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Abstract

We address a mathematical model for oxygen transfer in the microcir-
culation. The model includes blood flow and hematocrit transport coupled
with the interstitial flow, oxygen transport in the blood and the tissue,
including capillary-tissue exchange effects. Moreover, the model is suited
to handle arbitrarily complex vascular geometries. The purpose of this
study is the validation of the model with respect to classical solutions and
the further demonstration of its adequacy to describe the heterogeneity
of oxygenation in the tissue microenvironment. Finally, we discuss the
importance of these effects in the treatment of cancer using radiotherapy.
Keywords: oxygen transfer, microcirculation, mesoscale model.

1 Introduction

The microcirculation serves vital oxygen and nutrient supply in tissues and
controls functions in living systems. For this reason, microcirculation has been
thoroughly studied in vitro and in vivo in the fundamental sciences [23, 68].
Recently, analyses by means of mathematical models and numerical simula-
tions have contributed significantly to revealing the physiological function and
interaction between blood flow and the surrounding tissues that are difficult
to observe otherwise, see [41, 47, 17] just to make a few examples. Modeling
and computational approaches of microcirculation have recently become a vivid
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area of research. Starting from a few seminal contributions [45, 16, 59, 15], yet
addressing realistic portions of tissue, to very recent achievements where whole
organ simulations are at reach [32, 65].

These achievements were made possible by a suitable blending of mathe-
matical modeling and computational methods. However, the microcirculation
involves phenomena at very different spatial and temporal scales. A naive mod-
eling approach based on the brute force application of computational fluid dy-
namics tools would fail to consider the complex interaction between the micro-
circulation and the tissue. Conversely, the most successful attempts to model
microcirculation are characterized by embedding into one characteristic spa-
tial scale the relevant effects that are active at scales larger and smaller than
the main one. In synthesis, such approaches are effectively called a mesoscale
description of microcirculation [60].

The purpose of this work is to develop a model for microcirculation and
oxygen transfer that is particularly suited to describe the phenomena at the level
of the tissue microenvironment (sub-millimeter scale), where heterogeneities of
the distribution of oxygen in the tissue due to the possibly irregular layout of
the micro-vessels are well documented [68]. As will be discussed later on, such
effects are particularly important in pathologies such as cancer.

We aim at describing these effects with good physical accuracy from a mech-
anistic standpoint. For this reason, we include the following effects in our model,
among the main factors addressed in the extensive review [45]: blood flow with
variable viscosity and hematocrit transport coupled with fluid extravasation and
interstitial flow; oxygen transport in blood, described using continuum models
for dissolved and hemoglobin-bound oxygen; oxygen transport in tissue, based
on advection, diffusion and reaction effects; the coupling of the oxygen transport
models in blood and tissue by capillary-tissue exchange effects, described in the
case of non-equilibrium thermodynamics and for arbitrarily complex geometries.

The mesoscale approach previously addressed is the ideal framework for the
interaction of all these effects in a reasonably complex vascular network. In-
deed, the modeling framework that we adopt stems from the seminal work on
the method of Green’s functions applied to microcirculation [59]. However, we
depart from such an approach because the phenomena addressed before are for-
mulated in the continuum setting in our model. A model reduction technique
is then applied to the equations defined in the vasculature, transforming the
network of vessels into a one-dimensional (1D) graph. Its coupling with the
three-dimensional (3D) surrounding environment is addressed by the mathe-
matically sound coupling operators described and analyzed in [31]. The main
advantage of this approach consists in its modularity: the vascular and tissue re-
gions can be discretized independently and the numerical solution of the former
is greatly simplified by the dimensionality reduction.

Concerning these challenging objectives, the purpose of this work is twofold.
On the one hand, we aim at validating the proposed model with respect to
well known and accepted oxygen transfer models that are valid in simplified
conditions, such as the Krogh’s model. On the other hand, we discuss the
mathematical and computational platform’s ability to describe realistic clini-
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Figure 1: The general layout of the model illustrating its components, the phe-
nomena described by the governing equations and their interactions.

cal scenarios relevant for cancer treatment, specifically, radiotherapy. Indeed,
even though this treatment is based on the damage of the cell genetic material,
preclinical and clinical studies have highlighted the so-called oxygen effect that
impacts tumor sensitivity to ionizing radiation. The linear-quadratic model, the
most popular radiobiological model for describing tumor cell death, has been
ameliorated to include the differences in cell survival due to oxygen concentra-
tion in the tissue. Here, we will discuss how the oxygen transfer model can
be used study the biological factors that regulate the tumor radiosensitivity
quantitatively.

2 Methods

Our approach to obtaining a mesoscale description of the vascular microenviron-
ment combines models of flow and mass transfer characterized by heterogeneous
dimensionality. This approach relies on the fact that the lower is the spatial
dimensionality of the model, decreasing from 3D, 2D, 1D up to 0D (referring to
spatially independent lumped parameter models) the simpler is the mathemat-
ical complexity of the model and of the numerical methods required to perform
computer simulations. This section presents a mixed-dimensional 3D-1D model
that describes blood flow and oxygen transfer from the microvasculature to the
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tissue microenvironment.Figure 2 illustrates the modelling strategy and moti-
vates why we define it as a mesoscale model. Our modeling approach is also
called mixed-dimensional 3D-1D because microvessels are represented as one-
dimensional channels. As discussed in [6, 31] this approximation significantly
simplifies the problem at the computational level.

For the sake of completeness, we first briefly review the blood flow model,
already presented in [4, 49, 47]. Then, we focus on the oxygen transfer model,
describing in detail the governing equations, discussing how they comply with
mass conservation. The general layout of the model, showing the interactions
of its components is presented in Figure 1.

Before proceeding, we introduce the general notation adopted from now on.
The domain Ω represents a small (sub-millimeter) portion of biological tissue,
also named the microenvironment, which is composed of two main regions, the
microvascular bed Ωv and the tissue interstitium Ωt. We assume that the tissue
interstitium behaves as a porous medium. We describe each segment of the
vascular network as a cylindrical channel; we denote by Γ the outer surface of
Ωv, R its radius and Λ the centerline of the network. Also, we denote with s
the arc length coordinate along this line. For coupling the equations between Ω
and Λ, we introduce the Dirac-δ on Λ, defined as follows:

δΛ(x) =

∫
Λ

δ(x− xΛ(s))ds ,

where xΛ(s) denotes the paramatrization of the network (for each branch) in
terms of the arc length, s. For any regular function ϕ in Ω, δΛ satisfies the
follwong property,∫

Ω

δΛ(x)ϕ(x)dΩ =

∫
Ω

∫
Λ

δ(x− xΛ(s))ϕ(x)dsdΩ

=

∫
Λ

∫
Ω

δ(x− xΛ(s))ϕ(x)dΩds =

∫
Λ

ϕ(xΛ(s))ds ,

that is, it formally acts as a restriction operator form Ω to Λ.
The physical quantities of interest are the blood pressure p, the blood velocity

u and the concentration of transported oxygen C. They are all defined as fields
depending on space (being x the spatial coordinates) and possibly on time t.
Furthermore, we denote by the subscript (∗v) their restriction to the vascular
bed, and with subscript (∗t) the restriction to the interstitial tissue.

We do not address here the details about the numerical approach used for
discretizing and solving the model. We remand the interested reader to the
Supplementary Materials and related references [3, 4, 49].

2.1 3D-1D model for microvascular flow

The 3D-1D model for microvascular flow has been detailed in a series of works
regarding different features of the model such as: (i) 3D-1D coupling [4]; (ii)
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Figure 2: Description of the mesoscale modeling approach, compared to micro
and macro-scale strategies. The notation adopted for the vascular and tissue
regions is also described.

red blood cell (RBC) transport and RBC dependent rheological properties, de-
scribed by the Fahraeus-Lindqvist and Zweifach-Fung effects [49]; and (iii) the
possible inclusion of lymphatic drainage using a linear or a general non-linear
relation with interstitial pressure [47]. The model describes the flow referring
to two different domains, namely the interstitial 3D domain (Ω), where the
unkowns are the interstitial pressure and velocity pt,ut respectively, and the
vascular 1D domain (Λ) where the unknowns are blood pressure and velocity
pv,uv. Considering steady flow, exploiting the assumption of very low Reynolds
numbers and neglecting gravity, the mass and momentum balance equations for
microvascular flow (denoted as F) become the Darcy flow in Ω and a Poiseuille-
like flow in Λ:

F :



ut +
K

µt
∇pt = 0 in Ω

∇ · ut + φl − φvδΛ = 0 in Ω

8µvuv +R2∂spv = 0 in Λ

∂s(πR
2uv) + φv = 0 in Λ

(1)

where K is the permeability of the porous media, µ is the fluid viscosity, R the
vessel radius, φl the lymphatic drainage, and φv is the exchange term between
the two domains. Precisely, we have φv = 2πRLp

(
(pv − pt) − σ(πv − πt)

)
where Lp is the hydraulic conductivity of the vessel wall, πv and πt determine
the osmotic (or oncotic) pressure gradient across the capillary wall due to the
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difference in the concentration of proteins (for example albumin) and σ is the
respective reflection coefficient. In the 1D approach, pv indicates the mean value
of the blood pressure on a cross section of a micro-vessel and pt is the mean
value of the interstitial pressure computed on the blood/tissue interface of the
same cross section. The viscosity of blood within the vascular network has been
modeled as

µv = µplasma · µeff (H,D)

where the µeff (H,D) is defined by the formula presented in [51]:

µeff (H,D) =
[
1+(µ0.45(D)−1) · (1 −H)f(D) − 1

(1 − 0.45)f(D) − 1
·
( D

D − 1.1

)2]
·
( D

D − 1.1

)2
, (2)

where D = 2R is the diameter of the vessel, and H is the discharge hematocrit.
The model for microvascular flow is complemented by the one-dimensional

RBC transport model (denoted by H) that governs the variation of the dis-
charge hematocrit H in Λ. Such a 1D transport model inherits the steady flow
assumption, and it relies on a few other assumptions: (i) transport dominated
regime, justified by the large Pe number; (ii) no extravasation and degradation
of RBCs; (iii) the network connectivity includes bifurcations and anastomosis
solely. The 1D hematocrit transport model is therefore defined as:

H : πR2uv∂sH − φvH = 0 in Λ . (3)

At vessels junctions, the mass conservation is enforced and, when considering
a bifurcation, the RBCs split is computed following the approach reported in
[50]. Interested readers may refer to [49] for a more detailed description of H at
junctions and for other details about the numerical discretization of F and H.

2.2 3D-1D model for oxygen transport

The 3D-1D problem for oxygen transport (named O) employs the solutions
from F and H to describe blood flow and hematocrit transport. We present the
derivation of the model, starting from the description of the physical phenomena
involved. Consistently with the previous models, the oxygen transport model is
composed by equations in the two domains Λ and Ω.

2.2.1 Oxygen transport in the vascular network.

Oxygen is available in the blood as dissolved oxygen, Cv, and hemoglobin-
bound oxygen CHbO2

. The total oxygen concentration, Ctotv , is the sum of the
two, namely Ctotv = Cv + CHbO2 . Our model relies on three main assumptions:
(i) oxyhemoglobin diffusion in the blood is negligible; (ii) the dissolved and
hemoglobin-bound oxygen phases are at chemical equilibrium at any time; (iii)
absence of oxygen consumption within the blood flow. Then, let us write the
following 1D equation for the balance of oxygen fluxes:

πR2 ∂

∂s

(
−Dv

∂Cv
∂s

+ uv C
tot
v

)
+ φO2

= 0 , (4)
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where φO2 accounts for the the interaction with the tissue that will be detailed
later on. According to assumption (ii) there exists a relation CHbO2 = f(Cv). To
describe such a non-linear relation, we rewrite the bound oxygen concentration
as:

CHbO2
= N CHb S(pO2

) , (5)

where N is the Hüfner factor representing the oxygen binding capacity of human
hemoglobin, defined as the amount of oxygen per unit of hemoglobin, measured
in mlO2/gHb; CHb is the hemoglobin concentration in the blood and S(pO2) is
the hemoglobin saturation with oxygen. Then, the factor CHb is estimated as
CHb = H MCHC, where H is the hematocrit and MCHC is the Mean Corpus-
cular Hematocrit Concentration, a physiological parameter that represents the
amount of hemoglobin in each RBC, expressed in gHb/mlRBC . The saturation
S(pO2), is well described by the Hill equation:

S(pO2
) =

(pO2
)γ

(pO2)γ + (ps50)γ
, (6)

where ps50 is the oxygen partial pressure at hemoglobin half-saturation and γ is
the Hill exponent. The term ps50 depends on [7, 71]: (i) the temperature, in °C;
(ii) the pH inside RBCs through the Bohr effect; (iii) the CO2 partial pressure
through the Haldane effect; (iv) the 2,3-Bisphosphoglyceric acid concentration
(or 2,3-DPG), a protein that reduces the affinity of the hemoglobin to oxygen.
We selected from literature the values for all these parameters, assuming them
to be constant in time and uniform in space. To estimate the oxygen partial
pressure at half-saturation, we applied an empirical equation from Kelman’s
model ([7]):

ps50 = 26.8 · 10(0.4 (7.24−pH)+0.06 log(
pCO2

40 )+0.024 (T−37)) .

We apply the Henry’s equation, namely, C = α P where C is the concentration
of a gas in a solution with partial pressure P , and α is the solubility coefficient
of that gas depending on the temperature, T [°C], to (6) so that we obtain S(Cv)
as follows,

S(Cv) =
Cγv

Cγv + (αpl ps50)γ
. (7)

Finally, combining equations (4), (5), and (7), we obtain the equation governing
the 1D oxygen transport within the vasculature:

−πR2 Dv
∂2Cv
∂s2

+ πR2 ∂

∂s

(
uv Cv + uv k1 H

Cγv
Cγv + k2

)
= −φO2 on Λ , (8)

where, for simplicity of notation, we set k1 = N MCHC and k2 = (αpl ps50)γ .
We also observe that equation (8) can be formally rewritten in the standard
form of an advection-diffusion equation, using a modified velocity field,

uv,O2 = uv

(
1 + k1 H

Cγ−1
v

Cγv + k2

)
.
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2.2.2 Oxygen transfer.

To describe how the oxygen is delivered to the tissue, the flux φO2
has to be

detailed. We model the vascular wall as a semipermeable membrane, see for
example, [25]. As a result, the total oxygen flux across the membrane can be

split into the sum of diffusive flux, φdiffO2
, and convective flux, φadvO2

, namely

φO2 = φdiffO2
+ φadvO2

. In a 1D model of the microvessels, we describe the fluxes
that leave each cross section of the channels as follows:

φdiffO2
= 2πR PO2(Cv − Ct), φadvO2

= (1− σO2)

(
Cv + Ct

2

)
φv, (9)

where PO2 is the permeability of the vascular wall to oxygen, σO2 is a reflec-
tion coefficient relative to the oxygen molecule. As previously denoted for the
pressure, Cv indicates the mean value of the oxygen concentration on a cross sec-
tion of a micro-vessel Ct the mean value of the interstitial oxygen concentration
computed on the blood/tissue interface of the same cross section.

2.2.3 Oxygen transport within the tissue.

Oxygen can diffuse within the interstitial space, it can be transported by the
movement of the interstitial fluid, and it can be depleted by the cells. These well-
known phenomena can be described by using the general diffusion-advection-
reaction equations applied to the domain Ω, that is:

−∇ · (−Dt∇Ct + ut Ct) = φO2 δΛ − φm on Ω, (10)

where Ct is the interstitial oxygen concentration, Dt is oxygen diffusion coeffi-
cient, ut the fluid velocity. At the right hand side, we observe the net balance
between the oxygen delivered to the tissue per unit length of the vascular net-
work, multiplied by δΛ (a linear distribution of Dirac δ-functions on Λ) used
to transform it into a volume flux, and the oxygen consumption term per unit
volume of the tissue, denoted as φm.

Oxygen depletion by the metabolic activity of the tissue is described by the
Michaelis-Menten formula [37]:

φm(pO2
) = Vmax

pO2

pO2
+ pm50

(11)

where Vmax is the maximum consumption rate of oxygen in the intersitial tis-
sue expressed in (mlO2

/cm3)/s, pO2
is the oxygen partial pressure within the

tissue, and pm50 is the oxygen partial pressure at half consumption rate, also
known as Michaelis-Menten constant. Since the model uses oxygen concentra-
tion instead of oxygen partial pressure, the Michaelis-Menten formula has been
written leveraging Henry’s equation. We set the temperature at 37°C and as a
consequence the Michaelis-Menten formula can be transformed as follows,

φm(Ct) = Vmax
Ct

Ct + αt pm50

. (12)
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2.2.4 The coupled oxygen model.

Equation (13) is the 3D-1D oxygen model, denoted with O. It is composed by
joining equations (10), (12), (8) and (9):

O :



∇ · (−Dt∇Ct + ut Ct) + Vmax
Ct

Ct + αt pm50

= φO2
δΛ on Ω

πR2 ∂

∂s

(
−Dv

∂Cv
∂s

+ uv Cv + uv k1 H
Cγv

Cγv + k2

)
= −φO2

on Λ

φO2 = 2πR PO2(Cv − Ct) + (1− σO2)

(
Cv + Ct

2

)
φv on Λ

Cv = Cin on ∂ΛIN

−Dv
∂Cv
∂s

= 0 on ∂ΛOUT

−Dt∇Ct · n = βO2 (Ct − c0,t) on ∂Ω
(13)

Such a model is complemented with a set of boundary conditions to complete
the description of the problem. We set different boundary conditions for the two
domains. First, at the vascular inlets, marked as ∂ΛIN , we specify the oxygen
concentration. Conversely, at the vascular endpoints marked as ∂ΛOUT , null
diffusive flux is enforced. For the tissue, we simulate the presence of an adjacent
tissue domain with a boundary conductivity βO2 and a far-field concentration
c0.

2.2.5 Mathematical model of the vascular junctions and mass con-
servation

Model (13) describes the behavior of any portion of the vascular network Λ,
but it does not addresses the balance of the oxygen at the junctions between
microvessels (bifurcations or anastomoses). This is an essential but delicate
aspect of the problem. On one hand, it governs the global mass conservation
properties; on the other hand, it requires to blend the governing equations in
the microvessels with the mass balance equations at the junctions. This step is
naturally achieved at the level of the weak formulation of the problem that is
introduced in what follows.

Let us integrate the oxygen transport problem over Ωv and multiply it by
a smooth test function, qv. We remark that the integration over the network
Λ should be split into the integrals on each branch, denoted with Λi with i =
0, . . . , N . Then, we integrate by parts the diffusion term on each branch to
distribute the second derivative of Cv on the test function. Through these
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steps, the diffusion term is transformed as follows:

−
∫

Λ

πR2Dv
∂2Cv
∂s2

qv dΛ = −
N∑
i=0

∫
Λi

πR2
iDv

∂2Cv
∂s2

qv dΛi

=

∫
Λ

πR2Dv
∂Cv
∂s

∂qv
∂s

dΛ−
N∑
i=0

πR2
i

[
Dv

∂Cv
∂s

qv

]Λ+
i

Λ−
i

.

where Λ−i and Λ+
i represent the input and output endpoints of i-th branch, Λi.

By putting all the terms together, the weak form of equation (13)-b reads as
follows:∫

Λ

πR2Dv
∂Cv
∂s

∂qv
∂s

dΛ +

∫
Λ

πR2uv Cvqv dΛ

+

∫
Λ

[
2πR PO2(Cv − Ct) +

1

2
(1− σO2) φv

(
Cv + Ct

)]
qv dΛ

−
N∑
i=0

πR2
i

[
Dv

∂Cv
∂s

qv

]Λ+
i

Λ−
i

= 0 (14)

Let Φ be the total mass flow rate along a capillary, expressed by the sum of
convective mass flow rate and diffusive mass flow rate,

Φ = πR2uvC
tot
v − πR2Dv

∂Cv
∂s

Let us consider a junction of three micro-vessels (bifurcation or anastomosis)
numbered as i = 0, 1, 2 where the index 0 represents the parent vessel and 1, 2
are the daughter vessels. Mass conservation at junctions can be expressed as

Φ0 = Φ1 + Φ2 . (15)

We assume that the free oxygen concentration is continuous at the junction, but
the oxyhemoglobin concentration depends on hematocrit and velocities which
may exhibit a jump at the junction points. As a result, the enforcement of
(15) into (13) is not a trivial task. It is achieved by combining (15) with the
corresponding relations for blood flow and hematocrit. The blood flow and
hematocrit models, (1) and (3) ensure that the following balances are satisfied
at the junction:

fluid mass balance, πR2
0uv0 = πR2

1uv1 + πR2
2uv2 ;

haemtocrit mass balance, πR2
0uv0H0 = πR2

1uv1H1 + πR2
2uv2H2 .

To enforce the balance of total oxygen concentration at the junctions, we first
multiply the flow rate conservation by the free oxygen concentration, that is
continuous at the junctions:

πR2
0uv0Cv0 = πR2

1uv1Cv1 + πR2
2uv2Cv2 . (16)
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As the saturation S(Cv) directly depends on the free oxygen concentration, it is
also continuous at the junctions. Then, we multiply the hematocrit conservation
by the saturation equation:

πR2
0uv0H0 S(Cv0) = πR2

1uv1H1 S(Cv1) + πR2
2 , uv2H2 S(Cv2) (17)

and we rewrite the (17) in terms of oxyhemoglobin concentration, Ψ:

πR2
0uv0Ψ0 = πR2

1uv1Ψ1 + πR2
2uv2Ψ2 . (18)

Finally, we sum the (16) and the (18) and we apply the definition of total oxygen
concentration:

πR2
0uv0C

tot
v0 = πR2

1uv1C
tot
v1 + πR2

2uv2C
tot
v2 . (19)

Equation (19) demonstrates the conservation of total oxygen concentration by
combining mass balance equations of different variables. Then, replacing (19)
into (15), we obtain that the diffusive fluxes satisfy an independent balance law:

−Dv
∂Cv0
∂s

= −Dv
∂Cv1
∂s
−Dv

∂Cv2
∂s

. (20)

As balance at the junctions is already satisfied for all previously considered
variables (namely blood flow rate, discharge hematocrit, oxyhemoglobin con-
centration), the oxygen diffusive flux balance stated in (20) is the only missing
component to be addressed. Going back to the variational formulation of oxygen
transport in the vascular network (14), for a bifurcation or anastomosis (where
the summation from i = 0 to i = N = 2 spans over the parent and daughter
branches) we see that (20) can now be easily enforced as follows,

N∑
i=0

πR2
i

[
Dv

∂Cv
∂s

qv

]Λ+
i

Λ−
i

=

N∑
i=0

πR2
i

[
Dv

∂Cv
∂s

]Λ+
i

Λ−
i

qv

= πR2

[
Dv

∂Cv
∂s

qv

]
∂ΛOUT

− πR2

[
Dv

∂Cv
∂s

qv

]
∂ΛIN

.

Owing to the boundary conditions for Cv of system (13), the last two terms

of the previous equation vanish, because
∂Cv
∂s

= 0 on ∂ΛOUT and qv = 0

on ∂ΛIN , as Dirichlet boundary conditions are enforced at the inflow. As a
result, the governing equation for free oxygen in the vascular bed, including
mass conservation at the junctions, becomes,∫

Λ

πR2Dv
∂Cv
∂s

∂qv
∂s

dΛ +

∫
Λ

πR2uv Cvqv dΛ

+

∫
Λ

[
2πR PO2

(Cv − Ct) +
(1− σO2

)

2
φv
(
Cv + Ct

)]
qv dΛ = 0 . (21)
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We proceed similarly for the tissue equation, moving along the classical steps
as there is no need to address the junctions there. We denote by qt the test
function on Ω, by

(
·, ·
)
∗ the inner product over the domain ∗, and by uv,O2

the
modified fluid velocity comprising the hemoglobin term (see equation (8) and
also the Supplemetary material). Therefore, the whole weak formulation of the
oxygen transport problem results to be:

O :



(Dt∇Ct, ∇qt)Ω + (∇ · (utCt), qt)Ω + (βO2
Ct, qt)∂Ω

−
([

2πR PO2
(Cv − Ct) +

(1−σO2
)

2 φv
(
Cv + Ct

)]
, qt

)
Λ

+

(
Vmax

C
(k−1)
t + αtpm50

Ct, qt

)
Ω

= (βO2
c0,t, qt)∂Ω ,

(
πR2Dv

∂Cv
∂s

,
∂qv
∂s

)
Λ

+
(
πR2uv,O2

Cv, qv
)

Λ

+
([

2πR PO2(Cv − Ct) +
(1−σO2

)

2 φv
(
Cv + Ct

)]
, qv

)
Λ

= 0 .

(22)

3 Results

We apply the model to different vascular geometries, from the simplest, that is
a single branch, to relatively complex and realistic vascular networks. For com-
pleteness, some numerical tests on a bifurcation and anastomosis are discussed
in the Supplementary Materials.

The parameters used for the following simulations are reported in Table 1.
More precisely, we report two sets of values. The first ones are taken from [49]
and will be used for the simulations of 3.1. The second ones are used in section
3.2 for comparison with [59]. For the boundary conditions in the following tests,
we have used the values reported in Table 1 (the last three rows).

We employ the finite element method to discretize the problem, and we use
a fixed point method to linearize the equations containing nonlinear factors.
The discrete problem is initialized and solved by an in-house code developed
using the GetFem++ library, see [12]. When the first version of the code was
written, for the development of [6], GetFem++ library was particularly appeal-
ing because of the ability to discretize and couple operators across dimensions,
i.e. 3D, 2D, 1D, and for the integration tools on manifolds that do not conform
with the computational mesh. We are aware that other open access finite ele-
ment libraries may now offer similar tools. Full details of the discretization and
solving procedure can be found in the supplementary materials.
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Table 1: Physiological parameters used for the numerical tests.

symbol Parameter Unit Set #1 Ref.#1 Set #2 Ref.#2
D characteristic length m 5× 10−4 [49] 1.60× 10−4 [59]

R average radius m 4× 10−6 [49] – –

K tissue hydraulic conductivity m2 1× 10−18 [28, 49] 7.68× 10−18 [61]

µt interstitial fluid viscosity cP 1.2 [49] 1.2 [49]

µv blood viscosity cP 9.33 [49] computed (2)

Lp wall hydraulic conductivity m2 s kg−1 – – 2.70× 10−12 [61]

δπ oncotic pressure gradient mmHg – – 10 [24]

σ reflection coefficient − – – 0.95 [26]

σO2
O2 reflection coefficient − – – 0 [59]

PO2
O2 wall permeability m/s 3.5× 10−5 [3, 28] 4.75× 10−4 [59]

Dv vascular diffusion coefficient m2/s 2.18× 10−9 [34] 2.18× 10−9 [34]

N ×MCHC max. hemoglobin-bound O2 mlO2/mlRBC – – 0.5 [59]

γ Hill constant – – – 3 [59]

ps50 O2 at half-saturation mmHg – – 38 [59]

α O2 solubility coefficient mlO2/ml – – 3.1× 10−5 [59]

Dt tissue diffusion coefficient m2/s 2.41× 10−9 [34] 1.94× 10−9 [59]

Vmax O2 consumption rate mlO2
/cm3/s 6.17× 10−5 [72] 2.33× 10−3 [59]

pm50 Michaelis-Menten constant mmHg – – 1 [57]

Q total inlet flow rate ml/s – – 1.8× 10−7 [59]

pO2,in O2 partial pressure at inlets mmHg 96 [29] 50 [59]

Hin Discharge hematocrit at inlets – – – 0.5 [57]

βO2
Boundary conductivity m2 s/kg 0.0 [29] 0.0 [59]

3.1 Oxygen transfer applied to simple benchmarks

3.1.1 Single branch benchmark and the Krogh’s model.

This test case consists of a single rectilinear cylindrical vessel immersed in a
cubic tissue slab with homogeneous properties. In such conditions, the Krogh’s
model for oxygen transfer can also be applied [29]. For validation purposes
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and to highlight the additional features of the proposed model, we compare the
results of the two.

The Krogh’s model is based on a generic advection-diffusion-reaction equa-
tion for the tissue domain and the flow rate and oxygen balance in the blood-
stream for an infinitesimal longitudinal section of one microvessel. The oxygen
concentration in the tissue is represented in cylindrical coordinates C(r, z, ϑ).
Under the assumptions of axial-symmetry and steady-state, negligible axial dif-
fusion in the tissue, and uniform oxygen consumption rate, the Krogh’s model
reduces to a system of ordinary differential equations along the radial direc-
tion in the tissue and the axial direction along the vascular centerline. Such
equations can be solved analytically and compared to the numerical solution of
model (13).

Besides the values reported in Table 1 (set #1), for Krogh’s model we choose
the length of the vessel d equal to 5 × 10−4m, the axial velocity on the vessel
uv = 0.2m/s and the ratio between outer and inner radius equal to 25. The
boundary conditions have been chosen following the Krogh’s model, namely the
oxygen concentration at the inlet is set to pO2,in, and zero diffusion flux is set at
the outlet of the vessel. The fluid dynamic problem has been solved imposing
a pressure gradient of 3.5mmHg between the inlet and outlet of the vessel, in
particular pO2,in set to 32 mmHg and pO2,out set to 28.5 mmHg to reproduce
the conditions specified in [47]. We point out that this test case doesn’t represent
well the real microvascular conditions, because the physiological vascular surface
to volume ratio is not respected.

We compare the Krogh’s model with a simplified version of model (13), where
the convective velocity in the tissue and across the vascular wall is neglected,
namely, ut = 0 and φv = 0 and also the tissue consumption term is set to
be constant, that is φm(Ct) = Vmax in equation (12). As a result, this test
highlights the differences in oxygen distribution due to the endothelial resistance
solely. The results of this comparison are shown in Figure 3. The left panel of
Figure 3 shows that the vascular concentration of free oxygen is very similar in
the two cases, as expected since the models are equivalent is this region. The
main differences are visible in the tissue, reported on the right panel, where
the oxygen concentration calculated with the simplified version of model (13)
is visibly lower than in the Krogh’s case. This behavior is due to the diffusive
exchange term, φdiff = 2πR PO2(Cv − Ct) of equation (9). In contrast to (9),
Krogh’s equations impose continuity between the concentration at the capillary
wall and in the tissue. In this way, the resistance of the endothelium to oxygen
transfer is neglected, which justifies the higher value of oxygen concentration
predicted by Krogh’s model. This interpretation of the results is confirmed,
observing that for higher oxygen permeability the differences between (13) and
Krogh’s decrease in the tissue.

3.2 A comparative study on a realistic scenario

As previously observed, the characteristic trait of the proposed model is its abil-
ity to embrace different phenomena, such as variable blood viscosity, intramural
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Figure 3: The left panel shows the free oxygen concentration in the vessel mod-
eled by Krogh’s equations (continuous line) and simplified version of model (13)
for various permeability coefficients (dotted lines, described in the legend). The
right panel shows the distribution of oxygen concentration in the tissue along
the radial direction starting from the mid-point of the vessel, for various per-
meability coefficients.

and interstitial transport, mass transport with diffusive and advective effects.
The microvascular flow model has been validated by the authors in previously

published works. For example in [49], the authors have extensively compared
the simulations based on (1) with analytical solutions, as a verification of the
correct discretization of the equations. More importantly, in [30] (see in partic-
ular Table 1), the authors and co-workers have compared the outcome of model
(1) (obtained using a tissue slab of 540 × 740 × 400 µm in which is embedded
a network of 28 branches of diameters ranging from 56.4 to 18.8 µm, similar
but not equivalent to the one analyzed here), with the data provided in [46],
Table 1 (for the category of arterioles). As it can be verified, the predictions
on velocity, Reynolds number, wall shear stress, and apparent viscosity, are in
excellent agreement with the measured data. Authors further compared the
computational results with experimental data from microvascular networks cul-
tured on-a-chip (width = 3 mm, height = 500 µm) reporting a good agreement
in terms of interstitial fluid velocity (1-2 µm/s, see figure 4 in [42]). Concern-
ing oxygen transoprt, from a general standpoint, our results in terms of tissue
oxygen partial pressure also agree with values reported in the literature for the
brain tissue, namely 6-25 mmHg measured in [54, 73].

For a more precise validation of the model and to assess the relative impor-
tance of these effects on the total amount and the spatial distribution of oxygen
in the microvascular environment, we address a comparative study of our model
with previously published results in [59]. In particular, we use the realistic mi-
crovasculature obtained from [57] and freely available online. It represents a
voxel of 150 × 160 × 140 µm containing 50 microvessels. In what follows it will
be simply called the rat brain dataset. The dataset also reports the specification
of the inflow vessels (visualized in Figure 4 with arrows on the right panel) with
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the corresponding flow rates. For the simulations described in this section, the
pressure values are prescribed at the boundary of the network. To conform to
the prescribed data and obtain a fair comparison, we have manually tuned the
prescribed pressure at the inflow points to match the rat brain flow rate in the
dataset.

We observe that the oxygen transport model presented in [59] and applied
to this case (among other scenarios), encompasses almost all the phenomena
considered here except for the convective terms for intramural transport as well
as the convective terms in the interstitial volume. For validation purposes, we
switch off these effects in our model, and we compare the results of simulations
with the ones already published. We also compare the complete formulation of
our model with the previous results.

The parameters for this test case are taken from Tables 1 (dataset #2). To
switch off the intramural and interstitial convective effects, we set Lp to zero. By
choosing βO2

= 0, the conditions at the boundary of the interstitial volume (i.e.,
the boundary of the voxel with the exterior) are consistent with the pointwise
no-flux solution of [59].

Table 2 of [59] reports the percent of the volume that falls below a given oxy-
gen partial pressure. We calculate the corresponding quantities for our model,
and we report the comparison in Table 2. We observe an excellent agreement
between the estimated hypoxic fraction calculated by the two models when only
the diffusive phenomena govern the oxygen transport. As oxygen is a very small
molecule, diffusion is expected to prevail on transport phenomena. This is con-
firmed by the third row of Table 2 that reports the calculated hypoxic volume
fractions when convective transport phenomena are switched on. We point out
that, for oxygen levels, the results are also insensitive to the choice of boundary
conditions for the artificial boundaries of the fluid model (1).

Table 2: Estimated hypoxic fraction for the rat brain model.
(≤ 1 mmHg) (≤ 3 mmHg) (≤ 5 mmHg)

Table 2 of [59] 7.4% 13.9% 20.2%
This model Lp = 0 9.0% 15.7% 22.1%
This model Lp 6= 0 9.0% 15.7% 22.1%

Finally, Figure 4 reports the variation of pO2
, Cv and Ctotv along the mi-

crovascular network. All these variables change significantly along the vessels.
As expected, they all decrease in average moving from the inflow to the net-
work’s outflow points. The first two are directly proportional due to Henry’s
law. The third one is connected to the previous through the saturation function,
and affected by H.

3.3 The sensitivity of oxygen distribution with respect to
vascular hematocrit and oxygen consumption
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Figure 4: Visualisation of pO2
, Cv and Ctotv along the microvascular network.

A sensitivity analysis for problem (1) has been addressed in a previoius work
[48]. There, the authors quantify the influence of some parameters of Table 1
(precisely Lp, σ, δπ,Hin among others) on the quantities pv, uv, pt,ut computed
by the model (1). Table 3 of [48] shows that the paramaters that determine
the fluid exchange between the blood and the interstitial fluid are among the
most relevant. Here, we complement the results of [48] with a much simpler
sensitivity study, relative to the parameters that regulate the oxygen transfer
from blood to tissue. We identify a parameter space made of two entries: (i)
the inlet hematocrit Hin that determines the inlet boundary conditions of (3)
(see [49] for more details) and (ii) the oxygen consumption rate in the tissue
Vmax. For simplicity, we only analyze the corner points of the parameter space,
which correspond to the four possible combinations of low/normal values of
Hin and Vmax. For the normal values of these parameters we take Hin =
50% and Vmax as in Table 1 (set #2). For low values, we divide both of a
factor 2. The cases Hin = 25% and Vmax/2 aim at representing a poorly
oxygenated and dysfunctional tissue, respectively, which could be considered
a typical vascularization in a tumor.

Besides analyzing the distribution maps of the oxygen partial pressure, we
report quantitative indicators such as (i) the blood flow rate at the inflow of
the vasculature, called IFR and measured in [mm3/s]; (ii) the oxygen flow rate
at the inflow, called IFRO2

measured in [mlO2
/s]; (iii) the net filtration rate of

plasma leaking through the vascular/tissue interface, called NFR, measured in
[µl/s]; (iv) the oxygen net filtration rate through the vascular/tissue interface,
named NFRO2

measured in [mlO2
/s] (i.e. the total net flux of oxygen crossing

the vascular wall); (v) and the interquartile range, named IQR of the calculated
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Table 3: Input and output values of the different scenarios. The input parame-
ters that are arbitrarily varied are reported in the first two columns. The other
columns show the calculated output values, as described in the text, see items
(i) to (vi).

Hin Vmax IFR IFRO2 NFR NFRO2 IQR pO2 M pO2

A 0.5 2.33E-03 1.80E-04 3.19E-08 7.55E-08 6.51E-09 13.25 12.28
B 0.5 1.17E-03 1.80E-04 3.19E-08 7.55E-08 3.70E-09 9.12 28.20
C 0.25 2.33E-03 3.31E-04 2.96E-08 7.44E-08 6.47E-09 12.98 11.80
D 0.25 1.17E-03 3.31E-04 2.96E-08 7.44E-08 3.69E-09 9.12 27.75

oxygen values (precisely the oxygen partial pressure pO2
sampled at the compu-

tational grid points and measured in [mmHg]) that is a measure of statistical
dispersion defined as the difference between 75th and 25th percentiles; (vi) the
median of the oxygen distribution at the same points measured in [mmHg]. The
IQR/median indicators are interesting because they evidence the variations of
the oxygen spatial distribution.

We have performed numerical simulations with the four different input val-
ues shown in the first two columns of Table 3. The output parameters (i)-(vi)
computed in these scenarios are reported in the remaining six columns. Fur-
thermore, to better visualize the correlations between inputs and outputs, we
have normalized each column with respect to the reference value of the first
row and plot the corresponding table in Figure 5. This figure shows that some
output variables are positively correlated with the inputs, some are negatively
correlated, and some are not significantly correlated. The interpretation of these
results will be discussed in the next section.

Finally, the oxygen partial pressure maps in the vasculature and the tissue
are visualized in Figure 5, together with the quantification of the indicators
described above.

4 Discussion

The results presented in the first and second part of the previous section con-
firm the validity of the proposed model, its numerical discretization, and the
corresponding software implementation. We remark that Krogh’s model relies
on different governing principles than ours. In particular, the endothelial resis-
tance to oxygen transfer is neglected and the equilibrium between the oxygen
radial concentration gradients and tissue consumption is directly enforced in the
model, rather than being a consequence of balance principles. Conversely, when
comparing the model with the results of [59], excellent quantitative agreement
is observed. Furthermore, the simulations of Table 2 confirm that the oxygen
transport from the microvessels to the interstitial tissue is diffusion dominated.

The third part of section 3, investigates the sensitivity of the proposed model
with respect to the main factors of the oxygen transfer pipeline, from the in-
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Figure 5: A graphical representation of Table 3 after normalization of the table
with respect to the first row, i.e. case A (for this reason all the columns in the
first row are equal to the unity).
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Figure 6: Visualization of the oxygen partial pressure maps in the vasculature
and in the tissue, in the four scenarios (named as A,B,C,D) of Table 3. Above
and below each case, we report the quantification of the indicators (i)-(vi) using
a bar-chart.
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put (i.e., the hematocrit level) to the output (i.e., the oxygen consumption).
From the visualization of Figure 5 we observe some important effects emerging
from the interaction of flow, hematocrit and oxygen transport that should be
discussed. We see that the blood inflow rate in the system is highly affected by
the variation of hematocrit, with a clear negative correlation. Keeping in mind
that the vascular pressure drop from inflow to outflow endpoints of the network
is fixed, this effect can be justified by the influence of hematocrit on viscosity.
However, we see that the corresponding oxygen inflow rate is much less sensitive
to decreasing the parameter Hin, as a proportional increase of IFR compensates
this variation. Looking at the net filtration rates through the vascular wall, we
observe an opposite behavior, as NFR is insensitive to the variation of the inputs
while NFRO2 positively correlates with Vmax. The more oxygen consumption
occurs in the interstitial volume, the more oxygen will cross the vascular/tissue
interface. Then, if we identify the oxygenation of the tissue with the mean value
(precisely the median) of the oxygen in the interstitial volume, we expect it to
be determined by the competition between the net flux to the tissue and the
oxygen consumption by the cell activity. The results of Figure 5 show that,
although their relative variation is comparable, the median of the oxygen dis-
tribution in the tissue is strongly affected by Vmax that clearly dominates over
NFRO2

. In other words, the availability of oxygen in the tissue turns out to
increase significantly when the oxygen consumption in the tissue is decreased.
Concerning the oxygen spatial distribution, quantified by IQRO2

and visualized
in the partial pressure maps of Figure 5, we see that it negatively correlates with
the oxygen median. Although the local oxygen distribution is strongly affected
by the vasculature geometry in agreement with previous studies [48], it appears
that low oxygen level scenarios exhibit stronger spatial gradients, while a more
uniform distribution characterizes scenarios with higher oxygenation.

In this work, we focused on the oxygen exchanges occurring at the microvas-
cular level. To this aim, we have considered the dissolved oxygen, its uptake
by the tissue, the interaction with the hemoglobin, and the effect of the mi-
crovascular network geometry. Such effects are considered among the most
important in this context [44]. Our model also embraces the Zweifach-Fung
effect [49, 52, 56], the influence of microvascular network geometry on the mi-
crovascular flow [48], and the effect of the pH and the partial pressure of carbon
dioxide on hemoglobin saturation, which are often considered when modeling
oxygen transport [5, 13, 28, 33, 62].

Recently, other phenomena have been considered to affect the oxygen trans-
port, such as the presence of other related species (nitric oxide, superoxide,
myoglobin) [9, 44], the erythrocyte-associated transient fluctuation of pO2

[44],
the vasomotor regulation [39, 44], and involvement of arterioles in oxygen ex-
changes [39]. However, for some of these other phenomena, the mechanism and
the role in oxygen transport are still debated, for this reason we don’t address
them in the proposed model yet.

4.1 Impact of the model on radiotherapy
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Concerning future application to radiotherapy, the hypoxic condition charac-
terizes many solid cancers [69]. Hypoxia is known to characterize aggressive and
immunosuppressive tumors, being associated with genomic instability, apopto-
sis, angiogenesis, metastasis and invasion, and metabolic reprogramming [35].
Further, the oxygen effect, highlighted in preclinical studies, is of particular rel-
evance for radiotherapy, resulting from oxygen’s chemical properties [18, 55, 1].
For cells subjected to ionizing radiation, double-stranded breaks in the DNA
helix represent the main lethal event. These breaks are the consequences of
the direct effect of radiation depositing its energy on DNA strands and of the
indirect effect of free radicals resulting from the radiolysis of water. The more
oxygen is present in the cell at the time of irradiation, the more it will intervene
in the radical cascade by amplifying the cytotoxic effect. The presence of oxy-
gen stabilizes free radicals causing DNA damage and reduces the tumor cell’s
ability to repair it, e.g. three-fold higher dose is required to kill some hypoxic
cell lines. During fractionated radiotherapy, the situation becomes more com-
plex because reoxygenation occurs between fractions, with some hypoxic cells
reacquiring radiosensitivity [2]. Nevertheless, radiotherapy planning aims to
deliver and certificate a homogeneous physical absorbed dose to the target vol-
ume, ignoring that oxygen distribution within the tumor microenvironment is
not homogeneous, so the effective dose (in terms of DNA damage). Not surpris-
ingly, clinical evidence points to the same direction with anemia identified as an
adverse prognostic factor in cancer patients receiving radiotherapy. Hemoglobin
levels in the patient (in the past), and low oxygen partial pressures in tumor
tissues (nowadays) were also found to be predictive of local failure/poor prog-
nosis after radiotherapy in hematological malignancies and many solid tumors
[22, 10, 66, 63, 43, 19, 8, 40, 38, 27, 70]. This peculiar role of the oxygen effect
prompted examining many approaches to circumventing hypoxia’s therapeutic
resistance. Alleviating hypoxia may delay cancer progression and improve re-
sponse to oncological treatments. Hypoxia targeting methods are a very active
area of preclinical and clinical research and include strategies to increase oxygen
delivery or decrease tumor cells’ consumption.

Our model has the ability to analyze the spatial distribution of the oxygen
pressure deducing from different scenarios the importance of biological, mechan-
ical and fluid dynamic parameters in the consequent hypoxia condition within
the 3D vascularized tissue. Our results are in agreement with the mathemat-
ical model presented in [58]. Authors found that hypoxia (hypoxic fraction of
tissue pO2

< 3mmHg) can be abolished by reducing the consumption rate of
30%, while the same aim can be reached with an increase of factor 4 in flow
rate, or still by a factor 11 in inlet pO2

. Similarly, we found that, as a conse-
quence of reducing the consumption rate of 50%, the volume fraction with pO2

< 5mmHg almost disappears, while a 2 fold variation in hematocrit induced
a limited change in hypoxic volume. Thus, the results suggest that reducing
oxygen consumption rate, e.g., by inhibiting the tumor mitochondrial respira-
tion [14], may be more effective than improving oxygen content, interpreting
the lack of agreement among clinical studies aiming to improve oxygen delivery.
Alternative strategies have to be applied when hypoxia cannot be suppressed, or
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oxygen consumption rate is too elevated. Optimal dose fractionation schemes,
high linear energy transfer radiation (LET), not sensitive to oxygen distribu-
tion), and dose painting following hypoxia indications from diagnostic imaging
are the most promising [11, 36].

4.2 Clinical applications for radiotherapy and limitations
of an oxygen transfer model

A number of factors associated with the tumor microenvironment can contribute
to the probability of local tumor control after fractionated RT. These factors
have been summarized in the early phase of preclinical radiobiology by Withers
as ”the four Rs of Radiotherapy”[21]: recovery from sublethal damage, cell-cycle
redistribution, cellular repopulation and tumor reoxygenation. Successively,
Steel has suggested intrinsic cellular radiosensitivity as a fifth ”R” to account
for the different tolerance of tissues to fractionated irradiation [64]. Reasonably,
when we refer to clinical studies, radiosensitivity could be considered as the
only ”R” of radiotherapy, including all other mentioned effects. The estimated
radiobiological parameters (e.g. the α/β ratio [67]) are an average effect which
mixes multiple tumor phenotypes (different cellular radiosensitivities, different
repopulations and repair capabilities), treatment schedules (cell cycle phases)
and patients’ vasculature system (oxygen effect).

Among the four “Rs”, oxygenation is currently the most promising to be
addressed with clinical intervention and the unique strictly related to:

• the tumor; the chaotic level of the capillary network within the tumor
mass can lead to a major state of tumor resistance. Clinical application in
the field are favored by recent results with non-invasive imaging hypoxia
detecting approaches that have allowed longitudinal evaluations on oxy-
gen spatial and temporal changes throughout therapy. A computational
model can be considered to help the interpretation of the measured oxygen
distribution and to possibly design clinical strategies (e.g., dose painting
[20]).

• the patient; we can quantify and differentiate among several levels of oxy-
genation even within the same type of tumor. The patient status can be
modified by local or systemic approaches, improving tumor oxygenation
and leading to better efficacy of the RT. A computational model can be
applied to consider the effect of a systemic intervention that acts on blood
pressure and oxygen concentration. A possible clinical aim could be iden-
tifying parameters that make reasonable and sufficient specific local or
systemic intervention on the cardiovascular network or on the angiogenic
factors.

• the source of radiation; if the previously describerd approaches could not
be considered to improve the RT efficacy, we can act on the radiation type.
Particularly, high-LET irradiation can be used to reduce the relevance
of tumor hypoxia. The coupling of a biological model for considering
the cell survival probability in a tumor tissue could be considered in a
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computational model. A feasibility study to evaluate through a combined
model the efficacy of photons, protons and carbon ions irradiation on a 3D
tumor tissue irrorated at different capillary densities (thus different pO2

concentrations) has been performed by our group [53].

The presented computational model can be considered as a tool for im-
proving the understanding of radiotherapy resistance due to the oxygen con-
centration within the tumor tissue and its microenvironment. Neglecting the
other abovementioned effects (i.e., recovery from sublethal damage, cell-cycle
redistribution, cellular repopulation and cellular intrinsic radiosensitivity) is a
limitation of the model. The explicit focus of this study is to show the possible
role of oxygenation in tumor progression and response to therapies to improve
the clinicians’ awareness to the topic and favor the spread of an “oxygen met-
ric” that should be considered along with the cancer staging and tumor volume
when planning the radiotherapy treatment.

5 Conclusions

We conclude that the oxygenation of the vascular microenvironment is a mul-
tifactorial quantity, where each factor reacts differently to the chosen variation
of the inputs. Among these factors, the oxygen consumption rate seems to be
the one with the most substantial influence on the tissue’s oxygenation. As
addressed in the introduction, hypoxic cancer results in less sensitivity to both
radiotherapy and chemotherapy. The effectiveness of such approaches has to be
validated in clinical studies. However, many aspects could be profitably studied
in-silico, using computational models that can consider the main features of re-
alistic tumors (the geometry of the vasculature, pO2

gradients, heterogeneity of
pO2

, oxygen consumption) and the processes of interest for radiotherapy (effects
of fraction size, effects of different radiotherapy fractions, effects of LET) [11].
Computational modeling brings into the arena its peculiar ability to investi-
gate the specific impact of factors that cannot be separated in the experimental
setting.

The computational model presented here can be effectively used in this
framework. It can quantitatively describe the microvascular oxygen transfer,
taking into account effects at the tissue microenvironment and allowing for the
description of spatial heterogeneity. Easy-to-tune boundary conditions and low
computational burden make it suitable to describe different interest scenarios
for radiotherapy, such as pO2

levels in various histologies/risk classes, the ef-
fect of subsequent doses of radiotherapy, of different fraction size and radiation
quality. The model already includes the possibility of mass transfer [3], which
opens to its use in scenarios of combined oncological therapies involving both
drugs and radiotherapy. Understanding the effect of radiotherapy on tumor
vasculature functionality would be essential to maximize combined treatments’
effectiveness.
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6 Numerical discretization and solvers

6.1 Treatment of non-linear terms

The 3D-1D oxygen transport model consists of a non-linear system of partial
differential equations. The model presents two relevant non-linear terms: the
Michaelis-Menten formula and the oxyhemoglobin concentration as function of
the saturation of RBCs. In the presence of non-linear terms, iterative methods
are used to solve the problem. In practice, the solution at iteration k is computed
as a correction of the solution at the previous iteration k−1, until an error metric
is small enough to be less than a given threshold. Here, we apply a fixed point
method to linearize the system of equations by evaluating the reaction term
in the tissue and the oxyhemoglobin concentration in the micro-vessels at the
previous iteration. More precisely, we define the new coefficient, Ψ(k−1) as the
oxyhemoglobin concentration at the previous iteration:

Ψ(k−1) = k1 H

(
C

(k−1)
v

)γ−1

(
C

(k−1)
v

)γ
+ k2

(23)

Such formulation of the oxyhemoglobin term highlights the effect of the trans-
port of free oxygen with respect to the bound-hemoglobin oxygen. Then, the
blood velocity can be re-written as follows:

u(k−1)
v = uv (1 + Ψ(k−1)); (24)
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Using (23) and (24), the linearized model is:

∇ ·
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−Dt∇C(k)

t + ut C
(k)
t

)
+ Vmax

C
(k)
t

C
(k−1)
t + αt pm50

=
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2πR PO2(C
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t

2

)
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−Dv
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v

∂s
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v C(k)
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= −2πR PO2

(C
(k)
v − C(k)

t ) + (1− σO2
)

(
C(k)
v +C

(k)
t

2

)
φv on Λ ,

(25)

complemented with the same initial and boundary conditions of (13).

6.2 Numerical approximation

The discretization of problem is achieved by means of the finite element method.
One of the main advantages of our formulation is that the partitions of Ω and
Λ are completely independent. For this reason we address the two approxima-
tions separately. We denote with T an admissible family of partitions of Ω into
tetrahedrons K, namely Ω =

⋃
K∈T ht

K, that satisfies the usual conditions of
a conforming triangulation of Ω. Here, h denotes the mesh characteristic size,
i.e. h = maxK∈T ht kK , being hK the diameter of K. Moreover, we are implicitly
assuming that Ω is a polygonal domain. The solutions of the weak problem
are approximated using continuous piecewise-polynomial finite elements for the
concentration, in particular we have Y hk := {fh ∈ C0(Ω), fh|K ∈ Pk(K) ∀K ∈
T ht }, for every integer k ≥ 0, where Pk indicates the standard space of polyno-
mials of degree ≤ k in the variables x = (x1, . . . , xd).

Concerning the capillary network, we discretize the network branches as
separate sub-domains. Each branch Λi is approximated by a piecewise lin-
ear 1D line, denoted with Λhi . More precisely the Λhi is a partition of the
i-th network branch made by a sufficiently large number of segments, named
S ⊂ Λhi . The solution of (22) over a given branch Λhi is approximated us-
ing continuous piecewise-polynomial finite element spaces, precisely Xh

k (Λ) :=
{gh ∈ C0(Λ), gh|S ∈ Pk (S) ∀S ∈ Λh}, for every integer k ≥ 0. The discrete
formulation arising from (22) is easily obtained by projecting the equations on
the discrete spaces Qht = Y hk (Ω) and Qhv = Xh

k (Λ) for k ≥ 0.

6.3 Algebraic formulation

In order to calculate the numerical solution of the problem, let us introduce the
algebraic formulation of the complete problem. It is worth nothing that the
problem has been linearized, so the resulting linear system has to be solved at
each step of the fix-point method previously addressed.

The number of degrees of freedom (DOFs) of the discrete spaces Qht and Qhv
is Nh

t = dim(Qht ) and Nh
v = dim(Qhv ) and the finite elements basis function,
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ϕ are {ϕit}
Nht
i=1 for Qht and {ϕjv}

Nhv
j=1 for Qhv . Then, the numerical solution

for the oxygen concentration can be written as a linear combination of those

basis functions Cht (x) =

Nht∑
i=1

ct
h,i(k)

ϕit(x), ∀x ∈ Qht Chv (s) =

Nhv∑
j=1

cv
h,j(k)

ϕjv(s).

Substituting these expressions in the weak discrete problem and exploiting the
linearity of the inner product, we obtain the following linear system for each
iterative step:[

Dt + At + Rt + Btt Btv
Bvt Dv + Av + Bvv

] [
Ch(k)

t

Ch(k)

v

]
=

[
Ft
Fv

]
. (26)

The submatrices and subvectors in (26) are defined as follows:

[Dt]ij := (D∗t ϕjt ,ϕ
i
t)Ω + (βtϕ

j
t ,ϕ

i
t)∂ΩMIX , Dt ∈ RN

h
t ×N

h
t ,

[At]ij := (ut
h · ∇ϕjt ,ϕit)Ω + (∇ · ut

h ϕjt ,ϕ
i
t)Ω, At ∈ RN

h
t ×N

h
t ,

[Rt]ij := (
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C
h,(k−1)
t +KM
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i
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h
t ×N

h
t ,
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∂ϕiv
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v×N
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v ,
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v

∂ϕjv
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v
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v ,

+ (πR∗2 βvϕ
j
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i
v)∂ΛOUT ,

[Btt]ij := −(2πR∗[P ∗l +
L∗p
2

(1− σoxy) P (Pv − Pt − σ∆π)]ϕjt ,ϕ
i
t)Ω, Btt ∈ RN

h
t ×N
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t ,

[Btv]ij := +(2πR∗[P ∗l +
L∗p
2

(1− σoxy) P (Pv − Pt − σ∆π)]ϕjt ,ϕ
i
v)Ω, Btv ∈ RN

h
t ×N

h
v ,

[Bvv]ij := −(2πR∗[P ∗l +
L∗p
2

(1− σoxy) P (Pv − Pt − σ∆π)]ϕjv,ϕ
i
v)Ω, Bvv ∈ RN
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v×N

h
v ,

[Bvt]ij := +(2πR∗[P ∗l +
L∗p
2

(1− σoxy) P (Pv − Pt − σ∆π)]ϕjv,ϕ
i
t)Ω, Bvt ∈ RN
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[Ft]i := −(βt c0,t ϕ
i
t)∂ΩMIX , Ft ∈ RN

h
t ,

[Fv]i := −(πR∗2 βv c0,v ϕiv)∂ΛOUT , Fv ∈ RN
h
v ,

Where u∗v is:

u∗(k−1)
v = uv (1 + k1 H

C
(k−1)γ−1

v

C
(k−1)γ

v + k2

)

7 Additional results on bifurcations and anasto-
moses

For the purpose of validation, in particular for the behavior of the model in
proximity of bifurcations and anastomoses, we present here the following results.
The geometrical model consists of a Y-shaped configuration, where all branches
have the same length. The radii of the daughter branches are calculated on the
basis of the Murray’s law: R3

in0
' R3

out1 + R3
out2 , where index (0) denotes the

parent vessel and (1), (2) are the daughter channels for the bifurcation case,
while for the anastomosis the flow direction is reversed. In particular, the radii
are Rin0

= 6 µm, Rin1
= 4 µm and Rout2 = 5 µm.

The characteristic parameters have been set according to [49], and Table
1. As boundary conditions for the fluid dynamics problem and hematocrit
transport, we set an inlet pressure of 32 mmHg and an inlet hematocrit value
at 0.45, then, at the outlet we set an outlet pressure of 28.5 mmHg. We set a
Neumann condition for all the tissue faces and the outlet of the vessel, instead,
we imposed a Dirichlet condition set to Cvin at the inlet.

For what concerns the oxygen transport simulations, the results are reported
in Figure 7. We see that the free oxygen concentration is a continuous quantity
at the junction. As discussed before, this property indirectly enforces the mass
balance constraint. The free oxygen concentration varies between the daughter
branches according to the 10% variation of the radius. For example, taking
into account the lower branch, the oxygen tends to diffuse more easily due to a
decreasing in velocity. It is interesting to analyze also the the variation along the
branches of oxyhemoglobin, CHbO2 , which jumps from one branch to another,
due to the linear dependence of the hematocrit, which is also discontinuous at
junctions.

For the anastomosis simulation, the flow is reversed by switching the inlet
and outlet conditions and maintaining the same pressure drop as for the bifur-
cation. Precisely, we set Cvin as Dirichlet conditions at the two inlets of the
vessels and Neumann condition at the single outlet of the anastomosis; we im-
posed a Neumann condition for all faces of the tissue domains. We simulate a
particular case where the hematocrit is set at different values at the inlet of the
anastomosis, namely, H0 = 0.35 (lower branch) and H1 = 0.45 (upper branch).
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Figure 7: Oxygen concentration along the parent and daughter branches. The
red curve is the concentration in bifurcation inlet, the blue curve is the up-
per branch and the green curve is the lower branch. On the top left panel we
show the free concentration Cv and on the top right panel we report the oxyhe-
moglobin, CHbO2

. The corresponding results for the anastomosis are reported
on the bottom panel.

As shown in figure 7 (bottom panel), the free oxygen concentration has a
non-monotone trend in the lower branch. This fact can be interpreted observing
that the fluid moves with different velocity in the two branches, and so the Péclet
number changes. More precisely, the lower branch has a lower Péclet number,
due to the lower flow rate. For this reason, Cv features a higher gradient along
the vessel axis, but however the continuity of the concentration profile must
be restored at the junction, giving rise to a slight increase of the concentration
value with respect to the inner part of the lower branch. The oxyhemoglobin
concentration has a similar trend than for the bifurcation, although it is slightly
affected by the variation of Cv.
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