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Abstract 

BACKGROUND   

This work dealt with the assessment of a computational tool to estimate the latest electrically 

activated segment (LEAS) of the left ventricle during cardiac resynchronization therapy 

(CRT).   

OBJECTIVE   

The aim of the work was to show that for patients with left bundle branch block (LBBB), 

possibly in presence of fibrosis, the proposed computational tool was able to accurately 

reproduce the electrical epicardial activation maps and in particular LEAS location in the 

coronary sinus (CS) branches.   

METHODS    

We considered a computational tool based on Finite Elements used to recover the electrical 

activation maps in all the myocardium. The model was calibrated by using activation times 

acquired in the CS branches with an electroanatomic mapping system (EAMS). 

RESULTS   

We applied our computational tool to predict electrical maps in the CS branches and LEAS 

for ten patients. We found an excellent accordance with EAMS measures, in particular the 

error for LEAS location was less than 4mm. We also calibrated our model using only the 

activation maps of the CS, still obtaining an excellent agreement with the measured LEAS. 

CONCLUSION    

We showed that our computational tool is able to accurately predict the electrical activation 

maps of the epicardial left ventricle surface also in cases with relevant fibrosis. In particular, 

we could estimate the location of LEAS, often used as a target site for the left lead placement 

during CRT, even when information only at CS were used for calibration. 
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Introduction 

Cardiac resynchronization therapy (CRT) is an effective treatment for ventricular 

dyssynchrony (VD), which is often implicated in the development of congestive heart failure.1 

The main conduction disfunction which leads to VD is the left bundle branch block (LBBB). 

Despite improvements in recent years in CRT efficacy, the therapy has a non-responder 

rate of about 30%.2 A possible way to improve CRT, in terms of clinical outcome and patient 

follow-up, consists in the optimal localization of the left lead. In recent years some attention 

has been paid on the latest electrically activated segment (LEAS) in the left ventricle (LV) 

as a target site for the left lead placement.3,4 Measurements of LEAS require epicardial veins 

mapping by standard transvenous approach. A few years ago the use of the 

electroanatomical mapping system (EAMS) has been introduced also for the mapping of the 

coronary sinus (CS) and its branches.4,5 Subsequent studies have shown how this approach 

can guide CRT implantation by indicating LEAS for lead placement. 6,7 However, this 

technique remains rather laborious and time consuming.  

In the present work a new computational tool8, validated in9, is proposed for the estimation 

of LEAS. Our approach allowed us to obtain activation times in all the LV myocardium, thus 

providing, in particular, a complete “virtual mapping” of the epicardial veins. In particular, the 

computational model was calibrated by using activation measures in the CS branches 

obtained by EAMS. The aim of the work was to assess the accuracy of estimates provided 

by the model on patients with and without fibrosis. To this aim, we compared activation maps 

obtained by the computational model with those measured in the CS branches by means of 
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EAMS, with a particular focus on LEAS prediction. Moreover, we have repeated the same 

procedure to estimate LEAS by using only the points acquired at CS to calibrate our model.  

 

Methods 

This study was independent, non-industry-sponsored, and approved by the local ethical 

committee. 

  

Patient-specific geometric reconstruction 

Ten patients (P1-P10) affected by LBBB underwent a non-contrast enhanced cardiac and 

respiratory gated 3D MRI acquisition of both ventricles. A series of short-axis slices was 

acquired with a resolution of 2.34 × 2.34 mm2 and slice thickness of 8 mm. 

LV epicardium and endocardium surfaces were segmented using the open-source software 

MITK (http://www.mitk.org/wiki/MITK). A 3D interpolation has been applied to the short-axis 

images.  

Using suitable meshing tools10, we generated ten finite elements hexahedral volumetric 

meshes with mean edge length of 0.35 mm for each patient (Figure 1, right). 

 

Bullseye division 

The presence of fibrosis was revealed by MRI images in seven patients (P4-P10). Because 

of the low resolution, we could not properly reconstruct the fibrosis anatomy. However, 

starting to the standard 17-segment bullseye plots with the fibrosis distribution (Figure 1, 

left) we developed a tool able to split the reconstructed 3D geometry into 17 sub-volumes 

representing such segments (Figure 1, middle). 

 

Electrical data and geometric alignment of computational geometry  
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For each patient an electroanatomic mapping of the coronary epicardial veins, in particular 

of CS branches, was performed by means of the EnSite Precision system11 to record local 

activation times during the procedure to implant CRT.4,5,7 In Table 1 the number of total 

measures NTOT has been reported. Moreover, for P1-P5 we had also at disposal a mapping 

of the septum.  

In order to merge electrical and geometric data we suitably projected all the electrical points 

on the epicardial surface of the LV geometry9 (Figure 2). 

 

Electrophysiological mathematical model 

Cardiac electrophysiology (EP) in the LV patient-specific geometries was modeled by the 

monodomain equation coupled with the Bueno-Orovio ionic model.12 For time discretization 

we used the forward Euler method for the ionic equation and a first order semi-implicit 

method for the monodomain equation.9 The time step was 2.5*10-5s, a suitable value to 

capture the propagating front.13 

For space discretization, we used linear Finite Elements on hexahedral meshes. All the 

computational framework has been implemented in lifex (https://lifex.gitlab.io/lifex), an 

academic high-performance C++ library for cardiac applications, based on the deal.II core.14 

When available (P1-P5), the septal data were used as input in the computational 

simulations. For the other cases (P6-P10) we prescribed as input the activation time in three 

selected points of the septum, according to standard observations made for LBBB patients.15 

The output of the computational simulations was the transmembrane potential at discrete 

temporal points (approximately 40 thousand per heartbeat) and at discrete spatial points, 

one for each vertex of the mesh. Starting from the trans-membrane potential, we computed 

the activation time for each discrete point as the discrete time instant where the trans-

membrane potential has the highest variation rate. 
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Parameters estimation 

The activation times measured at the CS branches were used as calibrating data to estimate 

the parameters in the monodomain equation, specifically the conductivities σf, σs, σn along 

the fibers, the sheets, and the normal directions, respectively. See9 for further details. The 

conductivity values were differentiated to account for the different velocity of propagation in 

the three directions. For patients without fibrosis, these values were assumed to be constant 

in the whole myocardium, whereas for patients with fibrosis they were suitably reduced in 

the segments characterized by fibrosis, where conductivity is not necessarily zero as 

happens in presence of scars.16 In order to properly select for each patient the values of the 

conductivities, we minimize the discrepancy at the epicardial veins between activation times 

obtained by computational simulations and those acquired by EAMS. This approach has 

been previously validated.9 

In order to make our approach useful for the clinical practice, we repeated for five patients 

(P3,P4,P5,P8,P10) the estimation of conductivities by using as calibrating data only the 

measures acquired at CS (i.e. the most proximal ones). In Table 1 the number of measures 

NCS at CS has been reported. 

 

Reconstruction of the epicardial veins 

We finally need to reconstruct the epicardial vein geometries, where the computational 

LEAS is evaluated. The MRI images at our disposal were not fine enough to allow the 

segmentation of such veins. Thus, we proposed here a method for their reconstruction. The 

idea was to exploit the locations of the points acquired by EAMS to draw the anatomy of the 

veins through the use of splines, an accurate mathematical tool widely used for interpolation 

e.g. in computer graphics.17 For this purpose, we used the Paraview software, which allowed 
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us to manually manage the control points of the splines to improve the geometric 

reconstruction of the epicardial veins. 

 

Prediction of the latest electrically activation segment: consistency test 

In the CRT context, the clinical interest is focused on the point of the epicardial veins 

corresponding to the latest electrically activation segment (from now on measured LEAS), 

often used for the location of the left ventricular lead.3,5-7 

Thanks to the computational pipeline described above and reviewed in Figure 2, we were 

able to solve the monodomain problem with the estimated conductivities and compute for 

each patient the activation times in the myocardial geometry. In particular, this allowed us 

to identify the computational LEAS, that is the point in the reconstructed veins featuring the 

latest activation segment among all the ones obtained by the computational simulations. 

This consistency test allowed us to assess the suitability of the computational model to 

accurately estimating measured LEAS. Moreover, we were also able to compute LEAS 

among all the points of the epicardium, not only those belonging to the veins (computational 

global LEAS). This could be of particular interest when epicardial surgery procedure are 

used as an alternative to the standard transvenous technique.18 

 

Prediction of the latest electrically activation segment: clinically relevant test 

The previous estimation of computational LEAS and the comparison with measured LEAS 

have been performed for all the patients in the case when all the epicardial veins measures 

were used as calibration data. This procedure has been then repeated for patients P3, P4, 

P5, P8, P10 also in the case when only measures at CS were used as calibrating data, see 

Figure 2. In this case, we proposed to verify if our method was able to well predict LEAS by 

using only few data, in particular those at CS. This could provide a way to predict LEAS by 

using a shorter mapping procedure than the standard one. In particular, it might be enough 
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to map only the most accessible epicardial points (i.e. those at CS) to extract clinically 

relevant information about LEAS (clinically relevant test).    

 

Results 

Consistency test 

In Figure 3 we reported the collection of geometric and electric data (in bullets) after their 

alignment9, together with the continuous maps of activation times obtained by the 

computational simulations after calibration with all the epicardial veins measures. In Table 

1 we reported (in black) the values of the conductivities estimated for each patient to match 

the measures. We observe values in the physiological ranges 

(0.7,2.2)x(0.16,0.48)x(0.03,0.1) kΩ-1cm-1.19-21 

In Figure 4 we show the computed trans-membrane potentials at three selected times. We 

can notice that for all the cases the first activated region is the septum. This is coherent with 

the electrical propagation in LBBB patients where the electrical signal enters the LV through 

the septum activated by the right ventricle. Notice from the corresponding bullseyes the 

lower velocity of propagation in the region with fibrosis.  

From Figure 3, we observe a very good agreement between computations and measures. 

To provide a quantitative analysis, in Table 1 we report (in black) the errors obtained by our 

computational simulations. In particular, we computed the mean relative error and the 

standard deviation over the total number of measurements. We observe an excellent 

agreement between computational experiments and measures, the error being in any case 

less than 8%. In particular, for patients without fibrosis (P1-P3) the average error was 5.2%, 

whereas for the patients with fibrosis (P4-P10) it was 6.1%. This is not surprising, since in 

the latter case there are more parameters to determine (the conduction velocity being not 

constant). 
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In Figure 3 we showed also the reconstructed epicardial veins together with the position of 

measured LEAS, computational LEAS, and computational global LEAS. We notice an 

excellent agreement between the position of measured and computational LEAS. On the 

other side, the computational global LEAS is always quite far from the other two LEAS.   

To go deeper in the analysis, in Table 2 we reported the values of the distance D1 (intended 

as the geodesic distance over the epicardial surface) between measured and computational 

LEAS. These results confirmed the great ability of the computational tool in predicting LEAS, 

the error in terms of distance being in any case less than 0.41 cm (average 0.23 cm). D1 

assumed an average value of 0.27 cm for P1-P3 (that is for patients without fibrosis) and of 

0.21 cm for P4-P10 (that is for patients with fibrosis), highlighting that the accuracy of the 

computational tool in predicting the location of LEAS is independent of the presence of 

fibrosis. 

Also, we reported the distance D2 between measured LEAS and computational global 

LEAS, and the difference ∆AT between the activation times corresponding to these 

segments. We observe significant values of the distance which is in any case greater than 

1.73 cm, reaching values up to more than 5 cm (average 3.15 cm). This means that if we 

are looking for the point with the absolute largest activation time over all the epicardial 

surface (thus not restricting our search in the epicardial veins), we would find points quite 

far from measured and computational LEAS. However, the delay in terms of activation time 

with respect to measured LEAS is in average 14.6 ms, therefore only about 10% of the 

global duration of the QRS.  

 

Clinically relevant test 

In the second test, we assessed the accuracy of the computational LEAS predicted by 

computational simulations calibrated by using only measures acquired at CS, that is the 

most proximal ones. In Figure 5, we reported the corresponding location of LEAS together 
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with the continuous computational map of activation times and the reconstructed epicardial 

veins.  

In Table 1 we reported in the second column of each box (when available, in red) the values 

of the estimated conductivities together with the relative error (obtained against all the 

measures at disposal, not only those at CS) and the standard deviation. From these results, 

we observe that the conductivity values estimated by using only the measures at CS are 

very similar to those of consistency test, where all the measures were used for calibration. 

Accordingly, we observe a very small increment of the relative error with respect to the 

consistency test. 

In view of the clinical validity of this test, in Table 2 we reported in the second column of 

each box (when available, in red) the values of the distances D1 and D2. In particular, D1 

resulted to be the same of the consistency test for four of the five patients, whereas it was 

a little bit larger for one case. As for D2, again the values are very similar to the consistency 

test. We also reported the differences ∆AT between activation times of measured LEAS and 

computational global LEAS, which feature exactly the same values obtained by the 

consistency test.  

 

Discussion 

Computational methods represent nowadays a very promising, non-invasive tool to provide 

clinical indications in different applications of electro-physiology. In particular, there is in the 

literature a growing interest in using computational models to predict and support the clinical 

practice for CRT.22-25 

In this work, we have used a computational method, previously validated for non-fibrotic 

cases9, to 10 LBBB cases (3 without fibrosis, 1 with moderate fibrosis, and 6 with wide 

fibrosis) with the aim of predicting the electrical activation maps in the CS branches. The 

error between computations and measures obtained by EAMS was in any case less than 
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8% showing the accuracy of our tool, which is able to reproduce a complete myocardial 

activation map (Figure 3, left). This could be thought as the first step towards the modeling 

of the processes that are at the basis of intraventricular conduction disorders. 

More specifically, we focused on the prediction of LEAS, which has been seen to be an 

optimal site for the location of the left lead during CRT.3,4 Our results showed that the 

distance between LEAS mapped during EAMS by cardiologists and those predicted by our 

computational model is in any case less than 4mm (Table 2), indicating the great ability of 

our tool to well predict LEAS location.  

More interestingly, we showed for 5 cases (1 without fibrosis and 4 with fibrosis) that it is 

enough to know the activation times at CS to well predict the location of LEAS in the CS 

branches. This result could be of utmost importance in view of a possible clinical application. 

Indeed, previous studies have suggested that left ventricular pacing in a site with late 

activation (either mechanical or electrical), rather than anatomically pre-specified left 

ventricular segments, may improve the hemodynamic response, reverse remodeling, and 

clinical outcome of patients underwent to CRT implantation.3,26-28 Our group demonstrated 

that EAMS-guided CRT implantation is a safe, reliable and effective technique that provides 

useful information on the electrical activation of CS and its branches in order to guide the 

placement of the left ventricular lead.4-7 Also, it demonstrated that there was a strong 

correlation between CS-LEAS and branches-LEAS: in other words, from the CS regions of 

highest activation delay, origins the vessel with highest activation delay; this finding can 

reduce procedural time during CRT implant, with or without EAMS, by limiting the search of 

the target vessel for left ventricular lead placement to the CS area with the largest delay.29 

Several studies have investigated the presence and variability of CS tributaries.30,31 These 

anatomical structures are characterized by high anatomic, location and course interpatient 

variability.32 The possibility of predicting the site of highest delay in the LV with a 

mathematical model with the acquisition of a few points in CS could facilitate the mapping 
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procedure, providing a potential benefit for patients, and the overall implantation of a CRT 

device, possibly promoting improvements in the number of patients responding to therapy,  

This evaluation would also be useful to discriminate those patients in which there is no vein 

in the delayed area to evaluate whether to submit them to alternative resynchronization 

techniques, e.g. implantation of CRT with epicardial catheter for stimulation of the LV in 

minithoracotomy.33 Nowadays the epicardial surgery is not only employed in patients with 

failed CS left ventricular lead implantation but also as an alternative to the standard 

transvenous technique.18 With this respect, the possibility to compute LEAS among all the 

epicardial points (and not only those in the veins) by means of a computational model 

(computational global LEAS) as described in this work provides a reliable way to localize an 

effective location for the left catheter implantation during minithoracotomy. 

Despite these promising results, we are still far to concretely propose our method for an 

implementation in the current mapping devices. This because of the high computational 

times still requested to solve the related electrophysiology problems to determine maps of 

activation times and in particular LEAS, even using clusters of high performing computers. 

We are working in this direction in order to reduce the computational effort of our strategy 

and to make it close to real time. In this direction, we are exploring different mathematical 

models which are less accurate but much faster, such as the Eikonal model.8,25,34 

In any case, we believe that the results presented in this work could represent a first step 

towards the inclusion of a computational tool in an electrophysiology mapping device in 

order to shorten the invasive procedure and give an effective support in determining 

activation maps and in particular LEAS position.  

Conclusions 

In this work we have used a computational tool for the prediction of myocardial electrical 

activation maps and in particular of the location of LEAS in the CS branches, usually 

determined by means of a mapping procedure and used for CRT implantation. The model 
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was calibrated by using the activation maps obtained by EAMS navigating CS branches. Its 

application to ten patients with LBBB and possible fibrosis showed an excellent agreement 

between computational and measured activation maps and LEAS. Remarkably, for five of 

the ten patients we showed that it was enough to use activation maps only at CS to calibrate 

the model in order to well predict LEAS in the CS branches. 

These results provide a first preliminary step towards the use of computational tools to better 

understand the conditions that could lead to intraventricular conduction disorders and to 

assist CRT by providing a support and simplification of EAMS.   
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NTOT 
/NCS σf σs σn Mean relative 

error (%) 
Std 
(%) 

P1 39 1.57 0.41 0.08 3.55 2.02 

P2 32 1.23 0.25 0.07 4.97 2.68 

P3 33 / 8 1.39 / 1.41 0.30 / 0.31 0.07 / 0.07 5.32 / 5.94 1.95 / 1.96 

P4 32 / 7 1.38 / 1.42 0.67 / 0.71 0.07 / 0.08 5.67 / 6.23 2.21 / 2.35 

P5 84 / 10 1.36 / 1.32 0.54 / 0.51 0.08 / 0.08 4.53 / 5.32 1.83 / 2.08 
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P6 25 1.25 0.51 0.06 5.30 2.29 

P7 17 1.32 0.55 0.07 5.13 2.76 

P8 20 / 7 1.21 / 1.23 0.39 / 0.42 0.06 / 0.07 7.96 / 8.74 2.61 / 2.95 

P9 48 1.28 0.28 0.06 6.89 3.11 

P10 86 / 10 1.31 / 1.28 0.30 / 0.28 0.07 / 0.06 3.24 / 4.15 1.53 / 1.86 

 

Table 1. Number of measures, conductivities, errors. 

Number of total (NTOT) and coronary sinus (NCS) measurements used for calibration; Values 

of estimated conductivities σf, σs, σn; Mean relative error with standard deviation. In black: 

consistency test. In red, when available: clinically relevant test.  

 

 

 

 

 

 D1 (cm) D2 (cm) ∆AT (ms) 

P1 0.26 3.71 15 

P2 0.35 3.06 15 

P3 0.21 / 0.21 1.96 / 1.95 11 / 11 

P4 0.16 / 0.16 1.95 / 1.96 12 / 12 

P5 0.11 / 0.13 1.73 / 1.76 11 / 11 

P6 0.41 2.89 15 

P7 0.24 5.22 20 

P8 0.09 / 0.09 1.53/ 1.52 8 / 8 
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P9 0.38 5.65 19 

P10 0.08 / 0.08 3.75 / 3.74 20 / 20 

 

Table 2. Distances between measures and computations 

Distance D1 between measured and computational LEAS; Distance D2 between measured 

and computational global LEAS; Difference ∆AT between activation times of measured and 

computational global LEAS. In black: consistency test. In red, when available: clinically 

relevant test.  
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Figure 1. Bullseyes, geometries, and computational meshes  

Left: bullseye plot of the fibrotic distribution. Middle: front perspective of the reconstructed 

geometry subdivided into fibrosis (black) and healthy tissue (white). Right: computational 

mesh (for visualization purposes, a coarser one with respect to the one used in simulations). 
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Figure 2. Workflow 

Inputs (in light blue): MRI images, electroanatomic measures and bullseye plots; Pipeline 

steps (in green): geometric reconstruction of the LV; bullseye subdivision; alignment of 

geometric and electrical data; calibration and computational results of activation time; choice 

of calibrating data: i) all measures at the epicardial veins (consistency test); ii) measures 

only at the coronary sinus (clinically relevant test);  
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Figure 3. Measured and computed activation maps. Consistency test. 

Left: Computed (continuous map) and measured (bullets) activation times. Right: 

Reconstructed epicardial veins (in red) and location of LEAS. 
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Figure 4. Maps of electrical potential 

Maps of electrical potential at three instants together with bullseye plot. Consistency test. 
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Figure 5. Measured and computed activation maps. Clinically relevant test. 

Computed (continuous) activation maps, measurements of activation time in the coronary 

sinus (rounded in blue), reconstructed epicardial veins (in red) and locations of LEAS. 

 


