

MOX-Report No. 85/2023

Computationally efficient techniques for Spatial Regression with Differential Regularization

Arnone, E.; De Falco, C.; Formaggia, L.; Meretti, G.; Sangalli, L.M.

MOX, Dipartimento di Matematica
Politecnico di Milano, Via Bonardi 9-20133 Milano (Italy)

COMPUTATIONALLY EFFICIENT TECHNIQUES FOR SPATIAL REGRESSION WITH DIFFERENTIAL REGULARIZATION

ELEONORA ARNONE*, CARLO DE FALCO ${ }^{\dagger}$, LUCA FORMAGGIA ${ }^{\dagger}$, GIORGIO MERETTI ${ }^{\dagger}$, AND LAURA M. SANGALLI ${ }^{\dagger}$

Abstract

We investigate some computational aspects of an innovative class of PDE-regularized statistical models: Spatial Regression with Partial Differential Equation regularization (SR-PDE). These physics-informed regression methods can account for the physics of the underlying phenomena and handle data observed over spatial domains with nontrivial shapes, such as domains with concavities and holes or curved domains. The computational bottleneck in SR-PDE estimation is the solution of a computationally demanding linear system involving a low-rank but dense block. We address this aspect by innovatively using Sherman-Morrison-Woodbury identity. We also investigate the efficient selection of the smoothing parameter in SR-PDE estimates. Specifically, we propose ad hoc optimization methods to perform Generalized Cross-Validation, coupling suitable reformulation of key matrices, e.g., those based on Sherman-Morrison-Woodbury formula, with stochastic trace estimation, to approximate the equivalent degrees of freedom of the problem. These solutions permit high computational efficiency also in the context of massive data.

Key words. Smoothing, semiparametric regression with roughness penalties, functional data analysis, spatial data analysis, Sherman-Morrison-Woodbury identity, stochastic trace estimation

AMS subject classifications. $62 \mathrm{G} 05,62 \mathrm{G} 08,65 \mathrm{D} 10$

1. Introduction. This paper deals with some computational aspects of a novel class of statistical models: Spatial Regression with Partial Differential Equation regularization (SR-PDE) [see, e.g., the review in Sangalli, 2021]. These models can handle spatial and functional data with possibly complicated shapes, observed over multidimensional domains. SR-PDE constitutes a new addition to an extremely versatile category of semiparametric and nonparametric methods, extensively used in applications, and based in turn on smoothers such as univariate and multivariate splines, thin-plate splines and spherical splines [see, e.g., the textbooks by Wahba, 1990, Green and Silverman, 1994, Ruppert et al., 2003, Wood, 2017, Wang, 2019, and references therein], and more recently on soap film smoothing [Wood et al., 2008] and on bivariate-splines over triangulations [Lai and Schumaker, 2007, Baramidze et al., 2006, Lai and Wang, 2013, Wang et al., 2020]. The essential form of the estimation problem considered by these methods consists in the minimization of a regularized least-square functional, where the regularization involves suitable (partial) differential operators. In particular, the regularizing term in SR-PDE involves a partial differential equation that encodes the available problem-specific information about the phenomenon under study. Such PDE is defined over the spatial domain over which the data are observed, which may display a non-trivial geometry and non-Euclidean features, such as concavities and holes, or a folded nature. Figure 1, for instance, illustrates the modeling of a neuroimaging signal observed over the cerebral cortex. Here the cortex, represented by a two-dimensional Riemannian manifold and suitably approximated by a triangular mesh, constitutes the domain over which the data, i.e., the neuroimaging signal, are observed. The method is designed to provide estimates in the context of massive datasets over domains approximated by meshes having thousands of nodes (as for instance the mesh representing the cortical surface of the brain, involving
[^0]Corresponding author: Laura M. Sangalli, laura.sangalli@polimi.it

Fig. 1: The figure on the left represents the cortical surface of the brain's left hemisphere, represented by a triangular mesh with approximately 32000 nodes; the area highlighted in yellow is the cuneus. The figure on the right represent a functional connectivity map, with respect to the cuneus, for an healthy subject; this map, extracted from a functional magnetic resonance imaging scan, indicates the regions of the cortex more highly connected with the cuneus. SR-PDE permits to analyse this signal, appropriately accounting for the non-trivial geometry of the cortical surface.

We first focus on efficient solutions for SR-PDE estimation problems. This problem is discretized by means of finite elements over triangular meshes that approximate the spatial domain of interest. After discretization, the estimation problem reduces to the solution of a linear system, which may involve a low-rank but dense block, when covariates are included in the model. In particular, numerical simulations show that the cost of this operation is approximately linear in the number of mesh nodes when a purely nonparametric model is considered (i.e., in the absence of covariates), but is super-linear when a semiparametric model is used to account for covariate information. Standard techniques, such as those usually employed in classical semiparametric contexts, based for instance on smoothing splines and thin-plate splines [see, e.g., Wahba, 1990, Hastie and Tibshirani, 1990, Green and Silverman, 1993, Wood, 2017], exploit the band-limited representations of the key matrices involved in these splines representations. Unfortunately, the usage of finite elements in SR-PDE produces sparse but not intrinsically banded systems. In general, the sparsity degree of the system matrix and the pattern of its non-zero entries depends on the geometry of the mesh and on node ordering. For this reason, here we derive ad hoc efficient solutions to address semiparametric SR-PDE problems. These are based on numerical linear algebra methods, such as appropriate reformulations of the estimation problem based on Sherman-Morrison-Woodbury (SMW) formula [Sherman and Morrison, 1950, Woodbury, 1950]. These solutions dramatically decrease the computational cost, enabling the use of SR-PDE with massive datasets and large meshes.

We hence focus on an efficient selection of the smoothing parameter that trades off data fidelity and regularity of SR-PDE estimates. An appropriate selection of this
smoothing parameter is indeed crucial to obtain meaningful estimates. The value of the smoothing parameter is here selected via minimization of Generalized CrossValidation ($G C V$), a well-established performance criterion for automatic parameter tuning, first conceived by Craven and Wahba [1978/79] and Golub et al. [1979], in classical smoothing settings. Unfortunately, the evaluation of $G C V$ is computationally demanding. Indeed, it requires the computation of the trace of the so-called smoothing matrix, whose expression in turns involves the inversion of a large and partly dense matrix. The trace estimation problem has been investigated in the classical context of smoothing spline regression [see, e.g., Bates and Wahba, 1983, Hutchinson and de Hoog, 1985, 1986/87, Utreras, 1981], but always taking advantage of bandlimited representations of spline matrices, which are instead unavailable for SR-PDE. Inspired by the work of Hutchinson [1989], we here propose to estimate the trace of the smoothing matrix via Monte-Carlo approximation. In particular, we managed to combine the Hutchinson estimator with the SMW reformulation of the estimation problem, thus drastically reducing the time required for the calculation of $G C V$. The resulting algorithm is then incorporated in a Newton-type optimization based on finite differences. This automatizes the selection of the smoothing parameter and efficiently locates the optimal one.

The present paper is structured as follows. Section 2 provides a self-contained description of the fundamental SR-PDE estimation problem. For simplicity of exposition, we focus here on the most basic formulation of SR-PDE; we briefly discuss the numerical discretization of the estimation problem and the resulting linear system whose solution produces the SR-PDE estimator. Section 3 studies numerical linear algebra solutions, based on SMW matrix identity, to speed up the resolution of the system presented in Section 2. The differences in execution times are highlighted in Section 4, where we compare the proposed approach based on the identity of the SMW matrix with the standard solution to the estimation problem based on sparse LU decomposition, as well as to solution based on iterative methods. The following sections focus on $G C V$ computation. Section 5 introduces the concept of equivalent degrees of freedom (edf) for $G C V$ evaluation and proposes an innovative SMW-based stochastic estimator to speed up their computation. Section 6 reports a simulation study that shows the performance of the method proposed in Section 5. In Section 7 we apply SR-PDE to the study of neuronal connectivity on the cerebral cortex, showing the high level of complexity that the methodology is able to consider, thanks to the computationally efficient strategies investigated in this work. Section 8 briefly outlines some more complex SR-PDE estimation problems; such modeling extensions, for instance, to space-time data, are already implemented in the fdaPDE library, and exploit the efficient computational techniques here described, suitably adapted to these more general model settings.
2. Background. Let Ω be a two-dimensional domain, and, for simplicity of exposition, assume $\Omega \subset \mathbb{R}^{2}$, with boundary $\partial \Omega \in \mathcal{C}^{2}$. We will later comment on the case where Ω is a two-dimensional manifold. Let $\left\{\mathbf{p}_{i}=\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n} \in \Omega$ be a finite set of known locations. At each point \mathbf{p}_{i}, a noisy evaluation $z_{i} \in \mathbb{R}$ of a variable of interest is available. Moreover, a q-dimensional vector of deterministic covariates $\mathbf{w}_{i}=\left(w_{i 1}, \ldots, w_{i q}\right)^{\top}$ is also observed. We assume that the data generation process satisfies a semiparametric model with additive error:

$$
z_{i}=\mathbf{w}_{i}^{\top} \boldsymbol{\beta}+f\left(\mathbf{p}_{i}\right)+\varepsilon_{i}, \quad i=1, \ldots, n,
$$

where $\boldsymbol{\beta} \in \mathbb{R}^{q}$ is a vector of regression coefficients, $f: \Omega \rightarrow \mathbb{R}$ is a twice-differentiable deterministic field, and $\left\{\varepsilon_{i}\right\}_{i=1}^{n}$ are independent random errors, also called residuals, with zero mean and constant variance σ^{2}. Both $\boldsymbol{\beta}$ and f are unknown, and their estimation is ill-posed without further assumptions. The SR-PDE approach proposes to estimate the couple $(f, \boldsymbol{\beta})$ by minimizing the following penalized sum-of-squareerror functional, trading off data-fidelity and model-fidelity:

$$
\begin{equation*}
J_{\lambda}(\boldsymbol{\beta}, f)=\sum_{i=1}^{n}\left(z_{i}-\mathbf{w}_{i}^{\top} \boldsymbol{\beta}-f\left(\mathbf{p}_{i}\right)\right)^{2}+\lambda \int_{\Omega}(\mathcal{L} f-u)^{2}, \tag{2.1}
\end{equation*}
$$

where $\lambda>0$ is a tuning parameter. The regularizing term involves a $\operatorname{PDE}, \mathcal{L} f=u$, that encodes the available problem-specific information. In particular, \mathcal{L} is a secondorder, linear differential operator with known, smooth, bounded coefficients, possibly spatially varying in Ω, of the form:

$$
\mathcal{L} f=-\operatorname{div}(K \nabla f)+\mathbf{b} \cdot \nabla f+c f
$$

$K \in \mathbb{R}^{2 \times 2}$ is a bounded symmetric and positive definite diffusion tensor, $\mathbf{b} \in \mathbb{R}^{2}$ is a bounded transport vector and $c \geq 0$ a reaction factor. The PDE parameters K and \mathbf{b} are convenient tools to model anisotropic effects. Moreover, they can vary over Ω, thus modeling nonstationarity. Further flexibility is enabled by the forcing term $u \in L^{2}(\Omega)$. The problem-specific information may also concern the conditions that f satisfies at the boundary of the domain: $\mathcal{B}_{c} f=\gamma$ on $\partial \Omega$. \mathcal{B}_{c} indicates the linear operator that implements Dirichlet, Neumann or Robin boundary conditions, or a combination of the three [see, for a complete treatment of boundary conditions, Azzimonti et al., 2014]. The higher the parameter λ, the stronger the PDE regularization. Conversely, if λ is chosen small, the solution is more adapted to the data. When no knowledge on the phenomenon under investigation is available, isotropic smoothing can be obtained by setting $\mathcal{L}=\Delta$ (the Laplacian operator) and $u=0$.

Let $H^{2}(\Omega)$ denote the Sobolev space of twice differentiable functions with two distributional derivatives in $L^{2}(\Omega)$. We estimate $(\boldsymbol{\beta}, f)$ minimizing Equation (2.1) in $\mathbb{R}^{q} \times V_{\gamma}(\Omega)$, where $V_{\gamma}(\Omega)$ is a suitable subset of $H^{2}(\Omega)$, made of functions compliant with the boundary conditions:

$$
V_{\gamma}(\Omega)=\left\{f \in H^{2}(\Omega): \mathcal{B}_{c} f=\gamma\right\} .
$$

The estimation problem is formalized as follows.
$\operatorname{Problem} 2.1$. Find $(\hat{f}, \hat{\boldsymbol{\beta}}) \in V_{\gamma}(\Omega) \times \mathbb{R}^{q}$ such that

$$
(\hat{f}, \hat{\boldsymbol{\beta}})=\underset{(f, \boldsymbol{\beta}) \in V_{\gamma}(\Omega) \times \mathbb{R}^{q}}{\arg \min } J_{\lambda}(\boldsymbol{\beta}, f)
$$

We denote by $\mathbf{z}=\left(z_{1}, \ldots, z_{n}\right)^{\top}$ the vector of observations at the locations and by 1_{n} the vector of \mathbb{R}^{n} composed of ones. Then, we define the design matrix $W=$ $\left[w_{i j}\right] \in \mathbb{R}^{n \times q}$, whose i-th row is \mathbf{w}_{i}^{\top}. We assume $q<n$ and that W is full-rank. We also assume that $\mathbf{1}_{n} \notin \operatorname{Range}(W)$. This condition is standard in the semiparametric regression framework since the constant term, i.e., the intercept of the regression model, is already included in the nonparametric term f. Let H be the projection matrix onto the image of $W, \operatorname{Im}(W)$, and Q the projector onto $\operatorname{Im}(W)^{\perp}$, i.e.,

$$
\begin{equation*}
H=W\left(W^{\top} W\right)^{-1} W^{\top}, \quad Q=I_{n}-H \tag{2.2}
\end{equation*}
$$

where I_{n} is the $n \times n$ identity matrix. Note that $W^{\top} W$ is invertible thanks to the fact that $q<n$ and W is full-rank.

The minimization problem is well posed under mild regularity conditions on the differential operator \mathcal{L} and the boundary conditions [see, e.g., Azzimonti et al., 2014], and \hat{f} satisfies the following fourth-order variational problem:

$$
\begin{equation*}
\mathbf{v}_{n}^{\top} Q \hat{\mathbf{f}}_{n}+\lambda \int_{\Omega}(\mathcal{L} v)(\mathcal{L} \hat{f})=\mathbf{v}_{n}^{\top} Q \mathbf{z}+\int_{\Omega} u(\mathcal{L} v), \quad \forall v \in V(\Omega) \tag{2.3}
\end{equation*}
$$

where $\hat{\mathbf{f}}_{n}=\left(\hat{f}\left(\mathbf{p}_{1}\right), \ldots, \hat{f}\left(\mathbf{p}_{n}\right)\right)^{\top}$ and $\mathbf{v}_{n}=\left(v\left(\mathbf{p}_{1}\right), \ldots, v\left(\mathbf{p}_{n}\right)\right)^{\top}$ are the vectors obtained evaluating \hat{f} and v at the n data locations.

Here, we have introduced SR-PDE, assuming Ω is a two-dimensional planar domain. However, Lila et al. [2016], Ettinger et al. [2016], Wilhelm and Sangalli [2016] extended the methodology to the case where Ω is a two-dimensional Riemannian manifold embedded in a 3D space, such as in the case of the neuroimaging data in Figure 1 , where Ω is the cortical surface. In this case, the estimation functional to be minimized is similar to the one in Equation (2.1), with the regularizing term replaced by $\lambda \int_{\Omega}\left(\Delta_{\Omega} f(\mathbf{p})\right)^{2}$, where Δ_{Ω} is the Laplace-Beltrami operator associated with Ω [see, e.g., Sario et al., 1977, Chapter 2]. The Laplace-Beltrami operator is the most natural generalization of the concept of Laplacian for fields defined over surfaces embedded in a 3 D space. Its involvement in the regularizing term is meant to penalize the local curvature of f, in a way that complies with the curved nature of the domain and is independent from the specific coordinate system used to describe it. The discretization of the estimation problem is analogous to the case of the planar domain [see, e.g., Lila et al., 2016]. For this reason, in the following, we will, for simplicity, continue the exposition assuming Ω is a planar domain.
2.1. Discretization of the estimation problem. To approximate the solution, we resort to numerical discretization. To this end, we characterize Equation (2.3) using lower-order expressions. For clarity of exposition, we present the discretization for homogeneous Neumann boundary conditions, that is $\mathcal{B}_{c} f=\frac{\partial f}{\partial n}=0$ on $\partial \Omega$. Nevertheless, we point out that fdaPDE library also implements homogeneous Dirichlet, nonhomogeneous Dirichlet and mixed conditions, as detailed in Azzimonti et al. [2014]. First, we decouple (2.3) as an equivalent second-order variational system [see, e.g., Azzimonti et al., 2014]. Let a be the following bilinear form associated with operator $\mathcal{L}: a(f, v)=\int_{\Omega}[K \nabla f \cdot \nabla v+(\mathbf{b} \cdot \nabla f) v+c f v]$. The mixed weak formulation of (2.3) becomes: let $V=\left[V(\Omega) \cap \mathcal{C}^{0}(\bar{\Omega})\right] \times H^{1}(\Omega)$ and find $(\hat{f}, \hat{g}) \in V$ such that

$$
\begin{cases}\mathbf{v}_{n}^{\top} Q \hat{\mathbf{f}}_{n}+\lambda a(\hat{f}, v)=\mathbf{v}_{n}^{\top} Q \mathbf{z} & \forall v \in V \\ -\int_{\Omega}(\hat{g} w)+a(\hat{f}, w)=\int_{\Omega}(u w) & \forall w \in V\end{cases}
$$

Let \mathcal{T} be a triangulation of Ω and let $\Omega_{\mathcal{T}}$ be the union of the triangles in \mathcal{T}. We denote by \mathbb{P}_{r} the space of polynomials of maximal order $r \in \mathbb{N}_{0}$ with $r \geq 1$, and we consider the finite element space of globally continuous, piecewise polynomial functions:

$$
V_{\mathcal{T}}^{r}(\Omega)=\left\{\mathbf{v}_{h} \in C^{0}\left(\overline{\Omega_{\mathcal{T}}}\right):\left.\quad \mathbf{v}_{h}\right|_{T} \in \mathbb{P}_{r}, \forall T \in \mathcal{T}\right\}
$$

Let $\boldsymbol{\psi}=\left(\psi_{1}, \ldots, \psi_{N}\right)^{\top}$ be the set of Lagrangian basis functions associated with the nodes $\left\{\xi_{1}, \ldots \xi_{N}\right\}$ of $\Omega_{\mathcal{T}}$. Clearly, $V_{\mathcal{T}}^{r}(\Omega)=\operatorname{span}\{\boldsymbol{\psi}\}$, therefore, any $v_{\mathcal{T}} \in V_{\mathcal{T}}^{r}(\Omega)$ can be expressed as $v_{\mathcal{T}}(\mathbf{p})=\boldsymbol{\psi}(\mathbf{p})^{\top} \mathbf{v}$, where $\mathbf{v}=\left(v_{1}, \ldots, v_{N}\right)^{\top} \in \mathbb{R}^{N}$ is a vector that
collects the projections of $v_{\mathcal{T}}$ onto the basis. In particular, due to the Lagrangian property, we have $v_{i}=v_{\mathcal{T}}\left(\boldsymbol{\xi}_{i}\right)$.

Let $\Psi=\left[\Psi_{i j}\right]=\left[\psi_{j}\left(\mathbf{p}_{i}\right)\right]$ be the matrix $n \times N$ whose entry $i j$-th is the evaluation of the j-th basis function at the i-th spatial location. Moreover, let us consider the $N \times N$ matrices

$$
R_{0}=\int_{\Omega_{\mathcal{T}}} \boldsymbol{\psi} \boldsymbol{\psi}^{\top} \quad \text { and } \quad R_{1}=\int_{\Omega_{\mathcal{T}}}\left(\nabla \boldsymbol{\psi}^{\top} K \boldsymbol{\psi}+\nabla \boldsymbol{\psi}^{\top} \boldsymbol{b} \boldsymbol{\psi}^{\top}+c \boldsymbol{\psi} \boldsymbol{\psi}^{\top}\right)
$$

and the vector $\mathbf{u}=\int_{\Omega \mathcal{T}} u \boldsymbol{\psi} \in \mathbb{R}^{N}$. The regularity conditions on the operator \mathcal{L} ensure that R_{1} is semi-positive with $\operatorname{ker}\left(R_{1}\right) \subseteq \operatorname{span}\left(\mathbf{1}_{N}\right)$. These conditions are for example satisfied when \mathcal{L} is the Laplacian or the Laplace-Beltrami operator and the boudary conditions are homogeneous Neumann [see, e.g., Azzimonti et al., 2014, for the details].

There exists a unique pair of estimators $\left(\hat{\boldsymbol{\beta}}, \hat{f}_{\mathcal{T}}\right) \in \mathbb{R}^{q} \times V_{\mathcal{T}}^{r}(\Omega)$ that solves the discretized counterpart of the estimation problem [see, e.g., Azzimonti et al., 2014, Sangalli, 2021]. Furthermore,

$$
\begin{equation*}
\hat{\boldsymbol{\beta}}=\left(W^{\top} W\right)^{-1} W^{\top}\left(\mathbf{z}-\hat{\mathbf{f}}_{n}\right), \tag{2.4}
\end{equation*}
$$

where $\hat{\mathbf{f}}_{n}=\Psi \hat{\mathbf{f}}, \hat{f}_{\mathcal{T}}=\hat{\mathbf{f}}^{\top} \boldsymbol{\psi}$, and $\hat{\mathbf{f}}$ is obtained by solving the regularized saddle-point problem.

$$
M_{\mathcal{S}}\left[\begin{array}{l}
\hat{\mathbf{f}} \tag{2.5}\\
\hat{\mathbf{g}}
\end{array}\right]=\mathbf{b}_{\mathcal{S}}
$$

where

$$
M_{\mathcal{S}}=\left[\begin{array}{cc}
-\Psi^{\top} Q \Psi & \lambda R_{1}^{\top} \tag{2.6}\\
\lambda R_{1} & \lambda R_{0}
\end{array}\right] \quad \text { and } \quad \mathbf{b}_{\mathcal{S}}=\left[\begin{array}{c}
-\Psi^{\top} Q \mathbf{z} \\
\lambda \mathbf{u}
\end{array}\right] .
$$

In Equation (2.5), the penalization coefficient $\lambda>0$ is taken as given.
Theorem 2.2. The matrix $M_{\mathcal{S}}$ is non-singular.
Proof. We show that under the stated conditions $\operatorname{ker}\left(M_{\mathcal{S}}\right)=\{\mathbf{0}\}$. Set $S=$ $\Psi^{\top} Q \Psi$. Note that S is semi-positive definite. Let $\mathbf{v}=\left[\mathbf{v}_{1}, \mathbf{v}_{2}\right] \in \mathbb{R}^{2 N}$ and

$$
M_{\mathcal{S}} \mathbf{v}=\mathbf{0} \Rightarrow\left\{\begin{array}{l}
-S \mathbf{v}_{1}+\lambda R_{1}^{\top} \mathbf{v}_{2}=\mathbf{0}_{N} \\
\lambda R_{1} \mathbf{v}_{1}+\lambda R_{0} \mathbf{v}_{2}=\mathbf{0}_{N}
\end{array}\right.
$$

where $\mathbf{0}_{N}$ is the vector of \mathbb{R}^{N} composed of zeroes. We multiply the first equation by $-\mathbf{v}_{1}^{\top}$, the second by \mathbf{v}_{2}^{\top} and sum member by member to obtain

$$
\mathbf{v}_{1}^{\top} S \mathbf{v}_{1}+\lambda \mathbf{v}_{2}^{\top} R_{0} \mathbf{v}_{2}=0 .
$$

Since R_{0} is symmetric positive definite and S is semi-positive definite, we have that $\mathbf{v}_{2}=\mathbf{0}_{N}$. Consequently, we also have

$$
\begin{equation*}
\mathbf{v}_{1}^{\top} S \mathbf{v}_{1}+\lambda \mathbf{v}_{1}^{\top} R_{1} \mathbf{v}_{1}=0 \tag{2.7}
\end{equation*}
$$

If R_{1} is positive definite, we immediately obtain that $\mathbf{v}_{1}=\mathbf{0}_{N}$, which concludes the proof. If instead the kernel of R_{1} contains the constant vectors, we need to show that $\mathbf{1}_{N} \notin \operatorname{ker}(S)$. We first note that, by the partition of unity property of finite element shape functions, $\Psi \mathbf{1}_{N}=\mathbf{1}_{n}$, so the requirement is equivalent to $\mathbf{1}_{n} \notin \operatorname{ker}(Q)$.
However, $\mathbf{1}_{n} \in \operatorname{ker}(Q)$ implies, by the definition of Q, that $W\left(W^{\top} W\right)^{-1} W^{\top} \mathbf{1}_{n}=\mathbf{1}_{n}$, in contradiction with the given hypothesis $\mathbf{1}_{n} \notin$ Range W. This concludes the proof. \square

We will see in Section 5 how an optimal value may be obtained by using GCV. To this end, it is useful to introduce the following factorization of $M_{\mathcal{S}}$, which will be used for the GCV calculation. Since R_{0} is non-singular and $\lambda>0, M_{\mathcal{S}}$ can be factorized as:

$$
M_{\mathcal{S}}=\left[\begin{array}{cc}
I_{N} & R_{1}^{\top} R_{0}^{-1} \tag{2.8}\\
O_{N} & I_{N}
\end{array}\right]\left[\begin{array}{cc}
-T & O_{N} \\
\lambda R_{1} & \lambda R_{0}
\end{array}\right]
$$

with O_{N} the $N \times N$ matrix with all elements equal to zero, and

$$
\begin{equation*}
T=\Psi^{\top} Q \Psi+\lambda R_{1}^{\top} R_{0}^{-1} R_{1} \tag{2.9}
\end{equation*}
$$

T is clearly non-singular under the same hypothesis of Theorem 2.2, since it is a Schur complement. Therefore, $\hat{\mathbf{f}}$ is the solution of $T \hat{\mathbf{f}}=\Psi^{\top} Q \mathbf{z}+\lambda R_{1}^{\top} R_{0}^{-1} \mathbf{u}$, and then

$$
\begin{equation*}
\hat{\mathbf{f}}_{n}=\Psi \hat{\mathbf{f}}=S \mathbf{z}+\lambda \Psi T^{-1} R_{1}^{\top} R_{0}^{-1} \mathbf{u} \tag{2.10}
\end{equation*}
$$

where

$$
\begin{equation*}
S=\Psi T^{-1} \Psi^{\top} Q \tag{2.11}
\end{equation*}
$$

Thanks to Equation (2.4), Equation (2.10) and Equation (2.11), we can find the fitted values $\hat{\mathbf{z}}=W \hat{\boldsymbol{\beta}}+\hat{\mathbf{f}}_{n}$ as

$$
\hat{\mathbf{z}}=S_{Q} \mathbf{z}+\mathbf{r}
$$

where $\mathbf{r}=\lambda Q \Psi T^{-1} R_{1}^{\top} R_{0}^{-1} \mathbf{u}$ and

$$
\begin{equation*}
S_{Q}=H+Q S \tag{2.12}
\end{equation*}
$$

is a symmetric and positive definite matrix that we shall name smoothing matrix, in analogy to more classical linear semiparametric regression models [see, e.g., Eubank, 1999, Green and Silverman, 1993].
3. System solving. To compute the solution of the problem we solve directly Equation (2.5), without resorting to Equation (2.9). This allows us to obtain the misfit of the PDE $\hat{\mathbf{g}}$, together with $\hat{\mathbf{f}}$. This section investigates how to deal with Equation (2.5) efficiently. We start by investigating the structure of the system matrix $M_{\mathcal{S}}$. We recall that $M_{\mathcal{S}}$ is a $2 N \times 2 N$ matrix, where N is the number of mesh nodes. In real applications, N is often chosen large to improve the quality of the final estimate. Furthermore, each block of $M_{\mathcal{S}}$ shows a different degree of sparsity. The north-west block is the most critical. If we consider a model with covariates, Q is not sparse, and consequently, the north-west block of $M_{\mathcal{S}}$ becomes dense. Instead, if we study a purely nonparametric model without covariates, $Q=I_{n}$, and the north-west block is sparse. The remaining blocks of the system matrix are always sparse, with a mesh-dependent sparsity pattern. Thus, in the absence of covariates, the whole matrix $M_{\mathcal{S}}$ is sparse, and Equation (2.5) can be solved by resorting, for instance, to a sparse LU solver like the one in the SuiteSparse library suite ${ }^{1}$. The computational cost of this operation depends on the fill-in. However, the simulations reported in this paper show that it can easily be less than quadratic in N. The semiparametric case is more critical. Sparse solvers prove ineffective since $M_{\mathcal{S}}$ has a dense block. Similarly, dense solvers cannot exploit the partial sparsity of $M_{\mathcal{S}}$ and display at least $\mathcal{O}\left(N^{3}\right)$ complexity.

[^1]We here propose a technique based on SMW decomposition to reduce the computing times when covariates are present. This choice proves valuable to distribute the computational cost of a single inefficient inversion (that of $M_{\mathcal{S}}$) on a cascade of sparse factorizations. In analogous settings, SMW approach was proposed by Eubank et al. [2004] to address smoothing spline estimation in varying-coefficient models and by Lai and Vemuri [1997] for PDE-penalized surface smoothing.

In SR-PDE, we start by exploiting the projection property $H+Q=I_{n}$ to factorize the system matrix additively

$$
M_{\mathcal{S}}=\left[\begin{array}{cc}
-\Psi^{\top} \Psi & \lambda R_{1}^{\top} \\
\lambda R_{1} & \lambda R_{0}
\end{array}\right]+\left[\begin{array}{cc}
\Psi^{\top} H \Psi & O_{N} \\
O_{N} & O_{N}
\end{array}\right]
$$

where O_{N} is the $N \times N$ zero matrix. We define the $2 N \times 2 N$ matrices

$$
A=\left[\begin{array}{cc}
-\Psi^{\top} \Psi & \lambda R_{1}^{\top} \tag{3.1}\\
\lambda R_{1} & \lambda R_{0}
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{cc}
\Psi^{\top} H \Psi & O_{N} \\
O_{N} & O_{N}
\end{array}\right]
$$

The matrix A is sparse. Indeed, it coincides with the system matrix of a nonparametric SR-PDE problem, with the same data, but without covariates. In turn, B has just one dense block, the north-west block, which has a rank of at $\operatorname{most} \min \{N, n, q\}$. It should now be noticed that in practical applications q is typically in the order of units or at most tens, so that $q \ll \min \{N, n\}$ and $\operatorname{rank}(B)=q$. We can hence exploit the small rank of the matrix B to propose an efficient solver for the system. We propose an efficient decomposition of $M_{\mathcal{S}}$ that takes advantage of the SMW matrix identity [see Woodbury, 1950, Sherman and Morrison, 1950]. Assume that $M_{\mathcal{S}}$ and A are invertible. If we have some matrices $U \in \mathbb{R}^{2 N \times q}, C \in \mathbb{R}^{q \times q}$ and $V \in \mathbb{R}^{q \times 2 N}$, with C invertible, such that $M_{\mathcal{S}}=A+U C V$, then, according to the SMW identity, we have the following:

$$
\begin{equation*}
M_{\mathcal{S}}^{-1}=(A+U C V)^{-1}=A^{-1}-A^{-1} U\left(C^{-1}+V A^{-1} U\right)^{-1} V A^{-1} \tag{3.2}
\end{equation*}
$$

To exploit the SMW formula, we are left to express B as a suitable $U C V$ product. From Equation (2.2), we can write

$$
\Psi^{\top} H \Psi=\underbrace{\Psi^{\top} W}_{\tilde{U}} \underbrace{\left(W^{\top} W\right)^{-1}}_{\tilde{C}} \underbrace{W^{\top} \Psi}_{\tilde{V}} .
$$

Setting $\tilde{U}=\Psi^{\top} W \in \mathbb{R}^{N \times q}, \tilde{C}=\left(W^{\top} W\right)^{-1} \in \mathbb{R}^{q \times q}$ and $\tilde{V}=W^{\top} \Psi \in \mathbb{R}^{q \times N}$, we derive $B=U C V$ with the following definition:

$$
U=\left[\begin{array}{c}
\tilde{U} \tag{3.3}\\
O_{N}
\end{array}\right] \in \mathbb{R}^{2 N \times q}, \quad C=\tilde{C} \in \mathbb{R}^{q \times q}, \quad V=\left[\begin{array}{cc}
\tilde{V} & O_{N}
\end{array}\right] \in \mathbb{R}^{q \times 2 N}
$$

The following algorithm synthesizes how to make efficient use of the SMW decomposition to solve Equation (2.5).

```
Algorithm 3.1 System solution via SMW decomposition
Require: \(\Psi, W, R_{1}, R_{0}, \mathbf{b}_{\mathcal{S}}, \lambda\)
    Build \(A\) from \(R_{0}, R_{1}, \Psi\) and \(\lambda\), as in Equation (3.1);
    SparseLU factorize \(A\) and store its factorization;
    if \(\exists W\) then
        Compute and store \(U, V\) as in Equation (3.3);
        Solve \(A \mathbf{y}=\mathbf{b}_{\mathcal{S}}\);
        Solve \(A Y=U\);
        Compute \(G=W^{\top} W+V Y\);
        Factorize \(G\) and store its factorization;
        Solve \(G \boldsymbol{\theta}=V \mathbf{y}\);
        Solve \(A \boldsymbol{v}=U \boldsymbol{\theta}\);
        \(\mathbf{x}=\mathbf{y}-\boldsymbol{v}\).
    else
        Solve \(A \mathbf{x}=\mathbf{b}_{\mathcal{S}}\).
    end if
Ensure: \(\mathbf{x}=\left[\begin{array}{l}\hat{\mathbf{f}} \\ \hat{\mathbf{g}}\end{array}\right]\) such that \(M_{\mathcal{S}} \mathbf{x}=\mathbf{b}_{\mathcal{S}}\)
```

In synthesis, due to the SMW formula applied to Equation (2.5), we can replace the inefficient inversion of the partially dense matrix $M_{\mathcal{S}}$ with the cheaper inversions of the sparse matrix A (for which we can use, e.g., a sparse LU solver) and of the dense, yet very small, $G \in \mathbb{R}^{q \times q}$. Simulations show that this leads to great advantages in computing times.

SMW decomposition proves valuable also for storage reasons. Indeed, it allows us to completely avoid storing the partially dense $2 N \times 2 N$ matrix $M_{\mathcal{S}}$ or the dense $n \times n$ matrix Q. In turn, it requires only the sparse matrix Ψ and the full, but smaller, $n \times q$ matrix W (we recall that $q \ll n$). Furthermore, since some inversions are to be performed more than once, fdaPDE implementation automatically factorizes A and G and stores the factors in memory for reuse.
4. Numerical experiment with the SMW decomposition. We wish to compare the time required to solve Equation (2.5) with the SMW decomposition with respect to standard solvers to verify the computational advantage represented by the novel approach. In particular we compare the proposed approach with a standard sparse LU solver with sparsity preserving reordering [Davis, 2004, Amestoy et al., 2004, Eaton et al., 2022], and with two iterative solvers: the BIconjucate Gradient STABilzed (BICGSTAB) method and the Generalized Minimal Residual (GMRES) method [van der Vorst, 1992, Saad and Schultz, 1986, Saad, 2003, Eaton et al., 2022]. In order to improve the performances of the two iterative solvers, we employ as a preconditioner the matrix A defined in (3.1). Indeed, without a preconditioner, the two iterative solvers do not converge in a reasonable number of iterations.

We consider a square regular domain: $\Omega=[0,1] \times[0,1]$. We sample the n data points $\left\{z_{i}\right\}_{i=1}^{n}$ according to $z_{i}=\beta_{1} w_{1 i}+\beta_{2} w_{2 i}+f\left(\mathbf{p}_{i}\right)+\varepsilon_{i}$; see Section 2 for the notation. The spatial field f is chosen with sharp oscillations,

$$
\begin{aligned}
f(x, y)= & \sin \{2 \pi[(0.5 \sin (5 \pi y) \exp (-1)+1) x \cos (1)+y \sin (1)]\} \\
& \cdot \cos \{2 \pi[(0.5 \sin (5 \pi y) \exp (-1)+1) x \sin (1)-(0.5 \sin (5 \pi x) \exp (-1)+1) y]\}
\end{aligned}
$$

We consider $q=2$ stochastic covariates: w_{1} is a Gaussian random variable of null

Fig. 2: Top-left: true field f. Top-right: field estimated from data sampled in the first repetition of Simulation 1, using SR-PDE on a regular mesh with 30^{2} nodes. Bottom-left: data sampled at mesh nodes. Bottom-right: data sampled at locations randomly scattered over the domain.
mean, and standard deviation 0.05 while w_{2} comes from an exponential distribution of mean 0.1. We set $\beta_{1}=2, \beta_{2}=0.5$. We sampled ε as the realization of a Gaussian random variable with zero mean and standard deviation of 5% of the data range, that is, equal to $0.05\left(r_{2}-r_{1}\right)$, where $\left(r_{1}, r_{2}\right)$ is the range of the total signal $\left\{\beta_{1} w_{1}+\beta_{2} w_{2}+\right.$ $\left.\left.f\left(\mathbf{p}_{i}\right)\right)\right\}_{i=1}^{n}$.

To address the estimation problem, we consider SR-PDE with Laplacian regularization (i.e., $\mathcal{L}=\Delta$ and $u=0$ in Equation (2.1)). The smoothing parameter λ is kept fixed at a value selected by the minimization of GCV, as described in Section 5.
4.1. Simulation 1: increasing number of observations n, increasing number of mesh nodes N. We consider meshes with increasing refinement, with N nodes on regular square lattices, and N takes values $30^{2}, 40^{2}, \ldots, 90^{2}$. For each value of N, we sample $n=N$ observations. We examine two scenarios: sampling an observation at each mesh node or sampling the observations at locations randomly scattered over the domain. In both cases, we measure the average time employed by fdaPDE library to solve the problem over 30 replicas of each experimental setting, with four different solution methods:

1. LU: standard sparse LU solver;
2. BICGSTAB: the preconditioned BICGSTAB solver;
3. GMRES: the preconditioned GMRES solver;
4. SMW: sparse LU solver, with SMW decomposition.

Fig. 3: Simulation 1: increasing number of observations n, increasing number of mesh nodes N; average computing time, over 30 simulation replicates, with the four considered solvers. Left: data locations at mesh nodes, as in the bottom-left panel of Figure 2. Right: data locations randomly scattered over the domain, as in the bottom-right panel of Figure 2.

We start with the first setting: locations coincident with the mesh nodes. Figure 3, left, shows that the comparison of the computing times for the four methods, strongly favors the proposed SMW approach. Indeed, SMW shows a significantly lower CPU time, for all the considered dimensions. Moreover, LU times display a rate of growth, with respect to N, of order between 2 and 3 , while the order for iterative approaches and SMW is between 1 and 2. The reason behind the inefficiency of the standard LU sparse solver is that it applies the sparse solver to $M_{\mathcal{S}}$, which has a $N \times N$ full northwest block. Table 1 reports the mean CPU times over the 30 repetitions (and the standard deviations of CPU times in brackets) for all considered solvers and meshes dimensions, on a Intel Core i7-4510U, $2.6 \mathrm{GHz}, 8 \mathrm{~GB}$ RAM machine.

Table 2 and the right panel of Figure 3 report the CPU times for the second setting, in which the number of locations n is still equal to the number of nodes N, but the coordinates of the locations do not coincide with the coordinates of the mesh nodes. We observe that, generally, the methods employ a longer time to solve the system. However, iterative approaches and SMW maintain a computing time of an order less than quadratic, while LU is largely affected by the lower sparsity of Ψ, and displays an order that is at least cubic.
4.2. Simulation 2: increasing number of observations n, fixed number of mesh nodes \boldsymbol{N}. We fix the number of nodes $N=8100$ and we progressively increase the amount of observations n, by uniformly sampling on the square domain. We perform 30 repetitions of each experimental setting.

We compare the average computing times with the four methods considered in the previous simulation. Table 3 reports the CPU times for all the methods. Figure 4, left, shows the relationship between times and observations. SMW approach is always faster than the other methods; however, the computational cost increases with n. This is to be expected since the number of data influences the sparsity Ψ and hence the overall sparsity of the north-west block of $M_{\mathcal{S}}$. This fact lowers the efficiency gained by the SMW method, but the decomposition still proves more effective than the standard

Mesh nodes	LU	BICGSTAB	GMRES	SMW
900	$0.29(0.063)$	$0.04(0.022)$	$0.03(0.009)$	$0.01(0.002)$
1600	$1.24(0.157)$	$0.12(0.036)$	$0.06(0.010)$	$0.02(0.003)$
2500	$3.52(0.139)$	$0.17(0.033)$	$0.13(0.021)$	$0.04(0.005)$
3600	$8.20(0.299)$	$0.46(0.085)$	$0.25(0.048)$	$0.06(0.012)$
4900	$18.05(0.582)$	$0.83(0.171)$	$0.57(0.253)$	$0.09(0.023)$
6400	$35.57(1.278)$	$2.26(0.642)$	$1.45(0.431)$	$0.40(0.265)$
8100	$75.06(5.402)$	$2.97(0.263)$	$2.15(0.462)$	$0.70(0.462)$

Table 1: Simulation 1: increasing number of observations n, increasing number of mesh nodes N, locations at mesh nodes. Mean time in seconds taken to solve the system (2.5) over the 30 simulation replicates. In brackets, the standard deviation of the employed time. The errors associated with the computed solutions is of order 10^{-4} for BICGSTAB and 10^{-9} for the other methods.

Mesh nodes	LU	BICGSTAB	GMRES	SMW
900	$0.41(0.092)$	$0.03(0.008)$	$0.03(0.012)$	$0.02(0.004)$
1600	$3.52(0.530)$	$0.09(0.006)$	$0.07(0.004)$	$0.04(0.005)$
2500	$16.39(1.526)$	$0.21(0.046)$	$0.17(0.028)$	$0.08(0.014)$
3600	$61.40(3.918)$	$0.39(0.074)$	$0.35(0.067)$	$0.16(0.032)$
4900	$203.52(10.477)$	$0.82(0.152)$	$0.65(0.132)$	$0.33(0.104)$
6400	$593.44(35.205)$	$1.11(0.151)$	$1.04(0.212)$	$0.50(0.155)$
8100	$1902.60(219.087)$	$2.03(0.494)$	$2.39(0.665)$	$1.07(0.372)$

Table 2: Simulation 1: increasing number of observations n, increasing number of mesh nodes N, locations randomly scattered. Mean time in seconds taken to solve the system (2.5) over the 30 simulation replicates. In brackets the standard deviation of the employed time. The errors associated with the computed solutions is of order 10^{-5} for BICGSTAB and 10^{-8} for the other methods.
methodology. Computing times grow less linearly with n in the SMW case.
4.3. Simulation 3: fixed number of observations n, increasing number of mesh nodes N. We sample $n=1125$ data, whose locations are randomly selected in the unit square, and gradually increase the number of mesh nodes N.

The comparison again favors the SMW method, which, on average, outperforms the LU by an order of magnitude and shows the same order of BICGSTAB and GMRES but always with a lower CPU time.

From all the simulations, we can conclude that the the preconditioner considered for the iterative methods performs very well for the problem at hand, since BICGSTAB and GMRES exhibit the same order of magnitude of the SMW approach. However, we also have evidence that proposed SMW approach outperforms both the iterative methods, as well as the standard sparse LU solver.
5. Estimation of λ by $G C V$. An appropriate choice of the smoothing parameter $\lambda>0$ is crucial to appropriately balance the data-fidelity and model-fidelity terms in Equation (2.1). We may evaluate a candidate λ by means of Generalized Cross-Validation ($G C V$), a performance criterion originally conceived by Craven and Wahba [1978/79], Golub et al. [1979]. GCV provides computational advantages with

Observations	LU	BICGSTAB	GMRES	SMW
512	$4.77(1.010)$	$0.36(0.093)$	$0.34(0.076)$	$0.29(0.069)$
1024	$29.47(2.162)$	$0.56(0.075)$	$0.51(0.062)$	$0.37(0.043)$
2048	$151.67(8.982)$	$0.78(0.143)$	$0.80(0.246)$	$0.42(0.090)$
4096	$386.77(20.155)$	$1.37(0.306)$	$1.63(0.608)$	$0.54(0.186)$
8192	$443.60(100.019)$	$2.77(0.384)$	$2.49(0.608)$	$1.05(0.329)$

Table 3: Simulation 2: increasing number of observations n, fixed number of mesh nodes N. Mean time in seconds taken to solve the system (2.5) over the 30 simulation replicates. In brackets the standard deviation of the employed time. The errors associated with the computed solutions is of order 10^{-4} for BICGSTAB and 10^{-8} for the other methods.

Fig. 4: Left: Simulation 2: increasing number of observations n, fixed number of nodes N (data locations randomly scattered over the domain); average computing time with the four considered solvers. Right: Simulation 3: fixed number of observations n, increasing number of mesh nodes N (data locations randomly scattered over the domain); average computing time with the four considered solvers.
respect to other popular statistical loss functions such as, e.g., the Akaike Information Criterion, Bayesian Information Criterion, or Mallows' C_{p} (see, e.g., Konishi and Kitagawa [2007]). Indeed, it does not require the knowledge of the residual variability σ^{2}. In turn, $G C V$ evaluation is based on the computation of the so-called equivalent degrees of freedom of the model, defined as

$$
\begin{equation*}
e d f=\operatorname{tr}\left(S_{Q}\right)=q+\operatorname{tr}(S) \tag{5.1}
\end{equation*}
$$

where S and S_{Q} are given in Equation (2.11) and Equation (2.12) respectively.
The equivalent degrees of freedom are the sum of two contributions: the number of regressors $q \in \mathbb{N}$ in the parametric part of the model, and $\operatorname{tr}(S) \in \mathbb{R}$, the degrees of freedom associated with the estimate of f, the non-parametric part of the model. The $G C V$ function to be minimized is then derived as:

$$
G C V(\lambda)=n \sum_{i=1}^{n}\left(\frac{z_{i}-\hat{z}_{i}}{n-e d f}\right)^{2}
$$

We consider different methods to efficiently estimate edf. In particular, we develop two alternative strategies: exact computation and stochastic approximation.

Mesh nodes	LU	BICGSTAB	GMRES	SMW
100	$0.01(0.004)$	$0.01(0.005)$	$0.01(0.012)$	$0.01(0.001)$
400	$0.04(0.002)$	$0.01(0.001)$	$0.01(0.001)$	$0.01(0.001)$
900	$0.39(0.046)$	$0.04(0.006)$	$0.03(0.004)$	$0.02(0.002)$
1600	$4.14(0.501)$	$0.11(0.012)$	$0.09(0.011)$	$0.06(0.008)$
2500	$7.83(0.386)$	$0.15(0.025)$	$0.13(0.017)$	$0.07(0.008)$
3600	$17.34(1.119)$	$0.26(0.046)$	$0.21(0.036)$	$0.11(0.014)$
4900	$28.95(1.358)$	$0.37(0.050)$	$0.33(0.062)$	$0.19(0.028)$
6400	$39.95(2.994)$	$0.50(0.056)$	$0.42(0.057)$	$0.27(0.039)$
8100	$50.69(3.793)$	$0.61(0.123)$	$0.54(0.060)$	$0.38(0.035)$

Table 4: Simulation 3: fixed number of observations n, increasing number of mesh nodes N. Mean time in seconds taken to solve the system (2.5) over the 30 simulation replicates. In brackets the standard deviation of the employed time. The errors associated with the computed solutions is of order 10^{-6} for BICGSTAB and 10^{-9} for the other methods.

Algorithm 5.1.

```
Algorithm 5.1 Left multiplication by \(Q\)
```

Algorithm 5.1 Left multiplication by Q
Require: W, \mathbf{x}
Require: W, \mathbf{x}
1: Compute, factorize and store $\Upsilon=W^{\top} W$ for possible reuse;
1: Compute, factorize and store $\Upsilon=W^{\top} W$ for possible reuse;
2: Compute $\boldsymbol{v}=W^{\top} \mathbf{x}$;
2: Compute $\boldsymbol{v}=W^{\top} \mathbf{x}$;
3: Solve $\Upsilon \mathbf{y}=\boldsymbol{v}$;
3: Solve $\Upsilon \mathbf{y}=\boldsymbol{v}$;
4: Output $\mathbf{x}-W \mathbf{y}$.
4: Output $\mathbf{x}-W \mathbf{y}$.
Ensure: $Q \mathrm{x}$

```
Ensure: \(Q \mathrm{x}\)
```

Note that $W \in \mathbb{R}^{n \times q}$ and $q \ll n$. Suppose $\mathbf{x} \in \mathbb{R}^{n}$, in the worst-case scenario, a simple multiplication by Q is $\mathcal{O}\left(n^{2}\right)$, while Algorithm 5.1 is $\mathcal{O}\left(n q+q^{3}\right)$. Observe that Algorithm 5.1 does not require the storage of Q. Moreover, thanks to the cyclic property of the trace operator, the same algorithm is used in the computation of $\operatorname{tr}(S)=\operatorname{tr}\left(\Psi T^{-1} \Psi^{\top} Q\right)=\operatorname{tr}\left(Q \Psi T^{-1} \Psi^{\top}\right)$.
5.2. Stochastic approximation of $G C V$. An alternative to speed up the computation of GCV is to approximate edf by a stochastic technique. Recalling that edf is the trace of a matrix, we consider the stochastic trace estimation first proposed by Girard [1989] and later improved by Hutchinson [1989]. In particular, Hutchinson suggests approximating the trace of a symmetric matrix $S \in \mathbb{R}^{N \times N}$ exploiting the formula $\operatorname{tr}(S)=\mathbb{E}\left[\mathbf{u}_{S}^{\top} S \mathbf{u}_{S} /\left(\mathbf{u}_{S}^{\top} \mathbf{u}_{S}\right)\right]$, where \mathbf{u}_{S} is a vector of N independent samples from a Rademacher distributed random variable. An unbiased estimator of $e d f$, denoted by $\widehat{e d f}$, is then proposed resorting to a Monte Carlo approximation. Hutchinson also proves that the choice of Rademacher distribution for \mathbf{u}_{S} makes $\widehat{e d f}$ satisfy the minimum variance criterion among the unbiased estimators of $\operatorname{tr}(S)$, with $\operatorname{Var}\left[\mathbf{u}_{S}^{\top} S \mathbf{u}_{S}\right]=2 \sum_{i \neq j} S_{i j}^{2}$.

Applications of Hutchinson's estimator to edf approximation have already been proposed, e.g., by Golub and von Matt [1997] in the context of classical Tikhonov regularization models. To optimize edf estimation in SR-PDE, we combine Hutchinson's approach with SMW decomposition, as seen in Section 3. From Equation (2.11) we write $\operatorname{tr}(S)=\mathbb{E}\left[\mathbf{u}_{S}^{\top} S \mathbf{u}_{S}\right]=\mathbb{E}\left[\mathbf{u}_{S}^{\top} \Psi T^{-1} \Psi^{\top} Q \mathbf{u}_{S}\right]$. In particular, considering Equation (5.1), we have

$$
\begin{equation*}
e d f=q+\mathbb{E}\left[\mathbf{u}_{S}^{\top} \Psi T^{-1} \Psi^{\top} Q \mathbf{u}_{S}\right] \tag{5.2}
\end{equation*}
$$

Passing to Monte Carlo estimators, we approximate edf by

$$
\begin{equation*}
e d f \approx q+\frac{1}{r} \sum_{i=1}^{r} \mathbf{u}_{i}^{\top} \Psi T^{-1} \Psi^{\top} Q \mathbf{u}_{i} \tag{5.3}
\end{equation*}
$$

where $\left\{\mathbf{u}_{i}=\left(u_{i[1]}, \ldots, u_{i[n]}\right)^{\top}\right\}_{i=1}^{r}$ are r i.i.d. samples of vector \mathbf{u}_{S}, and the Monte Carlo mean approximates the expected value in Equation (5.2); in particular, all the components of \mathbf{u}_{i} follow independent Rademacher distributions, to be simulated, e.g., via Bernoulli samples.

In order to make the computation more efficient, we take advantage of the SMW system solution presented in Section 3. In this case, different from what was done in the computation of the exact GCV, we do not compute T^{-1} explicitly; instead, we work directly with the whole system Equation (2.6). In particular, as summarized in Algorithm 5.2, we exploit simultaneous calculations collecting all the $\left\{\mathbf{u}_{i}\right\}_{i=1}^{r}$ in a $n \times r$ matrix $U_{S}=\left[\mathbf{u}_{1}, \ldots, \mathbf{u}_{r}\right]$, and we solve a linear system $M_{\mathcal{S}}=B_{S}$ with the right-hand side $B_{S} \in \mathbb{R}^{2 N \times r}$ defined in line 3 of Algorithm 5.2.

The number of stochastic realizations r for the Monte Carlo mean in Equation (5.3) trades off accuracy and computational complexity. We know that the higher r, the better the edf approximation. The library fdaPDE uses $r=100$ as the default value for the number of realizations; this default value has been checked to provide good approximations in different experimental settings. The user may set different values, still getting strong computational savings, especially when dealing with massive datasets and problems with large mesh sizes N. Indeed, the construction of the $2 N \times r$ dense matrix U_{S} is less demanding than building T. Similarly, the construction of B_{S} is favored by the sparsity of Ψ and the use of Algorithm 5.1 for the left

```
Algorithm 5.2 Stochastic SMW edf computation
Require: \(\Psi, W, R_{0}, R_{1}\)
    1: Obtain \(U_{S}\) using Bernoulli distributions;
    2: Compute and store \(U, V\) as in Equation (3.3);
    3: Build and store \(B_{S}=\left[\begin{array}{c}\Psi^{\top} Q U_{S} \\ O_{N}\end{array}\right]\) and \(Y=\left[\begin{array}{c}U_{S}^{\top} \Psi \\ O_{N}\end{array}\right]\) for possible reuse;
    4: Solve \(M_{\mathcal{S}} X=B_{S}\) using SMW decomposition;
    5: Compute \(\widehat{e d f}_{i}=q+Y^{i} \cdot X_{i}, i=1, \ldots, r\)
    where \(Y^{i}\) denotes the \(i\)-th row of \(Y\) and \(X_{i}\) the \(i\)-th column of \(X\);
    6: Compute \(\widehat{e d f}=\frac{1}{r} \sum_{i=1}^{r} \widehat{e d f}_{i}\).
Ensure: \(\widehat{e d f}\)
```

multiplication by Q. Note that Lines 1-3 are in Algorithm 5.2 and do not depend on λ. Hence, if a user needs to compute edf for more than a single λ, B_{S} is available for reuse.

Line 4 of Algorithm 5.2 is the bottleneck of the algorithm, but the SMW decomposition makes it rather efficient. In fact, SMW decomposition takes advantage of the sparsity pattern of A to make the computing times approximately $\mathcal{O}(N)$. Moreover, still in Line 4, we solve the system applying SMW decomposition with a right-hand side B_{S}, of size $2 N \times r$. In the worst case scenario, this operation costs as solving r times a system like (2.5), one for each column of B_{S} as the right-hand side. We compare this step with the bottleneck of the exact algorithm: the inversion of T. Equation (2.9) shows that T is dense and thus expensive to factorize in terms of computing time and memory. Moreover, the usage of T in Equation (2.11) costs as solving a dense system with a $N \times n$ right-hand side.

Now consider a fixed number of data points n. We want to evaluate the degrees of freedom for a vector of m with different values of the smoothing parameter. From tests performed with fdaPDE library, we observe that the computational cost of the stochastic strategy proves approximately $\mathcal{O}(N m r)$ in the average case scenario, while the cost of the exact method is $\mathcal{O}\left(N^{\gamma} m n\right)$, with $\gamma=\gamma(n) \in[2,3]$. Since generally $r \ll n$, the stochastic approach proves to be much more effective than the exact counterpart, especially in the context of large datasets.
5.3. $G C V$ optimization. Exploiting the convexity of $G C V(\lambda)$, fdaPDE performs its minimization by a Newton method. Each iteration of Newton optimization takes advantage of the optimized techniques described in Subsection 5.1 and Subsection 5.2, to evaluate $e d f(\lambda)$. Unfortunately, each Newton step requires the first and second derivatives of $e d f(\lambda)$. These terms are rather straightforward to compute using exact methods, but their stochastic estimates are too unreliable. For convenience in fdaPDE we have resorted to approximating the derivatives with second-order finite differences.
fdaPDE can hence rely on either an exact Newton or a stochastic three-points finite-differences Newton optimization. Simulation studies show that the results produced by the stochastic method generally have a high degree of accuracy. Moreover, the number of iterations required by the two approaches is comparable and, in particular, it is always in the order of units in non-pathological cases.
6. Simulation 4: cost of edf computation. We aim to compare the methods described in Section 5 in terms of accuracy and computing time. We consider the same experimental setting discussed in Subsection 4.3. For a fixed value of λ, we want to compute both the solution to the estimation problem and $G C V(\lambda)$. We fix $n=1225$, and we progressively increase the mesh refinement from 900 to 4900 nodes. We consider 30 replicas of each experimental setting, with three different methods to compute edf:

1. standard: without SMW decomposition and with standard edf computation. This method explicitly computes the north-west block of $M_{\mathcal{S}}^{-1}$, uses it to evaluate S and then extracts edf.
2. exact: SMW system solution and $G C V$ calculated as in Subsection 5.1.
3. stochastic: SMW system solution and $G C V$ computed as in Subsection 5.2, based on $r=100$ realizations.

Fig. 5: Simulation 4: cost of $e d f$ computation, fixed number of observations n, increasing number of mesh nodes N; computing time with the standard solution (Standard), with SMW system solution and $G C V$ computed as in Subsection 5.1 (Exact) and with SMW system solution and $G C V$ computed as in Subsection 5.2 based on $r=100$ realizations (Stochastic).

We start from an analysis in terms of execution time. Figure 5 shows that the exact method is generally ten times faster than the standard one. Unfortunately, it still displays a super-linear (almost cubic) trend in the number of mesh nodes. Conversely, the stochastic approach exhibits a linear trend in N. This is because Algorithm 5.2 is conceived to bypass the slow inversion of T in the formula $S=$ $\Psi T^{-1} \Psi^{\top} Q$ and, instead, it repeatedly exploits SMW-based system solutions with different right-hand-sides. Indeed, we recall that Algorithm 5.2 does not only apply SMW decomposition for system solution but also for edf estimation. Moreover, the method avoids computing S explicitly, and instead only estimates its trace.

It is difficult to evaluate a priori the relative efficiency of the exact and the stochastic approaches since this usually depends on the number of mesh nodes. When N is very small, the exact technique might be more effective. Conversely, in a big data framework, the stochastic algorithm compares more favorably, with a discrepancy that increases as N increases. Accordingly, stochastic edf evaluation is chosen as fdaPDE default option for λ selection.

We now want to inspect the accuracy of stochastic edf estimation. Let us consider the case with $N=1600$. Despite the variability of the stochastic approach, Figure 6,

Fig. 6: Simulation 4: cost of edf computation. Left: 20 stochastic $G C V$ replicas, $r=100$. Right: $R M S E$.
left, shows that the edf estimation is able to reproduce the $G C V$ curve with high accuracy. In particular, stochasticity is almost negligible in terms of the selection of the optimal λ when $r=100$. Consider also the right panel of Figure 6. This plot shows the value of the Root Mean Square Error ($R M S E$) between the predicted \hat{z} and the noise-filtered data, $z-\varepsilon$. This is the error we would ideally like to minimize. Comparing the two plots in the figure, we observe that the minimization of the GCV provides a good criterion for the automatic selection of the smoothing parameter, as it suggests a value close to the miminimizer of $R M S E$. Moreover, the variability introduced by the stochastic approximation is irrelevant with respect to the error made by minimizing the GCV instead of the unknown RMSE.
7. Case study: analysis of neural connectivity. We here show a more complex example where we exploit the techniques illustrated in the preceding sections to analyze neuroimaging data. The recent development of noninvasive neuroimaging techniques represents a great challenge for the scientific community. Modern imaging techniques are now able to guarantee effective visualization of the human brain structure, function, and connectivity, with high resolution. Neuroscientists agree (see, e.g., Glasser et al. [2013] and its references) that a fair amount of the neural activity captured by brain scans is due to the cerebral cortex: a thin layer of gray matter with a highly folded geometry. As such, the cortex can be represented as a complex bidimensional Riemannian manifold, embedded in a 3D space. Still, nowadays, many neuroimaging studies are carried out neglecting this spatial structure, exploiting 3D methods that rely on the Euclidean distance. This choice is inappropriate since areas of the cortex having different functionalities may be close in terms of Euclidean distance, due to the highly convoluted anatomy of the cortex. In turn, studies based on 2 D geodesic distances along the surface are more likely to capture the intrinsic geometry of the cortex. This has encouraged the development of new statistical models designed to fit complex spatial regression problems where data are located on convoluted domains or surfaces [see, e.g., Chung et al., 2014, Lila et al., 2016]. As mentioned in Section 2, SR-PDE naturally encompasses such a feature, being able to handle data observed over two-dimensional Riemannian manifolds.

In this illustrative case study, we analyze a high-dimensional neuroimaging signal on the brain cortex. Here we consider data collected by the Human Connectome Project [Glasser et al., 2013], obtained from functional Magnetic Resonance Imaging (fMRI), on a healthy subject in a resting state. The fMRI signal captures the
neural activity on the cerebral cortex, measuring the changes in the concentration of deoxy-hemoglobin in the blood. The preprocessing pipeline of the Human Connectome Project automatically performs an anatomic alignment of the signal to a freely available template of cerebral cortex anatomy, obtained by averaging the cortical surface of several healthy adult volunteers. In particular, we consider the left hemisphere of the template cortex, represented by a triangular mesh with about 32000 nodes; see Figure 1. The preprocessed fMRI data set consists of a time series for each node of this triangular mesh.

We show an analysis of the Functional Connectivity (FC) obtained from the fMRI signal. The FC maps allow us to explore the degree of interconnection between different regions of the cortex. These maps are computed starting from the pairwise correlation between the signals referred at each node and the average time series on a selected Region Of Interest (ROI). Since the correlation is restricted to the interval $[-1,1]$, the so-called Fisher's r-to-z transformation [see, e.g., Fisher, 1915] is hence applied to obtain an unconstrained signal, leading to the FC map. This map highlights the areas of the cortex that are more closely related to ROI. In Figure 1, we consider as ROI the cuneus, a small portion of the occipital lobe of the brain, which is involved in several basic visual processes. Resting-state cuneus activity allows neuroscientists to detect, for example, some forms of depression or severe gambling addiction. The right panel of Figure 1 highlights the cuneus, whilst the left panel shows the FC with respect to the cuneus, for a healthy subject at resting state.
7.1. SR-PDE analysis. We consider here a nonparametric approach: $z_{i}=$ $f\left(\mathbf{p}_{i}\right)+\varepsilon_{i}$ where z_{i} is the FC sampled at each node, f is the true FC and ε_{i} are random errors. We address the problem of identifying a proper smoothing level, using the stochastic $G C V$ approach seen in Algorithm 5.2. Figure 7, left panel, reports ten stochastic $G C V$ functions, obtained setting different random seeds, sampling each time $r=100$ realizations. As in the simulation studies, we observe that the $G C V$ is quite stable. Setting the tolerance to $1 \mathrm{e}-03$, the minimum is reached after only six iterations. In particular, the cost of a single stochastic Newton step is relatively small (approximately 19 seconds on a i $7-6700 \mathrm{HQ}, 2.60 \mathrm{GHz}, 8 \mathrm{~GB}$ RAM machine).

In contrast with the stochastic finite-differences Newton approach, exact edf evaluation is not able to run on a 16 GB RAM machine, since the computational burden imposed by a 32 k nodes mesh makes the process abort. As a consequence, also the standard edf computation, mentioned Section 6 and used as a default strategy before conceiving the exact/stochastic methods, is not viable. This is a crucial result because it highlights the two key contributions of the stochastic approach: it is able to save time at the price of negligible losses in terms of precision; moreover, there are situations where the stochastic $G C V$ is the only computationally viable option.

Figure 7, right panel, shows the estimate \hat{f}, obtained with the value of λ selected with stochastic $G C V$, minimized with Newton method. We observe that the method is able to choose an appropriate level of smoothing, producing a smooth estimate that captures the main features of the signal. The analysis could be also enriched by the inclusion of space-varying covariates in the model, such as for instance the cerebral cortex thickness. We point out that smoothing is a crucial step for subsequent analysis, and it enables the use of functional data analysis techniques for these complex data [see, e.g., Ferraty and Vieu, 2006, Ramsay and Silverman, 2008, Kokoszka and Reimherr, 2017, for introductions to functional data analysis].
8. Extension to more complex SR-PDE problems. The previous sections, for simplicity of exposition, have focused on a basic formulation of SR-PDE. However,

Fig. 7: Analysis of neuroimaging data in Figure 1. Left panel: ten stochastic $G C V$ functions; right panel: an estimate of f.

SR-PDE is a rich class of techniques that includes various other more articulated models, already implemented in the fdaPDE library [see, e.g., the review in Sangalli, 2021]. The efficient techniques described in this work are appropriately adapted to deal with these more complex model settings. In some of these contexts, the strategies described here are indeed vital, since the estimation problem has to be solved recursively, as in the case of generalized linear SR-PDE, or for large spatio-temporal discretization, as for space-time SR-PDE. This section briefly outlines these two models extensions.

The generalized linear version of SR-PDE, developed in Wilhelm and Sangalli [2016], allows to consider response variables that have any distribution within the exponential family, thus significantly broadening the possible applications of these methods. Let Z_{1}, \ldots, Z_{n} be independent responses coming from a distribution in the exponential family and assume that

$$
g\left(\mathbb{E}\left[Z_{i}\right]\right)=\theta_{i}(\boldsymbol{\beta}, f)=\mathbf{w}_{i}^{\top} \boldsymbol{\beta}+f\left(\mathbf{p}_{i}\right), \quad i=1, \ldots, n
$$

where $\mathbb{E}\left[Z_{i}\right]$ is the expected value of the response variable Z_{i}, conditionally on the covariates, and g is a known link function, determined by the specific distribution of the response. The two unknowns, $\boldsymbol{\beta}$ and f, are estimated minimizing a functional likewise (2.1), but where the first term is replaced by $\sum_{i=1}^{n} l\left(z_{i} ; \theta_{i}\right)$, with $l\left(\cdot ; \theta_{i}\right)$ the negative log-likelihood of the response. This problem is computationally more demanding than minimization of Equation (2.1) since the new functional is no longer quadratic. The minimization is tackled with Functional Penalized Iterative Reweighted Least Squares (F-PIRLS); see Wilhelm and Sangalli [2016]. Each F-PIRLS step requires solving a weighted least-squares optimization problem of the type (2.1), and is solved using the SMW decomposition described in Section 3, suitably adapted to account for the presence of the diagonal weight matrix in the least square term. The selection of the smoothing parameter is currently performed by minimization of the $G C V$ on a grid of candidate values, with the GCV evaluated post-convergence of F-PIRLS. Possible future extensions shall involve the introduction of optimization methods, possibly performed at each F-PIRLS step, as done, for instance, by Gu [1992], Wood [2000, 2004].

SR-PDE is also able to handle spatio-temporal problems. In this case, the data are sampled in a spatio-temporal domain $\Omega \times T$, where T is a finite time interval of interest. Bernardi et al. [2017] and Arnone et al. [2019] considers two different estimation functionals: the former involves two penalty terms, to regulate the smoothness of the
spatio-temporal field in space and in time, the latter entails a unique penalty that involves a parabolic PDE. The spatio-temporal problem is discretized using finite elements in space and either splines or finite differences in time; it is thus reduced to a system having the same structure as (2.5), but with larger blocks, that involve the bases in both space and in time [see, e.g. Sangalli, 2021, Arnone et al., 2021]. Thanks to the similar structure of the problem system, it is possible also in this case to resort to SMW decomposition, as well as to stochastic GCV approximation. These strategies are indeed of crucial importance in this setting, as the dimension of the space-time estimation problem may be very large.
9. Conclusions. In this work,, we investigated the computational tractability of SR-PDE. An appropriate use of SMW identity permits us to significantly decrease the time and memory consumption required to solve an SR-PDE problem. The simulation study of Section 4 displays a computational cost between $\mathcal{O}(N)$ and $\mathcal{O}\left(N^{2}\right)$, where N is the number of mesh nodes, with a gain of one magnitude order over the standard sparse LU solution of the estimation problem.

Particular attention has also been devoted to the automated selection of the smoothness parameter, via minimization of the $G C V$ criterion. The selection of an appropriate value of the smoothing parameter is in fact a crucial aspect of the methodology but is computationally highly demanding. The simulation study in Section 6 shows a significant reduction in the computational cost of selecting the smoothing parameter when using the proposed SMW-based stochastic trace estimation technique, to evaluate the $e d f$ needed for computation of the $G C V$ index. Stochastic edf estimation is also shown to scale approximately linearly with N.

Finally, this work has focused on a basic formulation of SR-PDE estimation, but we briefly outlined in Section 7 the broad applicability of this class of models, which have proven to be highly valuable for dealing with a variety of complex estimation problems.

Acknowledgments. This work is based on preliminary explorations by Clelia Bambini and Luca Giussani. The authors also thank Michelle Carey for discussions on these topics. C.d.F. and L.F. have been partially funded by the Italian Research Center on High-Performance Computing, Big Data and Quantum Computing (ICSC), European Union - Next Generation EU. The present research is within the framework of MUR grant Dipartimento di Eccellenza 2023-2027, Dipartimento di Matematica, Politenico di Milano.

References.

P. R. Amestoy, T. A. Davis, and I. S. Duff. Algorithm 837: Amd, an approximate minimum degree ordering algorithm. ACM Trans. Math. Softw., 30(3):381-388, sep 2004. ISSN 0098-3500. doi: 10.1145/1024074.1024081. URL https://doi.org/ 10.1145/1024074.1024081.
E. Arnone, L. Azzimonti, F. Nobile, and L. M. Sangalli. Modeling spatially dependent functional data via regression with differential regularization. J. Multivariate Anal., 170:275-295, 2019.
E. Arnone, L. M. Sangalli, and A. Vicini. Smoothing spatio-temporal data with complex missing data patterns. Statistical Modelling, page 1471082X211057959, 2021.
E. Arnone, A. Clemente, L. M. Sangalli, E. Lila, J. Ramsay, and L. Formaggia. fdaPDE: Physics-Informed Spatial and Functional Data Analysis, 2022. URL https: //CRAN.R-project.org/package=fdaPDE. R package version 1.1-16.
L. Azzimonti, F. Nobile, L. M. Sangalli, and P. Secchi. Mixed Finite Elements for spatial regression with PDE penalization. SIAM/ASA J. Uncertain. Quantif., 2(1): 305-335, 2014.
V. Baramidze, M.-J. Lai, and C. Shum. Spherical splines for data interpolation and fitting. SIAM Journal on Scientific Computing, 28(1):241-259, 2006. ISSN 10648275. doi: 10.1137/040620722.
D. M. Bates and G. Wahba. A truncated singular value decomposition and other methods for generalized cross-validation. Tech. Report 715, Department of Statistics, University of Wisconsin, 1983.
M. S. Bernardi, L. M. Sangalli, G. Mazza, and J. O. Ramsay. A penalized regression model for spatial functional data with application to the analysis of the production of waste in Venice province. Stochastic environmental research and risk assessment, 31(1):23-38, 2017.
M. Chung, J. Hanson, and S. Pollak. Statistical analysis on brain surfaces. Technical report, University of WisconsinMadison, 2014.
P. Craven and G. Wahba. Smoothing noisy data with spline functions: estimating the correct degree of smoothing by the method of generalized cross-validation. Numer. Math., 31:377-403, 1978/79.
T. A. Davis. Algorithm 832: Umfpack v4.3-an unsymmetric-pattern multifrontal method. ACM Trans. Math. Softw., 30(2):196-199, jun 2004. ISSN 0098-3500. doi: 10.1145/992200.992206. URL https://doi.org/10.1145/992200.992206.
J. W. Eaton, D. Bateman, S. Hauberg, and R. Wehbring. GNU Octave version 7.3.0 manual: a high-level interactive language for numerical computations, 2022. URL https://www.gnu.org/software/octave/doc/v7.3.0/.
B. Ettinger, S. Perotto, and L. M. Sangalli. Spatial regression models over twodimensional manifolds. Biometrika, 103(1):71-88, 2016.
R. L. Eubank. Nonparametric Regression and Spline Smoothing. CRC Press, 2nd Edition, 1999.
R. L. Eubank, C. Huang, Y. M. Maldonado, N. Wang, S. Wang, and R. J. Buchanan. Smoothing spline estimation in varying-coefficient models. J. R. Stat. Soc. Ser. B. Stat. Methodol., 66(3):653-667, 2004.
F. Ferraty and P. Vieu. Nonparametric functional data analysis: theory and practice, volume 76. Springer, 2006.
R. A. Fisher. Frequency distribution of the values of the correlation coefficient in samples from an indefinitely large population. Biometrika, 10(4):507-521, 1915.
D. A. Girard. A fast 'Monte-Carlo cross-validation' procedure for large least squares problems. Numer. Math., 56(1):1-23, 1989.
M. F. Glasser, S. N. Sotiropoulos, J. A. Wilson, T. S. Coalson, B. Fischl, J. L. Andersson, J. Xu, S. Jbabdi, M. Webster, J. R. Polimeni, D. C. Van Essen, M. Jenkinson, and WU-Minn HCP Consortium. The minimal preprocessing pipelines for the human connectome project. NeuroImage, 80:105-124, 2013.
G. Golub, M. Heath, and G. Wahba. Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics, 21(2):215-223, 1979.
G. H. Golub and U. von Matt. Generalized cross-validation for large-scale problems. J. Comput. Graph. Statist, 6(1):1-34, 1997.
P. J. Green and B. W. Silverman. Nonparametric Regression and Generalized Linear Models. Chapman and Hall/CRC, 1st Edition, 1993.
P. J. Green and B. W. Silverman. Nonparametric regression and generalized linear models, volume 58 of Monographs on Statistics and Applied Probability. Chapman \& Hall, London, 1994. ISBN 0-412-30040-0. doi: 10.1007/978-1-4899-4473-3. URL
http://dx.doi.org/10.1007/978-1-4899-4473-3. A roughness penalty approach.
C. Gu. Cross-validating non-Gaussian data. J. Comput. Graph. Statist, 1(2):169-179, 1992.
T. Hastie and R. Tibshirani. Generalized Additive Models. Chapman Hall, 1990.
M. F. Hutchinson. A stochastic estimator of the trace of the influence matrix for Laplacian smoothing splines. Commun. Stat. Simul. Comput., 18(3):1059-1076, 1989.
M. F. Hutchinson and F. R. de Hoog. Smoothing noisy data with spline functions. Numer. Math., 47(1):99-106, 1985.
M. F. Hutchinson and F. R. de Hoog. An efficient method for calculating smoothing splines using orthogonal transformations. Numer. Math., 50:311-319, 1986/87.
P. Kokoszka and M. Reimherr. Introduction to functional data analysis. Chapman and Hall/CRC, 2017.
S. Konishi and G. Kitagawa. Information Criteria and Statistical Modeling. Springer Publishing Company, 2007.
M.-J. Lai and L. L. Schumaker. Spline functions on triangulations, volume 110 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 2007. ISBN 978-0-521-87592-9; 0-521-87592-7. doi: 10.1017/ CBO9780511721588. URL http://dx.doi.org/10.1017/CBO9780511721588.
M.-J. Lai and L. Wang. Bivariate penalized splines for regression. Statistica Sinica, 23(3):1399-1417, 2013. ISSN 1017-0405.
S.-H. Lai and B. C. Vemuri. Sherman-Morrison-Woodbury-formula-based algorithms for the surface smoothing problem. Linear Algebra Appl., 265(1-3):203-229, 1997.
E. Lila, J. A. D. Aston, and L. M. Sangalli. Smooth principal component analysis over two-dimensional manifolds with an application to neuroimaging. Ann. Appl. Stat., 10(4):1854-1879, 2016.
R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2021. URL https://www. R-project.org/.
J. O. Ramsay and B. W. Silverman. Functional data analysis. İnternet Adresi: http, 2008.
D. Ruppert, M. P. Wand, and R. J. Carroll. Semiparametric regression. Number 12. Cambridge university press, 2003.
Y. Saad. Iterative Methods for Sparse Linear Systems. Society for Industrial and Applied Mathematics, second edition, 2003. doi: 10.1137/1.9780898718003. URL https://epubs.siam.org/doi/abs/10.1137/1.9780898718003.
Y. Saad and M. H. Schultz. Gmres: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM Journal on Scientific and Statistical Computing, 7(3):856-869, 1986. doi: 10.1137/0907058.
L. M. Sangalli. Spatial regression with partial differential equation regularization. International Statistical Review, 89(3):505-531, 2021. doi: 10.1111/insr. 12444.
L. Sario, M. Nakai, C. Wang, and L. O. Chung. Classification Theory of Riemannian Manifolds. Springer-Verlag Berlin Heidelberg, 1st ed., 1977.
J. Sherman and W. Morrison. Adjustment of an inverse matrix corresponding to a change in one element of a given matrix. Ann. Math. Stat., 21(1):124-127, 1950.
F. Utreras. Optimal smoothing of noisy data using spline functions. SIAM J. Sci. and Stat. Comput., 2(3):349-362, 1981.
H. A. van der Vorst. Bi-cgstab: A fast and smoothly converging variant of bi-cg for the solution of nonsymmetric linear systems. SIAM Journal on Scientific and Statistical Computing, 13(2):631-644, 1992. doi: 10.1137/0913035.
G. Wahba. Spline models for observational data, volume 59 of CBMS-NSF Regional Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1990. ISBN 0-89871-244-0. doi: 10.1137/1.9781611970128. URL http://dx.doi.org/10.1137/1.9781611970128.
L. Wang, G. Wang, M.-J. Lai, and L. Gao. Efficient estimation of partially linear models for spatial data over complex domains. Statistica Sinica, 30:347-369, 2020.
Y. Wang. Smoothing splines: methods and applications. Chapman and Hall/CRC, 2019.
M. Wilhelm and L. M. Sangalli. Generalized Spatial Regression with Differential Regularization. J. Stat. Comput. Simul., 86(13):2497-2518, 2016.
S. N. Wood. Modelling and smoothing parameter estimation with multiple quadratic penalties. J. R. Stat. Soc. Ser. B. Stat. Methodol., 62:413-428, 2000.
S. N. Wood. Stable and efficient multiple smoothing parameter estimation for generalized additive models. J. Am. Statist. Ass., 99:673-686, 2004.
S. N. Wood. Generalized additive models. Texts in Statistical Science Series. CRC Press, Boca Raton, FL, 2017. ISBN 978-1-4987-2833-1. An introduction with R.
S. N. Wood, M. V. Bravington, and S. L. Hedley. Soap film smoothing. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 70(5):931-955, 2008.
M. A. Woodbury. Inverting modified matrices. Memorandum Report 42, Statistical Research Group, Princeton University, Princeton, NJ, 1950.

MOX Technical Reports, last issues
Dipartimento di Matematica
Politecnico di Milano, Via Bonardi 9-20133 Milano (Italy)

84/2023 Arnone, E.; De Falco, C.; Formaggia, L.; Meretti, G.; Sangalli, L.M.
Computationally efficient techniques for Spatial Regression with Differential Regularization

83/2023 Cavinato, L.; Massi, M.C.; Sollini, M.; Kirienko , M.; Ieva, F.
Dual adversarial deconfounding autoencoder for joint batch-effects removal from multi-center and multi-scanner radiomics data

81/2023 Buchwald, S.; Ciaramella, G; Salomon, J.; Sugny, D.
A SPIRED code for the reconstruction of spin distribution

82/2023 Pozzi, G.; Ciarletta, P.
Geometric control by active mechanics of epithelial gap closure

79/2023 Agosti, A.; Bardin, R.; Ciarletta, P.; Grasselli, M.
A diffuse interface model of tumour evolution under a finite elastic confinement

78/2023 Antonietti, P.F.; Bonizzoni, F.; Corti, M.; Dall'Olio, A.
Discontinuous Galerkin for the heterodimer model of prion dynamics in Parkinson's disease

77/2023 Fumagalli, I.; Corti, M.; Parolini, N.; Antonietti, P. F.
Polytopal discontinuous Galerkin discretization of brain multiphysics flow dynamics

76/2023 Ieva, F.; Galliani, G.; Secchi, P.
The impact of public transport on the diffusion of COVID-19 pandemie in Lombardy during 2020

74/2023 Pidò, S.; Pinoli, P.; Crovari, P.; Ieva, F.; Garzotto, F.; Ceri, S.
Ask Your Data-Supporting Data Science Processes by Combining AutoML and Conversational Interfaces

75/2023 Archetti, A.; Ieva, F.; Matteucci, M.
Scaling survival analysis in healthcare with federated survival forests: A comparative study on heart failure and breast cancer genomics

[^0]: *Dipartimento di Management, Univesità degli Studi di Torino, Italy
 ${ }^{\dagger}$ MOX - Dipartimento di Matematica, Politecnico di Milano, Italy

[^1]: ${ }^{1}$ https://people.engr.tamu.edu/davis/suitesparse.html

