
MOX-Report No. 84/2022

A preconditioner for free-surface hydrodynamics BEM

Ciaramella, G.; Gambarini, M.; Miglio, E.

MOX, Dipartimento di Matematica 
Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

mox-dmat@polimi.it https://mox.polimi.it



A preconditioner for free-surface
hydrodynamics BEM

Gabriele Ciaramella, Marco Gambarini and Edie Miglio

1 Introduction

The computation of hydrodynamic loads from sea surface waves on large ar-
rays of objects is of physical and engineering interest. Typical applications
are the simulation of arrays of wave energy converters [3] and the modeling
of ice floes in the marginal ice zone [6]. The interest is in array sizes of the
order of tens (for wave energy converter arrays) to hundreds (for ice floes) of
objects. In these scenarios, the relatively small distances between the floating
objects make the correct simulation of mutual hydrodynamic interactions es-
sential. Under the assumptions of incompressible, irrotational, inviscid flow
and small displacements, one can derive a linear potential model, which is
widely used for the considered range of applications. This model is discretized
using the boundary element method [2], resulting in a linear system charac-
terized by a dense and complex matrix. The dimension of the discrete problem
grows proportionally to the number of simulated objects. In general, iterative
solvers are not scalable for the corresponding numerical solution: the num-
ber of iterations needed to achieve a given tolerance grows with the number
of objects [5]. To tackle this problem, we propose a preconditioner for the
efficient simulation of large arrays of objects and present its implementation
using hierarchical matrices.

Consider an array of n floating objects. To compute all its hydrodynamic
properties, a number of problems equal to the number of its degrees of free-
dom needs to be solved. Each problem corresponds to imposing a unit oscilla-

G. Ciaramella
Politecnico di Milano, Italy e-mail: gabriele.ciaramella@polimi.it

M. Gambarini
Politecnico di Milano, Italy e-mail: marco.gambarini@polimi.it

E. Miglio
Politecnico di Milano, Italy e-mail: edie.miglio@polimi.it

1



2 G. Ciaramella, M. Gambarini and E. Miglio

tion in one of the degrees of freedom, while keeping all others fixed. Exploiting
linearity, the solution of the dynamic problem with loads from incident waves
and possibly other external forces can then be written as a linear combina-
tion of such unit oscillations. Considering only vertical oscillations, system
(1) needs to be solved for i = 1, . . . , n

∆φ = 0 in Ω ⊂ R3

∂φ

∂n
= 0 on Γb

∂φ

∂z
− ω2

g
φ = 0 on Γs

∂φ

∂n
= nz on Γo,i

∂φ

∂n
= 0 on Γo,j , j = 1, . . . , n ∧ j 6= i,

(1)

where φ is the velocity potential, Ω is the (3D) domain, bounded by the sea
bottom Γb, the mean free surface Γs, and the immersed surfaces of the objects
Γo,i, i = 1, . . . , n. Further, ω is the angular frequency of oscillations, g is the
gravitational field, and nz is the vertical component of the normal vector
to the surface of objects. The numerical solution using a source-distribution
boundary element method (BEM) is based on recasting (1) in integral form:

1

2
σ(x) +

∫
∪kΓo,k

σ(x′)
∂G
∂n

(x;x′) dx′ =

{
nz if x ∈ Γo,i,
0 if x ∈ Γo,j , j 6= i,

(2)

φ(x) =

∫
∪kΓo,k

σ(x′)G(x;x′) dx′, ∀x ∈ Ω. (3)

Here, the unknown is the source distribution σ defined on body surfaces. The
kernel is the Green function G, a complex elementary solution of the Laplace
equation satisfying the boundary conditions on the bottom and free surface
[7, Sect. 16]. By discretizing the surfaces of objects into elements, Eq. (2) can
be represented as the linear algebraic system Aσ = b. Once this system has
been solved, Eq. (3), in the discretized form φ = Bσ, can be used to compute
the potential in any point of the domain.

2 The coarse-corrected block-Jacobi algorithm

The matrix A resulting from the discretization of Eq. (2) is full, because each
element interacts with all others. Moreover, even though the Green function
is symmetric with respect to an exchange of its arguments, matrix A is non-
symmetric because interacting elements have in general different areas and
orientations. The problem has a natural block structure



A preconditioner for free-surface hydrodynamics BEM 3

A =

A11 · · · A1n

...
. . .

...
An1 · · · Ann

 , σ =

σ1

...
σn

 , b =

b1...
bn

 , (4)

where σj is a vector containing the unknowns corresponding to the j-th
object. The diagonal block Aii represents the interaction of body i with
itself. The off-diagonal block Aij represents the effect on body i of waves
radiated from body j. The structure of (4) suggests the use of a block-
Jacobi algorithm, equivalent to the parallel method of reflections [5]. This
method, together with a coarse correction, has been presented in [5] for the
real Laplace equation in perforated domains. Block-Jacobi is based on the
splitting A = D − N , where D is the block-diagonal part of A. At each
iteration, starting from σk, it requires solving for σk+1/2 in

Dσk+1/2 = Nσk + b. (5)

The solution of (5) can be performed block by block in parallel. After the
block-Jacobi step, a coarse correction is performed by solving the correc-
tion problem Ae = rk+1/2 in a low-dimensional (coarse) space C, where
rk+1/2 = b − Axk+1/2 is the residual. Consider, for simplicity, a problem
with n identical bodies, each one discretized with p elements, so that the full
system has dimension np. Define C = span{c1, c2, . . . , cm}, m � np. Then
we can introduce a restriction operator R : Rnp → C represented by matrix

R =
[
c1 c2 . . . cm

]T
and a prolongation operator P : Rnp → C represented by

matrix RT . Let ec ∈ Rm be a vector such that ê = RTec is an approximation
of the error e. The coarse problem is

RARTec = Rrk+1/2, (6)

where Ac := RART . Once the coarse problem (6) has been solved, the update

σk+1 = σk+1/2 +RTec

is performed. The efficiency of the correction step is strongly related to the
choice of the coarse space C. This has to be rich enough to well represent the
main error components that block-Jacobi cannot deal with, but its dimension
m must be relatively small, so that the cost of a single iteration is not in-
creased significantly. A simple choice for the coarse space is taking a constant
value of the source distribution σ on each body. This choice is suggested by
the one presented in [5] and corresponds to ci := 1i, i = 1, . . . , n, 1i being
the discrete indicator function of the i-th object. In this case, the dimension
of C is equal to the number of objects n.

Our two-level block-Jacobi method is detailed in Algorithms 1 and 2. The
former is a precomputation step, that does not depend on the right-hand side
vector. Thus, if multiple systems with the same matrix and different right
hand sides need to be solved, Alg. 1 needs to be performed only once. In this



4 G. Ciaramella, M. Gambarini and E. Miglio

Algorithm 1 Two-level block-Jacobi algorithm: initialization

1: for i = 1 to n do
2: Compute the LU decomposition of Aii.
3: end for
4: Compute R̃ = RA, Ac = R̃RT .

Algorithm 2 Two-level block-Jacobi algorithm: solution

Require: Initial guess σ0, tolerance tol, maximum number of iterations maxit.
1: Set k = 0.
2: while ‖b−Aσk‖ > tol and k < maxit do
3: Compute q = b−Nσk.
4: for i = 1 to n do
5: Solve Aiiσ

k+1/2
i = qi using the LU decomposition of Aii.

6: end for
7: Compute the restricted residual rc = Rb− R̃σk+1/2.
8: Solve for ec in Acec = rc.
9: Update σk+1 = σk+1/2 + RTec.

10: Update k = k + 1.
11: end while

algorithm, matrix R̃ = RA is efficiently (see Section 3) computed, so that the
cost for computing the restricted residual at each iteration is reduced. Alg. 2
corresponds to the stationary method

σk+1 = [I − (Pc +D−1 − PcD−1)A]σk + (Pc +D−1 − PcD−1)b

= σk + (Pc +D−1 − PcD−1)rk,

with Pc = RTA−1c R and where we can recognize the inverse preconditioner
P−1 = Pc+D

−1−PcD−1. Such preconditioner can then be used to accelerate
a Krylov method. Using P−1, the system is recast as P−1Aσ = P−1b. Since
the new system matrix P−1A is not symmetric, a classical choice is GMRES.
In our implementation, the preconditioning matrix P−1 is not assembled
explicitly; instead, GMRES is provided with a function (based on Alg. 2)
computing the action of P−1A on an arbitrary vector.

3 Implementation details and H-matrices

Hierarchical matrices, denoted here as H-matrices, are an efficient tool for
reducing the storage and computational cost of BEM problems. The method
is based on defining a hierarchical cluster tree from the set of mesh elements.
The system matrix is then built with a hierarchical block structure accord-
ingly. Each block describes the interaction between two clusters of elements.
If the centers of the two clusters are farther than a threshold, then a low-



A preconditioner for free-surface hydrodynamics BEM 5

8 9 5 6 7 0 1 2 3 4
leaf label

0

5

10

15

20

25

d
is

ta
n

ce
b

et
w

ee
n

cl
u

st
er

ce
nt

ro
id

s

Fig. 1: Clustering of positions (left) and hierarchical structure of matrix A
(right) for a test with 10 objects.

rank approximation on the block is built; otherwise, the block is built in
dense form. If the tree is balanced and if we take as leaves of the tree the
single objects, discretized with p elements, then both the costs of storage and
of matrix-vector multiplication are O(max(r, p)np log(np)) [4, Th. 2.6, 2.8],
where r is the maximum rank of matrix blocks.

Fig. 1 shows the tree and the hierarchical structure of matrix A for an
example with 10 objects on a row, with spacing of 5 m. The ordinate of each
node in the tree is the distance between the centers of its sons. In the matrix,
blue blocks are dense, while white blocks are low-rank. Notice that dense
blocks gather mostly close to the diagonal. Information on the nodes of the
tree is stored in the so-called linkage matrix. The leaves constitute the first
n nodes of the tree. All other nodes are defined by the rows of the linkage
matrix: its i-th row contains the labels of the sons of the (n+ i)-th node.

Our implementation of Alg. 1 and 2 is done starting from the BEM code
Capytaine [2], which includes an H-matrices engine. Matrix-vector multipli-
cation in line 3 of Alg. 2 is performed with the built-in routine. Handling of
diagonal blocks and building the coarse space, instead, require special care.
Since the structure of matrix storage is hierarchical, extracting the diagonal
blocks of A to build matrices D and N is not immediate. In order to do it,
first a list leaves, whose i-th element is the list of leaves belonging to node
i, is built by sweeping over the rows of the linkage matrix. Then, a list paths
is constructed. This contains n sublists. The i-th sublist has size equal to the
level of the i-th leaf. The `-th element of this sublist is equal to 0 or 1, if at the
`-th level one has to turn left or right, respectively, to step down toward the
i-th leaf. For example, in Fig. 1 (left) the path to leaf 5 is paths[5] = [0, 1, 0].
The lists leaves and paths are exploited to compute RA efficiently in Alg. 2.
Because of the sparsity of the rows of R, that are vectors cTi , for dense ma-
trices this operation can be made very efficient by multiplying each of the
ci only by the rows of A corresponding to its non-zero elements. Slicing a
hierarchical matrix, however, is not as trivial. For this reason, we propose the
recursive procedure detailed in Alg. 3 and described graphically in Fig. 2. At
the beginning, Ã = A and v = ci are set. The algorithm then descends from



6 G. Ciaramella, M. Gambarini and E. Miglio

Algorithm 3 Computation of R̃ = RA for H-matrices

Require: A, R = [c1, · · · , cn] and paths.
1: for i = 1 to n do
2: Select the path to the i-th leaf: path = paths[i].

3: Set Ã = A, v = ci, a = 0, b = np, and initialize a zero array d of size np.
4: for j = 1 to length(path) do

5: Set k = path[j] and Nrow as the number of rows of Ãkk.
6: if k = 0 then
7: Select the first Nrow rows of v: v = v[0 : Nrow].

8: Multiply w = vÃ01 and set d[b− length(w) : b] = w.
9: Update: b = b− length(w).

10: else
11: Select the last Nrow rows of v: v = v[end−Nrow : end].

12: Multiply w = vÃ10 and set d[a : a + length(w)] = w.
13: Update: a = a + length(w).
14: end if
15: Set Ã = Ãkk.
16: end for
17: Diagonal block multiplication: d[a : b] = vÃ.

18: Set R̃[i, :] = d.
19: end for

the root to the level above the i-th leaf following list path = paths[i]. In
doing this, because of the structure of the tree, 2× 2 blocks are encountered
at each level. At level j, the nonzero contributions ciA come only from the
k-th block-row, with k = path[j]. The off-diagonal part of the k-th block row
is directly multiplied by the appropriate slice of v; then, the algorithm is ap-
plied again to the diagonal block Ãkk. At the end, only the (dense) diagonal
block corresponding to the interaction of the i-th object with itself is left, and
this last multiplication is performed. The main advantage of this strategy is
that, at each level of the hierarchy except the last, off-diagonal blocks, that
are expected to be mostly low-rank, are multiplied.

4 Numerical experiments

The method is implemented by integration with the BEM code Capytaine
[2]. Hierarchical clustering on the positions of the objects is performed using
SciPy. We simulate two geometries: line arrays and grid arrays. In both cases
the objects are half-spheres of radius 2 m and the minimum distance between
two bodies is 5 m. The results are reported in Table 1. Times for GMRES
and preconditioned GMRES refer to the solution of the n systems required to
build the radiation dataset; thus the number of systems needing to be solved
increases with the number of objects. The loops described in Algorithms 2
and 3 are performed serially. We build the radiation dataset only for vertical



A preconditioner for free-surface hydrodynamics BEM 7

(a) j = 1 (b) j = 2

(c) j = 3 (d) Diagonal block

Fig. 2: Blocks selected for multiplication in Algorithm 3 for leaf i = 5.

GMRES Preconditioned GMRES
n storage (%) niter t (s) t/n (s) init (s) niter t (s) t/n (s)
80 6.19 12 18 0.23 0.47 7 15 0.19
160 3.32 13 107 0.67 1.05 7 68 0.85
240 2.33 14 449 1.87 1.64 7 294 1.23
320 1.75 14-15 831 2.60 2.51 7 487 1.52
400 1.43 15 1182 2.95 3.46 7 698 1.74
480 1.23 15-16 1715 3.57 4.14 7 993 2.07

GMRES Preconditioned GMRES
n storage (%) niter t (s) t/n (s) init (s) niter t (s) t/n (s)
16 48.42 10 0.51 0.03 0.07 7 1.03 0.06
64 20.00 13 35 0.55 0.87 8 25 0.40
144 10.82 17 281 1.95 3.40 8-9 157 1.09
256 6.72 24-26 2216 8.66 15.5 9 826 3.23
400 4.82 38-43 7215 18.03 23.5 9-10 2030 5.08

Table 1: Results of the numerical experiment. Top table: line geometry. Bot-
tom table: grid geometry. In both tables, init is the time for initializing the
coarse solver (coarse space definition).

motion; in the general case of a rigid body, 6n systems would need to be
solved. In some cases, the number of iteration varies depending on the right
hand side (i.e., depending on the radiating object).



8 G. Ciaramella, M. Gambarini and E. Miglio

5 Discussion and conclusions

The presented results indicate that the preconditioned GMRES method has
a lower cost than the standard GMRES method for large arrays of floating
objects. The advantage becomes larger as the number of bodies increases:
speedups of up to a factor of 3.5 are obtained. For the line geometry, the
number of iterations of GMRES tends to become constant with respect to
the number of objects, while the iterations of preconditioned GMRES remain
exactly constant and equal to 7. On the other hand, for the grid geometry the
number of iterations of GMRES increases as n grows, while preconditioned
GMRES scales well. The use of Alg. 3 for the construction of the coarse space,
which needs to be performed only once, keeps the cost of such operation
low. Thus, a substantial speedup can be obtained with respect to standard
GMRES even when a small subset of the entire radiation dataset needs to
be computed. In the grid test case the percentage of dense blocks is larger,
resulting in a larger time for the initialization of Alg. 3.

Possible improvements include the parallelization of the loops in Alg. 2
and the use of a preconditioner also for the solution of the coarse problem,
whose cost can become relevant for very large arrays. In the case of a single
row of bodies, the coarse matrix Ac has a Toeplitz structure, and the natural
choice in this case is to use a circulant preconditioner. This strategy has been
explored at block level in [1], while some choices of circulant preconditioners
are presented in [8].

References

1. M. Ancellin et al. Using the floating body symmetries to speed up the numerical
computation of hydrodynamics coefficients with Nemoh. Proceedings of the 37th
International Conference on Ocean, Offshore and Artic Engineering, 2018.

2. M. Ancellin et al. Capytaine: a Python-based linear potential flow solver. J. Open
Source Softw., 4(36):1341, apr 2019.

3. A. Babarit. On the park effect in arrays of oscillating wave energy converters.
Renewable Energy, 58:68–78, 2013.

4. Mario Bebendorf. Hierarchical Matrices. Lecture Notes in Computational Science
and Engineering. Springer Berlin, Heidelberg, 2008.

5. G. Ciaramella et al. Methods of Reflections: relations with Schwarz methods and
classical stationary iterations, scalability and preconditioning. SMAI J. Comput.
Math, 5:161–193, 2019.

6. V. A. Squire. Ocean wave interactions with sea ice: A reappraisal. Annual Review
of Fluid Mechanics, 52(1):37–60, jan 2020.

7. J. V. Wehausen et al. Surface waves. In Fluid Dynamics / Strömungsmechanik,
pages 446–778. Springer Berlin Heidelberg, 1960.

8. Z. Zhu et al. On the asymptotic equivalence of circulant and Toeplitz matrices.
IEEE Transactions on Information Theory, 63(5):2975–2992, 2017.



MOX Technical Reports, last issues

Dipartimento di Matematica

Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

82/2022 Ciaramella, G.; Gander, M.; Van Criekingen, S.; Vanzan, T.

A PETSc Parallel Implementation of Substructured One- and Two-level Schwarz Methods

81/2022 Bonizzoni, F.; Hauck, M.; Peterseim, D.

A reduced basis super-localized orthogonal decomposition for reaction-convection-diffusion

problems

83/2022 Ciaramella, G.; Gander, M.; Mazzieri, I.

Unmapped tent pitching schemes by waveform relaxation

80/2022 Balduzzi, G.; Bonizzoni, F.; Tamellini, L.

Uncertainty quantification in timber-like beams using sparse grids: theory and examples with

off-the-shelf software utilization

78/2022 Bucelli, M.; Gabriel, M. G.; Gigante, G.; Quarteroni, A.; Vergara, C.

A stable loosely-coupled scheme for cardiac electro-fluid-structure interaction

79/2022 Antonietti, P. F.; Farenga, N.; Manuzzi, E.; Martinelli, G.; Saverio, L.

Agglomeration of Polygonal Grids using Graph Neural Networks with applications to Multigrid

solvers

77/2022 Ziarelli, G.; Dede', L.; Parolini, N.; Verani, M.; Quarteroni, A.

Optimized numerical solutions of SIRDVW multiage model controlling SARS-CoV-2 vaccine roll

out: an application to the Italian scenario.

76/2022 Spreafico, M.; Ieva, F.; Fiocco, M.

Longitudinal Latent Overall Toxicity (LOTox) profiles in osteosarcoma: a new taxonomy based

on latent Markov models

70/2022 Andrini, D.; Balbi, V.; Bevilacqua, G.; Lucci, G.; Pozzi, G.; Riccobelli, D.

Mathematical modelling of axonal cortex contractility

71/2022 Calabrò, D.; Lupo Pasini, M.; Ferro, N.; Perotto, S.

A deep learning approach for detection and localization of leaf anomalies


	qmox84-copertina
	mox-20221116141518
	qmox84-terza_di_copertina

