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Abstract

Deep Learning is having a remarkable impact on the design of Reduced Order Models (ROMs) for Partial
Differential Equations (PDEs), where it is exploited as a powerful tool for tackling complex problems for
which classical methods might fail. In this respect, deep autoencoders play a fundamental role, as they
provide an extremely flexible tool for reducing the dimensionality of a given problem by leveraging on the
nonlinear capabilities of neural networks. Indeed, starting from this paradigm, several successful approaches
have already been developed, which are here referred to as Deep Learning-based ROMs (DL-ROMs). Nev-
ertheless, when it comes to stochastic problems parameterized by random fields, the current understanding
of DL-ROMs is mostly based on empirical evidence: in fact, their theoretical analysis is currently limited to
the case of PDEs depending on a finite number of (deterministic) parameters. The purpose of this work is
to extend the existing literature by providing some theoretical insights about the use of DL-ROMs in the
presence of stochasticity generated by random fields. In particular, we derive explicit error bounds that can
guide domain practitioners when choosing the latent dimension of deep autoencoders. We evaluate the prac-
tical usefulness of our theory by means of numerical experiments, showing how our analysis can significantly
impact the performance of DL-ROMs.
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1. Introduction

Aside from its striking impact on areas such as data science, language processing, and computer vision,
Deep Learning is now becoming ubiquitous in all branches of science, with applications ranging from eco-
nomics [46, 41, 34] to medicine [62, 43, 6], biology [4, 65, 58], chemistry [67, 57, 59], physics [29, 14, 8],
mathematics [15, 27, 7] and engineering [38, 56, 50]. In most cases, researchers exploit Deep Learning to
make up for our limited understanding and limited computational resources, typically trying to find a suitable
compromise between domain knowledge and data-driven approaches. In this contribution, we shall focus our
attention on a specific research area, typical of engineering applications, which concerns the development of
Reduced Order Models (ROMs).

Simply put, ROMs are model surrogates that aim at replacing expensive numerical simulations with
accurate approximations that are obtained at a reduced computational cost. From a practical point of view,
ROMs can be remarkably helpful whenever dealing with real-time many-query applications, such as those
characterizing digital twins [36], optimal control [54] and uncertainty quantification [30, 12]. As of today,
the literature is filled with plenty of different ROM approaches, and whether to choose one or another is
typically problem dependent. Here, we shall focus on Deep-Learning based ROMs (DL-ROMs), specifically
addressing the framework proposed in [22, 19], which leverages the use of deep autoencoders and has already
reported numerous successful applications; see, e.g., [25, 23, 26, 11].

The driving idea behind the DL-ROM approach is to exploit the nonlinear approximation capabilities of
deep autoencoders to perform a suitable dimensionality reduction, allowing the representation of complex
high-fidelity solutions as small vectors in some latent space of dimension n. In general, the choice of this
latent dimension is problem specific and its value reflects the intrinsic properties of the so-called solution
manifold. In the case of PDEs that depend on a finite number of deterministic parameters, this fact has



already been thoroughly studied in [19]. There, the authors characterize the latent dimension of the DL-
ROM by investigating the behavior of the so-called manifold n-width [17]. Given a compact parameter space
Θ ⊆ Rp, a Hilbert state space (V, ∥ ⋅ ∥) and a parameter-to-solution operator Θ ∋ µ ↦ uµ ∈ V , the latter can
be written as

inf
Ψ′∈E(V,Rn)
Ψ∈D(Rn,V )

sup
µ∈Θ
∥uµ −Ψ(Ψ′(uµ))∥ (1)

where Ψ′ ∶ V → Rn and Ψ ∶ Rn → V are the encoder and decoder networks, respectively, each varying in a
suitable class of admissible architectures correspondingly named E(V,Rn) and D(Rn, V ).

The purpose of this work is to extend the analysis proposed in [19] to address the case of stochastic
PDEs, where the deterministic parameters are replaced by some random field µ ∼ P. In general, this
extension presents two major challenges. First of all, the realizations of the input field µ might be arbitrarily
large in norm, which removes any form of compactness and makes the arguments in [19] inapplicable. On
top of that, the stochasticity introduced by the random field makes the PDE formally depend on an infinite
number of parameters, i.e. p = +∞. Then, the bounds provided in [19] become meaningless.

To address these difficulties, we shall first replace the optimization problem in (1) with its probabilistic
counterpart, that is

inf
Ψ′∈E(V,Rn)
Ψ∈D(Rn,V )

Eµ∼P∥uµ −Ψ(Ψ′(uµ))∥ (2)

where E is the expectation operator. Then, (2) measures the extent to which an autoencoder with latent
dimension n can approximate the high-fidelity solutions arising from the PDE. Our purpose is to characterize
the quantitative behavior of (2) and thus provide practical insights that can guide domain practitioners in
the complex design of DL-ROM architectures.

More precisely, we shall prove the following facts. If the PDE depends on a finite number of stochastic
parameters, p ∈ N, then the autoencoders can achieve arbitrary accuracy in any latent dimension n ≥ p. In
general, this result is much stronger than the one obtained in the deterministic setting, since the optimal
bound in that case is n ≥ 2p + 1: see Theorem 3 in [19] for further details. On the contrary, if the PDE
depends on a general random field (informally, p = +∞), then we can characterize the decay of the recon-
struction error (2) in terms of the eigenvalues of the covariance operator of the input random field, µ, and of
the output field, uµ, respectively. In particular, our analysis shows how deep autoencoders can outperform
the performance of linear methods by benefiting from the intrinsic regularities available in both fields.

The paper is organized as follows. First, in Section 2, we formally introduce the problem of reduced order
modeling for stochastic PDEs, with a brief overview about the DL-ROM approach, while, in Section 3, we
present the mathematical tools that are needed for our construction. Our main contribution can be found
in Section 4, where we derive several results about the latent dimension of deep autoencoders for PDEs
parameterized by random fields. Finally, we devote Section 5 to numerical experiments.

2. Problem setup

Let Ω ⊂ Rd be a bounded domain. We are given a parametrized boundary value problem with random
coefficients, e.g.

⎧⎪⎪⎨⎪⎪⎩

Aµuµ = fµ in Ω

Bµuµ = gµ on ∂Ω,
(3)

with Aµ,Bµ, fµ, gµ parameter dependent operators and problem data, respectively. Here, µ is a suitable
random field that parameterizes the PDE and introduces a corresponding form of stochasticity. For simplicity,
we assume that µ is defined over Ω, although such a restriction is not necessary. Notice also that we limit
our attention to steady PDEs: for a deeper discussion about this aspect, we refer the reader to the remark
at the end of this Section.

We assume to have at our disposal a trusted high-fidelity numerical solver – possibly expensive – that
can approximate the solution of (3) for each fixed realization of the random field µ. We further assume that
all numerical simulations produced by such solver live in a common high-fidelity state space Vh ⊂ L2(Ω) of
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dimension dim(Vh) = Nh. Let {ξi}Nh

i=1 be the basis of Vh. Then, for each realization of µ, the numerical solver
provides a way to compute a set of basis coefficients

uh
µ ∶= [c(1)µ , . . . , c(Nh)

µ ] such that uµ ≈
Nh

∑
i=1

c(i)µ ξi.

In this sense, the numerical solver, also known as the Full Order Model (FOM), defines a solution operator

Gh ∶ µ↦ uh
µ ∈ RNh

in a very natural way. The efficient approximation of such an operator can be of great interest in many-query
and real-time applications, where multiple calls to the FOM become computationally unbearable. Thus, the
main interest becomes finding a cheaper surrogate µ ↦ Φ(µ), called the reduced order model (ROM), such
that Φ(µ) ≈ uh

µ. More precisely, let P denote the probability law of µ, and let ∥ ⋅ ∥Vh
be the norm over RNh

induced by the L2-norm over the state space Vh. Then, giving some tollerance ε > 0, one seeks to construct
a suitable ROM for which

Eµ∼P∥uh
µ −Φ(µ)∥Vh

< ε.

2.1. Reduced order modeling and the DL-ROM approach

The development and construction of accurate ROMs is an extremely active area of research: as of
today, the literature features a very broad spectrum of approaches to model order reduction, such as the
Reduced Basis method [45, 52, 31, 63] and its non-intrusive data-driven variations, e.g. [32, 28], adaptive
ROMs [3, 10, 48, 37], hybrid techniques based on closure modeling [35, 64], deep learning-based ROMs
[19, 22, 24, 9, 51], and many others, each with their own benefits and guarantees.

Here, we shall focus primarily on the case of Deep Learning based ROMs (DL-ROMs), following the
framework introduced in [22, 19]. These can be of particular interest whenever: i) intrusive approaches are
not available, either because they would entail expensive subroutines, such as hyperreduction, or because
the FOM is not accessible; ii) linear methods based on, e.g., Principal Orthogonal Decomposition (POD),
fail because of intrinsic complexities entailed by the solution operator (see, e.g., the well-known phenomenon
of slow-decay in the Kolmogorov n-width [19, 47, 55]).

For simplicity, let us assume that the random field at input, µ, has been discretized at the same level as
PDE solutions, so that each realization µ ∈ L2(Ω) is formally replaced by some µh ∈ RNh . In their original
formulation, DL-ROMs are characterized by three deep neural network architectures, Ψ′,Ψ, ϕ, which operate
as

Ψ′ ∶ RNh → Rn, Ψ ∶ Rn → RNh , ϕ ∶ RNh → Rn,

where n ∈ N is the so-called latent dimension of the model. The idea is that the first two networks are
responsible for learning the fundamental features that characterize PDE solutions; conversely, the third map,
ϕ, is left to learn the way in which the input µh affects the output uh

µh . This is achieved by constructing
the three networks so that

Ψ(Ψ′(uh
µh)) ≈ uh

µh and ϕ(µh) ≈ Ψ′(uh
µh). (4)

Then, the parameter-to-solution operator is approximated as

Φ(µh) ∶= Ψ(ϕ(µh)) ≈ uh
µh . (5)

In this sense, the accuracy of the DL-ROM is ultimately determined by that of the combined network
Φ ∶= Ψ ○ ϕ, while the role of Ψ′ is only auxiliary. However, such a splitting can be beneficial (see, e.g.,
Figure 22 in [22]) as it makes the two blocks, Ψ and ϕ, tackle the different complexities that characterize
model order reduction: on the one hand, the spatial complexity of the solutions; on the other hand, the
intricate dependency of the solutions with respect to the input parameters. In this sense, the presence of Ψ′

is fundamental, as it allows us to decouple the problem.
Following the conventions of the Deep Learning literature, we refer to the composition Ψ′ ○ Ψ as an

autoencoder architecture of latent dimension n, while the two maps, Ψ′ and Ψ, are referred to as encoder
and decoder, respectively. The terminology comes from the fact that the two maps ultimately provide a way
to represent high-fidelity solutions as small vectors in Rn, in fact, in Ψ(Ψ′(uh

µh)) ≈ uh
µh and Ψ′(uh

µh) ∈ Rn.
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Then it is clear that the choice of the appropriate value of n becomes fundamentally important. The purpose
of this work is to provide additional information on this aspect, with a particular focus on the case of PDEs
parametrized by random fields. In the next subsection, we shall further motivate this fact with a practical
example.

For the sake of completeness, before coming to the main objective of this work, let us conclude this
overview with a few words about the training and implementation of DL-ROMs. The first step consists of
exploiting the FOM to generate a collection of trusted samples

{µh
i ,u

h
i }Ntrain

i=1 ,

where uh
i = Gh(µh), which serve as training data for the three networks in the DL-ROM pipeline. More

precisely, once the architectures have been designed, the three modules are trained by minimizing a suitable
loss function such as the one below,

L(Ψ,Ψ′, ϕ) = 1

Ntrain

Ntrain

∑
i=1
(α1∥uh

i −Ψ(ϕ(µh
i ))∥2Vh

+ (6)

α2∥uh
i −Ψ(Ψ′(uh

i ))∥2Vh
+

α3∥Ψ′(uh
i ) − ϕ(µh

i )∥2Rn).

Here, α1, α2, α3 ≥ 0 are suitable weights that are used to define the loss function. The idea is that by
minimizing (6), one would automatically enforce both (4) and (5). It should be noted that since the term
multiplied by α1 contains information about the actual accuracy of the ROM, the other two can be seen as
regularizers. In this sense, a good rule of thumb is to increase α2 if the solutions to the PDE are characterized
by a complex dependency with respect the space variable x ∈ Ω; conversely, one can leverage α3 whenever
the parameter dependency of the PDE becomes highly involved.

In general, training of the three networks can be achieved simultaneously or in multiple steps. For
example, in [22], the authors set α2 = 0 and proceed with a single training; conversely, in [19], the authors
propose a two-stage training phase: first with α1 = α3 = 0 and then with α1 = α2 = 0. Here, we will keep all
the weights active α1, α2, α3 > 0, and opt for a one-shot training routine.

After the training phase, the DL-ROM can efficiently approximate high-fidelity solutions in milliseconds.
The quality of such an approximation is typically assessed by relying on a suitable test set, that is, by
comparing the outputs of the two models, the DL-ROM and the FOM, for new independent realizations of
the input field.

2.2. Choosing the latent dimension: a motivating example

To further motivate our analysis and anticipate the practical impact of our results, let us look at a simple
problem featuring a PDE with finitely many random parameters. As in [19], we consider the following
boundary value problem defined over the unit square Ω = (0,1)2

−∇ ⋅ (σµ∇u) = fµ in Ω (7)

complemented with a constant Dirichlet boundary condition, u ≡ 0.1 on ∂Ω. Here, the PDE depends on
three random parameters, µ = [µ1, µ2, µ3], which affect the permeability field σ = σµ and the right-hand-side
f = fµ. Those are defined as

σµ(x) ∶=
1

2
+ µ11Ω0(x), fµ(x) ∶=

1

2πϵ2
exp(− 1

2ϵ2
∣x − [µ2, µ3]T ∣2) ,

where ϵ ∶= 0.01 and Ω0 ⊂ Ω is as in Figure 1a. The first parameter, µ1, can attain any random value in [1,4],
and has the effect of modifying the permeability of the subdomains; conversely, µ2 and µ3 are responsible
for the random location of the concentrated source fµ, and they are allowed to range from 0.1 to 0.9. More
precisely, we endow the overall parameter space with a uniform probability distribution supported over
[1,4] × [0.1,0.9]2 ⊂ R3.
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Figure 1: Domain of definition (a) and randomly generated PDE solutions (b-d) for Problem (7).

To construct our trusted high-fidelity solver, we rely on a Finite Element discretization of (7) using
continuous piecewise linear elements defined over a structured triangular grid of stepsize h ≈ 0.0236, which
results in a FOM dimension of Nh = 3721. We run the FOM multiple times to generate a total of 2000
random solutions (1500 for training and 500 for testing): we refer to Figure 1b-e for a few examples. Our
purpose is to exploit these data to explore the behavior of two different dimensionality reduction techniques.
POD, which here stands as a representative of linear ROMs, and deep autoencoders, which, instead, are at
the core of DL-ROMs.

Precisely, we compute the reconstruction error (estimated via classical Monte Carlo over the test set)

Eµ∼P∥uh
µ −Ψ(Ψ′(uh

µ))∥Vh
,

obtained by employing POD (i.e., by letting Ψ′ ≡VT and Ψ ≡V be nothing but the POD projectors) or deep
autoencoders (in which case both Ψ and Ψ′ are DNNs). We repeat this computation for different choices
of the latent dimension, namely n = 1,2, . . . ,40, to investigate the impact of the ROM dimension on the
quality of the reconstruction. We mention that while the POD matrix is uniquely determined by n, this is
not the case for deep autoencoders, as users can play with several components of the architecture (number
of layers, intermediate neurons, layer type, etc.). To highlight this fact, we train three different autoencoder
architectures for each value of n. Results are in Figure 2.

In general, autoencoders quickly outperform POD: in fact, their performances at n = 3 remain unmatched
even when the POD considers as much as n = 40 latent variables (left panel of Figure 2). However, here we
are not really interested in the actual values of the error, but rather in how the error decays.

In the linear case, we can observe a very clear and stable trend, where the error decays as some power of
the latent dimension n, namely n−γ for some γ > 0. However, things change quite a bit when moving to deep
autoencoders. Here, in fact, although the error always decreases as a function of n, the rate of such decay
is not constant. In fact, we can spot at least two different trends: first, we have a rapid decay from n = 1 to
n = 3, which is then followed by a much slower decay from n = 3 on. In this sense, the latent dimension n = 3
appears to be a turning point: after that, it is not really worth increasing the ROM dimension; rather, the
performances could be improved by considering more complex architectures (see, e.g., the discussion in [19],
especially Section 4.1 and Figure 7).

Since for the case at hand the PDE depends on p = 3 random parameters, it is natural to ask whether
this is a simple coincidence. As we shall prove in Theorem 3, this is not the case. It is shown here that when
n = p, there is an ideal balance between reduction and precision. However, we must mention that several
authors had already conjectured this fact and applied it as a rule of thumb; see, e.g., [40, 22]; furthermore, in
the case of finitely supported probability measures, some first insights were already provided in [19]. Here,
we extend the analysis proposed in [19], showing that this optimality is preserved even if the parameter space
is endowed with a probability measure with unbounded support. Furthermore, we shall generalize the idea
to the case of random fields, where the PDE formally depends on the parameters p = +∞. From a practical
point of view, this will allow domain practitioners to choose the latent dimension of deep autoencoders
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Figure 2: Left panel: reconstruction error decay for Problem (7) as a function of the ROM dimension: linear reduction through
POD vs nonlinear reduction through autoencoders. Right panel: model complexity, measured in terms of free —i.e., trainable—
parameters (cf. Remark 1).

beforehand, thus avoiding the tedious procedures based on trial and error. For example, when faced with a
problem such as (7), one can safely let n = 3 without having to repeat the analysis in Figure 2.

Remark 1. Our focus for this work is to study the role of the latent dimension of deep autoencoders. Seeing
this as a first step towards a more comprehensive investigation, our work does not immediately address
other relevant matters, such as sample size requirements, optimization strategies, and model complexity.
For example, it is reasonable to ask whether, in Problem (7), the improved performance of autoencoders
comes at the cost of increased model complexity. Mathematically speaking, the latter can be defined as the
number of trainable parameters in the model (also referred to as ”free parameters”). For deep autoencoders,
this corresponds to the total number of active —that is, nonzero— entries in the weight matrices and the
bias vectors; for POD, instead, the latter is simply given by the number of entries in the POD matrix, i.e.
Nh × n. In other words, we may quantify the complexity of the two approaches by measuring a quantity
that is proportional to the amount of physical memory required to store the corresponding model. As shown
in the right panel of Figure 2, in this case autoencoders are indeed more complex compared to POD. For
example, when n = 1, the autoencoder module requires 100 times more memory compared to POD. However,
with increasing n, this difference becomes smaller and smaller. This is because, while the number of POD
entries grows linearly at a rate proportional to the FOM dimension, Nh, autoencoders only increase in size
near the bottleneck (in fact, only the hidden layers are involved in this process). Furthermore, it is worth
mentioning that other architectures can be significantly more memory efficient. For example, as discussed
in [19], the use of convolutional layers can result in autoencoders that are in fact cheaper than POD, with
memory reduction close to 90%.

3. Preliminaries

In the current Section, the reader can find all the key properties and the mathematical concepts that are
required for properly following the theoretical analysis proposed in Section 4. Precisely: in Section 3.1, we
shall introduce the main ingredient of our recipe, i.e., DNN architectures; then, in Section 3.2, we familiarize
ourselves with the notion of local variation, a mathematical concept that we later use to characterize locally
Lipschitz operators; finally, in Section 3.3, we summarize several properties about Gaussian processes that
are relevant to our analysis in Section 4.

In order to keep the paper self-contained, most of the proofs related to this Section have been postponed
to the Appendix, Section A.
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3.1. Expressivity of Deep Neural Networks

DNNs are computational units based on the composition of affine transformations and nonlinear activa-
tions, with the latter being applied component-wise on all vector entries. In the context of Deep Learning,
in fact, it is very common to encounter the following notation

ρ(x) ∶= [ρ(x1), . . . , ρ(xn)], (8)

where x ∈ Rn and ρ ∶ R→ R. Here, with little abuse of notation, we agree to adopt the same convention.
In particular, DNNs are obtained via the composition of several maps, called layers, of the form x →

ρ(Wx + b). Each layer is characterized by its own weight matrix W, and its bias vector b, two learnable
parameters that are generally optimized during the training phase. All layers except the terminal layer
(which usually comes without an activation function) are called hidden layers, and their total number
defines the depth of the architecture. In mathematical terms, we may synthesize these notions as follows.

Definition 1. Let ρ ∶ R → R and m,n ∈ N. We define the family of layers from Rm to Rn with activation
function ρ as

Lρ(Rm,Rn) = {f ∶ Rm → Rn s.t. f(x) = ρ(Wx + b), W ∈ Rm×n, b ∈ Rn}. (9)

Similarly, we define the family of Deep Neural Networks (DNNs) from Rm → Rn with the activation function
ρ as

Nρ(Rm,Rn) = {fl+1 ○ ⋅ ⋅ ⋅ ○ f1, with fl+1 ∈Lid(Rnl ,Rn), l ≥ 1,
fi ∈Lρ(Rni−1Rni), i = 1, . . . , l,
ni ∈ N, and n0 =m},

(10)

where id ∶ R→ R is the identity map, id(x) = x.

When embedded in classical functional spaces, DNNs can provide remarkable expressivity. In fact, with
very few hypotheses on their activation function, DNNs become able to approximate continuous maps over
compact sets, as well as integrable maps over finite measure spaces. These kinds of result are known as
Universal Approximation Theorems. Here, since we are dealing with stochastic quantities and probability
measures, we are interested in the Universal Approximation Theorem proved by Hornik in 1991 [33]. In
particular, we report below a slightly different result, which is a direct consequence of Hornik’s Theorem.

Lemma 1. Let P be a probability distribution on Rp. Let ρ ∶ R → R be a continuous map. Assume that
either one of the following holds:

i) ρ is bounded and nonconstant;

ii) ρ is bounded from below and ρ(x) → +∞ as x→ +∞;

iii) there exists some a, b ∈ R such that x→ aρ(x) + bρ(−x) satisfies (ii).

Then, for every ε > 0 and every measurable map f ∶ Rp → Rn with Ex∼P∣f(x)∣ < +∞, there exists Φ ∈
Nρ(Rp,Rn) such that

Ex∼P∣f(x) −Φ(x)∣ < ε.

Proof. See Appendix A.

Remark 2. The result in Lemma 1 applies to most activation functions used in deep learning applications.
For instance, the statement holds for maps such as the sigmoid or the tanh activation, as they satisfy (i),
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but it also holds for other popular maps, such as the ReLU, the SELU and the swish activation, which are
lower-bounded. Finally, the Lemma can also be applied to maps such as the α-leaky ReLU activation,

ρ(x) =
⎧⎪⎪⎨⎪⎪⎩

x x ≥ 0
αx x < 0

, (11)

where ∣α∣ < 1. In fact, the latter satisfies (iii) with a = 1 and b = −α.

3.2. Local variation of (nonlinear) operators

As we mentioned in the Introduction, under deterministic conditions, it is very natural to study recon-
struction errors using worst-case approaches; for instance, the manifold n-width, Eq. (1), constitutes a
major representative of this paradigm. Due to their global perspective, worst-case metrics can provide uni-
form bounds that characterize the regularity of the solution manifold as a whole. However, when considering
stochastic scenarios, worst-case approaches may be overly restrictive. This is because different events are
now associated with different probabilities. As a result, it becomes more natural to shift towards metrics
that describe the average scenario, thus promoting a higher accuracy for situations that are most likely to
occur, while allowing more leeway for errors in rare occurrences.

Notably, this change of perspective also allows us to consider a broader class of parameter-to-solution
operators: in fact, average metrics are -in general- more permissive compared to worst-case ones. For
instance, previous works has shown that the continuity of the operator is not enough to guarantee a reasonable
behavior of the manifold n-width, while the stronger assumption of Lipschitz continuity, combined with the
boundness of the parameter space, suffices (see Theorem 3 and the corresponding remark in [19]). Here,
we shall see that these assumptions can be weakened as soon as we move to average-metrics and stochastic
scenarios. In particular, the requirement of global Lipschitz continuity can be replaced with that of local
Lipschitz continuity, that is, a condition in which the Lipschitz constant of the operator G is allowed to
change from point to point.

Notice that, despite sounding like a minor change, this adaptation is of fundamental importance. In
fact, stochastic scenarios typically involve unbounded parameter spaces, where Lipschitz continuity rapidly
becomes an excessively stringent property: for instance, even in the finite rank case, an extremely regular
operator such as G(µ) = ∣µ∣2 would not meet the assumptions. Considering that it is fairly common to have
either supp(µ) = Lq(Ω) when µ is a random field, or supp(µ) = Rp when µ is a random vector, it is evident
that relaxing these assumptions is fundamental.

All these considerations bring us to the following definition, which we use to study the local behavior of
nonlinear operators.

Definition 2. (Local variation) Let G ∶ (W, ∥ ⋅ ∥W ) → (V, ∥ ⋅ ∥V ) be an operator between normed spaces.
We define its local variation as the map ∥∂G∥V ∶W → [0,+∞] given by

∥∂G∥V (w) ∶= lim sup
h→0

∥G(w + h) − G(w)∥V
∥h∥W

=

= lim
r→0+

sup
0<∥h∥W ≤r

∥G(w + h) − G(w)∥V
∥h∥W

. (12)

Ultimately, the local variation provides a way to bound the Lipschitz constant near every point of the
input space, and it can be computed for any (nonlinear) operator. In fact, our definition can be traced back
to the notion of absolute condition number, which is a concept commonly encountered in error and numerical
analysis; see, e.g., [53]. Here, however, we insist on using a different notation to better reflect our context
and avoid any sort of ambiguity.

The concept of local variation can be further understood by considering its relationship to other well-
established mathematical concepts such as Lipschitz continuity and Frechét differentiability. These facts are
briefly summarized by the Proposition below.
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Proposition 1. Let G ∶ (W, ∥ ⋅ ∥W ) → (V, ∥ ⋅ ∥V ) be an operator between two normed spaces. Then, the
following properties hold:

i) ∥∂G∥V (w) < +∞ for all w ∈K ⊂W ⇐⇒ G is locally Lipschitz over K;

ii) if K ⊂W is compact and ∥∂G∥V (w) < +∞ for all w ∈K, then G is Lipschitz over K;

iii) if C ⊆W is convex, then
LC ∶= sup

w∈C
∥∂G∥V (w) < +∞

if and only if G is LC-Lipschitz over C.

iv) if G is Fréchet differentiable at w ∈W , then ∥∂G∥V (w) coincides with the operator norm of the Fréchet
derivative of G at w.

v) given any F ∶ (V, ∥ ⋅ ∥)V → (Y, ∥ ⋅ ∥Y ), one has the chain-rule inequality

∥∂(F ○ G)∥Y (w) ≤ ∥∂F∥Y (G(w)) ⋅ ∥∂G∥V (w),

for all w ∈W.

Proof. See Appendix A.

As a straightforward consequence of Proposition 1, we also have the following Corollary, which can be
thought of as a form of Taylor-Lagrange inequality.

Corollary 1. Let G ∶ (W, ∥ ⋅ ∥W ) → (V, ∥ ⋅ ∥V ) be any operator between two normed spaces. Then, for all
w,w′ ∈W we have

∥G(w) − G(w′)∥V ≤ ( sup
0≤t≤1

∥∂G∥V (tw + (1 − t)w′)) ∥w −w′∥W . (13)

Proof. Given w,w′ ∈ W , let K be the segment between the two points and define L ∶= supv∈K ∥∂G∥V . If
L = +∞, then (13) is obvious; conversely, if L < +∞, then the conclusion follows by (iii) in Proposition 1.

Equation (13) provides a way to control the discrepancy between two different outputs of the operator,
but it may also be applied to derive growth conditions. For example, it can be shown that if the local
variation grows at most exponentially, then so does the operator. We formalize this consideration below.

Corollary 2. Let G ∶ (W, ∥ ⋅ ∥W ) → (V, ∥ ⋅ ∥V ) be an operator between two normed spaces. The following holds
true,

∃M,β > 0 s.t. ∥∂G∥V (w) ≤Meβ∥w∥W ∀w ∈W,

Ô⇒ ∃M̃, γ > 0 s.t. ∥G(w)∥V ≤ M̃eγ∥w∥W ∀w ∈W.

Proof. Let c ∶= G(0) and fix any w ∈W . By Corollary 1, we have

∥G(w)∥V ≤ c + ∥G(w) − G(0)∥V ≤ c + ( sup
0≤t≤1

∥∂G∥V (tw)) ∥w∥W ≤

≤ c + ( sup
0≤t≤1

Meβ∥tw∥W )∥w∥W = c +Meβ∥w∥W ∥w∥W .

9



Since a < ea for all a ∈ R, and c ≤ ceb for all b ≥ 0, we have

∥G(w)∥V ≤ ⋅ ⋅ ⋅ ≤ (c +M)e(β+1)∥w∥W .

To conclude, we present a practical example of an operator whose local variation grows at most exponentially.
Despite its simplicity, we believe this example to be of high interest, as it describes the case of a stochastic
Darcy flow, which, in particular, has direct implications in the study of porous media.

Proposition 2. Let Ω ⊂ Rd be a bounded domain with Lipschitz boundary, and let f ∈H−1(Ω) be given. For
any σ ∈ L∞(Ω), let u = uσ be the solution to the following boundary value problem,

⎧⎪⎪⎨⎪⎪⎩

−∇ ⋅ (eσ∇u) = f in Ω

u = 0 on ∂Ω.
(14)

Let G ∶ L∞(Ω) → L2(Ω) be the operator that maps σ ↦ u. Then, for all σ,σ′ ∈ L∞(Ω)

∥G(σ) − G(σ′)∥L2(Ω) ≤ C∥f∥H−1(Ω)e3∥σ∥L∞(Ω)+3∥σ
′∥L∞(Ω)∥σ − σ′∥L∞(Ω) (15)

and, in particular,
∥∂G(σ)∥L2(Ω) ≤ C∥f∥H−1(Ω)e6∥σ∥L∞(Ω) ,

where C = C(Ω) is some positive constant.

Proof. See Appendix A.

3.3. Regularity and energy estimates for Gaussian processes

We now take the opportunity to recall some fundamental facts about stochastic processes and random
fields. More specifically, here we shall limit our analysis to Gaussian processes: for further comments about
this choice, we refer the reader to the discussion at the end of Section 4.3, see Remark 4. We start with a
result that links the regularity of the covariance kernel of a Gaussian process with that of the trajectories of
the random field. In doing so, we also include some estimates on the norms of the process, which we shall
exploit later on.

For the sake of simplicity, here, expected values will be directly denoted as E[ ⋅ ], without any explicit
declaration of the integration variable and its underlying probability distribution – given the context, there
should be no ambiguity.

Lemma 2. Let Ω ⊂ Rd be pre-compact, and let Z be a mean zero Gaussian random field defined over Ω.
Assume that, for some 0 < α ≤ 1, the covariance kernel of the process, Cov ∶ Ω ×Ω→ R, defined as

Cov(x,y) ∶= E [Z(x)Z(y)] ,

is α-Hölder continuous, with Hölder constant L > 0. Then, Z is sample-continuous, that is P(Z ∈ C(Ω)) = 1.
Furthermore, for σ2 ∶=maxx∈ΩCov(x,x), one has

E1/2∥Z∥2L∞(Ω) ≤ c1σ (1 +
√

log+(1/σ)) and E [eβ∥Z∥L∞(Ω)] = c2 < +∞, (16)

for all β > 0, where c1 = c1(d,L,α,Ω) and c2 = c2(d,L,α, σ, β,Ω) are constants that depend continuously on
their parameters (domain excluded). Here,

log+(a) ∶=max{log a,0}.

Proof. See Appendix A.
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Another fundamental result that we need for our construction is a Corollary of Mercer’s Theorem, known
as the KKL series expansion. We report it below, together with some considerations about the covariance
kernel and its truncations.

Lemma 3. Let Ω ⊂ Rd be a compact subset and let Z be a mean zero Gaussian random field defined over Ω.
Assume that the covariance kernel of Z, Cov, is Lipschitz continuous. Then, there exists a nonincreasing
summable sequence λ1 ≥ λ2 ≥ ⋅ ⋅ ⋅ ≥ 0 and a sequence of Lipschitz continuous maps, {φi}+∞i=1 , forming an
orthonormal basis of L2(Ω), such that

Cov(x,y) =
+∞
∑
i=1

λiφi(x)φi(y) (17)

for all x,y ∈ Ω. Furthermore, there exists a sequence of independent standard normal random variables,
{ηi}+∞i=1 , such that

Z =
+∞
∑
i=1

√
λiηiφi (18)

almost surely. Finally, the truncated kernels,

Covp,q(x,y) ∶=
q

∑
i=p

λiφi(x)φi(y),

defined for varying 1 ≤ p ≤ q ≤ +∞,

i) converge uniformly as p, q → +∞;

ii) are all 1/2-Hölder continuous, with a common Hölder constant.

Proof. See Appendix A.

Both the result in Lemma 2 and that in Lemma 3 require some form of uniform continuity of the covariance
kernel, however, they have the advantage of yielding useful estimates to treat the L∞-case. At the same
time, these properties may be far too restrictive if one moves to the simpler scenario in which the trajectories
of the random field are only assumed to be square-integrable. In light of this, we report below a different
result specifically tailored for the L2-case, which can be seen as an adaptation of the previous Lemmas.

Lemma 4. Let Ω ⊂ Rd be a compact subset and let Z be a mean zero Gaussian random field defined over
Ω. Assume that the covariance kernel of Z, Cov, is square-integrable over Ω × Ω. Then, there exist a
non-increasing summable sequence λ1 ≥ λ2 ≥ ⋅ ⋅ ⋅ ≥ 0 and an orthonormal basis of L2(Ω), {φi}+∞i=1 , such that

Cov(x,y) =
+∞
∑
i=1

λiφi(x)φi(y)

for almost every (x,y) ∈ Ω×Ω. Furthermore, there exists a sequence of independent standard normal random
variables, {ηi}+∞i=1 , such that

Z =
+∞
∑
i=1

√
λiηiφi

almost surely. Finally, the L2-norm of the process is exponentially integrable, i.e.

E [eβ∥Z∥L2
(Ω)] < +∞ ∀β > 0. (19)

Proof. See Appendix A.
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The main difference between Lemma 3 and Lemma 4 lies in the regularity that one requires to the
covariance kernel. Clearly, stronger assumptions about the latter result in stronger estimates about the
random field and its norms.

In conclusion, we also report an abstract version of the KKL expansion for generic Hilbert-valued random
variables. In this case, it is convenient to considered an uncentered KKL expansion, as the latter retains
useful optimality properties: in fact, it is the abstract equivalent of the POD algorithm.

Lemma 5. Let (V, ∥ ⋅ ∥) be a separable Hilbert space and let u be a squared integrable V -valued random
variable, E∥u∥2 < +∞. Then, there exists an orthonormal basis {vi}+∞i=1 ⊂ V , a sequence of (scalar) random
variables {ωi}+∞i=1 , with E[ωiωj] = δi,j, and a nonincreasing summable sequence λ1 ≥ λ2 ≥ ⋅ ⋅ ⋅ ≥ 0 such that

u =
+∞
∑
i=1

√
λiωivi,

almost-surely.

Proof. Up to adaptations, this is a standard result; see, e.g. Theorem 3.14 in [39]. However, the interested
reader can find a detailed proof in Appendix A.

4. Autoencoder-based nonlinear reduction for PDEs parametrized by random fields

We are now ready to put things into action and present the main results of this work. We shall start with
a preliminary consideration about the expressivity of deep autoencoders and introduce a suitable notion of
admissibility that will help us avoid unrealistic/pathological situations. Then, we shall derive error bounds
for the reconstruction error of deep autoencoders in the case of: i) PDEs depending on a finite number of
random coefficients (Section 4.2); ii) PDEs parameterized by Gaussian random fields (Section 4.3).

For better readability, in what follows, we shall drop the dependency of expected values with respect to
their underlying probability distribution. In particular, since all randomness will be encoded in the input
variable, which is µ ∼ P or µ ∼ P, we shall simply write E in place of Eµ∼P.

4.1. Admissible autoencoders and density results

As already mentioned, our main interest is to investigate how the choice of the latent dimension affects the
optimization of the reconstruction error, and thus to provide guidelines for the design of deep autoencoders.
To this end, we must note that DNN spaces lack many of the properties usually holding for classical functional
spaces; furthermore, their topology can easily become rather involved, see, e.g., the discussion in [49]. For
this reason, it can be convenient to recast the optimization problem over a broader class of functions, e.g. by
relying on suitable density results. For example, in [19], the authors consider a more general framework in
which the encoder and decoder are allowed to be any pair continuous maps. Here, we relax these hypotheses
even further. In fact, as a direct consequence of Lemma 1, it is easy to see that the only property that is
actually needed is measurability. More precisely, we have the following result.

Theorem 1. Let µ be a random vector in Rp. Let G ∶ Rp → V ≅ RNh be a measurable operator and define
uµ ∶= G(µ). Let n ∈ N. If E∥uµ∥ < +∞, then

inf
Ψ′∈M(V, Rn)
Ψ∈M(Rn, V )

E∥uµ −Ψ(Ψ′(uµ))∥ = inf
Ψ̂′∈Nρ(V, Rn)
Ψ̂∈Nρ(Rn, V )

E∥uµ − Ψ̂(Ψ̂′(uµ))∥, (20)

for all Lipschitz continuous activations ρ satisfying the hypothesis of Lemma 1.

Proof. We assume the left-hand side to be finite, as the statement would be trivially true otherwise. Let
Ψ′ ∈ M(V, Rn) and Ψ ∈ M(Rn, V ) be such that

E∥uµ −Ψ(Ψ′(uµ))∥ < +∞, (21)
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and fix any ε > 0. Let ρ = tanh be the hyperbolic tangent activation. Clearly, Ψ and Ψ′ have the same
reconstruction error as Ψρ ∶= Ψ ○ρ−1 and Ψ′ρ ∶= ρ ○Ψ′. Therefore, up to replacing Ψ with Ψρ and Ψ′ with Ψ′ρ,
we may assume that Ψ′ is bounded.

Now, let us define the random vector vµ ∶= Ψ′(uµ). Since E∥uµ∥ < +∞ and (21) hold, it follows by

linearity that E∥Ψ(vµ)∥ < +∞. In particular, we may apply Lemma 1 in order to find some Ψ̂ ∈Nρ(Rn, V )
such that

E∥Ψ(vµ) − Ψ̂(vµ)∥ < ε/2,

Of note, Ψ̂ inherits the Lipschitz continuity of ρ. Thus, for any Ψ̂′ ∈Nρ(V,Rn),

∣E∥uµ −Ψ(Ψ′(uµ))∥ −E∥uµ − Ψ̂(Ψ̂′(uµ))∥∣ ≤ E∥Ψ(Ψ′(uµ)) − Ψ̂(Ψ̂′(uµ))∥ ≤
≤ E∥Ψ(Ψ′(uµ)) − Ψ̂(Ψ′(uµ))∥ +E∥Ψ̂(Ψ′(uµ)) − Ψ̂(Ψ̂′(uµ))∥ ≤

≤ 1

2
ε +LE∥Ψ′(uµ) − Ψ̂′(uµ)∥,

where L > 0 is the Lipschitz constant of Ψ̂. Then, by lemma 1, we may choose Ψ̂′ so that E∥Ψ′(uµ)−Ψ̂(uµ)∥ <
ε/2L, and thus

∣E∥uµ −Ψ(Ψ′(uµ))∥ −E∥uµ − Ψ̂(Ψ̂′(uµ))∥∣ ≤ ε. (22)

Note that, this time, we were able to apply Lemma 1 due to the boundness of Ψ′ (which in turn ensures its
integrability with respect to any probability measure). As ε > 0 is arbitrary, the inequality in (22) suffices
to prove the identity in (20).

The result in Theorem 1 is a double-edged sword. On the one hand, it allows us to reframe the opti-
mization problem on a less restrictive class of functions, giving us the possibility, e.g., to study the behavior
of the reconstruction error without having to worry about the discretization of the state space: in fact, the
spacesM(V,Rn) andM(Rn, V ) are well defined even if V is infinite-dimensional. On the other hand, the
autoencoders in Eq. (20) can become extremely irregular and thus more difficult to capture. In fact, one
can show that in most cases

inf
Ψ′∈M(V, Rn)
Ψ∈M(Rn, V )

E∥uµ −Ψ(Ψ′(uµ))∥ = 0,

for all n ≥ 1, as there always exists a suitable space-filling curve that provides a lossless embedding. However,
such a representation would be completely useless, as it would correspond to an architecture that is either
impossible to reproduce or train: see, e.g., the discussion at the end of [13] by Cohen et al.

One way to overcome all these issues is to impose certain additional assumptions on the regularity of the
autoencoder architecture. Here, we proceed as follows. We define the (enlarged) class of admissible encoders
V → Rn as

EB,M(V, Rn) ∶= {Ψ′ ∈ M(V, Rn) s.t. E∣Ψ′(uµ)∣ < +∞ and sup
v∈B
∣Ψ′(v)∣ ≤M} , (23)

where B ⊂ V is a control set and M > 0 is a suitable upper bound. Both B and M are to be considered
as hyperparameters: their role is to ensure that, at least in the control set B, the encoder networks are
uniformly well behaved. On the contrary, we define the (enlarged) family of admissible decoders as

DM,L(Rn, V ) ∶=
⎧⎪⎪⎨⎪⎪⎩
Ψ ∈ M(Rn, V ) s.t. sup

c∈[−M,M]n
∥∂Ψ∥(c) ≤ L

⎫⎪⎪⎬⎪⎪⎭
, (24)

where L > 0 is a suitable hyperparameter that controls the regularity of the decoder. In fact, the condition
in (24) forces Ψ to be L-Lipschitz continuous over the hypercube [−M,M]n: cf. (iii) in Proposition 1.

This setup allows us to avoid the phenomenon of space-filling curves and, at the same time, to regain
interest in the optimization of the reconstruction error. Furthermore, this formulation comes with a natural
adaptation of Theorem 1, which we report below.
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Theorem 2. Let µ be a random vector in Rp. Let G ∶ Rp → V ≅ RNh be a measurable map and define
uµ ∶= G(µ). Let ρ be the α-leaky ReLU activation, ∣α∣ < 1. Let B ⊂ V be a bounded set, M,L > 0 and n ∈ N.
Assume that the probability law of uµ is absolutely continuous. If E∥uµ∥ < +∞, then

inf
Ψ′∈EB,M (V, Rn)
Ψ∈DM,L(Rn, V )

E∥uµ −Ψ(Ψ′(uµ))∥ = inf
Ψ̂′∈N e

ρ (V, R
n)

Ψ̂∈N d
ρ (R

n, V )

E∥uµ − Ψ̂(Ψ̂′(uµ))∥, (25)

where N e
ρ (V, Rn) ∶= Nρ(V, Rn) ∩ EB,M(V, Rn) and N d

ρ (Rn, V ) ∶= Nρ(Rn, V ) ∩ DM,L(Rn, V ) are all
admissible encoder and decoder networks, respectively.

Proof. The proof is roughly the same as the one of Theorem 1, up to replacing the use of Lemma 1 with
stronger results that can ensure the preservation of the constraints in Equations (23) and (24). For further
details, we refer to Lemmas B2, Lemma B3 and Corollary B1 in Appendix B.

The identity in Theorem 2 has two major implications. First, it shows how general autoencoders can be,
thus further motivating their usage for nonlinear reduction. Second, it allows us to reframe the optimization
problem in an abstract way. This can be very useful, as it allows us to adopt a more general perspective
where V can be either discrete, V ≅ RNh or continuous, e.g. V = L2(Ω). In fact, the families EB,M(V,Rn)
and DM,L(Rn, V ) can be defined without the need to discretize the state space.

In light of this, for the next few pages, we shall drop our assumption on V being finite-dimensional. This
means that from now on, all the results reported will hold true both in the discrete and in the continuous
setting. For better readability, elements of the state space will be indicated as u ∈ V , to emphasize the fact
that such elements can be vectors (for which the notation u would be more fitting) or functions.

Remark 3. Although the two definitions in (23) and (24) may sound quite technical, they actually mirror
some of the practical strategies that researchers and data scientists commonly use. For example, when
training a DNN model, it is very common to use Tychonoff regularizations to avoid excessive growth of the
DNN weights. However, this procedure is equivalent to imposing admissibility constraints via a Lagrange
multiplier. To see this, let Φ be some DNN. For simplicity, assume that Φ only has one hidden layer, so that
Φ(x) =W2ρ(W1x+b1) +b2, where ρ is some ℓ-Lipschitz activation function. With little abuse of notation,
let us denote by ∣ ⋅ ∣ both the Euclidean norm and the Frobenius norm. We have

∣Φ(x) −Φ(y)∣ ≤ ℓ∣W2∣ ⋅ ∣W1∣ ⋅ ∣x − y∣.

In particular, Φ is Lipschitz continuous and the logarithm of its Lipschitz constant is bounded by log ℓ +
log ∣W2∣ + log ∣W1∣. It is then clear that penalizing the mass of weights matrices has a direct impact on
the Lipschitz constant of the whole network, thus mimicking our condition on the decoder, Eq. (24).
Furthermore, the same argument applies to the constraint for the encoder, Eq. (23). In fact, in our
construction, the control set B is always assumed to be bounded. In particular,

∣Φ(x)∣ ≤ ∣Φ(0)∣ + ∣Φ(x) −Φ(0)∣ ≤ ∣W2∣ ⋅ ∣ρ(0)∣ + ℓ∣W2∣ ⋅ ∣ρ(b1)∣ + ∣b2∣ +Rℓ∣W2∣ ⋅ ∣W1∣,

where R > 0 is any radius for which one has ∣x∣ ≤ R for all v ∈ B. Thus, the same reasoning can be applied
up to including an additional penalty for the biases bi.

4.2. Bounds on the latent dimension: finite rank case

We start by addressing the finite-rank case, in which the source of randomness is given by some random
vector µ. We report our main result in the following, which, in a way, can be seen as a generalization of
Theorem 3 in [19] to the (unbounded) probabilistic setting.

Theorem 3. Let G ∶ Rp → V be a locally Lipschitz operator, where (V, ∥ ⋅ ∥) is a given Banach space. Let
µ be a random vector in Rp and let uµ ∶= G(µ) be the V -valued random variable obtained by mapping µ
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through G. Assume that the latter is Bochner integrable, that is, E∥uµ∥ < +∞. Denote by B ∶= G({∣c∣ ≤ 1})
the image of the unit ball. Then, there exists L0 > 0 such that for all M ≥ 1 and all L ≥ L0 one has

inf
Ψ′∈EB,M (V,Rn)
Ψ∈DM,L(Rn,V )

E∥uµ −Ψ(Ψ′(uµ))∥ = 0, (26)

for all n ≥ p.

Proof. It is sufficient to prove the case n = p. Let M ≥ 1. Since G is continuous, the latter admits a
measurable right-inverse g′ ∶ V → Rn, that is, a map for which

G(g′(G(µ))) = G(µ).

Furthermore, the latter can be constructed such that g′(B) ⊆ {∣c∣ ≤ 1}: for a detailed proof we refer the
reader to the Appendix, particularly to Corollary C2. Let now ρ ∶ R→ R be the following activation function

ρ(x) =
⎧⎪⎪⎨⎪⎪⎩

x ∣x∣ ≤M
M tanh(x)/ tanh(M) ∣x∣ >M,

and define Ψ′ ∶= ρ ○ g′, where the action of ρ is aimed at components. Then,

E∣Ψ′(uµ)∣ ≤M/ tanh(M) < +∞ and Ψ′(B) = g′(B) ⊆ {∣c∣ ≤ 1} ⊂ [−M,M]n, (27)

in fact, g′(B) ⊂ [−M,M]n and ρ act as the identity over [−M,M]n. In particular, it follows from (27) that
Ψ′ ∈ EB,M(V,Rn). Now, noting that ρ is invertible, we let Ψ ∶= G ○ ρ−1, with the convention that ρ−1 ≡ +∞
outside of ρ(R). It is straightforward to see that the pair (Ψ′,Ψ) produces a lossless compression: thus, it
is sufficient to prove that Ψ ∈ DM,L(Rn, V ) for a suitable choice of L. To this end, we note that Ψ is locally
Lipschitz over [−M,M]n. Then, since the latter is compact, we may simply set

L0 ∶= sup
c∈[−M,M]n

∥∂Ψ∥(c) < +∞,

see, e.g., (ii) in Proposition 1.

The takeaway from Theorem 3 is that if the PDE depends on p (scalar) random variables, then an
autoencoder with latent dimension n = p can compress and reconstruct solutions with arbitrary (average)
accuracy. Clearly, since Equation (26) features an infimum, for this to work, the autoencoder must be
sufficiently expressive in the remaining parts of the architecture, especially in the decoder. In this respect,
domain practitioners can find a valuable help in recent works that address the approximation capabilities of
DNNs in high-dimensional spaces; see, for instance [20, 60].

4.3. Bounds on the latent dimension: infinite dimensional case

We are now set to discuss the infinite-dimensional case in which the input variable is given by a random
field. In particular, we shall deal with random fields µ having trajectories in Lq(Ω) and operators of the
form G ∶ Lq(Ω) → V , for V a Hilbert state space, 1 ≤ q ≤ +∞, and Ω a bounded domain. We shall focus on
two different scenarios: one in which q = 2 and one in which q = +∞. To this end, we recall that for any q ≤ q̃
one has continuous embedding

Lq̃(Ω) ↪ Lq(Ω),
where each space is considered with its canonical norm. In particular, it follows that C(L2(Ω), V ) ⊂
C(L∞(Ω), V ), meaning that case q = +∞ allows for a broader class of operators and is consequently much
harder to handle. However, it is worth addressing both situations, as the two can lead to very different
analyses and error bounds. We start with the simpler L2-case. For the sake of readability, both proofs have
been postponed to Section 4.4.
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Theorem 4. (L2-version) Let Ω be a bounded domain and let (V, ∥⋅∥) be a Hilbert space. Let µ be a Gaussian
random field defined over Ω, with a square integrable mean m ∶ Ω → R and a square integrable covariance
kernel Cov ∶ Ω ×Ω→ R. Finally, let G ∶ L2(Ω) → V be an operator satisfying the growth condition below,

∥∂G∥(ν) ≤ Aeβ∥ν∥L2
(Ω) for all ν ∈ L2(Ω),

for some constants A,β > 0. According to the Lemmae 3 and 5, let

µ = E[µ] +
+∞
∑
i=1

√
λµ
i ηiφi and u =

+∞
∑
i=1

√
λu
i ωivi, (28)

be the KKL expansions of µ and u, respectively. Consider the control set

B ∶= G ({m +
+∞
∑
i=1

√
λµ
i νiφi s.t.

+∞
∑
i=1
∣νi∣2 ≤ 1}) ,

and let P be the probability law of µ. Then, there exist positive constants C = C(d,G,P) and L0 = L0(n,G),
such that for all M ≥ 1 and L ≥ L0 one has

inf
Ψ′∈EB,M (V,Rn)
Ψ∈DM,L(Rn,V )

E∥uµ −Ψ(Ψ′(uµ))∥ ≤ Cmin

⎧⎪⎪⎨⎪⎪⎩

√
∑
i>n

λµ
i ,
√
∑
i>n

λu
i

⎫⎪⎪⎬⎪⎪⎭
, (29)

for all latent dimensions n ≥ 1.

We now report on the L∞-counterpart of Theorem 4. As we mentioned, this is a much more difficult case
that requires additional care.

Theorem 5. (L∞-version) Let Ω be a bounded domain and let (V, ∥⋅∥) be a Hilbert space. Let µ be a Gaussian
random field defined over Ω, with a bounded mean m ∶ Ω → R and a Lipschitz continuous covariance kernel
Cov ∶ Ω ×Ω→ R. Finally, let G ∶ L∞(Ω) → V be an operator satisfying the growth condition below,

∥∂G∥(ν) ≤ Aeγ∥ν∥L∞(Ω) for all ν ∈ L∞(Ω), (30)

for some constants A,γ > 0. According to the Lemmae 3 and 5, let

µ = E[µ] +
+∞
∑
i=1

√
λµ
i ηiφi and u =

+∞
∑
i=1

√
λu
i ωivi, (31)

be the KKL expansions of µ and u, respectively. Consider the control set

B ∶= G ({m +
+∞
∑
i=1

√
λµ
i νiφi s.t.

+∞
∑
i=1
∣νi∣2 ≤ 1}) ,

and let P be the probability law of µ. Fix any small 0 < ϵ < 1/2. Then, there exist two positive constants,
C = C(d,G,P) and L0 = L0(n,G), such that for all M ≥ 1 and L ≥ L0 one has

inf
Ψ′∈EB,M (V,Rn)
Ψ∈DM,L(Rn,V )

E∥uµ −Ψ(Ψ′(uµ))∥ ≤ C
√
log(1/ϵ)min

⎧⎪⎪⎨⎪⎪⎩
∥∑
i>n

λµ
i φ

2
i ∥

1/2

L∞(Ω)
,
√
∑
i>n

λu
i

⎫⎪⎪⎬⎪⎪⎭
, (32)

for all latent dimensions n ≥ 1 satisfying either ∑i>n λ
µ
i ≥ ϵ or ∑i>n λ

µ
i = 0.

The strength of the two Theorems lies in that they show how nonlinear autoencoders can simultaneously
benefit from the regularity of both the input and the output fields, something that is clearly not possible
with linear methods alone: see, e.g., the discussion by Lanthaler et al. in [39], Section 3.4.1. Furthermore,
the results in Theorem 4 and 5 are fairly general, since they are both framed in a purely abstract fashion with
mild assumptions on the regularity of the forward operator. For example, following our previous discussion
in Section 3.2, we note that the result in Theorem 5 can be easily applied to the case of Darcy flows in
porous media.
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Remark 4. All the results reported within this Section are limited to the case of Gaussian processes. While
this is an extremely broad class of stochastic processes, one may wonder whether similar results can be
obtained for other probability distributions. In general, the L2 case, namely Theorem 4, can be readily
applied to any random field µ that satisfies

E [eβ∥µ∥L2
(Ω)] < +∞ for all β > 0. (33)

In fact, with such an exponential integrability, it is straightforward to see that these processes admit a
KKL expansion and that the proof of Theorem 4 can be easily adapted. For the L∞-case, instead, stronger
assumptions are required. In particular, these should be sufficiently demanding to ensure that the properties
analogous to those of Lemmas 2 and 3 hold.

Clearly, one may also go the other way around, i.e. by restricting the analysis to more regular operators,
with the advantage of allowing for a larger class of probability distributions. For example, Theorems 4
and 5 impose an exponential bound on the local variation, ∥∂G∥. This condition is trivially satisfied by all
Lipschitz continuous operators, as Lipschitz continuity is a far more stringent property (cf. Lemma 1). In
particular, if one restricts the attention to such operators, the proof of Theorem 5 can be re-adapted with
weaker assumptions on the random field. That is, one needs to have E∥µ∥L∞(Ω) < +∞ and

E∥µ − µn∥L∞(Ω) = O (∥Covµ−µn∥L∞(Ω)) ,

where Covµ−µn is the covariance kernel of µ−µn.. Conversely, the case L
2 becomes trivial, as one can replace

the condition in (33) with E∥µ∥L2(Ω) < +∞.

Remark 5. Theorems 4 and 5 provide different bounds for the reconstruction error. However, the two become
very similar if the eigenfunctions of the input field, φi, are uniformly bounded. In fact, if supi ∥φi∥L∞(Ω) ≤D
for some D > 0, then

∥∑
i>n

λµ
i φ

2
i ∥

1/2

L∞(Ω)
≤
√
∑
i>n

λµ
i ∥φ2

i ∥L∞(Ω) ≤
√
∑
i>n

λµ
i D

2 =D
√
∑
i>n

λµ
i .

In particular, up to fixing the value of ϵ in Theorem 5, and adjusting the value of the multiplicative constant
C > 0, one can replace the bounding expression in Theorem 5 with that in Theorem 4. However, whether
such a uniform boundness holds or not depends on the problem itself. In fact, although erroneously stated
by some authors, this property is not directly implied by the regularity of the covariance kernel: see, e.g.,
[66] for an instructive counterexample.

4.4. Proofs of Theorems 4 and 5

The interested reader can find below the proofs of the two Theorems, which we have postponed here
due to their lengths and technicalities. We start with the proof of Theorem 5, as that is arguably the most
difficult and most interesting one; the L2 case will then follow quite easily.

Proof of Theorem 5

To begin, we note that the case ∑i>n λ
µ
i = 0 is already covered by Theorem 3, as it falls into the finite-rank

context. Thus, from now on we shall focus on proving the error bound for the remaining case, that is, when

∑i>n λ
µ
i ≥ ϵ.

Without loss of generality, we assume that E[µ] ≡ 0. Before starting with the proof, we note that the
existence of a KKL expansion for u is guaranteed by the exponential growth condition for G. In fact, by (30)
and Corollary 2, it follows that

E∥uµ∥2 ≤ E [(A′eγ
′∥µ∥L∞(Ω))

2
] = (A′)2E [e2γ

′∥µ∥L∞(Ω)] < +∞,

for some A′, γ′ > 0, where the last inequality is a direct consequence of Lemma 2. In particular, uµ is a
squared-integrable V -valued random variable, and thus admits a KKL expansion (cf. Lemma 5).
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Let now n ∈ N, with n ≥ 1, and let

δn,M,L ∶= inf
Ψ′∈EB,M (V,Rn)
Ψ∈DM,L(Rn,V )

E∥uµ −Ψ(Ψ′(uµ))∥.

We shall split the proof into several steps. More precisely, we shall prove the following.

Claim 1. The definition of the control set, B, is well-posed.

Claim 2. ∃ℓ0 = ℓ0(n,G,P) such that δn,M,L ≤
√
∑i>n λ

u
i for all M ≥ 1 and L ≥ ℓ0.

Claim 3. ∃ℓ′0 = ℓ′0(n,G,P) such that δn,M,L ≤ E∥u − uµn∥ for all M ≥ 1 and L ≥ ℓ′0. Here, uµn is the
operator image where the input field µ has been replaced by its n th KKL truncation, µn.

Claim 4. E∥u − uµn∥ ≤ cE1/2∥µ − µn∥2L∞(Ω) for some c = c(d,G,P).

Claim 5. E1/2∥µ − µn∥2L∞(Ω) ≤ c′
√
log(1/ϵ) ∥∑i>n λ

µ
i φ

2
i ∥

1/2
L∞(Ω) for some c′ = c′(d,P).

Clearly, once all of the above have been proven, setting C = max{cc′,1} and L0 ∶= max{ℓ0, ℓ′0} quickly
yields the conclusion. Thus, we now proceed to prove the five claims one by one.

Proof of Claim 1. Let B1 ∶= {∑+∞i=1
√
λµ
i νiφi ∣ ∑i ∣νi∣2 ≤ 1}. Then, for every element of B1 and every

x ∈ Ω, we have

∣
+∞
∑
i=1

√
λµ
i νiφi(x)∣ ≤

¿
ÁÁÀ+∞
∑
i=1
∣νi∣2
¿
ÁÁÀ+∞
∑
i=1

λµ
i φi(x)2 ≤

√
Cov(x,x).

Since Cov is bounded, this shows that B1 is a bounded subset of L∞(Ω). In particular, since B = G(B1),
the definition of the control set is well-posed. Furthermore, the latter is ∥ ⋅ ∥ bounded, as G maps bounded
sets onto bounded sets (cf. Corollary 2).

Proof of Claim 2. Let P ∶ Rn → V and P † ∶ V → Rn be the linear operators below

P ∶ [c1, . . . , cn] ↦
n

∑
i=1

√
λu
i civi, P † ∶ v ↦

⎡⎢⎢⎢⎣
1√
λu
1

⟨v, v1⟩, . . . ,
1√
λu
n

⟨v, vn⟩
⎤⎥⎥⎥⎦
.

Since P † is both linear and continuous, and B is bounded, the image P †(B) is also bounded. Thus, let
M0 ∶= supc∈P †(B) ∣c∣ < +∞. Similarly, in light of the linearity and continuity of P , let Lip(P ) be the Lipschitz
constant of P . Define the maps

P̃ † ∶=M−1
0 P, P̃ ∶=M0P.

It is straightforward to see that P̃ † ∈ EB,M(V,Rn) and P̃ † ∈ DM,L(Rn, V ), for all M ≥ 1 and all L ≥ ℓ0 ∶=
M0Lip(P ), where ℓ0 ultimately depends on n, G and P. Since

E∥u − P̃ P̃ †u∥ ≤
√
E∥u − PP †u∥2 = E1/2 ∥∑

i>n

√
λu
i ωivi∥

2

=
√
∑
i>n

λu
i ,

this proves Claim 2.

Proof of Claim 3. As before, it is useful to define the mappings Q† ∶ Rn → L∞(Ω) and Q† ∶ L∞(Ω) → Rn as

Q ∶ [c1, . . . , cn] ↦
n

∑
i=1

√
λµ
i ciφi, Q† ∶ ν →

⎡⎢⎢⎢⎣
1√
λµ
1

⟨ν,φ1⟩, . . . ,
1√
λµ
n

⟨ν,φn⟩
⎤⎥⎥⎥⎦
,

which are both linear and continuous. Following our previous notation, for any R > 0, let BR = {∥ν∥L∞(Ω) ≤
r} ⊆ L∞(Ω) be the closed ball of radius R. We define the map Ψ′R ∶ V → Rn as any measurable selection of

18



the optimization problem below,
Ψ′R ∶ v ↦ argmin

ν∈Q†(BR)
∥v − G(Qν)∥,

The existence of such a map is a straightforward consequence of standard results in set-valued analysis. In
fact:

i) the set of minimizers, Q†(BR) ⊂ Rn, is compact. This is because BR is both closed and bounded, while
the map Q† is linear, continuous, and has finite rank;

ii) the map objective functional, (v,ν) → ∥v − G(Qν)∥, is continuous.

Then, these two properties are enough to guarantee the existence of a measurable map acting as ”minimal
selection”: for the interested reader, we refer to the Appendix, Lemma C3. Let now

R0 ∶= ∥Cov∥1/2L∞(Ω×Ω).

In light of our calculations at the beginning of the proof, we note that the control set B is a subset of G(BR)
for all R ≥ R0. Thus, assuming R ≥ R0, we set

Ψ̃′R(v) ∶= 1B(v)Ψ′R0
(v) + 1G(BR)∖B(v)Ψ′R(v).

Since both sets B and G(BR) are measurable (cf. Lemma C1 in the Appendix), and Ψ̃′R(V ) ⊆ Q†(BR), the
above is both measurable and bounded (thus integrable). Furthermore, the above construction ensures that
Ψ̃′R ≡ 0 outside of G(BR), and, most importantly

∣Ψ̃′R(v)∣ ≤
n∣Ω∣1/2R0√

λµ
n

for all v ∈ B. In fact, for any ν with ∥ν∥L∞(Ω) ≤ R0 one has

RRRRRRRRRRR

1√
λµ
i

⟨ν,φi⟩
RRRRRRRRRRR
≤ ∣Ω∣

1/2
√
λµ
i

R0,

by the Cauchy-Schwarz inequality. In particular, Ψ̃′R is bounded on B, with a constant that is independent
of R. Furthermore, by very definition,

∥G(ν) − G(QΨ̃′R(ν))∥ ≤ ∥G(ν) − G(QQ†ν)∥ (34)

for all ν ∈ BR. Now, exploiting the compactness of [−1,1]n, let Lip(G ○Q) be the Lipschitz constant of G ○Q
over [−1,1]n (recall that the latter has a finite due composition; see, e.g., (v) and (ii) in Proposition 1).
Define the maps

Ψ̂′R ∶ v ↦
√
λµ
n

n∣Ω∣1/2R0
Ψ̃′R, Ψ ∶ c→ G

⎛
⎝
n∣Ω∣1/2R0√

λµ
n

Qc
⎞
⎠
.

Then the couple (Ψ̂′R, Ψ) forms an admissible encoding-decoding pair for all M ≥ 1 and L ≥ ℓ′0, where

ℓ′0 ∶= Lip(G ○Q)n∣Ω∣1/2R0/
√
λµ
n

depends only on n, G and P. Consequently, for all M ≥ 1 and L ≥ ℓ′0, one has

δn,M,L ≤ E∥uµ − Gn(Ψ̃′R(uµ))∥ ≤
≤ E [1BR

(µ)∥uµ − Gn(Ψ̃′R(uµ))∥] +E [1Bc
R
(µ)∥uµ − Gn(Ψ̃′R(uµ))∥] . (35)

For better readability, we now write uµn ∶= G(QQ†µ), so that uµn is the image of the operator that is obtained

by replacing the input field µ with its n-truncation. Then, by the very definition of Ψ̃′R and thanks to (34),
we can continue (35) as

δn,M,L ≤ ⋅ ⋅ ⋅ ≤ E∥uµ − uµn∥ +E [1Bc
R
(µ)∥uµ − u0∥] .
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Since the above holds for every R ≥ R0, we can let R → +∞. In doing so, we note that ∥uµ − u0∥ is an
integrable random variable. Thus, E [1Bc

R
(µ)∥uµ − u0∥] → 0 by dominated convergence. Claim 3 follows.

Proof of Claim 4. As a direct consequence of Corollary 1 and Eq. (30), we have

∥uµ − uµn∥ ≤ ( sup
0≤t≤1

Aeγ∥tµ+(1−t)µn∥L∞(Ω))∥µ − µn∥L∞(Ω)

≤ Aeγ∥µ∥L∞(Ω)+γ∥µn∥L∞(Ω)∥µ − µn∥L∞(Ω).

Then, by the Cauchy-Schwarz inequality, we have

E∥uµ − uµn∥ ≤ ≤ AE1/4 [e4γ∥µ∥L∞(Ω)]E1/4 [e4γ∥µn∥L∞(Ω)]E1/2∥µ − µn∥2L∞(Ω).

For better readability, let now

kq(x,y) =
q

∑
i=1

λµ
i φi(x)φi(y),

so that k∞ = Cov and kn is the covariance kernel of µn. Of note, as a straightforward consequence of the
Cauchy-Schwarz inequality, one has

∥kq∥L∞(Ω2) =max
x∈Ω

kq(x,x). (36)

Now, since both kernels are Lipschitz continuous, by Lemmas 2 and 3, we have

E1/4 [e4γ∥µ∥L∞(Ω)] = c2(d,H(k∞),1/2, ∥k∞∥L∞(Ω2),4γ,Ω)

and
E1/4 [e4γ∥µn∥L∞(Ω)] = c2(d,H(kn),1/2, ∥kn∥L∞(Ω2),4γ,Ω),

where H(k∞) and H(kn) are the Hölder constants of the two kernels. We now recall that, as shown in
Lemma 3, kn → k∞ uniformly and supq L(kq) < +∞. In particular, supq ∥kq∥L∞(Ω2) < +∞, and, since c2
depends continuously on its parameters, we have

E1/4 [e4γ∥µ∥L∞(Ω)] ⋅E1/4 [e4γ∥µn∥L∞(Ω)] ≤ c̃,

for some c̃ = c̃(d, γ,P) = c̃(d,G,P). In particular, up to letting c ∶= Ac̃, we may rewrite our previous bound as,

E∥uµ − uµn∥ ≤ C̃E1/2∥µ − µn∥2L∞(Ω).

Proof of Claim 5. Following the same notation as above, we note that k∞ − kn is the covariance kernel
of the random field µ − µn. Thus, by Lemma 2,

E1/2∥µ − µn∥2L∞(Ω) ≤ c̃′∥k∞ − kn∥
1/2
L∞(Ω2) (1 +

√
log+(1/∥k∞ − kn∥L∞(Ω2))) (37)

where, by applying the same arguments as before, c̃′ can be chosen to depend only on d and P. We now note
that

∥k∞ − kn∥L∞(Ω2) ≥ ∥k∞ − kn∥L2(Ω2)∣Ω∣ =
√
∑
i>n

λi∣Ω∣ ≥ ϵ1/2∣Ω∣.

The latter can be then combined with (37) to prove that, up to replacing c̃′ with a suitable c′0, independent
of ϵ, one has

E1/2∥µ − µn∥2L∞(Ω) ≤ c′0∥k∞ − kn∥
1/2
L∞(Ω2) (1 +

√
log+(1/ϵ)) ,

as the map a↦ log+(1/a) is monotone nonincreasing. Furthermore,

ϵ < 1/2 Ô⇒ log+(1/ϵ) = log(1/ϵ) ≥ log(2) > 0.
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Thus, up to further replacing c′0 with a proper c′ = c′(d,P), we may write

E1/2∥µ − µn∥2L∞(Ω) ≤ c′
√
log(1/ϵ)∥k∞ − kn∥1/2L∞(Ω2) = c

′√log(1/ϵ) ∥∑
i>n

λµ
i φ

2
i ∥

1/2

L∞(Ω)
,

where the last equality follows from (36).

Finally, putting together the five Claims yields the inequality in (32), and thus proves the statement in
the Theorem.

Proof of Theorem 4

Let n ≥ 1. We notice that, mutatis mutandis, all the steps in the proof of Theorem 5 can be carried
out following the same ideas. The only part that actually changes is the estimate in Claim 5, which now
concerns the quantity

E1/2∥µ − µn∥2L2(Ω),

where µn ≈ µ is the nth KKL truncation of the random field µ. However, the latter can be estimated trivially
as, by orthonormality, one has

E∥µ − µn∥2L2(Ω) = E [∑
i>n

λµ
i η

2
i ] = ∑

i>n
λµ
i ,

so that the conclusion follows.

5. Numerical experiments

The purpose of this Section is to assess the error estimates in Theorems 4 and 5 through a set of
numerical experiments. To do so, we proceed in a schematic way so that we may synthesize as follows.
First, we introduce the PDE of interest, together with the corresponding solution operator G ∶ µ → uµ,
and a given probability distribution P defined over the input space, µ ∼ P. Then, we fix a suitable high-
fidelity discretization of the input-output spaces, typically via Finite Elements or Finite Volumes, so that the
operator under study becomes Gh ∶ µh → uh

µh (here, the superscript h is used to emphasize the presence of a

spatial discretization). The discrete operator is then evaluated relying on a given numerical solver, which we
exploit to generate a suitable training set, that is, a collection of random independent realizations {µh

i ,u
h
i },

where
uh
i ∶= Gh(µh

i ) ∈ RNh ,

and the µh
i ’s are sampled according to P.

To check whether the error bounds in Theorems 4 and 5 are observed in practice, we consider a sequence
of ”nested” autoencoder architectures, Ψn ○Ψ′n, characterized by an increasing latent dimension n, so that

Ψ′n ∶ RNh → Rn, Ψn ∶ Rn → RNh .

The architectures are nested in that they share the same depth and widths, except for the innermost layers
(that is, those mapping to/from the latent space, respectively). All the architectures are then trained over
the same training set, and their performances are evaluated in terms of the test error below

Etest(n) ∶=
1

Ntest

N

∑
j=1
∥uh

j,test −Ψn(Ψ′n(uh
j,test))∥Vh

, (38)

which serves as a Monte Carlo estimate of E∥uh
µh −Ψn(Ψ′n(uh

µh))∥Vh
. Here, {µh

j,test,u
h
j,test}Ntest

j=1 is a suitable

test set, generated independently of the training set. On the contrary, the norm ∥ ⋅ ∥Vh
corresponds to the

discretized L2-norm associated to the underlying Finite Element (or Finite Volume) space, Vh ⊆ L2(Ω), i.e.

∥v∥Vh
∶=
√
vTMv
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for all v ∈ RNh , where M ∈ RNh×Nh is the so-called mass matrix. The purpose is then to compare the
behavior of the three quantities below

Etest(n),
√
∑
i>n

λµ
i ,

√
∑
i>n

λu
i , (39)

for varying n, as suggested by Theorems 4 and 5. To this end, we exploit the POD algorithm to approximate
the first n eigenvalues of the (uncentered) covariance operators of the two fields. Then, the two tails can be
easily approximated by noting that

∑
i>n

λµ
i =

+∞
∑
i=1

λµ
i −

n

∑
i=1

λµ
i ≈ Var∥µ

h∥2Vh
−

n

∑
i=1

λµh

i ,

where λµh

i ≈ λµ
i are the eigenvalues computed via POD. The same can be done for u. For our analysis, we

typically let n = 1,2, . . . ,6, so that the resulting autoencoder architectures are fairly light. This allows us to
keep external sources of error out of the way (such as, e.g., inaccuracies due to an inexact optimization of
the loss function or shortage in the training data), and thus provide cleaner results.

Once the theoretical error bounds have been assessed, we also take the opportunity to implement a complete
DL-ROM surrogate: while this is not directly related to our analysis in Section 4, it serves the purpose of
showing how the whole machinery can be put into action to provide an operative ROM. For simplicity, this
step is only repeated once with a fixed latent dimension of choice.

Last but not least, we mention that all the code supporting the forthcoming analysis has been written in
Python 3, specifically relying on the FEniCS and Pytorch libraries. The code is available upon request to
the authors.

5.1. Problems description

We start by introducing the three case studies one by one: all the results are then reported and discussed
at the end of this Section. For the sake of our analysis, we have selected two prototypical problems that
aim to show different possible behaviors of the solution manifold. The first case study features a diffusive
phenomenon, which results in a highly regularizing solution operator: as a consequence, this problem models
a scenario in which the eigenvalues of the solution field, λu

i , decay faster than those of the input field, λµ
i .

Conversely, the second case study concerns a nonlinear advection characterized by the presence of shock
waves and thus constitutes a remarkable example of the opposite situation (i.e., λµ

i → 0 faster than λu
i ).

We believe that despite their simplicity, these problems suffice to show the practical counterpart of our
theoretical analysis in Section 4. In this respect, we remark that this work does not aim at showcasing the
abilities of DL-ROMs in handling complex problems: in fact, the effectiveness of the DL-ROM approach has
already been reported elsewhere; see, e.g., [24] for problems concerning fluid dynamics or multiphysics.

5.1.1. Stochastic Darcy flow with random permeability

To start, we consider an elliptic problem that describes diffusion in a porous medium with random
permeability, in the same spirit as our previous discussion in Section 3, cf. Proposition 2. More precisely,
let Ω ∶= (0,1)2 be the unit square. We consider the boundary value problem below

⎧⎪⎪⎨⎪⎪⎩

−∇ ⋅ (eµ∇u) = 10 in Ω

u = 0 on ∂Ω
, (40)

where µ is a centered Gaussian random field with covariance

Cov(x,y) ∶= exp(−∣x − y∣2).

Here, we focus our attention on the solution operator G ∶ µ→ uµ that maps the log-permeability of the medium
onto the corresponding solution to (40). We discretize the problem using piecewise linear continuous Finite
Elements over a structured triangular mesh of step size h =

√
2/50, resulting in a state space Vh ⊆ L2(Ω)

with Nh = 2601 degrees of freedom. We generate a total of 5000 snapshots, split between training and testing
with a 90:10 ratio. For technical details on the DL-ROM architectures and their training, we refer the reader
to the appendix, Section D.
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5.1.2. Burger’s equation with random data

On the segment Ω ∶= (0, L), L = 5, we consider the inviscid Burger equation

∂v

∂t
+ 1

2
v
∂v

∂x
= 0, (41)

describing the nonlinear transport of a given solute v = v(x, t) with random initial condition v(⋅,0) = µ. We
complement Eq. (41) with a stationary inflow condition on the left boundary, that is, v(0, t) ≡ v(0,0) for all
t ≥ 0. Here, we model the trajectories of the random field µ as

µ(x) = 1

2
ρ(ϕ0(x) +

+∞
∑
k=1

1

k2
ηk sin(

kπx

L
)) (42)

where {ηi}+∞i=1 are i.i.d. standard Gaussians, ρ(x) ∶= min{max{x,0},1} is a suitable transformation that
clamps the data within [0,1], and

ϕ0(x) ∶= (x − 1)(2 − x)1[1,2](x).

We are interested in approximating the following parameter-to-solution operator

G ∶ µ→ uµ ∶= v(⋅, T ), (43)

which maps any given initial profile onto the state of the system at time T = 2. We discretize the problem
using the Finite Volume method, with a temporal step ∆t = 0.01 and cells size h = 0.01, resulting in a high-
fidelity state space of dimension Nh = 500. We exploit the FOM to generate a total of 2000 snapshots, split
between training and testing with a 90:10 ratio. Once again, to keep the paper self-contained, we postpone
all the technical details about the DL-ROM architectures and their training to the Appendix, Section D.

5.2. Results

We start with the first case study, Section 5.1.1. As we mentioned, the parameter-to-solution operator
of this problem is highly regularizing because of the diffusive term in the PDE. Indeed, when comparing the
tails of the eigenvalues, we see that those of the output field decay 2.5× faster than those of the input field;
see Figure 3. The same rate is also achieved by autoencoders, both across the training and the test set. This
result is in agreement with our theory since, in this case, Theorem 5 applies (cf. 2).

Since linear methods, such as POD, can directly exploit the decay of the eigenvalues of the output field,
and they require fewer data with respect to deep autoencoders, these approaches should be favored when
dealing with problems of this type. It should be noted that this conclusion can already be derived from
Theorem 5 without having to test multiple autoencoder modules. Nevertheless, if provided with enough
data, one may still choose to use autoencoders: at worst, they will match the same accuracy as linear
methods (up to optimization errors).

The second case study, on the contrary, shows the opposite situation. This time, the eigenvalues of the
output field have a tail that decays 20%-50% slower than that of the input field. Then, our theory suggests
that a nonlinear method based on deep autoencoders can exploit this hidden regularity to provide better
approximation capabilities. Indeed, this is what we observe in practice; see Figure 4.

Not only do autoencoders surpass the performances of POD by a significant margin, but they also report
a much faster decay rate. Notably, when n ≤ 6, the latter is seen to perfectly match the decay rate of
the eigenvalues λµ. The situation is similar for 7 ≤ n ≤ 12, where both quantities are seen to accelerate
towards 0. However, as we come to large architectures, n = 13,14,15,16, we notice an increasingly larger
gap between training and test errors. This may be due to the fact that larger models typically require
more data in order to generalize properly. This would explain why autoencoders seem to reach the optimal
decay rate —according to Theorem 5— over the training set but not over the test set (at least for large
n). In this sense, although our findings agree with Theorem 5, they also highlight some of its inherent limi-
tations, namely, the lack of a comprehensive analysis encapsulating model accuracy, complexity, and training.

Last but not least, it should be also noted that the results in Figure 4 are even more interesting if we
consider that Problem (41) only partially fulfills the hypothesis of Theorem 5. Indeed, while it can be
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Figure 3: Decay of the reconstruction error for Darcy’s law §5.1.1 computed over the training set (left) and the test set (right).
In both cases, errors are compared with the tails of the eigenvalues of the input and output fields, respectively: cf. Equations
(38) and (39). Eigenvalues of the input field have been scaled by a factor C > 0 to improve readability. Dashed lines are
obtained through least-squares in the loglog space. β = rate of decay, computed as the slope of the dashed lines.

Figure 4: Decay of the reconstruction error for Burger’s equation §5.1.2 computed over the training set (left) and the test set
(right). In both cases, errors are compared with the tails of the eigenvalues of the input and output fields, respectively: cf.
Equations (38) and (39). Dashed lines are obtained through least-squares in the loglog space. β = rate of decay, computed as
the slope of the dashed lines.
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Figure 5: L∞-norms of the eigenfunctions in the KKL expansion of the input field µ for the Burger’s equation §5.1.2: see
Equations (31) and (42), respectively.

shown that the parameter-to-solution operator in (43) enjoys a form of L∞ → L2 Lipschitz continuity, the
probability law of the input field is non-Gaussian: see also our previous discussion in Remark 4.

In this concern, we also mention that although Theorem 5 would require the computation of an L∞-tail,
that is, ∥∑i>n λ

µ
i φ

2
i ∥∞ , it is sufficient to monitor the behavior of the L2-tail, ∑i>n λ

µ
i . This is because, in this

case, the eigenfunctions of the input field are uniformly bounded in the L∞-norm, fact that we can easily
appreciate from the plot in Figure 5. Then, the two tails can be shown to decay at the same rate (see also
our discussion in Remark 5).

For the sake of completeness, Table 1 shows the overall performances attained by two DL-ROM surrogates
for the problems at hand. Although this analysis is not directly related to the theory developed in Section 4,
it might still be of interest as it goes back to the global picture (that is, that of reduced order modeling). This
time, we train all the architectures in the DL-ROM pipeline simultaneously following our initial discussion
in Section 2.1: see, in particular, Equation (6). This means that the autoencoder module, Ψ ○ Ψ′, is
trained together with all the remaining parts of the DL-ROM: consequently, although we are minimizing the
reconstruction error made by the autoencoder, there are also other quantities driving the optimization (such
as, e.g., the approximation error of the DL-ROM).

In the Darcy flow example, the DL-ROM reports an average L2-error of 5.43%. At the same time, its
autoencoder module shows a similar accuracy, with a reconstruction error of 4.94%. As expected, this per-
formance is also comparable with the one achieved by a linear approach such as POD: as we mentioned
previously, in fact, we do not really need a nonlinear technique to reduce a problem of this type. However,
things become quite different when we move to Burger’s equation. In this case, the autoencoder module is
almost twice as accurate compared to its linear counterpart, with an average L2 error of 5.07%. This fact is
also reflected in the overall performance of the DL-ROM, which reports an average test error of 5.62%. The
interested reader can also find a few examples in Figure 6, where we compare ground-truth simulations and
DL-ROM outputs for new random realizations of the input field µ.

Inspired by the results in Table 1, we conclude with a short digression on the interplay between recon-
struction errors and approximation errors. In general, when it comes to DL-ROMs, the two quantities are
only indirectly related. To better explain this fact, let us first consider the opposite case of POD-based
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Problem n POD L2-error AE L2-error DL-ROM L2-error

Darcy’s law §5.1.1 16 4.46% 4.94% 5.43%

Burger’s §5.1.2 16 9.74% 5.07% 5.62%

Table 1: Average test errors for the three case studies in Section 5. Here, the latent dimension n is fixed. POD = projection
error, AE = reconstruction error, DL-ROM = model error.

Figure 6: DL-ROM predictions for three unseen initial states of Burger’s equation, §5.1.2.

ROMs. Ultimately, the POD projector V ∈ RNh×n operates as a linear autoencoder module, as

uh
µ ≈VVTuh

µ,

which allows one to represent each uh
µ with the corresponding set of projection coefficients VTuh

µ ∈ Rn.
Then, any POD-based ROM, such as, e.g., POD-Galerkin [52], POD-NN [32], POD-DeepONet [42] and
POD-GPR [28], can be written abstractly as

uh
µ ≈VϕPOD(µ),

where ϕPOD ∶ RNh → Rn is some black-box procedure that maps parameters onto reduced coefficients: the
latter can be a neural network model, as in POD-NN and POD-DeepONet, a Gaussian process approximator,
as in POD-GPR, or a suitable numerical method solving the projected PDE, as in POD-Galerkin. Then, by
orthogonality, the error of any such method can be bounded from below as

∥uh
µ −VϕPOD(µ)∥2 = ∥uh

µ −VVTuh
µ∥2 + ∥VTuh

µ − ϕPOD(µ)∥2 ≥ ∥uh
µ −VVTuh

µ∥2.

That is: the approximation error of any such ROM is bounded from below by the projection error of the
POD. Furthermore, this fact is not an intrinsic property of the POD basis; instead, it is a feature common
to all projection-based methods.

In general, the same is not true for DL-ROMs. In fact, since all architectures in the DL-ROM pipeline
are optimized simultaneously, cf. Equation (6), the approximation error of the DL-ROM might as well be
smaller than the reconstruction error of the autoencoder, and vice versa. This can happen, for example, if
it turns out to be simpler to describe latent variables using the input parameters (thus, through ϕ) rather
than using the output features (that is, through the encoder Ψ′).

Still, when constructing a DL-ROM, a good rule of thumb is to prefer those architectures for which the
two errors behave similarly: this, in fact, ensures a stronger connection between inputs and outputs, and it
increases the interpretability of the DL-ROM as a whole.

6. Conclusions

This work addresses the practical problem of designing deep autoencoders, specifically in terms of their
latent dimension, in the context of reduced order modeling for PDEs parametrized by random fields. This
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topic is of particular interest, since deep autoencoders have recently emerged as the pivotal element of
Deep Learning based ROMs (DL-ROMs), a novel class of approaches that exploit manifold learning to
approximate the solution manifold of a parametrized operator, equipping them with the ability to tackle
complex problems for which traditional methods may fall short. The presented research is novel in that
it addresses both theoretically and practically the case of stochastic PDEs, a scenario that is particularly
relevant to applications involving, e.g., uncertainty quantification or Bayesian inversion, aspects hitherto
unexplored in the DL-ROM literature.

Our main contribution is well summarized by Theorems 3-5, in which we provide explicit error bounds
that can aid domain practitioners in selecting the appropriate latent dimension for deep autoencoders. Our
findings are highly interpretable as they demonstrate the capacity of deep autoencoders to match or surpass
the performance achieved by linear techniques. Numerical experiments agree with our theory, effectively
highlighting the practical importance of our analysis in the intricate design of DL-ROMs. Future work may
include the derivation of complementary results on the complexity of deep autoencoders and their training,
possibly exploring a compromise between data-driven and physics-based approaches, in the same spirit of
other recent works; see, e.g., [1, 16, 20].
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Appendix A Technical proofs for Section 3

Lemma 1. Let P be a probability distribution over Rp. Let ρ ∶ R → R be a continuous map. Assume that
either one of the following holds:

i) ρ is bounded and nonconstant;

ii) ρ is bounded from below and ρ(x) → +∞ as x→ +∞.

iii) there exists some a, b ∈ R such that x→ aρ(x) + bρ(−x) satisfies (ii).

Then, for every ε > 0 and every measurable map f ∶ Rp → Rn with E∣f(x)∣ < +∞, there exists Φ ∈Nρ(Rp,Rn)
such that

Ex∼P∣f(x) −Φ(x)∣ < ε.

Proof. If (i) holds, then this is just a consequence of Hornik’s Theorem [33]. Then, let (ii) hold. Since ρ is
bounded from below, ρ(R) ⊂ [A,+∞) for some A ∈ R. Let

σ(x) ∶= ρ(−ρ(x) + α),
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where α is some parameter to be fixed later on. We have,

sup
x∈R
∣σ(x)∣ = sup

x∈R
∣ρ(−ρ(x) + α)∣ = sup

y∈ρ(R)
∣ρ(−y + α)∣ ≤

≤ sup
y≥A
∣ρ(−y + α)∣ = sup

z≤α−A
∣ρ(z)∣ < +∞,

in fact, by continuity, ρ is bounded on all intervals of the form (−∞, c], with c ∈ R. In particular, σ is
bounded. Furthermore, since ρ(x) → +∞ as x→ +∞,

lim sup
x→∞

σ(x) ≤ lim sup
z→−∞

ρ(z) = c0 < +∞.

Let now α be such that
σ(0) = ρ(α − ρ(0)) > c0.

Then, σ is guaranteed to be both bounded and nonconstant. However, because of the way we defined σ, we
also have

Nσ(Rp,Rn) ⊆Nρ(Rp,Rn),
and the conclusion now follows by (i). Finally, assume that (iii) holds and let

ρ̃(x) ∶= aρ(x) + bρ(−x).
As before, we have Nρ̃(Rp,Rn) ⊆Nρ(Rp,Rn), and the conclusion follows by (ii).

Proposition 1. Let G ∶ (W, ∥ ⋅ ∥W ) → (V, ∥ ⋅ ∥V ) be an operator between two normed spaces. We have the
following,

i) ∥∂G∥V (w) < +∞ for all w ∈K ⊂W ⇐⇒ G is locally Lipschitz over K;

ii) if K ⊂W is compact and ∥∂G∥V (w) < +∞ for all w ∈K, then G is Lipschitz over K;

iii) if C ⊆W is convex, then
LC ∶= sup

w∈C
∥∂G∥V (w) < +∞

if and only if G is LC-Lipschitz over C.

iv) if G is Fréchet differentiable at w ∈W , then ∥∂G∥V (w) coincides with the operator norm of the Fréchet
derivative of G at w.

v) given any F ∶ (V, ∥ ⋅ ∥)V → (Y, ∥ ⋅ ∥Y ), one has the chain-rule inequality

∥∂(F ○ G)∥Y (w) ≤ ∥∂F∥Y (G(w)) ⋅ ∥∂G∥V (w),
for all w ∈W.

Proof. Since (i) is trivial, we skip its proof.

ii) Let K ⊂ W be a compact subset. Seeking contraddiction, let us assume that G is not Lipschitz
continuous over K. Then, there exists two sequences {wn}n, and {vn}n such that

∥G(wn) − G(vn)∥V
∥wn − vn∥W

→ +∞ (44)

as n → +∞. Since G is locally Lipschitz, it also continuous, and thus bounded over K: therefore,
the above implies ∥wn − vn∥W → 0. At the same time, by compactness, there exists a subsequence
{wnk

}k ⊆ {wn}n and an element w ∈ K such that wnk
→ w. In particular, we have wnk

, vnk
→ w. But

then (44) would yield ∥∂G∥V (w) = +∞, absurd.
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iii) Let C be convex and assume that LC ∶= supw∈C ∥∂G(w)∥V < +∞. Given any two points v, v′ ∈ C, let K
be the segment between the two. Since K is compact, it follows from (ii) that G is Lipschitz continuous
over K. Furthermore, since K ⊆ C,

sup
w∈K
∥∂G(w)∥V ≤ LC

Exploiting the very definition of limit supremum, for all w ∈K, let B(w, rw) be a ball of radius rw > 0
such that

∣ ∥G(w + h) − G(w)∥V∥h∥W
− ∥∂G∥V (w)∣ < ε ∀h ∈ B(w, rw).

Then, up to rewriting the above, for all w ∈K we have

h ∈ B(w, rw) Ô⇒ ∥G(w + h) − G(w)∥V ≤ (LC + ε)∥h∥W .

We now note that, since K ⊂ ∪w∈KB(w, rw) and K is compact, there exists a finite sequence of points
w1, . . . ,wn ∈ K, and finite sequence of radii r1, . . . , rk > 0, such that K ⊂ ∪ni=1B(wi, ri). Furthermore,
upto to removing some of the balls, since K is actually a segment, we can sort the subcover so that

K ∩B(wi, ri) ∩B(wi+1, ri+1) ≠ ∅ ∀i = 1, . . . , n − 1.

For each i = 1, . . . , n−1, let w∗i ∈K∩B(wi, ri)∩B(wi+1, ri+1). We note that, since Sv,v′ is a straightline,
we have

∥v − v′∥W = ∥v −w∗1∥W + ⋅ ⋅ ⋅ + ∥w∗n−1 − v′∥W .

In particular,
∥G(v) − G(v′)∥W ≤

≤ ∥G(v) − G(w∗1)∥W + ⋅ ⋅ ⋅ + ∥G(w∗n) − G(v′)∥W ≤
≤ (LC + ε) (∥v −w∗1∥W + ⋅ ⋅ ⋅ + ∥w∗n−1 − v′∥W ) =
= (LC + ε)∥v − v′∥W .

Since v, v′ ∈ C and ε > 0 were arbitrary, this concludes the proof (the other implication, ” ⇐Ô ”, is
trivial and left to the reader).

iv) Assume that G is Fréchet differentiable at w ∈ W , and let δG[w] ∶ W → V be the linear operator
representing its derivative. Let {hn}n be a sequence of unitary increments, ∥hn∥W = 1, such that

∥δG[w](hn)∥V Ð→ ∥δG[w]∥W,V

where ∥ ⋅ ∥W,V is the operator norm for linear maps going from W to V . Then,

∥∂G∥W (w) ≥ lim
n→+∞

∥G(w + n−1hn) − G(w)∥V
∥n−1hn∥W

=

= lim
n→+∞

∥δG[w](n−1hn)∥V
∥n−1hn∥W

= lim
n→+∞

∥δG[w](hn)∥V
∥hn∥W

=

= ∥δG[w]∥W,V .

Conversely, let {h̃n}n be such that h̃n → 0 and

∥∂G∥W (w) = lim
n→+∞

∥G(w + h̃n) − G(w)∥V
∥h̃n∥W

.

Then,

∥∂G∥W (w) = . . . = lim
n→+∞

∥δG[w](h̃n)∥V
∥h̃n∥W

≤ ∥δG[w]∥W,V ,

thus ∥∂G∥W (w) = ∥δG[w]∥W,V as claimed.
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v) Let w ∈W . If either ∥∂F∥Y (G(w)) = +∞ or ∥∂G∥V (w) = +∞, then the claim is trivially true. Thus, we
assume both quantities to be finite. Fix any ε > 0. Then, by definition of limit supremum, there exists
rε > 0 such that F is (∥∂F∥Y (G(w))+ ε)-Lipschitz over the open ball of radius rε centered at G(w). It
follows that

lim
r→0+

sup
0<∥h∥W ≤r

∥F(G(w + h)) − F(G(w))∥V
∥h∥W

≤

≤ lim
r→0+

sup
0<∥h∥W ≤r

(∥∂F∥Y (G(w)) + ε)∥G(w + h) − G(w)∥V
∥h∥W

=

= (∥∂F∥Y (G(w)) + ε)∥∂G∥V (w),

as r ≤ rε definitely. Since ε was arbitrary, the conclusion follows.

Proposition 2. Let Ω ⊂ Rd be a bounded domain with Lipschitz boundary and let f ∈H−1(Ω) be given. For
any σ ∈ L∞(Ω), let u = uσ be the solution to the following boundary value problem,

⎧⎪⎪⎨⎪⎪⎩

−∇ ⋅ (eσ∇u) = f in Ω

u = 0 on ∂Ω
.

Let G ∶ L∞(Ω) → L2(Ω) be the operator that maps σ to u. Then, for all σ,σ′ ∈ L∞(Ω)

∥G(σ) − G(σ′)∥L2(Ω) ≤ C∥f∥H−1(Ω)e3∥σ∥L∞(Ω)+3∥σ
′∥L∞(Ω)∥σ − σ′∥L∞(Ω) (45)

and, in particular,
∥∂G(σ)∥L2(Ω) ≤ C∥f∥H−1(Ω)e6∥σ∥L∞(Ω) ,

where C = C(Ω) is some positive constant.

Proof. By classical energy estimates on elliptic PDEs, see e.g. Lemma C.1. in [19], we have

∥G(σ) − G(σ′)∥L2(Ω) ≤ C∥G(σ) − G(σ′)∥H1
0 (Ω) ≤

≤ C [min
x∈Ω

eσ(x)]
−1
[min
x∈Ω

eσ
′

(x)]
−1
∥f∥H−1(Ω)∥eσ − eσ

′

∥L∞(Ω).

The latter is bounded by

Ce∥σ∥L∞(Ω)+∥σ
′∥L∞(Ω)∥f∥H−1(Ω)∥eσ

′

∥L∞(Ω)∥eσ−σ
′

− 1∥L∞(Ω).

We now note that, for all a ∈ R one has ∣ea − 1∣ ≤ ∣a∣e∣a∣. Also, ∥eσ′∥L∞(Ω) = e∥σ
′∥L∞(Ω) by monotinicity of the

exponential. It follows that

∥G(σ) − G(σ′)∥L2(Ω) ≤
≤ Ce∥σ∥L∞(Ω)+2∥σ

′∥L∞(Ω)∥f∥H−1(Ω)∥eσ−σ
′

∥L∞(Ω)∥σ − σ′∥L∞(Ω).

Since ∥eσ−σ′∥L∞(Ω) ≤ ∥eσ∥L∞(Ω)∥eσ
′∥L∞(Ω) = e∥σ∥L∞(Ω)+∥σ

′∥L∞(Ω) , (45) easily follows.

Lemma 2. Let Ω ⊂ Rd be pre-compact, and let Z be a mean zero Gaussian random field defined over Ω.
Assume that, for some 0 < α ≤ 1, the covariance kernel of the process,

Cov ∶ Ω ×Ω→ R,
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Cov(x,y) ∶= E [Z(x)Z(y)] ,
is α-Hölder continuous, with Hölder constant L > 0. Then, Z is sample-continuous, that is P(Z ∈ C(Ω)) = 1.
Furthermore, for σ2 ∶=maxx∈ΩCov(x,x), one has

E1/2∥Z∥2L∞(Ω) ≤ c1σ (1 +
√

log+(1/σ)) and E [eβ∥Z∥L∞(Ω)] = c2 < +∞, (46)

for all β > 0, where c1 = c1(d,L,α,Ω) and c2 = c2(d,L,α, σ, β,Ω) are constants that depend continuously on
their parameters (domain excluded). Here,

log+(a) ∶=max{log a,0}.

Proof. If σ = 0, the proof is trivial; thus, we let σ > 0. Let

d(x,y) ∶= E1/2∣Z(x) −Z(y)∣2 =
√
Cov(x,x) − 2Cov(x,y) +Cov(y,y),

be a metric over Ω induced by the Gaussian process Z. We note that the Hölder continuity of the covariance
kernel implies

d(x,y) ≤
√
Cov(x,x) −Cov(x,y) +

√
Cov(y,y) −Cov(x,y) ≤

√
2L∣x − y∣α.

In particular, the balls Bd(x, ε) ∶= {y ∈ Ω ∶ d(x,y) < ε} induced by the metric d satisfy

Bd(x, ε) ⊇ B (x, 2−1/αL−1/αε2/α) , (47)

where B(x, ϵ) is the Euclidean ball of radius ϵ centered at x. In fact,

∣x − y∣ ≤ 2−1/αL−1/αε2/α Ô⇒ d(x,y) ≤
√
2L(2L)−1ε2 = ε.

Now, for any ε > 0, let Nd(ε) be the minimum number of d-balls of radius ε that are required for covering
Ω. Similarly, let N(ε) be the covering number associated to the Euclidean metric. It is straightforward to
see that (47) implies

1 ≥ Nd(ε) ≤ N(2−1/αL−1/αε2/α) ≤max

⎧⎪⎪⎨⎪⎪⎩
(Cε2

2L
)
−d/α

,1

⎫⎪⎪⎬⎪⎪⎭
, (48)

where C = C(d,α,Ω) > 0 is an absolute constant. In fact,

N(ϵ) ≤max{3ddiam(Ω)dϵ−d,1},

where diam(Ω) is the domain diameter under the Euclidean metric. In particular, we have Nd(ε) < +∞ for

all ε > 0, meaning that Ω is d-compact. Furthermore, (48) also implies that Nd(ε) = 1 for all ε ≥
√
C/2L.

We now note that for all x,y ∈ Ω one has

d(x,y) ≤ E1/2∣Z(x)∣2 +E1/2∣Z(y)∣2 ≤ 2σ.

In particular, the d-diameter of Ω is bounded by 2σ. Then, Theorem 1.3.3 in [2] implies

E [sup
x∈Ω

Z(x)] ≤K ∫
σ

0
log1/2Nd(ε)dε,

where K is a universal constant. Then, the above together with (48) yields

E [sup
x∈Ω

Z(x)] ≤K ∫
min{σ,

√
C/2L}

0

√
− d
α
log ( C

2L
ε2)dε.
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By operating the change of variables ϵ ∶=
√
C/2Lε, we may rewrite the previous as

E [sup
x∈Ω

Z(x)] ≤K
√

4Ld

C ′α ∫
min{

√
C/2Lσ,1}

0

√
log(1/ϵ)dϵ.

At this point, it useful to note that for any 0 < a < 1 one has

∫
a

0

√
log ϵdϵ = a

√
log(1/a) +

√
π

2
(1 − erf(

√
log(1/a))) ≤ a(

√
π

2
+
√
log(1/a))

where erf is the error function, which is known to satisfy 1 − erf(z) ≤ e−z2

. It follows immediately that

E [sup
x∈Ω

Z(x)] ≤K
√

2d

α
σ

⎛
⎜⎜
⎝

√
π

2
+

¿
ÁÁÁÀ− logmin

⎧⎪⎪⎨⎪⎪⎩

√
C

2L
σ,1

⎫⎪⎪⎬⎪⎪⎭

⎞
⎟⎟
⎠
≤

≤ C ′σ (1 +
√

log+(1/σ)) , (49)

where C ′ = C ′(d,α,Ω, L) grows less than logarithmically in L.

The first consequence of this fact, is that the paths of Z are almost-surely uniformly continuous (c.f. The-
orem 1.3.5 in [2]). Additionally, since the Gaussian process Z̃ ∶= −Z satisfies the same upper bound, it is
straightforward to conclude that

E∥Z∥L∞(Ω) ≤ C̃σ (1 +
√

log+(1/σ)) ,

where C̃ ∶= 2C ′. We now recall the celebrated Borell-TIS inequality, see Theorem 2.1.1 in [2],

P(∥Z∥L∞(Ω) −E∥Z∥L∞(Ω) > z) ≤ exp(−
z2

2σ2
) ,

from which it is straightforward to prove that Var ∥Z∥L∞(Ω) ≤ 4σ2. Then,

E1/2∥Z∥2L∞(Ω) ≤
√

Var ∥Z∥L∞(Ω) +E∥Z∥L∞(Ω) ≤ c1σ (1 +
√

log+(1/σ)) ,

as claimed. Finally, the statement concerning E [eβ∥Z∥L∞(Ω)] follows directly from Theorem 2.1.2 in [2]: see
also (58) and the reasoning explained thereby.

Lemma 3. Let Ω ⊂ Rd be a compact subset and let Z be a mean zero Gaussian random field defined over Ω.
Assume that the covariance kernel of Z, Cov, is Lipschitz continuous. Then, there exists a nonincreasing
summable sequence λ1 ≥ λ2 ≥ ⋅ ⋅ ⋅ ≥ 0 and a sequence of Lipschitz continuous maps, {φi}+∞i=1 , forming an
orthonormal basis of L2(Ω), such that

Cov(x,y) =
+∞
∑
i=1

λiφi(x)φi(y) (50)

for all x,y ∈ Ω. Furthermore, there exists a sequence of independent standard normal random variables,
{ηi}+∞i=1 , such that

Z =
+∞
∑
i=1

√
λiηiφi (51)

almost surely. Finally, the truncated kernels,

Covp,q(x,y) ∶=
q

∑
i=p

λiφi(x)φi(y),

defined for varying 1 ≤ p ≤ q ≤ +∞,
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i) converge uniformly as p, q → +∞;

ii) are all 1/2-Hölder continuous, with a common Hölder constant.

Proof. Without loss of generality, we shall assume that λi > 0 for all i ∈ N. The series expansion in (50),
and the uniform convergence claimed in (i), are a consequence of Mercer’s Theorem [44]. There, the basis
functions φi are obtained by solving the eigenvalue problem below

λiφi(x) = ∫
Ω
Cov(x,y)φ(y)dy, (52)

where the equality holds for almost every x ∈ Ω, and, similarly, (50) is shown to hold almost everywhere.
However, the right-hand-side of (52) is easily shown to be Lipschitz continuous in x, since

∣∫
Ω
Cov(x,y)φ(y)dy − ∫

Ω
Cov(x′,y)φ(y)dy∣ ≤

≤ L∣x − x′∣ ∫
Ω
∣φi(y)∣dy ≤ L∣x − x′∣∣Ω∣1/2, (53)

where L is the Lipschitz constant of Cov. Thus, without loss of generality, we may pick the φi to be Lipschitz
continuous. Since the series in (50) converges uniformly, both the left-hand-side and the right-hand-side of
(50) are continuous: as they coincide a.e. in Ω, they must be equal everywhere. To conclude, we shall now
prove (ii), as (51) is just the well-known statement of the Kosambi-Karhunen-Loeve Theorem. Pick any
0 ≤ p ≤ q ≤ +∞. For x,x′,y,y′ ∈ Ω we have

RRRRRRRRRRR

q

∑
i=p

λiφi(x)φi(y) −
q

∑
i=p

λiφi(x′)φi(y′)
RRRRRRRRRRR
≤

q

∑
i=p

λi∣φi(x)φi(y) − φi(x′)φi(y′)∣ ≤

≤
q

∑
i=p

λi∣φi(x) − φi(x′)∣∣φi(y)∣ +
q

∑
i=p

λi∣φi(y) − φi(y′)∣∣φi(x′)∣. (54)

Applying the Cauchy-Schwarz inequality, and using λi =
√
λi

√
λi, allows us to continue inequality (54) as

⋅ ⋅ ⋅ ≤
¿
ÁÁÀ

q

∑
i=p

λi∣φi(x) − φi(x′)∣2
¿
ÁÁÀ

q

∑
i=p

λiφi(y)2

+
¿
ÁÁÀ

q

∑
i=p

λi∣φi(y) − φi(y′)∣2
¿
ÁÁÀ

q

∑
i=p

λiφi(x′)2. (55)

Since all the sums involved concern positive values, we may further bound the above by letting p = 0 and
q = +∞. Then, thanks to (50), we get

RRRRRRRRRRR

q

∑
i=p

λiφi(x)φi(y) −
q

∑
i=p

λiφi(x′)φi(y′)
RRRRRRRRRRR
≤

≤
√
Cov(x,x) − 2Cov(x,x′) +Cov(x′,x′)

√
Cov(y,y)

+
√
Cov(y,y) − 2Cov(y,y′) +Cov(y′,y′)

√
Cov(x′,x′) ≤
≤
√
2LM ∣x − x′∣ +

√
2LM ∣y − y′∣, (56)

where M ∶= maxx∈ΩCov(x,x). This shows that the truncated kernel is 1/2-Hölder continuous with Hölder
coefficient bounded by

√
2LM . As the latter is independent on both p and q, this concludes the proof.

Lemma 4. Let Ω ⊂ Rd be a compact subset and let Z be a mean zero Gaussian random field defined over
Ω. Assume that the covariance kernel of Z, Cov, is square-integrable over Ω × Ω. Then, there exists a
nonincreasing summable sequence λ1 ≥ λ2 ≥ ⋅ ⋅ ⋅ ≥ 0 and an orthonormal basis of L2(Ω), {φi}+∞i=1 , such that

Cov(x,y) =
+∞
∑
i=1

λiφi(x)φi(y)
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for almost every (x,y) ∈ Ω×Ω. Furthermore, there exists a sequence of independent standard normal random
variables, {ηi}+∞i=1 , such that

Z =
+∞
∑
i=1

√
λiηiφi

almost surely. Finally, the L2-norm of the process is exponentially integrable, i.e.

E [eβ∥Z∥L2
(Ω)] < +∞ (57)

for all β > 0.

Proof. We only need to prove (57), as the rest of the Lemma simply follows from the Kosambi-Karhunen-
Loeve Theorem. To this end, we first note that for any random variable X one has

∃ϵ > 0 such that E [eϵX
2

] < +∞ Ô⇒ E [eβ∣X ∣] < +∞ ∀β > 0. (58)

In fact, given any two positive numbers ϵ and β, there exists some M > 0 such that M + ϵx2 > β∣x∣ for all
x ∈ R. In light of this, let ϵ > 0 be a parameter, whose value shall be chosen later on. By orthonormality, we
have

∥Z∥2L2(Ω) =
+∞
∑
i=1

λiη
2
i .

As the ηi’s are independent, it follows that

E [eϵ∥Z∥
2
L2
(Ω)] = E [eϵ∑

+∞

i=1 λiη
2
i ] =

+∞
∏
i=1

E [eϵλiη
2
i ] . (59)

For each index i, if ϵλi − 1/2 < 0, we have

E [eϵλiη
2
i ] = 1√

2π
∫
+∞

−∞
eϵλiz

2

e−z
2/2dz =

√
1

1 − 2ϵλi
.

We thus choose ϵ < 1/2λ1, so that, by monotonicity, the above holds for all i. Resuming (59), we get

E [eϵ∥Z∥
2
L2
(Ω)] =

+∞
∏
i=1

√
1

1 − 2ϵλi
= exp(−1

2

+∞
∑
i=1

log(1 − 2ϵλi)) .

Since, for i→ +∞, − 1
2
log(1 − 2ϵλi) is asymptotic to ϵλi, which is a summable sequence, the conclusion now

follows by (58).

Lemma 5. Let (V, ∥ ⋅ ∥) be a separable Hilbert space and let u be a squared integrable V -valued random
variable, E∥u∥2 < +∞. Then, there exists an orthonormal basis {vi}+∞i=1 ⊂ V , a sequence of (scalar) random
variables {ωi}+∞i=1 , with E[ωiωj] = δi,j, and a nonincreasing summable sequence λ1 ≥ λ2 ≥ ⋅ ⋅ ⋅ ≥ 0 such that

u =
+∞
∑
i=1

√
λiωivi

almost-surely.

Proof. Consider the operator C ∶ V → V defined as C (v) = E[⟨u, v⟩u], where the expectation is intended in
the Bochner sense. We show that C is a symmetric semi-positive definite trace class operator. Indeed, for
any v, v′ ∈ V one has

⟨C (v), v′⟩ = ⟨E[⟨u, v⟩u], v′⟩ = E[⟨u, v⟩⟨u, v′⟩] = ⟨v,C (v′)⟩,
and

⟨C (v), v⟩ = E[⟨u, v⟩2] ≥ 0.
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Furthermore, given any orthonormal basis {ei}+∞i=1 we have

+∞
∑
i=1
⟨C (ei), ei⟩ =

+∞
∑
i=1

E[⟨u, ei⟩2] = E [
+∞
∑
i=1
⟨u, ei⟩2] = E∥u∥2 < +∞,

by monotone convergence. Thus, by the well-known Spectral Theorem, there exists an orthonormal basis
{vi}+∞i=1 ⊂ V and a nonincreasing summable sequence λ1 ≥ λ2 ≥ ⋅ ⋅ ⋅ ≥ 0 such that

C (v) =
+∞
∑
i=1

λi⟨v, vi⟩vi ∀v ∈ V.

Furthermore, as directly implied by the above, C (vi) = λivi, meaning that the λi’s and the vi’s are the
eigenvalues and eigenvectors of the (uncentered) covariance operator C , respectively. Let now

ωi ∶=
1√
λi

⟨u, vi⟩.

It is straightforward to see that for all i, j ∈ N we have

E[ωiωj] =
1√
λiλi

E[⟨u, vi⟩⟨u, vj⟩] =
1√
λiλi

⟨C (vi), vj⟩ =
λi√
λiλi

⟨vi, vj⟩ = δi,j .

Finally,

u =
+∞
∑
i=1

√
λiωivi (60)

by definition of the ωi’s. To this end, we also note that, since

+∞
∑
i=1

E ∥
√
λiωivi∥

2
= E [

+∞
∑
i=1
∥
√
λiωivi∥

2
] = E∥u∥2 < +∞,

the series in (60) is L2(P;V ) convergent (in the Bochner sense [18]), where P is the probability law of u.
Thus, (60) holds P-almost surely.

Appendix B Complementary results for Section 4

Lemma B1. Let (X, ∥ ⋅ ∥) be a normed space. If A ⊆X is dense in X, then:

i) A ∩O is dense in O for all open sets O ⊆X;

ii) A ∩C is dense in C for all convex closed sets C ⊆X.

Proof.

i) Let O ⊆ X be open and let U be an open subset in the subspace topology of O. Then, U = Ũ ∩O for
some Ũ ⊆ X open in X. In particular, U is also open in the topology of the larger space, X. Thus,
U ∩A ≠ ∅, and the conclusion follows.

ii) Let C ⊆ X be convex and closed. Fix any c0 in int(C), the interior of C. Let c ∈ C. It is well known
that, under these hypothesis, the segment {(1− t)c0 + tc}t∈[0,1] can only, at most, intersect ∂C at c, as
all the remaining points lie in the interior of the set. Let cn ∶= c0/n+(1−1/n)c, so that cn is a sequence
of interior points converging to c. Since A ∩ int(C) is dense in int(C), see (i), for every n there exists
c∗n ∈ A ∩ int(C) ∈ A ∩C such that ∣cn − c∗n∣ ≤ 1/n. Then, c∗n → c as n→ +∞, as wished.
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Lemma B2. Let σ be a finite measure over RN , and let B ⊂ RN be a bounded set. Let ρ ∶ R→ R satisfy the
assumptions in Lemma 1. Consider the following functional space

V ∶= {f ∈ M(RN ,Rn) s.t. f∣B ∈ C(B), ∥f∥V ∶= ∥f∥C(B) + ∫
RN∖B

∣f(x)∣σ(dx) < +∞} .

Then, Nρ(RN ,Rn) is ∥ ⋅ ∥V -dense in V .

Proof. For the sake of simplicity, we only prove the case n = 1. We note that V ≅ C(B) ×L1
σ(RN ∖B) in the

natural way. As a consequence, the dual space of V can be given as

V ′ ≅ R(B) ×L∞σ (RN ∖B)

where R(B) is the set of (signed) Radon measures over B, considered with the total variation norm. In
particular, for every F ∈ V ′ there exist ν ∈ R(B) and g ∈ L∞σ (RN ∖B) such that

F (f) = ∫
B
fdν + ∫

RN∖B
fgdσ (61)

for all f ∈ V . Assume that Nρ(RN ,Rn) is not dense in V . Then, there exists some F ∈ V ′ ∖ {0} such that
F ≡ 0 over Nρ(RN ,Rn) ⊂ V . Let ν and g be as in (61), and define ν̂ ∶= ν + gdσ. Then, we have ν̂ ∈ R(RN)
and

∫
RN

fdν̂ = 0 ∀f ∈Nρ(RN ,Rn).

However, thanks to our assumptions on ρ, the above implies ν̂ ≡ 0 Ô⇒ F ≡ 0 (cf. Theorem 5 in [33]), thus
yielding a contraddiction.

Lemma B3. Let σ be a finite measure over Rn and let Q ∶= [−M,M]n be a given hypercube, M > 0. Let
ρ ∶ R→ R be the α-leaky ReLU activation, ∣α∣ < 1. Consider the following functional space

W ∶= {f ∈ M(Rn,RN) s.t. ∥f∥W ∶= ∥f∥W 1,∞(Q) + ∫
Rn∖Q

∣f(x)∣σ(dx) < +∞} .

Then, Nρ(Rn,RN) is ∥ ⋅ ∥W -dense in W .

Proof. We recall that, since ρ is the α-leaky ReLU activation, the set Nρ(Rn,RN) contains all those functions
f ∶ Rn → RN that are piecewise linear over polyhedra.

Following the same idea as in the proof of Lemma B2, let us assume that Nρ(Rn,RN) is not dense
in W . Then, there exists some nontrivial functional F ∈ W ′ that vanishes over Nρ(Rn,RN). Since, W ≅
W 1,+∞(Q) ×L1

σ(Rn ∖Q) in the natural way, we have

F (f) = F1(f∣Q) + F2(f∣Rn∖Q)

for some F1 ∈ W 1,+∞(Q)′ and F2 ∈ L1
σ(Rn ∖ Q)′. Let now g ∈ W 1,+∞(Q). Since Q is a polyhedron, it is

straightforward to see that for every ε > 0 there exists ϕε ∈Nρ(Rn,RN) such that

∥ϕε − g∥W 1,∞(Q) < ε, ∥ϕε∥C(Rn) ≤ ∥g∥C(Q), ϕε ≡ 0 on Rn ∖Qε,

where Qε ∶= (−M − ε, M + ε)n. In fact, such a piecewise linear approximation is easily constructed and it is
guaranteed to be a member of Nρ(Rn,RN). Then, ϕε → g ⋅ 1Q in ∥ ⋅ ∥W -norm as ε→ 0. Thus, we have

F1(g) = F1(g) + F2(0) = lim
ε→0

F (ϕε) = 0,

proving that F1 ≡ 0. In particular, for F to vanish over Nρ(Rn,RN) we must have

F2(ϕ∣Rn∖Q) = 0 ∀ϕ ∈Nρ(Rn,RN).

However, since ρ satisfies the assumptions in Lemma 1, this would imply F2 ≡ 0, ultimately yielding a
contraddiction.
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Corollary B1. Let σ be a probability measure over RN , with finite moment and absolutely continuous with
respect to the Lebesgue measure. Let B ⊂ RN be a bounded set, and let M,L > 0, n ∈ N. Consider the families

EB,M(RN , Rn) ∶= {Ψ′ ∈ M(RN , Rn) s.t. ∫
RN
∣Ψ′(v)∣σ(dv) < +∞, sup

v∈B
∣Ψ′(v)∣ ≤M} ,

DM,L(Rn, V ) ∶=
⎧⎪⎪⎨⎪⎪⎩
Ψ ∈ M(Rn, RN) s.t. sup

c∈[−M,M]n
∥∂Ψ∥V (c) ≤ L

⎫⎪⎪⎬⎪⎪⎭
.

Let ρ be the α-leakyReLU, with ∣α∣ < 1. Then, for every ε > 0 and every pair Ψ′ ∈ EB,M(RN ,Rn), Ψ ∈
DM,L(Rn,RN) such that

∫
RN
∣u −Ψ(Ψ′(u))∣σ(du) < +∞, (62)

there exists Ψ̂′ ∈ EB,M(RN ,Rn) ∩Nρ(RN ,Rn) and Ψ̂ ∈ DM,L(Rn,RN) ∩Nρ(Rn,RN) such that

∣∫
RN
∣u −Ψ(Ψ′(u))∣σ(du) − ∫

RN
∣u − Ψ̂(Ψ̂′(u))∣σ(du)∣ < ε,

Proof. Let Ψ′ ∈ EB,M(RN ,Rn) and Ψ ∈ DM,L(Rn,RN) satisfy (62), and let ε > 0. Define ν as the push-
forward measure of σ through the encoder Ψ′, and let (W , ∥ ⋅∥W ) be the normed space in Lemma B3, defined
with respect to ν and M. We note that, since σ has finite moment, Eq. (62) implies

∫
RN
∣Ψ(c)∣ν(dc) < +∞ Ô⇒ Ψ ∈ L1

ν(Rn).

In particular, Ψ ∈ DM,L(Rn,RN) ∩L1
ν(Rn) ⊆ W . Since the set DM,L(Rn,RN) ∩L1

ν(Rn) is both convex and

closed in (W , ∥ ⋅ ∥W ), by Lemmas B1 and B3, there exists some Ψ̂ ∈ DM,L(Rn,RN) ∩Nρ(Rn,RN) ∩L1
ν(Rn)

such that ∥Ψ−Ψ̂∥W < ε/2. Let now ℓ be the (global) Lipschitz constant of Ψ̂. Following the same computations
as in the proof of Theorem 1, we get

∣∫
RN
∣u −Ψ(Ψ′(u))∣σ(du) − ∫

RN
∣u − Ψ̂(Ψ̂′(u))∣σ(du)∣ ≤

≤ ∫
Rn
∣Ψ(c) − Ψ̂(c)∣ν(dc) + ℓ∫

RN
∣Ψ′(v) − Ψ̂′(v)∣σ(dv) ≤

≤ ∥Ψ(c) − Ψ̂(c)∥W + ℓ∫
RN
∣Ψ′(v) − Ψ̂′(v)∣σ(dv) ≤

≤ ε

2
+ ℓ∫

RN
∣Ψ′(v) − Ψ̂′(v)∣σ(dv), (63)

for all Ψ̂′ ∈ Nρ(RN ,Rn), where we exploited the fact that ν([−M,M]n) ≤ 1 due to ν being a probability
measure.

To conclude the proof, we now wish to bound the second term in (63). This, however, requires some
additional care: in fact, we cannot directly repeat the same ideas and apply Lemma B2, as Ψ′ might be
discontinuous over B. To account for this, we shall introduce a proper smoothing step. Let

φ(x) ∶= C exp−1/(1−∣x∣
2)
1{∣y∣≤1}(x)

be the canonical mollifier in RN , where C > 0 ensures that ∫RN φ(x)dx = 1. For any δ > 0, let Ψ′δ ∶ RN → Rn

be defined as
Ψ′δ(v) ∶= Ψ′(v)1RN∖B(v) + (Ψ′ ∗ φδ)1B(v),

where φδ(x) ∶= δ−Nφ(x/δ) and ∗ denotes the convolution operator. Then, following classical arguments (see,
e.g. Theorem 7, Appendix C.2, in [18]), it is straightforward to see that:

(i) Ψ′δ is continuous over B;
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(ii) Ψ′δ ∈ EB,M(RN ,Rn), as ∣Ψ′δ(v)∣ ≤M ⋅ ∫RN φδ(v)σ(dv) =M for all v ∈ B;

(iii) Ψ′δ → Ψ′ σ-almost everywhere, as σ is absolutely continuous with respect to Lebesgue’s measure;

(iv) ∫RN ∣Ψ′δ(v) −Ψ′(v)∣σ(dv) → 0 as δ → 0, due to dominated convergence and (iii).

In light of (iv), let us fix δ > 0 such that ∫RN ∣Ψ′δ(v) − Ψ′(v)∣σ(dv) ≤ ε/4ℓ. As before, let (V , ∥ ⋅ ∥V ) be
the normed space in Lemma B2, defined according to the measure σ. Then, due to (i) and (ii), we have
Ψ′δ ∈ EB,M(RN ,Rn)∩V , with the latter being a convex closed subset of (V , ∥ ⋅∥V ). In particular, by Lemmas
B1 and B2, there exists some

Ψ̂′δ ∈Nρ(RN ,Rn) ∩ EB,M(RN ,Rn) ∩ V

such that ∥Ψ′δ − Ψ̂′δ∥V < ε/4ℓ. Consequently,

∫
RN
∣Ψ′(v) − Ψ̂′δ(v)∣σ(dv) ≤ ∫

RN
∣Ψ′(v) −Ψ′δ(v)∣σ(dv) + ∥Ψ′δ − Ψ̂′δ∥V <

ε

4l
(64)

where, as before, we exploited the fact that σ is a probability measure, and thus σ(B) ≤ 1. Then, setting
Ψ̂ ∶= Ψ̂δ and plugging (64) into (63) yields the desired conclusion.

Appendix C Measurable selections and more

In what follows, we use the term Polish space to intend a complete separable metric space. We recall, in
particular, that all separable Banach spaces are Polish spaces. Finally, given any set X, we shall write 2X

for its power set, that is, the collection of all subsets of X,

2X ∶= {A ∣ A ⊆X}.

Definition C1. Let (Y,M ) be a measurable space and let (X,d) be a Polish space. Let F ∶ Y → 2X . We
say that F is a measurable set-valued map if the following conditions hold:

a) F (y) is closed in X for all y ∈ Y ;

b) for all open sets A ⊆X one has SA ∈M , where

SA ∶= {y ∈ Y ∣ F (y) ∩A ≠ ∅}. (65)

Lemma C1. Let (X,d) be a Polish space and let (Y, τ) be a topological space equipped with a suitable σ-field
M . Let f ∶X → Y be continuous. The following are equivalent:

i) f maps open sets onto M -measurable sets;

ii) the map F ∶ Y → 2X , defined as

F (y) ∶=
⎧⎪⎪⎨⎪⎪⎩

{x ∈X ∣ f(x) = y} y ∈ f(X)
X otherwise,

(66)

is a measurable set-valued map.
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Proof. Let F be as in (66). We first note that, since f is continuous, the preimage of any singleton, f−1({y}),
is closed. In particular, condition (a) in Definition C1 is met. Next, we note that for any A ⊆X one has

SA = f(A) ∪ f(X)c, (67)

where Bc ∶= Y ∖B denotes the complement of B ⊆ Y , and SA is as in (65). In fact,

y ∉ f(X) Ô⇒ F (y) =X Ô⇒ F (y) ∩A = A ≠ ∅ Ô⇒ y ∈ SA,
meaning that SA ∩ f(X)c = f(X)c. On the other hand,

y ∈ f(X) ∩ SA ⇐⇒ ∃a ∈ A s.t. a ∈ {x ∈X ∣ f(x) = y} ⇐⇒ y ∈ f(A),
implying that SA ∩ f(X) = f(A). Since SA = (SA ∩ f(X)c) ∪ (SA ∩ f(X)), the identity in (67) easily follows.

At this point, it is straightforward to see that (i) ⇐⇒ (ii). Assume, for instance, that (i) holds. Then,
for any open set A ⊆ X, f(A) is M -measurable. In particular, f(X) ∈M Ô⇒ f(X)c ∈M Ô⇒ SA ∈M ,
meaning that condition (b) in Definition C1 is met. Conversely, say that F is measurable, so that SA ∈M for
all open sets A ⊆X. Let A = ∅. Then, f(X)c ∈M . Since f(A) and f(X)c are disjoint, f(A) = SA ∖ f(X)c,
proving that f(A) ∈M , as claimed.

Lemma C2. Let f ∶ (X,dX) → (Y, dY ) be a continuous map between two Polish spaces. Let M be the
P-completion of the Borel σ-field defined over Y , where P is a given probability distribution. Then f maps
open sets onto M -measurable sets.

Proof. This is a standard result in the theory of Analytic sets, see, e.g., Theorem 4.3.1 in [61]. In fact, any
open set A ⊆ X is Borel measurable in X. Thus, by very definition, f(A) is an analytic set in Y . Since M
contains all Borel sets of Y and it is also P-complete, it follows that f(A) ∈M .

Corollary C1. Let f ∶ (X,dX) → (Y, dY ) be a continuous map between two Polish spaces. Let M be the
P-completion of the Borel σ-field defined over Y , where P is a given probability distribution. Then, f admits
an M -measurable right-inverse, that is, a measurable map f−1 ∶ Y →X for which

f(f−1(y)) = y ∀y ∈ f(X).

Proof. The nontrivial part of the statement lies in the measurability of f−1, as the existence of a generic
right-inverse is already guaranteed by the Axiom of Choice. Let F ∶ Y → 2X be as in (66), so that, according
to Lemmae C1 and C2, F is a measurable set-valued map. Then, a famous result by Kuratowski and Ryll-
Nardzewski states that F admits a measurable selection (see, e.g., Theorem 8.1.3 and Definition 8.1.1 in [5]).
That is, there exists a measurable map g ∶ Y → X such that g(y) ∈ F (y) for all y ∈ Y . It is straightforward
to see that such map retains all the desired properties: in fact, for all y ∈ f(X) the condition g(y) ∈ F (y)
implies f(g(y)) = y.

Corollary C2. Let f ∶ (X,dX) → (Y, dY ) be a continuous map between two Polish spaces. Let M be the
P-completion of the Borel σ-field defined over Y , where P is a given probability distribution. Let C ⊆X be a
closed subset. Then, there exists an M -measurable map f−1 ∶ Y →X such that

f(f−1(y)) = y ∀y ∈ f(X), and f−1(f(C)) ⊆ C.

Proof. In agreement with Corollary C1, let g0 ∶ Y →X be an M -measurable right-inverse of f . Consider the
metric subspace (C,d) ⊆ (X,d). Since C is closed, (C,d) is a Polish space. Thus, we may exploit Corollary
C1 once again to construct an M -measurable map g1 ∶ Y → C that operates as a right-inverse of f∣C , the
restriction of f to C. Define g ∶ Y →X as

g(y) ∶= g1(y) ⋅ 1f(C)(y) + g0(y) ⋅ 1Y ∖f(C)(y).
Then f−1 ∶= g fulfills all the requirements.
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Lemma C3. Let (X,dX) be a Polish space and let (C,dC) be a compact metric space. Let J ∶ X ×C → R
be continuous. Then, there exists a Borel measurable map f ∶X → C such that

J(x, f(x)) =min
c∈C

J(x, c)

for all x ∈X.

Proof. First of all, we note that the statement is well-defined as all the minima are attained by compactness
of C and continuity of J . Let now F ∶X → 2C be the following set-valued map

F ∶ x→ {c ∈ C such that J(x, c) =min
c′∈C

J(x, c′)} ,

that assigns a (nonempty) subset of C to each x ∈X. We aim at showing that F is a measurable set-valued
map. To this end, we start by noting that F (x) is closed in C for all x ∈ X. To see this, fix any x ∈ X and
let jx ∶= J(x, ⋅), so that jx ∶ C → R is continuous. Then,

F (x) = j−1x ({min
c′∈C

jx(c′)})

is closed as it is the pre-image of a singleton under a continuous transformation.
Conversely, we now claim that, for any compact subset K ⊆ C, the set

SK ∶= {x ∈X ∶ F (x) ∩K ≠ ∅}

is closed. Indeed, let {xn}n ⊆ SK be a sequence converging to some x ∈ X. By definition of SK , for each xn

there exists a cn ∈ K such that cn ∈ F (xn), i.e. for which J(xn, cn) = minc′ J(xn, c
′). Since K is compact,

up to passing to a subsequence, there exists some c ∈K such that cn → c. Let now c̃ ∈ C be a minimizer for
x, i.e. a suitable element for which J(x, c̃) =minc′∈C J(x, c′). By continuity, we have

J(x, c) = lim
n→+∞

J(xn, cn) = lim
n→+∞

min
c′∈C

J(xn, c
′) ≤ lim

n→+∞
J(xn, c̃) = J(x, c̃),

implying that c is also a minimizer for x. As a consequence, we have c ∈ K ∩ F (x) and thus x ∈ SK . In
particular, SK is closed. It is now straightforward to prove that SA is Borel measurable whenever A ⊆ C is
open. In fact, any open set A ⊆ C can be written as the countable union of compact sets, A = ∪n∈NKn, and
clearly SA = ∪nSKn .

We have then proven that F is a measurable set-valued map. In particular, we may now invoke the mea-
surable selection theorem by Kuratowski–Ryll-Nardzewski [5], which ensures the existence of a measurable
map f ∶X → C such that f(x) ∈ F (x), i.e. J(x, f(x)) =minc∈C J(x, c), as wished.

Appendix D Architectures and training details

We report in this Section the technical details concerning the design of the autoencoder modules (Tables
2-3) and the training of the DL-ROMs (Table 6). As for the latter, Tables 4-5 complete the picture, with a
description of the architectures employed for reduced map, ϕ.

We mention that, both for the case of Darcy flow in a porous medium and Burger’s equation, we exploited
a combination of classical dense layers together with mesh-informed layers. The latter are a particular class
of sparse architectures first introduced in [21] as a way to handle mesh-based functional data. In short, they
are obtained through sparsification of dense architectures, which is achieved by means of a mesh-dependent
pruning strategy: for further details, we refer the reader to [21]. As for our purposes, it is sufficient to
know that mesh-informed layers are characterized by a support hyperparameter: the smaller the support,
the sparser the architecture; for large supports, the module collapses to a classical dense layer. In all of the
following, mesh-informed layers are always constructed by relying on uniform structured grids (with as many
dofs as declared in the input-output dimensions).
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Layer # Type Input dim. Output dim. Activation

1 Dense 2601 500 ρ

2 Dense 500 n ρ

3 Dense n 500 ρ

4 Dense 500 2601 -

Table 2: Autoencoder architecture for Darcy’s law example, §5.1.1. The encoder and decoder modules, here presented together,
are divided by a dashed line. n = latent dimension; ρ = 0.1-leakyReLU.

Layer # Type Input dim. Output dim. Support Activation

1 Dense 500 n - ρ

2 Dense n 100 - ρ

3 Mesh-informed 100 500 0.4 ρ

4 Mesh-informed 500 500 0.1 ρ̃

Table 3: Autoencoder architecture for Burger’s example, §5.1.2. Entries read as in Table 2; here, ρ̃(x) ∶= ReLU(0.5−ReLU(0.5−
x)).

Layer # Type Input dim. Output dim. Support Activation

1 Mesh-informed 2601 676 0.125 tanh

2 Mesh-informed 676 169 0.25 ρ

3 Dense 169 n - ρ

Table 4: Architecture of the reduced map network, ϕ, for Darcy’s law example, §5.1.1. n = latent dimension; ρ = 0.1-leakyReLU.

Layer # Type Input dim. Output dim. Support Activation

1 Mesh-informed 500 250 0.25 ρ

2 Mesh-informed 250 125 0.5 ρ

3 Dense 125 n - ρ

Table 5: Architecture of the reduced map network, ϕ, for Burger’s example, §5.1.2. Entries read as in Table 4.
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spectral profiles observed by iris: A machine and deep learning approach. The Astrophysical Journal
Letters, 875(2):L18, 2019.

[15] I. Daubechies, R. DeVore, S. Foucart, B. Hanin, and G. Petrova. Nonlinear approximation and (deep)
relu networks. Constructive Approximation, 55(1):127–172, 2022.

[16] T. De Ryck and S. Mishra. Generic bounds on the approximation error for physics-informed (and)
operator learning. arXiv preprint, page arXiv:2205.11393, 2022.

[17] R. A. DeVore, R. Howard, and C. Micchelli. Optimal nonlinear approximation. Manuscripta mathe-
matica, 63:469–478, 1989.

[18] L. C. Evans. Partial differential equations, volume 19. American Mathematical Society, 2022.

[19] N. Franco, A. Manzoni, and P. Zunino. A deep learning approach to reduced order modelling of
parameter dependent partial differential equations. Mathematics of Computation, 92:483–524, 2023.

42



[20] N. R. Franco, S. Fresca, A. Manzoni, and P. Zunino. Approximation bounds for convolutional neural
networks in operator learning. Neural Networks, 161:129–141, 2023.

[21] N. R. Franco, A. Manzoni, and P. Zunino. Mesh-informed neural networks for operator learning in finite
element spaces. Journal of Scientific Computing, 97(35), 2023.

[22] S. Fresca, L. Dede, and A. Manzoni. A comprehensive deep learning-based approach to reduced order
modeling of nonlinear time-dependent parametrized pdes. Journal of Scientific Computing, 87(2):1–36,
2021.

[23] S. Fresca, G. Gobat, P. Fedeli, A. Frangi, and A. Manzoni. Deep learning-based reduced order models
for the real-time simulation of the nonlinear dynamics of microstructures. International Journal for
Numerical Methods in Engineering, 123(20):4749–4777, 2022.

[24] S. Fresca and A. Manzoni. Pod-dl-rom: enhancing deep learning-based reduced order models for nonlin-
ear parametrized pdes by proper orthogonal decomposition. Computer Methods in Applied Mechanics
and Engineering, 388:114181, 2022.
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[59] K. T. Schütt, H. E. Sauceda, P.-J. Kindermans, A. Tkatchenko, and K.-R. Müller. Schnet–a deep
learning architecture for molecules and materials. The Journal of Chemical Physics, 148(24), 2018.

[60] C. Schwab and J. Zech. Deep learning in high dimension: Neural network expression rates for generalized
polynomial chaos expansions in uq. Analysis and Applications, 17(01):19–55, 2019.

[61] S. M. Srivastava. A course on Borel sets, volume 180. Springer Science & Business Media, 2008.

[62] G. S. Tandel, M. Biswas, O. G. Kakde, A. Tiwari, H. S. Suri, M. Turk, J. R. Laird, C. K. Asare,
A. A. Ankrah, N. Khanna, et al. A review on a deep learning perspective in brain cancer classification.
Cancers, 11(1):111, 2019.

[63] Y. C. Taumhas, G. Dusson, V. Ehrlacher, T. Lelièvre, and F. Madiot. Reduced basis method for
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