundary data (in other words, a change of variable is introduced, by subtracting from the
solution a function that is regular enough and equal to the prescribed datum on the boundary, such that the problem for
the new variable is transformed into a standard homogeneous Dirichlet-type problem). In this way, all the forcing terms
of the problem (volume forces and surface forces/data) will be implicitly represented in the volume term f n without
significant loss of generality. Initial conditions are prescribed as in (2.2e)-(2.2h) by suitably approximating the initial
data. Finally, we stress that the mass conservation equation has been divided by the constant fluid density ρf in order to
highlight an apparent symmetry between the equations.

Remark 2.1 (Higher order time discretization). Applying alternative diagonally implicit Runge-Kutta schemes results
in coupled systems of governing equation of similar type as (2.3). Material parameters possibly have to be scaled
appropriately, and the right hand side source terms may then also include further previous data. However, we stress
that the analysis of the splitting in this work does not depend on the choice of the time discretization similarly as in [46]
and it could possibly be used also in the framework of space-time finite elements, used for example in [47] for the
approximation of Biot poroelasticity system.

Let V, W, Q denote suitable function spaces for the solid displacement, fluid velocity, and fluid pressure, respectively,
at discrete time tn, incorporating in particular homogeneous essential boundary conditions on the relevant boundaries,

V :=
{
u? ∈ H1(Ω)d

∣∣∣ (1 − φ0)u? ∈ H(div; Ω), u? = 0 on ΓD
}
,

W :=
{
v? ∈ H1(Ω)d

∣∣∣ φ0v? ∈ H(div; Ω), v? = 0 on ΓD
}
,

Q := L2(Ω).

Remark 2.2. We note that in the weak formulation the constraints (1 − φ)u?, φv? ∈ H(div; Ω) are formally required
for the corresponding terms to be well-defined. This is in fact a regularity condition on φ, where it is sufficient to
consider that both φ and 1/φ belong to W s,r(Ω) with s > d/r and r ≥ 1. More details in [26].

Then the canonical weak formulation of (2.1) reads: Find (un
s , vn

f , pn) ∈ V ×W × Q such that for all test functions
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(u?, v?, p?) ∈ V ×W × Q it holds that〈
ρs(1 − φ0)

un
s − 2un−1

s + un−2
s

∆t2 ,u?
〉

+
〈
C ε(un

s ), ε(u?)
〉
−

〈
pn,∇ ·

(
(1 − φ0)u?

)〉
(2.4a)

−

〈
φ2

0 k−1
f

(
vn

f −
un

s − un−1
s

∆t

)
,u?

〉
=

〈
f n
s ,u

?
〉
,

〈
ρfφ0

vn
f − vn−1

f

∆t
, v?

〉
+

〈
φ02µf ε(vn

f ), ε(v?)
〉
−

〈
pn,∇ ·

(
φ0v?

)〉
(2.4b)

+

〈
φ2

0 k−1
f

(
vn

f −
un

s − un−1
s

∆t

)
, v?

〉
=

〈
f n
f , v

?
〉
,〈

(1 − φ0)2

κs

pn − pn−1

∆t
, p?

〉
+

〈
∇ ·

(
φ0vn

f + (1 − φ0)
un

s − un−1
s

∆t

)
, p?

〉
= 0. (2.4c)

The numerical discretization in space is based on the Galerkin projection of the solution (un
s , vn

f , pn) ∈ V ×W × Q
on suitable discrete finite element spaces Vh, Wh, Qh that for the sake of simplicity are assumed to be conforming,
namely Vh ⊂ V, Wh ⊂W, Qh ⊂ Q. Also, all the physical parameters of the tangent problem are assumed to be constant
in time and uniformly bounded in space. Under these assumptions, the fully discrete version of the problem is formally
equivalent to (2.4), where the solution (un

s,h, v
n
f,h, pn

h) is sought in Vh ×Wh × Qh and the test functions are taken in the
same discrete spaces. Then, to avoid redundancy of notation, we will identify problem (2.4) with the fully discrete one
and we will omit to specify the subindex h, unless strictly necessary. The finite element spaces will be kept generic
throughout the derivation of the numerical solution algorithms, until the discussion of suitable numerical examples that
will refer to precise choices of such spaces.

3. A two-way split inspired by alternating minimization

In the following, we introduce an iterative splitting for the semi-discrete approximation (2.4), decoupling the
momentum equation for the solid phase and the remaining two equations – the method will be directly applicable
for the fully discrete approximation. The systematic construction (and later analysis) of the decoupling scheme is
based on the general framework introduced in [43]. The central idea is to first equivalently rewrite the semi-discrete
approximation as an auxiliary convex minimization problem, and second apply alternating minimization to derive a
robust block-partitioned solver. Ultimately, reformulated in terms of (2.4), the final scheme is closely related to the
undrained split for the quasi-static Biot equations [48], adding a div-div stabilization term to the momentum equation
for the solid phase.

In what follows we require the following assumption, which has two modeling consequences: On one side, it rules
out the possibility of considering the incompressible limit (κs → ∞) with this approach, and on the other one it imposes
that the domain cannot be composed only of fluid (φ , 1).

Assumption 1. It holds 1
N := (1−φ0)2

κs
> 0 almost everywhere in Ω.

3.1. Problem formulation as convex minimization

We choose un
s and vn

f as primary variables. Under Assumption 1, the mass conservation equation can be inverted
with respect to the pressure, such that

pn = N
(
∆t gn

p − ∆t∇ ·
(
φ0vn

f

)
− ∇ ·

(
(1 − φ0) un

s
))
, (3.1)

where

gn
p :=

(1 − φ0)2

κs

1
∆t

pn−1 +
1
∆t
∇ ·

(
(1 − φ0) un−1

s

)
.
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This allows to formally reduce (2.4) to a two-field formulation for the solid displacement and fluid velocity: Find
(un

s , vn
f ) ∈ V ×W such that for all test functions (u?, v?) ∈ V ×W it holds that〈
ρs(1 − φ0)

∆t2 un
s ,u

?

〉
+

〈
C ε(un

s ), ε(u?)
〉
−

〈
φ2

0 k−1
f

(
vn

f −
1
∆t

un
s

)
,u?

〉
(3.2a)

+ N
〈
−∆t gn

p + ∆t∇ ·
(
φ0vn

f

)
+ ∇ ·

(
(1 − φ0) un

s
)
,∇ ·

(
(1 − φ0)u?

)〉
=

〈
gn

s ,u
?
〉
,

〈
φ0vn

f , v
?
〉

+ ∆t
〈
φ02µf ε(vn

f ), ε(v?)
〉

+ ∆t
〈
φ2

0 k−1
f

(
vn

f −
1
∆t

un
s

)
, v?

〉
(3.2b)

+ N
〈
−∆t gn

p + ∆t∇ ·
(
φ0vn

f

)
+ ∇ ·

(
(1 − φ0) un

s
)
,∆t∇ ·

(
φ0v?

)〉
= ∆t

〈
gn

f , v
?
〉
,

where the momentum equation for the fluid has been scaled by ∆t, and gn
s ∈ V? and gn

f ∈W? are defined by

〈
gn

s ,u
?
〉

:=
〈

f n
s ,u

?
〉

+

〈
ρs(1 − φ0)

∆t2

(
2un−1

s − un−2
s

)
,u?

〉
+

〈
φ2

0 k−1
f

∆t
un−1

s ,u?
〉
, u? ∈ V,〈

gn
f , v

?
〉

:=
〈

f n
f , v

?
〉

+
〈
φ0vn−1

f , v?
〉
−

〈
φ2

0 k−1
f un−1

s , v?
〉
, v? ∈W.

The symmetry and uniform coercivity of the governing equations (3.2) identify those as the optimality conditions
of a block-separable convex minimization problem. Namely it holds

(un
s , v

n
f ) = arg min

(us,vf )∈V×W
J(us, vf), (3.3)

with the energy given by

J(us, vf) :=
1
2

〈
ρs(1 − φ0)

∆t2 us,us

〉
+

1
2
〈C ε(us), ε(us)〉 +

1
2
〈ρfφ0vf , vf〉 +

∆t
2
〈φ02µf ε(vf), ε(vf)〉 (3.4)

+
N
2

∥∥∥∆t gn
p − ∆t∇ · (φ0vf) − ∇ · ((1 − φ0) us)

∥∥∥2
+

∆t
2

〈
φ2

0 k−1
f

(
vf −

1
∆t

us

)
,

(
vf −

1
∆t

us

)〉
−

〈
gn

s ,us
〉
− ∆t

〈
gn

f , vf

〉
.

The formulation (3.3)-(3.4) serves as basis for the succeeding construction of a robust split scheme for (2.4).

3.2. Robust splitting via alternating minimization

Following the approach of [43], we propose an iterative block-partitioned solver for the problem (2.4). In particular,
the fundamental alternating minimization algorithm is applied to the equivalent variational formulation (3.3), cf. Alg. 1
for the definition of a single iteration with index k. By construction, the approximate solution consecutively minimizes
the system energy J .

Algorithm 1: Iteration k ≥ 1 of the alternating minimization applied to (3.3)

1 Input: (un,k−1
s , vn,k−1

f ) ∈ V ×W

2 Determine un,k
s := arg minus∈V J(us, vn,k−1

f )

3 Determine vn,k
f := arg minvf∈W J(un,k

s , vf)

By introducing a pressure iterate, pn,k, analogously to (3.1)

pn,k := N
(
∆t gn

p − ∆t∇ ·
(
φ0vn,k

f

)
− ∇ ·

(
(1 − φ0) un,k

s

))
, k ≥ 0,

8



Alg. 1 can be equivalently reformulated in the context of the three-field formulation (2.4). In particular, the k-th iteration
of the iterative splitting scheme decouples in two steps. In the first step, a div-div stabilized momentum equation for the
solid phase is solved: given (vn,k−1

f , pn,k−1) ∈W × Q, find un,k
s ∈ V satisfying for all u? ∈ V〈

ρs(1 − φ0)
un,k

s − 2un−1
s + un−2

s

∆t2 ,u?
〉

+
〈
C ε(un,k

s ), ε(u?)
〉

+ N
〈
∇ ·

(
(1 − φ0)(un,k

s − un,k−1
s )

)
,∇ ·

(
(1 − φ0)u?

)〉
−

〈
pn,k−1,∇ ·

(
(1 − φ0)u?

)〉
−

〈
φ2

0 k−1
f

vn,k−1
f −

un,k
s − un−1

s

∆t

 ,u?〉 =
〈

f n
s ,u

?
〉
. (3.5)

In the second step, the mass conservation and fluid momentum equations are solved: given un,k
s ∈ V, find (vn,k

f , pn,k) ∈
W × Q, satisfying for all (v?, p?) ∈W × Q〈

ρfφ0
vn,k

f − vn−1
f

∆t
, v?

〉
+

〈
φ02µf ε(vn,k

f ), ε(v?)
〉
−

〈
pn,k,∇ ·

(
φ0v?

)〉
(3.6a)

+

〈
φ2

0 k−1
f

vn,k
f −

un,k
s − un−1

s

∆t

 , v?〉 =
〈

f n
f , v

?
〉
,

〈
(1 − φ0)2

κs

pn,k − pn−1

∆t
, p?

〉
+

〈
∇ ·

φ0vn,k
f + (1 − φ0)

un,k
s − un−1

s

∆t

 , p?
〉

= 0, (3.6b)

In the remainder of this paper, we refer to the scheme (3.5)–(3.6) as the alternating minimization split.
In equation (3.5) the term

N
〈
∇ ·

(
(1 − φ0)(un,k

s − un,k−1
s )

)
,∇ ·

(
(1 − φ0)u?

)〉
naturally emerges to stabilize, namely control, the increment of un

s at each iteration, such that convergence is guaranteed.
This will be proved in more detail in Section 5.1.

4. Diagonally L2–stabilized two-way split

Another prominent class of block-partitioned solvers for coupled problems with saddle-point structure are L2–
stabilized splits, which have been successful especially in the context of coupled flow and mechanics. The so-called
fixed-stress split for the quasi-static Biot equations [48, 49], for instance, decouples solid and flow computations and
employs simple L2–stabilization of the mass conservation equation, resulting in unconditional convergence [29, 31]. It is
worth mentioning that in practice the fixed-stress split often is superior to the undrained split [49], also motivating further
investigation in the context of this work. Moreover, in the context of thermoporoelasticity diagonal L2–stabilization has
been recently investigated for coupled systems consisting of more than two equations [50]. In particular, it has been
observed that adding stabilization to multiple equations can be beneficial.

In the following, we present a diagonally L2–stabilized two-way split for (2.4). At first, we allow for stabilization
of any of the three equations, introducing three stabilization parameters: βs (tensor-valued), βf (tensor-valued), βp
(scalar-valued), potentially varying in space.

A single iteration of the splitting scheme is composed of two steps. Let k ≥ 1 denote the iteration index. Following
the idea of the fixed-stress approach, the stabilized fluid flow problem is solved first; this is not required for convergence.
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The L2-stabilized fluid flow step reads: given un,k−1
s ∈ V, find (vn,k

f , pn,k) ∈W × Q, satisfying for all (v?, p?) ∈W × Q〈
ρfφ0

vn,k
f − vn−1

f

∆t
, v?

〉
+

〈
φ02µf ε(vn,k

f ), ε(v?)
〉

+
〈
βf(vn,k

f − vn,k−1
f ), v?

〉
(4.1a)

−
〈
pn,k,∇ ·

(
φ0v?

)〉
+

〈
φ2

0 k−1
f

vn,k
f −

un,k−1
s − un−1

s

∆t

 , v?〉 =
〈

f n
f , v

?
〉
,

〈
(1 − φ0)2

κs

pn,k − pn−1

∆t
, p?

〉
+

〈
βp(pn,k − pn,k−1), p?

〉
(4.1b)

+
〈
∇ ·

(
φ0vn,k

f

)
, p?

〉
+

〈
∇ ·

(1 − φ0)
un,k−1

s − un−1
s

∆t

 , p?
〉

= 0,

The second (L2-stabilized solid mechanics) step reads: given (vn,k
f , pn,k) ∈W ×Q, find un,k

s ∈ V satisfying for all u? ∈ V〈
ρs(1 − φ0)

un,k
s − 2un−1

s + un−2
s

∆t2 ,u?
〉

+
〈
C ε(un,k

s ), ε(u?)
〉

+
〈
βs(un,k

s − un,k−1
s ),u?

〉
(4.2)

−
〈
pn,k,∇ ·

(
(1 − φ0)u?

)〉
−

〈
φ2

0 k−1
f

vn,k
f −

un,k
s − un−1

s

∆t

 ,u?〉 =
〈

f n
s ,u

?
〉
.

For unconditional robustness, the stabilization parameters βs, βf , βp have to be chosen appropriately – sufficiently
large but not too large. In view of previously successful approaches, physically motivated choices as for the original
fixed-stress split [48] are difficult to obtain. This is mainly due to the presence of the dynamic contributions in the
momentum equations, while merely the volumetric strain is present in the pressure equation. This more involved
structure, compared to quasi-static extensions of the Biot equations [43], also complicates the identification of the
stabilization parameters by utilizing the inherent gradient flow/minimization interpretation (3.3). The approach of
deriving a dual optimization problem using Fenchel duality and applying alternating minimization has been successful
for quasi-static models [43], resulting in a systematic derivation and analysis of fixed-stress like splits similar to (4.1)–
(4.2); however, the mixed scaling due to the dynamic contributions impedes deriving a dual formulation of the
minimization problem (3.3) via Fenchel duality theory. In addition, it is not obvious whether physically meaningful
stress-like variables turn out to be suitable mathematical dual variables. These are required for the formulation of the
dual energy of (3.4) via the Legendre transformation.

In this work, we justify suitable stabilization parameters through a convergence analysis of the schemes. A better
intuition can be obtained by looking at the (skew-)symmetries of the governing equations (2.4) and the (partial) Schur
complements; in particular, the skew-symmetry of the us − p coupling motivates positive stabilization of the mass
conservation equation, and the symmetry of the us − vf coupling suggests negative stabilization of the momentum
equation of the solid phase. Since after all the us − (vf , p) coupling is neither symmetric nor skew-symmetric, these
observations merely lead to inaccurate insight. Instead, a succeeding convergence analysis in Section 5.2 is going to
suggest practical, potentially vanishing values for the parameters, which eventually lead to unconditional stability.

5. A priori convergence analysis of the proposed two-way splits

In this section, we address the a priori convergence analysis of both the alternating minimization split (3.5)–(3.6)
and the diagonally L2–stabilized two-way split (4.1)–(4.2), proposed in Section 3 and Section 4, respectively. The two
primary goals are to (i) prove the linear convergence of the alternating minimization split, and (ii) determine ranges and
specific practical values for the stabilization parameters employed within the diagonally L2–stabilized two-way split
ensuring convergence. The two goals will be achieved using different techniques. For item (i) the interpretation of
the alternating minimization split as alternating minimization applied to a strongly convex minimization problem is
extensively exploited, allowing for the systematic application of sharp abstract convergence results from the literature;
for item (ii) a slightly more technical approach is chosen due to the fact that the two-way split (4.1)–(4.2) does not fully
conform with any (skew-)symmetry. In particular, we relax the classical (quotient) convergence criterion by means
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of the root convergence criterion, briefly called r-convergence, see for example [51]. More precisely, we formulate a
general convergence criterion (based on relative stability) that turns out to be a sufficient condition for the r-convergence
of the proposed iterative method. We stress that q-linear convergence can be also proved with techniques as used
in [31, 33, 34]; however, due to the non-conformity with any (skew-)symmetry, off-diagonal terms do not cancel in
the analysis. They require instead crude bounds, such that the resulting analysis finally suggests larger stabilization
constants than observed in practice. The chosen approach in this work circumvents this on the cost of a slightly weaker
convergence-type but providing more suitable suggestions for the stabilization parameters.

5.1. Convergence analysis of the alternating minimization split for the tangent model
Guaranteed linear convergence of the alternating minimization split (3.5)–(3.6) is a direct consequence of its

interpretation as alternating minimization applied to a (strongly) convex optimization problem, cf., Section 3.2 and
e.g., [52]. Furthermore, using simple yet largely sharp abstract convergence results for alternating minimization in
a Banach space setting, cf. [53], an upper bound of the rate of convergence can be provided. In the aforementioned
work, it is showed that in each of the two steps of the alternating minimization, the energy values of the iterates are
sequentially decreased with the decrease merely governed by convexity and continuity properties of the restricted
minimization problems. Since the energy J is quadratic, energy differences relative to the optimum will directly
translate to distances to the solution, measured in the problem-specific norm induced by the Hessian of the energy (at
an arbitrary point). We define | · | on V ×W for (u?, v?) ∈ V ×W by∣∣∣(u?, v?)

∣∣∣2 :=
〈
ρs(1 − φ0)

∆t2 u?,u?
〉

+
〈
Cε(u?), ε(u?)

〉
+

〈
ρfφ0v?, v?

〉
+ ∆t

〈
φ02µfε(v?), ε(v?)

〉
+ N

∥∥∥∥∆t∇ ·
(
φ0v?

)
+ ∇ ·

(
(1 − φ0)u?

)∥∥∥∥2
+ ∆t

〈
φ2

0 k−1
f

(
v? −

1
∆t

u?
)
,

(
v? −

1
∆t

u?
)〉
.

In order to estimate the rate of convergence, we introduce a technical, a priori material constant γ ≥ 0, given by

γ := min
{
max {γ1(ζ, η, ϑ), γ2(ζ, η, ϑ)}

∣∣∣∣ ζ > 0, η ∈ [0, 1], ϑ ∈ [0, 1]
}
, (5.1)

where

γ1(ζ, η, ϑ) :=(1 + ζ−1)ηN∆t2

∥∥∥∥∥∥ |∇φ0|
2

ρs(1 − φ0)

∥∥∥∥∥∥
L∞(Ω)

+ ϑ∆t

∥∥∥∥∥∥ φ2
0κ
−1
m

ρs(1 − φ0)

∥∥∥∥∥∥
L∞(Ω)

, (5.2a)

γ2(ζ, η, ϑ) :=(1 + ζ)
N

Kdr,φ0,min
+ (1 + ζ−1)(1 − η)NCKorn,1 + (1 − ϑ)

CKorn,2

∆t
, (5.2b)

with κm > 0 denoting the smallest eigenvalue of the permeability tensor kf , Kdr,φ0,min > 0 being a porosity dependent
bulk modulus type constant given by

K−1
dr,φ0,min :=

∥∥∥(1 − φ0)2I : C−1 : I
∥∥∥

L∞(Ω) , (5.3)

and CKorn,1,CKorn,2 > 0 taking on the role of generalized Korn/Poincaré constants, defined as the minimum positive
numbers such that〈

∇φ>0∇φ0u?,u?
〉
≤ CKorn,1

〈
Cε(u?), ε(u?)

〉
, for all u? ∈ V, (5.4)〈

φ2
0 k−1

f u?,u?
〉
≤ CKorn,2

〈
Cε(u?), ε(u?)

〉
, for all u? ∈ V. (5.5)

It is fair to assume that CKorn,1 and CKorn,2 are closely related to the inverse of the drained bulk modulus Kdr := Kdr,0,min.
Finally, focusing only on the fully transient model, the linear convergence result for the alternating minimization

split scheme reads as follows.

Theorem 5.1 (Linear convergence of the alternating minimization split ). Let (un
s , vn

f ) ∈ V ×W, n ≥ 2, denote the
solution to (3.3), and let (un,k

s , vn,k
f ) ∈ V ×W, k ≥ 1, denote the corresponding approximation defined by Alg. 1. Let

γ ≥ 0 be the material constant defined as in (5.1). Then, for all k ≥ 1, it holds that∣∣∣(un,k
s − un

s , v
n,k
f − vn

f )
∣∣∣2 ≤ (

1 −
1

1 + γ

)2 ∣∣∣(un,k−1
s − un

s , v
n,k−1
f − vn

f )
∣∣∣2 .
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The convergence result is similar as for the undrained split for the quasi-static Biot equations, cf. [29]. In particular,
the theoretical result suggests degenerating convergence for nearly incompressible and impermeable media; compared
to the fixed stress split [32] mere inf-sup stability cannot overcome this issue as already the optimal stabilization arising
from the Schur complement is singular on the continuous level. Alternative discretizations as mixed formulations
should then be considered, also to reduce locking phenomena if required. Furthermore, in contrast to the quasi-static
Biot equations, porosity heterogeneities may also affect the performance of the splitting scheme, as the material
constants γ1 and γ2 depend on the spatial gradients of φ0. However, a numerical test in Section 6.3 does only show a
weak influence.

The proof of Theorem 5.1 is a plain application of the following abstract convergence result for the alternating
minimization, here specifically formulated in terms of Alg. 1.

Lemma 5.2 (Convergence of the alternating minimization [53]). Let | · |, | · |s, and | · |f denote semi-norms on V ×W, V,
and W, respectively, such that:

(A1) There exist βs, βf ≥ 0, such that for all (u?, v?) ∈ V ×W it holds that

|(u?, v?)|2 ≥ βs|u?|2s and |(u?, v?)|2 ≥ βf |v?|2f

Let J : V ×W → R be Frechét differentiable withDJ denoting its derivative such that:

(A2) The energy J is strongly convex wrt. | · | with modulus σ > 0, i.e., for all us, ūs ∈ V and vf , v̄f ∈W it holds that

J(ūs, v̄f) ≥ J(us, vf) + 〈DJ(us, vf), (ūs − us, v̄f − vf)〉 +
σ

2
|(ūs − us, v̄f − vf)|2.

(A3) The partial functional derivatives DusJ and DvfJ are uniformly Lipschitz continuous wrt. | · |s and | · |f with
Lipschitz constants Ls and Lf , respectively, i.e., for all (us, vf) ∈ V ×W and (u?, v?) ∈ V ×W it holds that

J(us + u?, vf) ≤ J(us, vf) +
〈
DusJ(us, vf),u?

〉
+

Ls

2

∣∣∣u?∣∣∣2s ,
J(us, vf + v?) ≤ J(us, vf) +

〈
DvfJ(us, vf), v?

〉
+

Lf

2

∣∣∣v?∣∣∣2f .
Let (un

s , vn
f ) ∈ V × W denote the unique solution to (3.3), and let (un,k

s , vn,k
f ) ∈ V × W denote the corresponding

approximation defined by Alg. 1. Then, for all k ≥ 1 it follows that

J(un,k
s , vn,k

f ) − J(un
s , v

n
f ) ≤

(
1 −

βsσ

Ls

) (
1 −

βfσ

Lf

) (
J(un,k−1

s , vn,k−1
f ) − J(un

s , v
n
f )
)
.

With this, we are able to prove Thm. 5.1.

Proof of Thm. 5.1. In order to apply Lemma 5.2, we verify the conditions (A1)–(A3). First of all, we note that the
energy J is quadratic. Since | · | is induced by the Hessian of J , i.e.,∣∣∣(u?, v?)

∣∣∣2 :=
〈
D2J(us, vf)(u?, v?), (u?, v?)

〉
, (u?, v?) ∈ V ×W, (5.6)

(for arbitrary (us, vf) ∈ V ×W), the convexity property (A2) is satisfied with σ = 1.
Similarly, by defining | · |s and | · |f on V and W, respectively, as partial Hessians of J∣∣∣u?∣∣∣2s :=

〈
D2

us
J(us, vf)u?,u?

〉
, u? ∈ V∣∣∣v?∣∣∣2f :=

〈
D2

vf
J(us, vf)v?, v?

〉
, v? ∈W,

(for arbitrary (us, vf) ∈ V ×W), the smoothness property (A3) is satisfied with Ls = Lf = 1.
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It remains to examine (A1). In the following, we show that one can choose βs = βf = (1 + γ)−1, i.e., it holds

|u?|2s ≤ (1 + γ)|(u?, v?)|2, for all (u?, v?) ∈ V ×W, (5.7a)

|v?|2f ≤ (1 + γ)|(u?, v?)|2, for all (u?, v?) ∈ V ×W. (5.7b)

For both estimates, the following inequality will be of help

T? := N
∥∥∥∥∇ · ((1 − φ0)u?

)∥∥∥∥2︸                  ︷︷                  ︸
=:T1

+
1
∆t

〈
φ2

0 k−1
f u?,u?

〉︸            ︷︷            ︸
=:T2

≤ γ

(〈
ρs(1 − φ0)

∆t2 u?,u?
〉

+
〈
Cε(u?), ε(u?)

〉)
. (5.8)

Indeed, for T1, using the product rule, the Cauchy-Schwarz inequality and Young’s inequality, we obtain for all ζ > 0

T1 ≤ (1 + ζ)
∥∥∥(1 − φ0)∇ · u?

∥∥∥2︸                ︷︷                ︸
=:T ′1

+(1 + ζ−1)
∥∥∥∇φ0 · u?

∥∥∥2︸        ︷︷        ︸
=:T ′′1

. (5.9)

Further, employing the definitions of Kdr,φ0,min and CKorn,1, see (5.3) and (5.4), it follows that

T ′1 ≤
1

Kdr,φ0,min

〈
Cε(u?), ε(u?)

〉
, (5.10a)

T ′′1 ≤ ∆t2

∥∥∥∥∥∥ ∇φ>0∇φ0

ρs(1 − φ0)

∥∥∥∥∥∥
L∞(Ω)

〈
ρs(1 − φ0)

∆t2 u?,u?
〉
, (5.10b)

T ′′1 ≤ CKorn,1

〈
Cε(u?), ε(u?)

〉
. (5.10c)

Similarly, employing the definitions of κm, the smallest eigenvalue of kf , and CKorn,2, see (5.5), for T2 it holds

T2 ≤ ∆t2

∥∥∥∥∥∥ φ2
0κ
−1
m

ρs(1 − φ0)

∥∥∥∥∥∥
L∞(Ω)

〈
ρs(1 − φ0)

∆t2 u?,u?
〉
, (5.11a)

T2 ≤ CKorn,2

〈
Cε(u?), ε(u?)

〉
. (5.11b)

By combining (5.9)–(5.11), balancing the different upper bounds for T ′′1 and T2, and employing the definitions of γ1
and γ2, cf. (5.2), we obtain for all ζ > 0, η ∈ [0, 1] and θ ∈ [0, 1]

T1 + T2 ≤ γ1(ζ, η, θ)
〈
ρs(1 − φ0)

∆t2 u?,u?
〉

+ γ2(ζ, η, θ)
〈
Cε(u?), ε(u?)

〉
,

and thereby (5.8) follows.
Finally, we show (5.7). By definition of | · |s it holds that∣∣∣u?∣∣∣2s =

〈
ρs(1 − φ0)

∆t2 u?,u?
〉

+
〈
Cε(u?), ε(u?)

〉
+ T?.

Hence, (5.7a) follows from (5.8). By (i) definition of | · |f , (ii) suitable addition with zero, and application of the
Cauchy-Schwarz and Young’s inequalities, and (iii) (5.8), it holds∣∣∣v?∣∣∣2f =

(i)

〈
ρfφ0v?, v?

〉
+ ∆t

〈
φ02µfε(v?), ε(v?)

〉
+ N

∥∥∥∥∆t∇ ·
(
φ0v?

)∥∥∥∥2
+ ∆t

〈
φ2

0 k−1
f v?, v?

〉
≤
(ii)

〈
ρfφ0v?, v?

〉
+ ∆t

〈
φ02µfε(v?), ε(v?)

〉
+ (1 + γ) N

∥∥∥∥∆t∇ ·
(
φ0v?

)
+ ∇ ·

(
(1 − φ0)u?

)∥∥∥∥2

+ (1 + γ) ∆t
〈
φ2

0 k−1
f

(
v? −

1
∆t

u?
)
,

(
v? −

1
∆t

u?
)〉

+
(
1 + γ−1

)
T?

≤
(iii)

(1 + γ)|(u?, v?)|2.
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Hence, we obtain (5.7b), and thereby (A1).
Ultimately, the assumptions of Lemma 5.2 are satisfied, and it follows for all k ≥ 1 that

J(un,k
s , vn,k

f ) − J(un
s , v

n
f ) ≤

(
1 − (1 + γ)−1

)2 (
J(un,k−1

s , vn,k−1
f ) − J(un

s , v
n
f )
)
.

Moreover, since J is quadratic, (un
s , vn

f ) is a local minimum of J , and | · | is induced by the functional Hessian of J
via (5.6), we have that

J(un,k
s , vn,k

f ) − J(un
s , v

n
f ) = 2

∣∣∣(un,k
s − un

s , v
n,k
f − vn

f )
∣∣∣2

for all k ≥ 0. Thereby, the assertion follows.

5.2. Convergence analysis of the diagonally L2–stabilized split for the tangent model

The essence of the diagonally L2–stabilized split (4.1)–(4.2) is the decoupling of the mechanical displacement
from the remaining variables (fluid pressure and velocity). Such a split does neither fully conform with a symmetry
nor a saddle point structure of the governing equations. In view of a convergence analysis aiming at employing
some contraction argument or similar, it therefore cannot be expected that all coupling terms can be simultaneously
canceled by suitable testing as often done, cf., e.g., [31]. To mitigate this complication, the concept of relative stability
will be exploited instead, allowing for a simpler discussion of the coupling terms. In the following, the analysis is
presented in two steps: (i) a central abstract convergence result for positive real-valued sequences satisfying a relative
stability property is introduced; (ii) the result is applied to the diagonally L2–stabilized split (4.1)–(4.2) to show a
priori convergence.

5.2.1. Abstract convergence criterion based on relative stability
Consider a real-valued (positive) sequence {xk}k ⊂ R+ satisfying the stability property:

There exists a constant c ∈ (0,∞) such that c
∞∑

i=1

xk+i ≤ xk for all k ∈ N, (5.12)

without any additional requirement for the stability constant c. We call this property the relative stability criterion for
the sequence {xk}k ⊂ R+. This criterion ensures r-linear convergence for subsequences (still wrt. the original sequence),
a weaker form of standard r-linear convergence, covering both contractive and certain non-contractive sequences.

Lemma 5.3 (r-linear convergence for subsequences). Let {xk}k ⊂ R+ and c ∈ (0,∞) satisfy (5.12). Then there exists a
subsequence {xkl }l with 1 ≤ kl+1 − kl ≤ arg min

m∈N
(cm)−

1
m , which converges r-linearly with

xkl ≤

min
m∈N

(
1

cm

) 1
m


kl

x0.

For the proof of Lemma 5.3, we state the following auxiliary result.

Lemma 5.4. Let {xk}k ⊂ R+ and c > 0 satisfying (5.12). Then for any k ∈ N and ε > 0 there exists some
n ∈ {0, 1, ...,

⌈
1
cε

⌉
} such that xk+n ≤ εxk.

Proof. Let k ∈ N and ε > 0 be arbitrary but fixed. Assume without loss of generality that xk > 0. Then the assertion
follows by contradiction: Assume it holds xk+i > εxk, for all i = 1, ...,

⌈
1
cε

⌉
; we conclude that it holds

c
∞∑

i=1

xk+i ≥ c
d 1

cε e∑
i=1

xk+i > cε
⌈

1
cε

⌉
xk ≥ xk,

which contradicts (5.12).
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Proof of Lemma 5.3. The idea of the proof is to employ Lemma 5.4 and construct a subsequence of {xk}k, which is
linearly (first order) quotient converging, and then conclude r-linear convergence wrt. the original sequence. Assume
without loss of generality that x0 > 0. Let m ∈ N such that cm > 1, and let ε := 1

cm < 1, such that
⌈

1
cε

⌉
= m. By

Lemma 5.4 there exists some n1 ∈ {1, ...,m} such that it holds xn1 ≤ εx0. Analogously, for any i = 2, ..., there exists
some ni ∈ {1, ...,m}, satisfying x∑i−1

j=1 n j+ni
≤ εx∑i−1

j=1 n j
.

Next, we define {kl}l ⊂ N by setting kl :=
∑l

j=1 n j for all l ∈ N. Since ε < 1 and n j ≤ m for all j, it holds that

ε
l

kl = ε
l∑l

j=1 n j ≤ ε
l

l m =

(
1

cm

) 1
m

.

For {xkl }l, we conclude

xkl ≤ ε
lx0 =

(
ε

l
kl

)kl

x0 ≤

( 1
cm

) 1
m


kl

x0.

for, so far, arbitrary m ∈ N. Minimizing the right hand side wrt. m ultimately yields the assertion.

5.2.2. Convergence analysis of the diagonally L2–stabilized split based on the concept of relative stability
In the following, we establish linear convergence of the diagonally L2–stabilized two-way split (4.1)–(4.2). The

primary aim of the analysis is to determine ranges for the stabilization parameters βs, βf and βp, which a priori
guarantee convergence; in addition, we are going to suggest a practical (for simplicity of the presentation not necessarily
optimally tuned) set of values. The reader interested in the analysis of optimal convergence rate is referred to analogous
studies of the fixed-stress split for the quasi-static Biot equations [32].

For the convergence analysis, the concept of relative stability and r-linear convergence for subsequences introduced
in the previous section is applied. Ultimately, the final result states that it is sufficient to stabilize the mass conservation
equation along the lines of the fixed-stress split for the quasi-static Biot equations [48, 49, 31, 32], in order to guarantee
convergence. Additional destabilization, i.e., negative stabilization, of the momentum equation for the solid phase
theoretically improves the convergence speed. Fluid (de-)stabilization does not further improve the convergence rate.

To ease the presentation of the analysis, we introduce two notations:

(N1) Weighted squares 〈〈·〉〉2A, defined by 〈〈ω〉〉2A := 〈Aω,ω〉, where ω can be a tensor-, vector- or scalar-valued function
on Ω, and the weight A is a (potentially non-positive definite) function on Ω with adequate dimensionality such
that the above definition is well-defined.

(N2) Weighted L2 norms ‖ · ‖A for uniformly positive definite A, defined by ‖ · ‖2A := 〈〈·〉〉2A.

Finally, we state the convergence result for the diagonally L2–stabilized split (4.1)–(4.2).

Theorem 5.5 (Relative stability and convergence of the diagonally L2–stabilized two-way split). Let dk
u := un,k

s −un,k−1
s ,

dk
v := vn,k

f − vn,k−1
f , and dk

p := pn,k − pn,k−1 denote increments for k ≥ 1. Furthermore, let Kdr,φ0,min and CKorn,1 as defined
in (5.3) and (5.4), resp.; let δ1 > 0 and δ2 ∈ (0, 2) be tuning parameters; and let the stabilization parameters satisfy

βs � −
φ2

0 k−1
f

2∆t
, βf � 0, βp ≥

1
δ2 ∆t

(
C1/2

Korn,1 + K−1/2
dr,φ0,min

)2
, (5.13)

where A � B for tensor-valued maps A and B on Ω iff. A−B is uniformly positive definite. Then the scheme (4.1)–(4.2)
satisfies a relative stability criterion of type (5.12), namely

∞∑
k=m+1

[
1

∆t2 ‖d
k
u‖

2
ρs(1−φ0) +

(
1 −

δ2

2

) ∥∥∥ε(dk
u)

∥∥∥2
C

]
+

∞∑
k=m+1

[
‖dk

v‖
2
ρfφ0

+ ∆t
∥∥∥ε(dk

v)
∥∥∥2
φ02µf

+
∥∥∥dk

p

∥∥∥2
(1−φ0)2

κs

]
(5.14)

≤
1
2

∥∥∥dm
u

∥∥∥2
β̂s

+
δ1 + δ2

2

∥∥∥ε(dm
u )

∥∥∥2
C +

∆t
2

∥∥∥dm
v

∥∥∥2
βf

+
∆t
2

∥∥∥dm
p

∥∥∥2
β̂p
, for all m ∈ N,
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where β̂s and β̂p denote augmented stabilization parameters (introduced for simpler presentation)

β̂s := βs +
φ2

0 k−1
f

2∆t
, β̂p := βp +

1
δ1 ∆t

(
C1/2

Korn,1 + K−1/2
dr,φ0,min

)2
.

If (1−φ0)2

κs
is uniformly positive, subsequences of dk

u, dk
v , dk

p r-linearly converge to zero, in the sense of Lemma 5.3.

Proof. The proof is organized in five steps, starting with governing equations for increments.

Increment equations. By subtracting (4.1)–(4.2) at iteration k and k − 1, k ≥ 2, we obtain〈
ρs(1 − φ0)

dk
u

∆t2 ,u
?

〉
+

〈
C ε(dk

u), ε(u?)
〉

+
〈
βs(dk

u − dk−1
u ),u?

〉
(5.15a)

−
〈
dk

p,∇ ·
(
(1 − φ0)u?

)〉
−

〈
φ2

0 k−1
f

(
dk

v −
dk

u

∆t

)
,u?

〉
= 0,

〈
ρfφ0

dk
v

∆t
, v?

〉
+

〈
φ02µf ε(dk

v), ε(v?)
〉

+
〈
βf(dk

v − dk−1
v ), v?

〉
(5.15b)

−
〈
dk

p,∇ ·
(
φ0v?

)〉
+

〈
φ2

0 k−1
f

(
dk

v −
dk−1

u

∆t

)
, v?

〉
= 0,

〈
(1 − φ0)2

κs

dk
p

∆t
, p?

〉
+

〈
βp(dk

p − dk−1
p ), p?

〉
(5.15c)

+
〈
∇ ·

(
φ0dk

v

)
, p?

〉
+

〈
∇ ·

(
(1 − φ0)

dk−1
u

∆t

)
, p?

〉
= 0.

Testing with current increments. Testing and summing (5.15) with u? = dk
u, v? = ∆t dk

v , and p? = ∆t dk
p, and finally

summing over indices k = m + 1, ...,M, for arbitrary m < M, yields

M∑
k=m+1

[
1

∆t2 ‖d
k
u‖

2
ρs(1−φ0) +

∥∥∥ε(dk
u)

∥∥∥2
C + ‖dk

v‖
2
ρfφ0

+ ∆t
∥∥∥ε(dk

v)
∥∥∥2
φ02µf

+
∥∥∥dk

p

∥∥∥2
(1−φ0)2

κs

]
+ T1 = T2 + T3 (5.16)

(employing notation (N2) and) with

T1 =

M∑
k=m+1

[〈
βs(dk

u − dk−1
u ), dk

u

〉
+ ∆t

〈
βf(dk

v − dk−1
v ), dk

v

〉
+ ∆t

〈
βp(dk

p − dk−1
p ), dk

p

〉]
,

T2 =

M∑
k=m+1

〈
dk

p,∇ ·
(
(1 − φ0)(dk

u − dk−1
u )

)〉
,

T3 = ∆t
M∑

k=m+1

[〈
φ2

0 k−1
f

(
dk

v −
dk

u

∆t

)
,

dk
u

∆t

〉
−

〈
φ2

0 k−1
f

(
dk

v −
dk−1

u

∆t

)
, dk

v

〉]
.

We discuss the terms T1, T2 and T3 separately. For the stabilization term T1, we apply binomial identities of type
(a − b)a = 1

2

(
a2 − b2 + (a − b)2

)
and telescope sums, resulting in

T1 =
1
2

〈〈dM
u

〉〉2

βs
−

〈〈
dm

u
〉〉2
βs

+

M∑
k=m+1

〈〈
dk

u − dk−1
u

〉〉2

βs

 +
∆t
2

〈〈dM
v

〉〉2

βf
−

〈〈
dm

v
〉〉2
βf

+

M∑
k=m+1

〈〈
dk

v − dk−1
v

〉〉2

βf


+

∆t
2

〈〈dM
p

〉〉2

βp
−

〈〈
dm

p

〉〉2

βp
+

M∑
k=m+1

〈〈
dk

p − dk−1
p

〉〉2

βp

 . (5.17)
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(employing notation (N1)). For the coupling term T2 we apply summation by parts, leading to

T2 =
〈
dM

p ,∇ ·
(
(1 − φ0)dM

u

)〉
−

〈
dm

p ,∇ ·
(
(1 − φ0)dm

u
)〉
−

M∑
k=m+1

〈
dk

p − dk−1
p ,∇ ·

(
(1 − φ0)dk−1

u

)〉
. (5.18)

For the coupling term T3, simple expansion and reformulation, aiming at constructing quadratic terms present on the
left hand side of (5.16), and gathering those, respectively, results in

T3 = −∆t
M∑

k=m+1

∥∥∥∥∥∥dk
v −

dk
u + dk−1

u

2∆t

∥∥∥∥∥∥2

φ2
0 k−1

f

−
1

2∆t

∥∥∥dM
u

∥∥∥2
φ2

0 k−1
f

+
1

2∆t

∥∥∥dm
u

∥∥∥2
φ2

0 k−1
f
−

1
4∆t

M∑
k=m+1

∥∥∥dk
u − dk−1

u

∥∥∥2
φ2

0 k−1
f
. (5.19)

Inserting (5.17)–(5.19) into (5.16) and re-ordering terms, yields

M∑
k=m+1

[
1

∆t2 ‖d
k
u‖

2
ρs(1−φ0) +

∥∥∥ε(dk
u)

∥∥∥2
C + ‖dk

v‖
2
ρfφ0

+ ∆t
∥∥∥ε(dk

v)
∥∥∥2
φ02µf

+
∥∥∥dk

p

∥∥∥2
(1−φ0)2

κs

]

+
1
2

〈〈dM
u

〉〉2

βs
+

M∑
k=m+1

〈〈
dk

u − dk−1
u

〉〉2

βs

 +
∆t
2

〈〈dM
v

〉〉2

βf
+

M∑
k=m+1

〈〈
dk

v − dk−1
v

〉〉2

βf


+

∆t
2

〈〈dM
p

〉〉2

βp
+

M∑
k=m+1

〈〈
dk

p − dk−1
p

〉〉2

βp

 + ∆t
M∑

k=m+1

∥∥∥∥∥∥dk
v −

dk
u + dk−1

u

2∆t

∥∥∥∥∥∥2

φ2
0 k−1

f

+
1

2∆t

∥∥∥dM
u

∥∥∥2
φ2

0 k−1
f

+
1

4∆t

M∑
k=m+1

∥∥∥dk
u − dk−1

u

∥∥∥2
φ2

0 k−1
f
−

〈
dM

p ,∇ ·
(
(1 − φ0)dM

u

)〉︸                       ︷︷                       ︸
=:T4

= −
〈
dm

p ,∇ ·
(
(1 − φ0)dm

u
)〉︸                         ︷︷                         ︸

=:T5a

−

M∑
k=m+1

〈
dk

p − dk−1
p ,∇ ·

(
(1 − φ0)dk−1

u

)〉
︸                                            ︷︷                                            ︸

=:T5b

+
1

2∆t

∥∥∥dm
u

∥∥∥2
φ2

0 k−1
f

+
1
2

〈〈
dm

u
〉〉2
βs

+
∆t
2

〈〈
dm

v
〉〉2
βf

+
∆t
2

〈〈
dm

p

〉〉2

βp
. (5.20)

We discuss the coupling terms T4, T5a and T5b separately in the two following steps.

Revisiting the increment equation for the solid for the last iteration. The coupling term T4 combined with terms
in (5.20), involving dM

u , constitutes a positive contribution. Indeed, (i) revisiting (5.15a) tested with u? = dM
u , (ii)

suitable expansion and reformulation, and ultimately (iii) discarding some positive terms and employing the definition
of β̂s, yields for all terms of (5.20) involving dM

u

1
∆t2 ‖d

M
u ‖

2
ρs(1−φ0) +

∥∥∥ε(dM
u )

∥∥∥2
C +

1
2

〈〈
dM

u

〉〉2

βs
+

1
2

〈〈
dM

u − dM−1
u

〉〉2

βs
− T4

+ ∆t

∥∥∥∥∥∥dM
v −

dM
u + dM−1

u

2∆t

∥∥∥∥∥∥2

φ2
0 k−1

f

+
1

2∆t

∥∥∥dM
u

∥∥∥2
φ2

0 k−1
f

+
1

4∆t

∥∥∥dM
u − dM−1

u

∥∥∥2
φ2

0 k−1
f

=
(i)

1
2

〈〈
dM−1

u

〉〉2

βs
+ ∆t

〈
φ2

0 k−1
f

(
dM

v −
dM

u

∆t

)
,

dM
u

∆t

〉
+ ∆t

∥∥∥∥∥∥dM
v −

dM
u + dM−1

u

2∆t

∥∥∥∥∥∥2

φ2
0 k−1

f

+
1

2∆t

∥∥∥dM
u

∥∥∥2
φ2

0 k−1
f

+
1

4∆t

∥∥∥dM
u − dM−1

u

∥∥∥2
φ2

0 k−1
f

=
(ii)

1
2

〈〈
dM−1

u

〉〉2

βs
+

1
2∆t

∥∥∥dM−1
u

∥∥∥2
φ2

0 k−1
f

+ ∆t

∥∥∥∥∥∥dM
v −

dM−1
u

2∆t

∥∥∥∥∥∥2

φ2
0 k−1

f

+
∆t
2

∥∥∥dM
v

∥∥∥2
φ2

0 k−1
f

≥
(iii)

1
2

〈〈
dM−1

u

〉〉2

β̂s
. (5.21)
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Bounding coupling terms T5a and T5b. We employ (i) the product rule, (ii) the definitions of Kdr,φ0,min and CKorn,1,
cf. (5.3) and (5.4), and (iii) the Cauchy-Schwarz and Young’s inequalities. After all, for any δ1 > 0, we bound T5a

T5a =
(i)

〈
dm

p ,∇φ0 · dm
u

〉
−

〈
dm

p , (1 − φ0)∇ · dm
u

〉
≤
(ii)

∥∥∥dm
p

∥∥∥ (
C1/2

Korn,1 + K−1/2
dr,φ0,min

) ∥∥∥ε(dm
u )

∥∥∥C
≤

(iii)

δ1

2

∥∥∥ε(dm
u )

∥∥∥2
C +

1
2δ1

(
C1/2

Korn,1 + K−1/2
dr,φ0,min

)2 ∥∥∥dm
p

∥∥∥2
. (5.22)

Similarly for T5b, we obtain for any δ2 > 0

T5b ≤
(i)−(iii)

δ2

2

M−1∑
k=m

∥∥∥ε(dk
u)

∥∥∥2
C +

1
2δ2

(
C1/2

Korn,1 + Kdr,φ0,min−1/2
)2

M∑
k=m+1

∥∥∥dk
p − dk−1

p

∥∥∥2
. (5.23)

Conclusion of relative stability. Inserting (5.21)–(5.23) into (5.20) and employing β̂p, yields

M−1∑
k=m+1

[
1

∆t2 ‖d
k
u‖

2
ρs(1−φ0) +

(
1 −

δ2

2

) ∥∥∥ε(dk
u)

∥∥∥2
C

]
+

M∑
k=m+1

[
‖dk

v‖
2
ρfφ0

+ ∆t
∥∥∥ε(dk

v)
∥∥∥2
φ02µf

+
∥∥∥dk

p

∥∥∥2
(1−φ0)2

κs

]
+

1
2

〈〈
dM−1

u

〉〉2

β̂s
+

1
2

M−1∑
k=m+1

〈〈
dk

u − dk−1
u

〉〉2

β̂s
+ ∆t

M−1∑
k=m+1

∥∥∥∥∥∥dk
v −

dk
u + dk−1

u

2∆t

∥∥∥∥∥∥2

φ2
0 k−1

f

+
∆t
2

〈〈dM
v

〉〉2

βf
+

M∑
k=m+1

〈〈
dk

v − dk−1
v

〉〉2

βf

 +
∆t
2

〈〈dM
p

〉〉2

βp
+

M∑
k=m+1

〈〈
dk

p − dk−1
p

〉〉2

βp−
1

δ2 ∆t

(
C1/2

Korn,1+K−1/2
dr,φ0 ,min

)2


≤

1
2

〈〈
dm

u
〉〉2
β̂s

+
δ1 + δ2

2

∥∥∥ε(dm
u )

∥∥∥2
C +

∆t
2

〈〈
dm

v
〉〉2
βf

+
∆t
2

〈〈
dm

p

〉〉2

β̂p
. (5.24)

Finally, after choosing βs, βf and βp satisfying (5.13) (in particular translating to β̂s � 0), and dropping several positive
terms in (5.24), we obtain the stability result

M−1∑
k=m+1

[
1

∆t2 ‖d
k
u‖

2
ρs(1−φ0) +

(
1 −

δ2

2

) ∥∥∥ε(dk
u)

∥∥∥2
C + ‖dk

v‖
2
ρfφ0

+ ∆t
∥∥∥ε(dk

v)
∥∥∥2
φ02µf

+
∥∥∥dk

p

∥∥∥2
(1−φ0)2

κs

]
≤

1
2

∥∥∥dm
u

∥∥∥2
β̂s

+
δ1 + δ2

2

∥∥∥ε(dm
u )

∥∥∥2
C +

∆t
2

∥∥∥dm
v

∥∥∥2
βf

+
∆t
2

∥∥∥dm
p

∥∥∥2
β̂p
.

After all, relative stability in the sense of (5.12) can be deduced for any choice for δ1 > 0 and δ2 ∈ (0, 2), since m and
M have been chosen arbitrary. By this the assertion follows.

Remark 5.6 (Incompressible media). We note that in contrast to the alternating minimization split (3.5)–(3.6), the
diagonally L2–stabilized two-way split (4.1)–(4.2) remains well defined in the extreme case of (quasi-)incompressible
solid material, i.e., (1−φ0)2

κs
= 0. According to the above theory, convergence is not guaranteed anymore, yet still may be

possible in practice, see also examples in Section 6.

We close this section with suggesting a practical set of stabilization parameters guided by the previous convergence
analysis. We emphasize that one could optimize the effective stability constant in (5.14) wrt. δ1, δ2, βs, βf , βp; however,
theoretical optimality does not necessarily result in practical optimality, cf. [32] for an applicable discussion.

Remark 5.7 (A practical set of stabilization parameters). We assume heterogeneities of the porosity are not crucial
and pretend the porosity is constant. Then it is CKorn,1 = 0 and K−1

dr,φ0,min =
(1−φ0)2

Kdr
, where Kdr = Kdr,0,min denotes the

standard drained bulk modulus. Moreover, we choose the values δ1 = δ2 = 1 in order to balance similar terms on both
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sides of (5.14) and follow the suggestion of the stability property to choose the stabilization parameters as “small” as
possible. This results in the set

βs = −
φ2

0 k−1
f

2∆t
, βf = 0, βp =

(1 − φ0)2

Kdr ∆t
,

which leads to destabilization of the momentum equation of the solid. However, we also highlight that merely utilizing
pressure stabilization and setting βs = βf = 0 does also result in guaranteed convergence, in the style of the fixed-stress
split for the quasi-static Biot equations.

6. Numerical tests for the convergence of the proposed splitting schemes

The aim of this section is to assess the performance of the proposed splitting schemes, the alternating minimization
split, cf. Section 3, and the diagonally L2-stabilized two-way split, cf. Section 4, and to compare it with the theoretical
convergence results in Section 5. In particular, we consider three test cases and perform an extensive parametric study
for various choices of model parameters and stabilization values based on the above analyses, in addition to similar
ad-hoc choices motivated by the analyses or experience of the closely related splitting schemes for the Biot equations.

As test problems, we use two classic problems, the swelling [24, 25, 54] and footing [55, 41, 32] problems. In
addition, we consider a perfusion-like problem as a reference for biomedical applications. We note that each problem is
loaded on a different equation: the swelling on the fluid, the footing on the solid and the perfusion on the mass balance.

We first present a sensitivity study with respect to the physical parameters for both alternating minimization and
L2–stabilized splits independently based on the swelling test. Then, we provide a detailed comparison between both
methods in all the described test problems in combination with Anderson acceleration. At the end of this section, we
also compare the performance of the split scheme that results most effective, with a monolithic solution approach for
the linearized problem, which may be considered to be the gold standard solution strategy. This final test sheds light on
the competitiveness of the proposed schemes when used for realistic scenarios.

All numerical examples have been performed using the FEniCS project [56, 57], and convergence is measured in
terms of the relative residual (for larger certainty absolute residuals are not considered). Let us denote by Xk

h(Ω) the
Lagrangian k-th order finite element space defined on a quasi-uniform mesh of Ω of characteristic size h.

The choice of the finite element scheme to be used for the discretization is affected by a trade-off between the
computational efficiency and the robustness of the scheme. The application of equal-order families of finite elements is
feasible as the inf-sup stability becomes relevant only when (1 − φ)2/κs ≈ 0. Nevertheless, the contribution of inf-sup
stability to parameter-robust numerical schemes for this model has not yet been studied.

On this basis, finite element spaces used in the numerical experiments are: first order Lagrangian elements for
the solid, Vh = X1

h(Ω) and Taylor-Hood elements for the fluid-pressure system, Wh × Qh = X2
h(Ω) × X1

h(Ω), which
represent an effective choice for the low porosity regime [26]. We name this choice of elements with the shorthand
notation P1/P2/P1.

6.1. Definition of the test cases

The swelling test. This test consists of a 2D slab Ω = (0, L)2, L = 10−2, in absence of volume forces and simulated
in the time interval (0, 1), with time step ∆t = 0.1. It is subject to an inflow φ0 (2µfε(vf) − pI) n = −pextn, pext(t) =

103(1 − exp(4t2)) on the left and null stress on the right, whereas above and below it uses a no-slip boundary
condition vf = 0. The boundary conditions for the solid are sliding on the bottom and left sides, whereas the
rest of the boundary is of null traction type (see Figure 1 (a)). We note that these conditions are not physical
because the fluid boundary pressure should act as force on the solid as well, but we keep the proposed scenario to
have this test being loaded only on the fluid equation. We have indeed tested this and observed that it presents no
impact on the following study. The following default parameters (from [25]) are used (unless otherwise specified):
ρf = ρs = 1000, µf = 0.035, λs = 711, µs = 4066, κs = 103, kf = 10−7I, φ0 = 0.1, all in SI units; in addition Ω is
discretized using 10 elements per side. Finally, a relative tolerance of 10−8 was used with respect to the `∞ norm of the
residual, where all sub-problems are solved using GMRES with a relative tolerance of 10−8 as well, preconditioned
with with an incomplete LU (ILU) factorization with 3 levels of depth (ILU(3) [58]).
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The footing test. This test (from [41]) also consists of a 2D slab Ω = (0, L)2, L = 64, simulated in the time interval
(0, 1), with time step ∆t = 0.01 in absence of volume forces where half of the boundary on top Γfoot = (16, 48) × {64}
is subject to an increasing load. More precisely, the fluid phase is subject to a no-slip condition on Γfoot and null
pressure in ∂Ω \ Γfoot. The boundary conditions for the solid are given by an increasing load t(x, t) = (0,−105t)
on Γfoot, homogeneous Dirichlet conditions on the bottom us = 0 and null Neumann conditions everywhere else
(see Figure 1 (b)). The parameters used are given by: ρf = 1000, ρs = 500, µf = 10−3, E = 3 · 104, ν = 0.2, λs =

Eν/((1 + ν)(1 − 2ν)), µs = E/(2(1 + ν)), κs = 106, kf = 10−7I, φ0 = 10−3, all in SI units, discretized using 10 elements
per side, with two simple refinements performed near the footing boundary. Finally, a relative tolerance of 10−6 is used
with respect to the `∞ norm of the residual.

The perfusion test. This test also consists of a 2D slab Ω = (0, L)2, L = 0.01 simulated in the time interval (0, 1), with
time step ∆t = 0.1. Both fluid and solid phases are subject to homogeneous Dirichlet boundary conditions on the left and
homogeneous Neumann conditions elsewhere (see Figure 1 (c)). We set the scalar source term θ = 500, and the problem
parameters are given by: ρf = 1000, ρs = 1000, µf = 0.03, E = 3 · 104, λs = 5 · 104,R =

√
E2 + 9λ2

s + 2Eλs, µs =

0.25 (E − 3λs + R), κs = 106, kf = 10−9I, φ0 = 0.05, all referring to in SI units. These mechanical parameters are
obtained from [59], the remaining ones from [60]. A relative tolerance of 10−8 is used with respect to the `∞ norm of
the residual.

6.2. Anderson acceleration

One key aspect of both proposed schemes is that they can be interpreted as fixed point iterations. Although they
feature in general lower convergence rates than Newton methods, they have acquired higher interest recently, also
due to the development of acceleration schemes. In particular, we focus on the Anderson acceleration, which can
be interpreted as a multisecant scheme, or as a preconditioned GMRES iterative method [35]. As shown later on in
Tables 8, 9, 10, acceleration techniques greatly improve the performance of the proposed split schemes, by increasing
their robustness with respect to varying loading conditions and significantly reducing the iteration count. In practice,
using Anderson acceleration is a necessary choice to effectively use the described split schemes in demanding scenarios.

In general, consider a vector-valued function g : RN → RN and the sequence

xk+1 = g(xk).

By defining fk = g(xk)− xk, Anderson acceleration of order m, abbreviated by AA(m), is given as follows: For iteration
k, set mk = min{m, k} and Fk = ( fk−mk , ..., fk). Compute αk = (αk

0, ..., α
k
mk

) that minimizes

min
α=(α0,...,αmk )

‖Fα‖2 s.t.
mk∑
i=0

αi = 1, (6.1)

and then compute the next element as

xk+1 =

mk∑
i=0

αk
i g(xk−mk+i).

The order m of the scheme is usually referred to as depth, due to the use of m previous iterations. We implement this
method by recasting (6.1) as an unconstrained least-squares problem, and then invert its optimality conditions using the
QR factorization to avoid possible ill-conditioning of the normal equations [58].

6.3. Numerical tests for the alternating minimization split

In this section we present three numerical tests on the alternating minimization split (named Alt–min in the tables),
with the aim of verifying the robustness of the scheme with respect to the parameters N =

κs
(1−φ0)2 , kf and highly

oscillatory porosities φ0. As test case we adopt the swelling test described above. We consider three varying parameters

κs ∈ {10k}5k=2; κf ∈ {10−k}12
k=9; φ0 = 0.1 + 0.5 sin2(`πx/L), ` = 2, ..., 8;
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(a) Swelling BC. (b) Swelling solution at t = 1s.

(c) Footing BC. (d) Footing solution at t = 1s.

us = 0
vf = 0

(e) Perfusion BC.
(f) Perfusion solution at t = 1s.

Figure 1: Boundary conditions used in the numerical tests and the corresponding solution.

where L = 10−2 is the side length, and the permeability is treated as a scalar for simplicity, namely kf = κf I. For each
parameter aside of default parameters otherwise, we present the average number of splitting iterations throughout the
simulation required for convergence in Table 1. We observe that the performance of the alternating minimization split
is particularly sensitive to the bulk modulus κs, and small permeabilities make the problem much more difficult to solve.
Instead, the dependence on oscillating porosity is moderate. The results are in accordance to Theorem 5.1.

6.4. Numerical tests for the diagonally L2–stabilized split

In this section, we study the sensitivity of the performance of the diagonally L2–stabilized split (named L2S in the
tables) with respect to different combinations of physical parameters. Precisely, we use the swelling test with default
coefficients, and we vary the following ones

κs ∈ {10k}8k=2; κf ∈ {10−k}12
k=7; ρs = ρf ∈ {10k}8k=2.
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κs # avg. iters.

102 8.55
103 15.91
104 64.09
105 –

(a) Bulk modulus.

κf # avg. iters.

10−9 17.64
10−10 73.72
10−11 399.96
10−12 –

(b) Permeability.

` # avg. iters.

2 23.91
4 54.64
6 103.09
8 170.64

(c) Porosity φ0 = 0.1 + 0.5 sin2(`πx/L).

Table 1: Alt–min for the swelling test: Average iteration count for varying (a) Bulk modulus (b) Permeability and (c) Porosity. Non-convergence
denoted with – after 200 iterations for bulk modulus and 500 iterations for permeability.

Additional tests address the influence of the ratio between the elasticity and the permeability. For this, we fix the
permeability and increase the drained bulk modulus Kdr = λ +

2µ
d , d = 2 by scaling both Lamé parameters by the same

factor.
The analysis in Section 5.2 yields the interesting fact that the solid momentum equation can be destabilized.

Therefore, we compare different stabilization parameters, also ones excluded by the theory in order to investigate the
theoretically suggested parameter ranges. In particular, we apply the L2 stabilized two-way split (4.1)–(4.2) using
stabilization parameters of type

βs = β̄s
φ2

0 k−1
f

∆t
, βf = β̄fφ

2
0 k−1

f , βp = β̄p
(1 − φ0)2

∆t Kdr

with different scaling factors β̄s, β̄f , β̄p, from now on denoted by L2S β̄s,β̄f ,β̄p
. Considered scaling factors are listed in

Table 2. Splitting iterations are terminated via the tolerance tolres = 10−8. As in the previous test, performance is
measured in terms of the average number of splitting iterations throughout the entire simulation, with non-convergence
established whenever a solver requires more than 200 iterations.

ID β̄s β̄f β̄p Description Covered by Thm. 5.5

L2S 0,0,0 0 0 0 Unstabilized split 7

L2S 0,0,1 0 0 1 L2S with fixed-stress-type p-stabilization 3

L2S −0.5,0,1 − 1
2 0 1 L2S with conservative us-destabilization 3

L2S −1,0,1 −1 0 1 L2S with aggressive us-destabilization 7

Table 2: Considered stabilization settings in the context of the diagonally L2–stabilized split.

Although the analysis, cf. Thm. 5.5, does not reveal any dependence on the particular discretization, it is developed
under the underlying assumption that the discrete problems are uniquely solvable. To investigate potential effects of
stability of the function spaces onto the stability of the splitting, we consider progressively unstable approximation
spaces, namely P1/P2/P1 and P1/P1/P1 elements for displacement, velocity and pressure, respectively.

6.4.1. Dependence on solid bulk
In Table 3, the iteration counts for varying κs are displayed. We observe that for P1/P1/P1 elements no set of

stabilization parameters enables convergence for larger κs; we note that for increasing κs, the uniform stability of the
fluid-pressure system is lost. In contrast, the use of P1/P2/P1 elements adds uniform stability to the discretization and
finally also uniform robustness to any of the stabilized splittings. For a non-dominating us − vf coupling, destabilization
of the solid momentum equation does not make a big difference.

6.4.2. Dependence on permeability
In Table 4, the iteration counts for varying kf = κf I are displayed. Here, a maximal count of 500 splitting iterations

is used for better understanding the dependence on the permeability. Lower permeability makes the problem more
difficult to solve. The reasons for this are: (i) decreasing the permeability leads to ill-conditioning of the us-vf block; and
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P1/P1/P1 elements P1/P2/P1 elements
κs L2S 0,0,0 L2S 0,0,1 L2S −0.5,0,1 L2S −1,0,1 L2S 0,0,0 L2S 0,0,1 L2S −0.5,0,1 L2S −1,0,1

102 6.73 6.0 5.91 5.82 6.73 6.73 6.36 6.36
104 13.27 22.81 22.82 22.91 13.18 7.0 6.73 6.91
106 – – – – 14.0 7.09 6.82 7.0
108 – – – – 14.09 7.09 6.82 7.0

Table 3: Average iteration count of the L2–stabilized solvers for a varying κs in the swelling test. Non-convergence denoted by –.

(ii) for lower permeabilities the ellipticity of the us-vf block loses its dominance, and instead the L2-type contribution
has a much bigger influence.

Destabilization of us seems to effectively address the first issue. In fact, it results in significantly improving the
performance, compared to mere p-stabilization, which alone fails to lead to unconditional robustness. This, on the one
hand, nicely verifies the theory in Thm. 5.5. On the other hand, it indicates that suitable destabilization successfully
imitates approximating the Schur complement of the L2-type contribution of the us-vf block; the comparison of
conservative and aggressive destabilization illustrates the potential gain but also sensitivity of destabilization. Since
L2-stabilization of the mass conservation equation does not address the L2-type contribution of the us-vf block at
all, unconditional robustness cannot be expected without an additional differently scaled stabilization approach,
ultimately mitigating the second issue. We highlight the possibility to include diffusion-type stabilization of the
pressure equation [61] which may result in a remedy.

Comparing the results for the P1/P1/P1 and P1/P2/P1 discretizations, we note that inf-sup stability in the fluid
allows for a significant improvement on the performance. Also, in contrast to the unstable case, destabilizing the us
equations greatly improves performance.

P1/P1/P1 elements P1/P2/P1 elements
κf L2S 0,0,0 L2S 0,0,1 L2S −0.5,0,1 L2S −1,0,1 L2S 0,0,0 L2S 0,0,1 L2S −0.5,0,1 L2S −1,0,1

10−7 10 8.18 8.18 8.36 10 6.36 6.27 6.64
10−8 12 9.91 9.82 9.91 11.91 9 8.45 8
10−9 15.09 15.09 12.36 11.18 15.45 15.36 12.55 9.55
10−10 67.18 67.28 40 55 74.64 74.73 44.27 19.27
10−11 347.55 348.18 194 – 419.64 420.45 232 –
10−12 – – – – – – – –

Table 4: Average iteration count of the L2–stabilized solvers for a varying kf in the swelling test. Non-convergence denoted by – (more than 500
iterations in this case).

We note that this method is very sensitive to low permeabilities. In previous studies, e.g. [34], Anderson acceleration
has been shown to successfully increase robustness of stabilized iterative solvers. So we present the iteration counts for
the same test but using Anderson acceleration with a depth of 5 in Table 5. We note that not only there is a significant
decrease in the number of splitting iterations required (up to ca. 80% for very low permeabilities), but it also enables
the convergence of configurations which have previously not converge, again verifying previous observations. As long
as the permeability is not too low, again aggressive us stabilization leads to the best performance.

6.4.3. Dependence on densities
In Table 6, the iteration counts for varying ρs = ρf are displayed. We observe that for very large densities the

problem starts to become more difficult to solve. To explain, increasing densities (merely) raise the second issue
mentioned in Section 6.4.2; in particular, as expected, destabilizing the solid equation does not yield any improvement,
in contrast to the previous test. Iteration counts are identical for P1/P1/P1 and P1/P2/P1 elements. Thus, only the
former is presented.
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P1/P1/P1 elements P1/P2/P1 elements
κf L2S 0,0,0 L2S 0,0,1 L2S −0.5,0,1 L2S −1,0,1 L2S 0,0,0 L2S 0,0,1 L2S −0.5,0,1 L2S −1,0,1

10−7 5.9 5.73 6 6 5.73 4.91 4.91 4.91
10−8 7 7.27 7.27 7.09 6.91 6.91 6.64 5.91
10−9 10.36 10 8.91 8.91 10.45 10 9 7.09
10−10 18.91 18.09 14.91 12 18 20.09 15.73 10
10−11 43.55 45.18 33.73 26.18 56.82 53.18 38.91 18.82
10−12 107.09 112.73 121.55 – 140.73 117.36 95.64 280.82

Table 5: Average iteration count of the L2–stabilized solvers for a varying kf in the swelling test using Anderson acceleration with depth 5.
Non-convergence denoted by – (more than 500 iterations in this case).

P1/P1/P1 elements
ρs = ρf L2S 0,0,0 L2S 0,0,1 L2S −0.5,0,1 L2S −1,0,1

102 – 4.0 3.9 4.0
104 – 4.0 3.9 4.0
106 – 4.0 4.0 4.0
108 – 18.4 18.7 19.4

Table 6: Average iteration count of the L2–stabilized solvers for a varying ρs = ρf in the swelling test. Non-convergence denoted by –.

6.4.4. Dependence on drained bulk modulus
In Table 7, the iteration counts for varying Kdr (with same Poisson ratio) are displayed. We observe that lower

drained bulk modulus is associated to higher iteration counts. This can be explained along the lines of the discussion of
the dependence on the permeability, cf. Section 6.4.2, since a lower drained bulk modulus leads to dominance of the
L2-type contribution of the us-vf block. Therefore, as expected, (aggressive) destabilization is beneficial. Additionally,
a lower drained bulk modulus leads to a stronger coupling strength, and in accordance to Theorem 5.5, to a deteriorating
convergence rate. Again, inf-sup stability of the discretization of the fluid-pressure coupling enables slightly improved
results, especially for low bulk modulus.

P1/P1/P1 elements P1/P2/P1 elements
Kdr L2S 0,0,0 L2S 0,0,1 L2S −0.5,0,1 L2S −1,0,1 L2S 0,0,0 L2S 0,0,1 L2S −0.5,0,1 L2S −1,0,1

47.77 – – – – – 26 19.18 16.64
477.7 – 30 30 30 – 10.82 9.91 9.91
4777 10 8.18 8.18 8.36 10.27 6.73 6.73 6.27

47770 5.82 4.82 4.91 5.18 6.73 5.73 5.73 5.64

Table 7: Average iteration count of the L2–stabilized solvers for a varying Kdr in the swelling test. Non-convergence denoted by –.

6.5. Comparison of the alternating minimization and L2–stabilized splits

The previous two sections allow for a first comparison of the two proposed schemes. In particular, two conclusions
on the respective limitations can be made: (i) for increasing solid bulk modulus, the alternating minimization split
quickly deteriorates, whereas the L2-stabilized split remains robust; and (ii) for lower permeabilities, the performance
of both schemes deteriorates, but the alternating minimization split in fact better handles the limit of very low
permeabilities.

In this section, we continue the comparison of the two proposed schemes, now based on all the three suggested
test cases with the parameters given in their description, enjoying different problem characteristics. The focus of the
following study will also be to assess the impact of actual inf-sup stability, given for a Taylor-Hood like P2/P2/P1
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discretization, opposed to the previously considered P1/P2/P1 discretization. Moreover, having observed the improving
effect of Anderson acceleration in Section 6.4.2, we follow this lead and also investigate the performance of the
accelerated splits, this time also for the alternating-minimization. We also consider only the L2S −0.5,0,1 as it is the one
suggested by the analysis and it exhibits an overall more robust performance.

For the swelling test, we additionally consider two bulk moduli, κs ∈ {104, 108}. Results are presented in Table 8.
We observe that the inf-sup stability of the displacement plays no role, and the diagonally L2–stabilized split proves
very robust in all the tested scenarios, performing significantly better than the alternating minimization split. For the
first, Anderson acceleration barely leads to improvement due to already low iteration counts; for the latter convergence
can be significantly accelerated for the lower bulk modulus. For high bulk modulus, not even Anderson acceleration
enables convergence.

P1/P2/P1 P2/P2/P1
Method κs None AA(1) AA(5) None AA(1) AA(5)

Alt–min 104 64.09 38.27 21 66.82 39.64 21.82
L2S −0.5,0,1 104 6.73 5.0 4.9 6.55 4.0 4.9

Alt–min 108 – – – – – –
L2S −0.5,0,1 108 6.82 5.09 4.91 6.64 5.0 4.91

Table 8: Average iteration count for all tested scenarios in the swelling test, averaged over 5 time steps for κs ∈ {104, 108}. None stands for the plain
splits; AA(m) stands for additional application of Anderson acceleration with depth m.

We present the results of the footing test in Table 9. We note that in this test the alternating minimization
scheme exhibits lower iteration counts. Its success can be explained by the lower bulk modulus used, and instead the
initial failure of the L2–stabilized scheme is due to the permeability, which is very low. This case presents localized
displacements at Γfoot, which are more affected by numerical locking, which justifies the increased iteration count in
the case of the P2/P2/P1 discretization.

P1/P2/P1 P2/P2/P1
Method None AA(1) AA(5) None AA(1) AA(5)

Alt–min 17.92 8.96 7.4 73.44 25.4 16.9
L2S −0.5,0,1 – – 28.98 – – 52.42

Table 9: Average iteration count for all tested scenarios in the footing test. None stands for the plain splits; AA(m) stands for additional application
of Anderson acceleration with depth m.

The results of the perfusion test are presented in Table 10. The behavior of this test is similar to the swelling one,
with the L2–stabilized split exhibiting a robust performance, which is further improved by the use of acceleration. The
alternating minimization split instead presents difficulties in attaining convergence without acceleration, which can be
explained by the use of a large bulk modulus. Similarly to the swelling test, the inf-sup stability of the displacement
effectively plays no role.

P1/P2/P1 P2/P2/P1
Method None AA(1) AA(5) None AA(1) AA(5)

Alt–min – 111.64 51.45 – 134.36 50.18
L2S −0.5,0,1 18.36 10.27 9 14.64 9.36 8.09

Table 10: Average iteration count for all tested scenarios in the perfusion test. None stands for the plain splits; AA(m) stands for additional application
of Anderson acceleration with depth m.
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6.6. Comparison of splitting versus monolithic approaches

In this section we present a comparison, in terms of computational time, between the proposed splitting schemes
and a monolithic approach. We consider the swelling test in 2 and 3 dimensions, and we choose the L2S −0.5,0,1 (labelled
L2S ) as it yields the best performance for this problem. All matrices are inverted inexactly with a GMRES method,
and in both monolithic and iterative approaches we used an incomplete LU preconditioner (ILU). In our tests we have
observed that in 2D the monolithic scheme requires more levels of fill-in of the ILU than the splitting schemes, which
is consistent with the monolithic problem being more complex than the block sub-problems. Nevertheless, for the
sake of a fair comparison, we use the same 3 levels of fill-in for both formulations in 2D. For the 3D case, the default
ILU(1) was sufficient. The default stopping criterion for GMRES iterations is adopted for the monolithic scheme,
with a relative tolerance equal to 10−8. For the splitting scheme, the convergence tests for the linear system solved
at each iteration is slightly relaxed, up to 10−6, but the (relative) tolerance of the stopping criterion for the iterative
splitting scheme is also set to 10−8, on the `∞ norm of the residual. We compare the computational cost, measured by
the average wall time per time step, calculated on a sequence of five consecutive time steps. Both formulations are
solved using P1/P2/P1 finite elements, and the number of degrees of freedom is controlled by the number of nodes on
each side of the domain.

The results of the comparison are reported in Tables 11 and 12 for the 2D and 3D problems, respectively. The
iterative schemes exhibit a better scaling with respect to the number of degrees of freedom. In particular, for problems
with roughly over 105 and 106 degrees of freedom (given by using 100 or more elements per side on the square domain
and 40 elements per side or more on the cubic domain) the wall time of the split scheme is consistently lower than
the one of the monolithic approach. Also, the ratio between both solution times decreases monotonically with respect
to the degrees of freedom as shown in the last column of the table, meaning that in this test case the superiority of
iterative splitting schemes increases with the discrete problem size, which makes them a competitive solution strategy
for addressing realistic scenarios, especially when considering tailored, possibly scalable preconditioners for the single
subproblems. We note that in the largest 3D problem the monolithic solver requires more memory than available and so
it returns an Out of Memory error (OOM). Conversely, the splitting scheme requires the construction of preconditioners
only for the diagonal blocks, which results in a lower memory footprint. This is an additional advantage of these
methods.

Elements per side dofs L2S [s] Monolithic [s] ratio (L2S / Mono.)

50 28205 3.08 1.92 1.6042
100 111405 11.62 15.61 0.7444
150 249605 31.94 46.57 0.6858
200 442805 61.79 128.49 0.4809
250 691005 125.04 254.93 0.4905
300 994205 196.97 569.36 0.3459

Table 11: Wall time [s] of the different approaches for increasing number of degrees of freedom in 2D.

Elements per side dofs L2S [s] Monolithic [s] ratio (L2S / Mono.)

20 243807 49.43 30.53 1.62
30 800107 209.2 163.4 1.28
40 1870007 543.4 651.8 0.83
45 2650057 925.2 1131.8 0.81
50 3621507 1466 OOM –

Table 12: Wall time [s] of the different approaches for increasing number of degrees of freedom in 3D. OOM stands for Out Of Memory.
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7. Discussion and Conclusions

In this work we have developed splitting schemes for the linearized poromechanics problem studied in [25, 26],
namely the alternating minimization split and the diagonally L2–stabilized split. As the choice of a splitting scheme
strongly depends on the application of interest, due to the strong dependence that the performance of each scheme has
on the parameters, we tested the proposed methods on several benchmark problems.

The conclusions of this work arise from both theoretical analysis and numerical experiments. From the standpoint
of theoretical convergence properties, we observe that the effectiveness of a splitting scheme hinges on the assumptions
used for the convergence analysis and the corresponding stabilization, if necessary. For instance, the alternating
minimization scheme requires the algebraic inversion of the pressure, so it can be expected for it to deteriorate
whenever this operation is not admissible ((1 − φ)/κs → ∞). The diagonally L2–stabilized split can be interpreted as
an approximate Schur complement method, where the L2-type contributions are not considered. This implies that it
can be expected for such L2–stabilized schemes to present difficulties converging whenever the L2-type contributions
are dominant, meaning small permeability or large densities. The analysis also provides the interesting possibility of
destabilizing the solid momentum equation in the diagonally L2–stabilized scheme.

Such trends are confirmed by numerical experiments. The alternating minimization scheme performs very well in
compressible scenarios but its convergence rate quickly deteriorates as the bulk modulus increases. The diagonally
L2–stabilized split instead is robust with respect to the bulk modulus, so it should be preferred in (quasi-)incompressible
regimes. The numerical experiments also confirm that the destabilization of the solid momentum equation yields good
improvements of the convergence rate.

Neither of the schemes is capable of satisfyingly handling large densities or small permeabilities (without An-
derson acceleration) – enhanced splitting schemes which successfully incorporate the L2-type contribution in the
displacement–fluid velocity block are a topic of future research. Here, we emphasize the theory of parameter-robust
operator preconditioning appears to be a natural framework [62], having been also able to provide parameter-robust
preconditioners for the Biot equations with a double-saddle point structure [63, 64]; we however expect that results
as in [61] cannot be directly translated due to the heterogeneous character of the coupled displacement-fluid velocity
block. Still, an improvement for the low permeability scenario can be seen by using inf-sup stable elements for the
fluid-pressure block. This is an interesting property to be investigated, as it does not emerge in the analysis.

We have strengthened our splitting schemes with Anderson acceleration, which is a general method to improve
the convergence of fixed-point iterations. It does not only improve the convergence of all methods tested, but it also
enables convergence in scenarios in which it previously would not converge. Another feature of Anderson acceleration,
particularly relevant in this framework, is that it reduces the influence of the stabilization parameters. This is indeed a
fundamental aspect, as the user-defined choice and tuning of parameters represent a drawback of the presented methods.

Finally, we have compared the diagonally L2–stabilized split with a monolithic approach applied to the linearized
problem. This study shows that for a sufficiently large size of the discrete problem, the iterative splitting approach
is a competitive choice. Such methods may then be rightfully considered as effective options for solving realistic
poromechanics problems applied to soft materials. Further investigations considering practical biomedical applications
will be performed in the future.
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