
MOX-Report No. 83/2024

Multi-fidelity reduced-order surrogate modelling

Conti, P.; Guo, M.; Manzoni, A.; Frangi, A.; Brunton, S. L.; Kutz, J.N.

MOX, Dipartimento di Matematica 
Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

mox-dmat@polimi.it https://mox.polimi.it



Multi-fidelity reduced-order surrogate modeling

Paolo Contia, Mengwu Guob, Andrea Manzonic, Attilio Frangia, Steven L. Bruntond, J. Nathan Kutzd

aDepartment of Civil Engineering, Politecnico di Milano, Milano, I 20133, Italy
bDepartment of Applied Mathematics, University of Twente, Enschede, 7522NB, the Netherlands

cMOX – Department of Mathematics, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133, Milano, Italy
dDepartment of Mechanical Engineering, and 5Department of Applied Mathematics, University of Washington, Seattle, WA

98195, United States

Abstract

High-fidelity numerical simulations of partial differential equations (PDEs) given a restricted computational
budget can significantly limit the number of parameter configurations considered and/or time window evalu-
ated. Multi-fidelity surrogate modeling aims to leverage less accurate, lower-fidelity models that are compu-
tationally inexpensive in order to enhance predictive accuracy when high-fidelity data are scarce. However,
low-fidelity models, while often displaying the qualitative solution behavior, fail to accurately capture fine
spatio-temporal and dynamic features of high-fidelity models. To address this shortcoming, we present a
data-driven strategy that combines dimensionality reduction with multi-fidelity neural network surrogates.
The key idea is to generate a spatial basis by applying proper orthogonal decomposition (POD) to high-
fidelity solution snapshots, and approximate the dynamics of the reduced states — time-parameter-dependent
expansion coefficients of the POD basis – using a multi-fidelity long short-term memory (LSTM) network. By
mapping low-fidelity reduced states to their high-fidelity counterpart, the proposed reduced-order surrogate
model enables the efficient recovery of full solution fields over time and parameter variations in a non-
intrusive manner. The generality of this method is demonstrated by a collection of PDE problems where the
low-fidelity model can be defined by coarser meshes and/or time stepping, as well as by misspecified physical
features.

Keywords: Reduced-order modeling, multi-fidelity surrogate modeling, LSTM networks, proper orthogonal
decomposition, parametrized PDEs

1. Introduction

Scientific computing has revolutionized science and engineering by enabling advancements that have
transformed almost every field of application. While becoming an increasingly critical component of any
real-world modeling, accurate and well-resolved simulations for multi-fidelity and multi-physics system also
come at an elevated computational cost that can strain limited computational resources. Indeed, it is often
challenging to generate many high-fidelity (HF) simulations from large-scale models with limited availabil-
ity of computing power, thus imposing restrictions on how comprehensive, either in parametric studies or
length of time evolution, such numerical simulations can be. In particular, computational costs can easily
become prohibitive or intractable when parameterized, time-dependent systems of partial differential equa-
tions (PDEs) are solved with detailed full-order models (FOMs) in a multi-query context (i.e., at many
instances of the input parameters characterizing the systems), such as in uncertainty quantification [1, 2],
optimal control [3, 4], shape optimization [5], parameter estimation [6, 7], and model calibration [8, 9, 10].
In such cases, the construction of efficient surrogate models is of paramount importance in order to produce
model proxies which can cheaply and accurately characterize the PDE system. By mapping low-fidelity
reduced states to their high-fidelity counterpart, we demonstrate a reduced-order surrogate model paradigm
that enables the efficient recovery of full solution fields over time and parameter variations in a non-intrusive
manner.

Reduced-order models (ROMs) have been developed to construct low-dimensional representations of
high-dimensional systems for a significant reduction in computational costs with controlled accuracy [11,
12, 13, 14, 15, 16, 17]. Among the available strategies, intrusive ROM techniques explicitly incorporate



full-order governing equations at the reduced level and often yield reliable and physically meaningful solu-
tions. However, the requirement for full-order simulators has limited the flexibility, generality, and industrial
relevance of these approaches. On the other hand, non-intrusive approaches learn reduced-order systems
primarily from solution data, including from numerical or experimental data. Examples are dynamic mode
decomposition [18, 19], reduced-order operator inference [20, 21, 22, 23], sparse identification of reduced
latent dynamics [24, 25, 26, 27, 28, 29], manifold learning using deep auto-encoders [30, 31, 32, 33], data-
driven approximation of time-integration schemes [34], and Gaussian processes for reduced representations
[35, 36]. Other relevant, recent works on non-intrusive ROM include [37, 38, 39, 40]. These data-driven
ROM techniques do not rely on direct operations on the full-order solvers, and are especially advantageous
for applications with well-established, readily-executed legacy codes.

However, the applicability and reliability of these numerical methods can break down when the collection
of HF data for model reduction is too computationally expensive, even in the offline stage of model training.
In addition, it is increasingly common to encounter scenarios where a wealth of data sources are readily
available, easily accessible, and/or cheaply computable, albeit not perfectly accurate. These low-fidelity (LF)
data can be generated from coarse discretizations, linearization, simplified geometric or physical assumptions,
or computationally efficient surrogate models. Despite limitations in accuracy, the LF data can represent
a useful addition of information to the limited HF data used for model training. Thus, multi-fidelity (MF)
methods aim to achieve an effective data fusion from various fidelity levels, and enable strong generalization
performance of data-driven models in regions where HF data are scarce or even absent. A wide range of
MF surrogate modeling techniques have been developed based on Gaussian processes [41, 42, 43] and neural
networks (NNs) [44, 45, 46, 47, 48]. They have found recent applications in many areas of scientific computing,
including uncertainty quantification, inference, and optimization [49, 50, 51, 52, 53, 54, 55]. Nevertheless, MF
techniques often become impractical when approximating high-dimensional systems, thereby limiting their
ability to directly approximate the full solution fields of PDEs. Fortunately, with the aid of dimensionality
reduction, MF data fusion can be feasible for the representation of reduced states in a predominant low-
dimensional latent space.

To combine the computational flexibility of non-intrusive ROMs and data efficiency of MF modeling,
we present an MF method of reduced-order surrogate modeling, abbreviated as MF-POD, which integrates
MF regression with dimensionality reduction via the proper orthogonal decomposition (POD). The core
idea is to approximate the solution manifold by a reduced subspace spanned by a small number of spatial
bases using the POD, and then employ MF regression to represent their time-parameter-dependent expansion
coefficients. The essence of MF regression here is inferring HF POD coefficients from their LF counterpart, so
as to approach HF accuracy at the computational cost of LF evaluations. To achieve this, a time-parameter-
dependent mapping from the LF to HF POD coefficients is constructed by means of long-short term memory
(LSTM) NNs [56, 57]. LSTM models have been shown to be effective in time series analysis, e.g., in speech
recognition [58, 59], natural language processing [60], and computational mechanics [61, 62]. In particular,
LSTM networks have proven to be successfull in the detection of both long- and short-term temporal patterns
and nonlinear correlations between datasets, with potential relevance in the construction of non-intrusive
reduced order models [55, 63, 64, 65, 66]. A recent work [62] has also shown their success in MF surrogate
modeling for simultaneous parametric generalization and temporal forecast. Thus, instead of relying on
expensive HF full-order evaluations, MF-POD allows for efficient online approximation of solution fields over
time and parameter variation by running fast LF simulations and then mapping their POD coefficients to
the HF level. In this way, parameter regions with sparse (or even no) HF data coverage can be conveniently
explored. From the time evolution of the LF model, the long-term HF forecast is enabled through LSTM
models. A schematic representation of the method is represented in Fig. 1.

The major advantage of the proposed method lies in a guaranteed light-weight offline stage. The compu-
tational cost of MF data generation is reduced, as the need for HF samples (for both the POD and LSTM
training) is limited and the computation of LF samples (for LSTM training) is extremely efficient. The POD
reduction also ensures that the LSTM time series is modeled in a relatively low dimension. While leveraging
the advantages of being non-intrusive, MF-POD overcomes the potential lack of physical consistency by in-
corporating physically meaningful LF data, hence enabling interpretability and reliability in generalization.
We test MF-POD’s performance in parametric generalization and temporal forecasting on a diverse set of
PDE benchmark problems. Since the method has the potential to capture phenomena such as transients
or the onset of instabilities, this work focuses on unsteady PDEs, including spiral wave propagation in a
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parametrized reaction-diffusion system, vorticity approximation of advection-diffusion in shallow water, and
velocity and pressure approximation of fluid flow past a cylinder in a channel. Compared to detailed HF sim-
ulations, LF data are generated by lower-quality discretizations over space and time, and/or with corrupted
values of critical physical features.

This paper is structured as follows. In section 2, we introduce the offline training process of the pro-
posed multi-fidelity reduced-order surrogate model, which consists of the POD reduced basis construction
and the LF-to-HF mapping with LSTM network models, both based on bi-fidelity data at limited time-
parameter locations; thereafter, using this trained model, we present the online procedure to infer HF
solutions from LF evaluations over a wider range of parametric configurations and forward in time. Results
for the aforementioned numerical tests are reported and discussed in sections 3 to 5, and conclusions are
finally drawn in section 6. The source code of the proposed method is made available in the public repository
MultiFidelity POD [67].

Figure 1: Using the proposed multi-fidelity reduced-order surrogate model to approximate time-parameter-dependent solution
fields. Given a new parameter configuration µ, low-fidelity solutions xLF are evaluated over a desired time domain that can
be much longer than the time window covered by training data. Low-fidelity POD coefficients xcoef

LF are computed via direct

projection onto the reduced basis ŨHF, and their mapped to their high-fidelity counterpart x̂coef
HF through an LSTM neural

network. Finally, the approximation of full solution fields is reconstructed as linear combinations of the reduced basis vectors.

2. MF-POD: offline/online framework

In this section, we introduce an algorithmic method for MF reduced-order surrogate modeling — MF-
POD, which is decoupled into the stages of offline training and online testing.

2.1. Offline training

A schematic presentation of the offline flow is illustrated in Fig. 3.

• Step 1: Generating MF training datasets
HF and LF solution data for training are computed over a limited set of parametric configurations Ptrain by
running the respective solvers. HF (resp. LF) snapshots are stacked in a matrix XHF ∈ RNHF

dof×NµN
HF
t (resp.

XLF ∈ RNLF
dof×NµN

LF
t ), where Nµ = |Ptrain|, and NHF

dof (resp. NLF
dof) is the number of spatial degrees of freedom

and NHF
t (resp. NLF

t ) the number of time instances for the HF (resp. LF) level. Note that solutions at
different fidelity levels are evaluated at the same parameter values, but not necessarily at the same spatio-
temporal locations, because the latter depends on the spatial mesh and time stepping of choice. This step
demands the highest computational cost in the offline stage, as it requires querying the HF full-order model.
Therefore, we consider a small number of parameter instances Nµ for the training data.
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• Step 2: Dimensionality reduction via POD
A set of NPOD reduced basis vectors, collected in ŨHF ∈ RNHF

dof×NPOD , is extracted from the HF snapshot matrix

XHF via the POD. Note that Ũ
T

HFŨHF = INPOD
.

Proper Orthogonal Decomposition (POD): The POD takes advantage of the singular-value de-
composition (SVD) to linearly extract principal components from high-dimensional data, and hence
provide low-dimensional orthonormal basis that can be computed as follows:

1. Compute the SVD of XHF, such that

XHF = UHFΣHFV
T
HF, with ΣHF = diag(σ1, . . . , σNµNHF

t
) and UT

HFUHF = I, VT
HFVHF = I . (1)

Here σ1 ≥ σ2 ≥ . . . ≥ σNµNHF
t
≥ 0.

2. Define NPOD as the minimum integer that satisfies∑NPOD

i=1 σ
2
i∑NµNHF

t
i=1 σ2

i

≥ 1− ε2POD, (2)

where εPOD > 0 is a given tolerance that determines how much of the variance of the signal should be
captured. As an alternative to providing a fixed tolerance εPOD, one can select the dimension NPOD of
the reduced basis according to the singular-value decay.

3. Form the POD basis ŨHF as the first NPOD columns of UHF, i.e., ŨHF = (UHF):,1:NPOD
.

The POD truncation provides a low-rank approximation of XHF, i.e., XHF = UHFΣHFV
T
HF ≈ ŨHFΣ̃HFṼ

T

HF,
where ṼHF contains the first NPOD columns of VHF and Σ̃HF contains the first NPOD ×NPOD block of ΣHF.

• Step 3: Computing POD coefficients via direct projection
The time-parameter-dependent combination coefficients of the POD basis for both fidelity levels are obtained
by projecting XHF and XLF onto the basis ŨHF, respectively:

Xcoef
HF = Ũ

T

HFXHF, Xcoef
LF = Ũ

T

HFL(XLF), (3)

where Xcoef
HF ,Xcoef

LF ∈ RNPOD×NµNHF
t collect respectively the POD coefficients of the HF and LF data. Here, L

represents an operator which lifts the LF solution vectors to the HF spatio-temporal resolution via interpo-
lation. In particular, spatial interpolation is required when the LF model is on a different (coarser) mesh
than the HF one, thus the LF solution vectors should be transformed to match with the HF resolution and
hence enable a projection onto the POD modes ŨHF; temporal interpolation is necessary when LF and HF
data are computed with different time discretizations, because compatible sequential data between the two
fidelity levels are required by the NN model in the next step. In this work, we consider either linear interpo-
lation (i.e., L(XLF) = PXLFQ

T with P ∈ RNHF
dof×N

LF
dof and Q ∈ RNµNHF

t ×NµN
LF
t being the spatial and temporal

interpolating matrices, respectively) or nearest-neighbor interpolation, both of which are computationally
inexpensive. An alternative option for matching LF and HF solution vectors is manifold alignment [68, 69].

• Step 4: Training LSTM surrogate model
The goal of this step is to learn the mapping f from the LF POD coefficients xcoef

LF ∈ RNPOD at time instance
t and parameter µ to their HF correspondence xcoef

HF ∈ RNPOD , written as(
t, µ,xcoef

LF (t, µ)
)
7→ f(t, µ,xcoef

LF (t, µ)) = xcoef
HF (t, µ). (4)

To approximate the mapping f , we make use of a long short-term memory (LSTM) NN model denoted by
fNN(·) = fNN(·; ΘNN), where ΘNN are the network parameters. This NN model fNN is trained on the input-output

pairs of POD coefficients {(xcoef
LF (ti, µi),x

coef
HF (ti, µi))}

NµN
HF
t

i=1 ∈ RNPOD (the columns of the matrices Xcoef
LF and

Xcoef
HF , respectively, for each time-parameter instance (ti, µi)). Using the Adam [70] algorithm, the LF to HF
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mapping fNN is determined by minimizing the mean squared error loss function as follows:

ΘNN = arg min
ΘNN

1

NµNHF
t

NµN
HF
t∑

i=1

∥∥xcoef
HF (ti, µi)− fNN(ti, µi,x

coef
LF (ti, µi); ΘNN)

∥∥2
2
. (5)

Long Short-Term Memory (LSTM) NNs for MF regression: In this work, an LSTM network
model is used for the time evolution of HF POD coefficients xcoef

HF by providing the corresponding
sequence of LF coefficients xcoef

LF in the inputs together with the parameters µ and time t. By including
time as an additional input along with LF coefficients xcoef

LF and parameters µ, the LSTM network
features an explicit dependency on time that allows predictions at arbitrary time points. As shown
in Fig. 2, an LSTM unit has two latent recurrent states c and h. At each time-step n, (cn,hn) are
recurrently updated from the combination of their last-step states (cn−1,hn−1) and the input values
xn = [tn, µ,x

coef
LF (tn, µ)] through a three-fold gate mechanism with a forget gate Gf , a update gate Gu,

and a output gate Go. The current state hn ≡ fNN(t, µ,x
coef
LF (tn, µ)) is produced as the unit’s output yn

to approximate xcoef
HF (tn, µ) (refer to (5)). The gate mechanism is the core of an LSTM unit, designed

to allow a refined memory management by weighting the contribution of past and present information,
and to overcome major drawbacks of recurrent networks such as exploding and vanishing gradients.
The recurrent states are updated as follows:

cn = Gf ◦ cn−1 + Gu ◦ c̃n , hn = Go ◦ tanh cn ≡ yn ,

in which the operation ◦ denotes an element-wise product, c̃n = tanh (Wc[hn−1,xn] + bc) represents the
new candidate state to replace cn−1, and the gates {Gi}i∈{f,g,u} are defined as Gi = σ(Wi[hn−1,xn]+
bi). Here, {Wc,Wf ,Wu,Wo} and {bc,bf ,bu,bo} are the trainable parameters – weights and biases
– of the LSTM unit to be included in ΘNN, and σ denotes the sigmoid activation function.

Figure 2: The visualization of an LSTM unit with its input-output setting [71, 62].

Since LSTM units are recurrent NNs that deal with sequential data, in practice, training data are grouped
in batch subsequences with shape nbatch ×K ×NPOD, in which nbatch is the batch size and K is the length
of batch subsequences. To determine the NN model’s hyperparameters, including the network architecture
(i.e., the numbers of layers and nodes in each layer) and the parameters associated to model training (e.g.,
the optimizer learning rate), we use a Bayesian optimization technique [72] implemented by the Python
package Hyperopt [73].

2.2. Online testing
Once the MF-POD model is trained offline, it can be used online to efficiently evaluate PDE solutions

for unseen parameter locations and longer time horizons, all at a very limited computational cost. As
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Figure 3: Offline training process of the proposed MF-POD strategy. The steps are 1© generating multi-fidelity training datasets,
2© dimensionality reduction via POD, 3© computing POD coefficients via direct projection, and 4© training LSTM surrogate
model.

illustrated in Fig. 1, for new parameter configurations of interest, we compute the LF solution xLF and
project it onto the POD basis to obtain the corresponding reduced states given by the projection coefficients
xcoef
LF . These coefficients are passed as inputs to the MF LSTM model and hence mapped to the sequences

of POD coefficients towards the HF level, obtaining x̂coef
HF , from which the high-resolution fields x̂HF can be

reconstructed. Thus, the proposed reduced-order surrogate model allows to provide an approximation of HF
simulations at a cheap online price of LF run-times and, moreover, to infer the future states of HF solutions
from the LF solutions evaluated forward in time. This enables reliable long-term forecast without querying
the expensive full-order model at all.

2.3. Metrics for performance evaluation

In the following sections we will assess the performance of MF-POD in several numerical examples. To
highlight the advantages of MF-POD over HF solvers in saving computational costs, as well as the gain in
accuracy in comparison to LF solvers, we report here the metrics for performance evaluation in terms of
computational time and errors.

• Computational time is recorded for the complete time evolution of interest, averaged over the testing
parameter instances. For LF and HF solutions, this means the run time of respective solvers, while for
the MF model, it refers to the evaluations in the online testing procedure. Percentages are computed with
respect to the HF time.

• Relative error with respect to the HF reference solution xHF is evaluated for both the MF solution x̂HF and
the lifted LF input xLF, as an average over the test set:

err%MF-POD =
100%

Ntest

Ntest∑
i=1

‖xHF(ti, µi)− x̂HF(ti, µi)‖2
‖xHF(ti, µi)‖2

, err%LF =
100%

Ntest

Ntest∑
i=1

‖xHF(ti, µi)− xLF(ti, µi)‖2
‖xHF(ti, µi)‖2

, (6)

where Ntest is the number of time-parameter combinations in the test set.
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3. Numerical example (I): Reaction-diffusion problem

We consider a lambda-omega reaction-diffusion system governed by the following equations

u̇ =
(
1−

(
u2 + v2

))
u+ µ

(
u2 + v2

)
v + d (uxx + uyy) ,

v̇ = −µ
(
u2 + v2

)
u+

(
1−

(
u2 + v2

))
v + d (vxx + vyy) ,

(7)

defined over a spatial domain (x, y) ∈ [−L,L]2 for L = 20 and a time span t ∈ [0, T ] for T = 80, where µ and
d are parameters that respectively regulate the reaction and diffusion behaviors of the system. We prescribe
periodic boundary conditions, and the initial condition is defined as

u(x, y, 0) = v(x, y, 0) = tanh
(√

x2 + y2 cos
(

(x+ iy)−
√
x2 + y2

))
.

The solution [u, v]T (x, y, t) to problem (7) represents two oscillating modes which generate spiral waves,
representing an attracting limit cycle in the state space.

Our goal is to approximate the solution components u and v as functions of the varying reaction parameter
µ ∈ P = [0.5, 1.5] with a fixed diffusion coefficient d = 0.05. We employ the MF-POD method to efficiently
evaluate high-resolution solutions over the whole time span with certain parametric variation, with the aid
of cheaply obtained, low-resolution LF approximations. To reduce offline computational costs, we train the
MF-POD model with a small amount of expensive HF solution data computed at a limited set of parameter
locations over a shorter time horizon Ttrain = 40 < T , while leveraging LF solutions generated on a coarse
spatial mesh with a corrupted value of diffusion coefficient.

3.1. Multi-fidelity setting

Both HF and LF solution datasets are constructed by solving the PDEs (7) using the Fourier spectral
method [74] with time step ∆t = 0.05. The two fidelity levels are defined as follows, and the difference
between LF and HF solutions is shown in Fig. 4.

Figure 4: LF (above) and HF (below) solution snapshots of u at three parameter locations and t = Ttrain = 40 in example (I).
Besides the difference in spatial resolution, the corrupted diffusion coefficient in the LF model leads to different shapes of spiral
waves than those in the HF solutions.

7



- LF solution data are generated on a coarse equispaced spatial grid with nLF = 32 points in each direction,
while a fine grid with nHF = 100 is adopted for the HF data.

- LF solutions are evaluated at a corrupted diffusion coefficient dLF = 0.1, instead of dHF = d = 0.05. This
represents a bias in the LF modeling in terms of the physical property of viscosity.

- HF data are only available over a limited time window [0, Ttrain] with Ttrain = 40 < T = 80.We hence aim
to extrapolate for a same-length time window beyond that covered by the HF training data.

- Training data on both fidelity levels are computed for a small number of parameter instances µ ∈ P =
[0.5, 1.5]. In particular, Nµ = 10 µ-values are selected over an equispaced grid of P.

To apply the MF-POD method, we perform the POD reduction on the HF snapshots and retain the first
NPOD = 9 modes. LF data are lifted to the HF spatial dimensionality via nearest-neighbor interpolation. For
both fidelity levels, POD coefficients are computed by projecting the data onto the reduced basis and then
fed to the LSTM neural network for training. An LSTM network with 1 layer, 69 nodes and subsequences
of length K = 133 has been considered, and these hyperparameters are optimized by Hyperopt [75]. Once
the training phase is concluded, we run the LF solvers to efficiently evolve LF solutions over the whole
time window [0, T ], and test the MF-POD accuracy in estimating the HF solutions over an unseen set of
Ntest
µ = 25 equispaced parameter locations over P.

3.2. Results

For a few extrapolated time instances at unseen testing values of the reaction coefficient µ, we show in
Fig. 5 the reconstruction of entire solution field predicted by MF-POD, compared with both HF reference
and LF input. The proposed MF strategy is able to recover high resolution and correct the prediction of
system behavior from inaccurate LF solutions. Table 1 provides a quantitative comparison of computational
time and relative errors among LF, HF, and MF solutions, highlighting the good performance of MF-POD.

The combination of POD reduction and MF regression with LSTM proves to be effective in this example.
The POD at the HF level extracts a global basis that represents predominant spatial patterns of the spiral
wave propagation, and the LSTM network model approximates the corresponding expansion coefficients
that describe how these spatial modes evolve over time. The expressive power of LSTM neural networks
is crucial not only for the approximation of POD coefficients’ strongly nonlinear dependency on time and
parameters, but also for the correlation modeling between the LF and HF levels, especially considering
that such an unknown correlation is parameter-dependent and potentially highly complex. In Fig. 6, we
depict the evolution of several POD coefficients predicted by the LSTM network. We notice that MF-POD
provides very accurate estimation of the time-dependent POD coefficients at unseen parameter locations,
not only in the training time interval [0, 40], but also for the future states over [40, 80], as the MF-predicted
coefficients match very well with the HF reference and present a significant improvement compared to the
LF level. These results over twice the length of the training time span indicate the capability of MF-POD
in long-term forecast.

As a final remark, we analyze how the proposed algorithm’s performance relies on the quantity of HF
training data and the quality of the LF data. The amount of HF data used in the training stage represents
the main contribution to the offline computational costs, while the quality of LF data determines the degree
of correlation between LF and HF levels. Fig. 7 shows how the relative test error of the MF-POD model
decreases as the number of HF data increases, when the quality of LF model also varies. In particular, the
LF data quality is regulated by corrupting the existing LF samples with Gaussian noises whose intensities
are 20% and 40% of the LF signal’s amplitude, respectively. We note that the proposed MF-POD method is
robust with respect to the quality of the LF data, because the performance with noisy data is comparable to
the noise-free case. We also observe that, even with a single HF training datum, the MF method outperforms
all LF models; with only 10 HF samples, our method effectively reduces the relative error to less than 20%,
considering that the LF relative errors exceed 100%.

3.3. The need of LSTM networks

Although the presented results have shown the proposed method’s capability in mapping LF solutions
to HF ones, the need to create this map via an LSTM neural network, instead of alternative regression
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techniques, has not been made clear yet. To show more evidence in this regard, we report further results
obtained by replacing the LSTM neural network with a “static” feed-forward (FF) neural network (i.e.,
without t in the inputs) in the MF regression step (Step 4 offline). In this scenario, the LF POD coefficients
are mapped to their HF counterparts instant by instant, instead of being processed as time series. In Fig. 8,
we report such computed spatial reconstructions and their absolute errors at the same time-parameter test
locations considered before. We note a clear worsening in reconstruction accuracy and a significant increase
in approximation errors, compared with the predictions by MF-POD with LSTM networks reported in Fig. 5.
This highlights that the MF regression with LSTM networks allows a better detection of temporal patterns in
time series and nonlinear correlations between datasets at different fidelity levels, guaranteeing an improved
predictive performance. Note that incorporating time as an input of the FF network would merely establish
an explicit dependency on time, yet this adjustment cannot enhance the regression performance meaningfully.
Indeed FF networks lack the capability to retain memory across time steps, and thus they are unable to
preserve the temporal dependency within the data. We refer to [62] for further discussions on these aspects.

Figure 5: Comparison of solution fields in example (I) among the approximation by MF-POD, the corresponding LF input,
and the HF ground truth (used as reference). The snapshots refer to two extrapolated time instances t ∈ {45, 65.5} (being
Ttrain = 40 the end of HF training coverage) for two testing values of reaction parameters µ ∈ {0.875, 1.375} that are unseen
during the training. Absolute error shows the discrepancy between the MF solution and the HF reference.
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Table 1: Comparison of computational time and accuracy in example (I). See section 2.3 for the definition of metrics.

Low-fidelity input MF-POD predicted High-fidelity reference

Computational time 0.58s (2.70%) 1.89s (8.79%) 21.49s (100%)
Relative error 111% 16% -

Figure 6: Comparison of the time evolution of POD coefficients in example (I) among MF solution, LF input, and HF reference
at testing parameter instances µ = 0.875 (above) and 1.375 (below). The dashed line at Ttrain = 40 indicates the end time of
HF data coverage in training, i.e., no HF information is available over t ∈ [Ttrain, T ] = [40, 80].

Figure 7: Relative test errors versus the quantity of HF data used during training (up to Nµ = 10). The MF-POD model is
retrained when an additional HF datum is integrated into the training set. Three LF datasets are considered: noise-free (in
green), and those corrupted by 20% (in orange) and 40% noise (in black). The horizontal lines represent the corresponding LF
test errors, which are independent of the number of HF data. Additionally, LF snapshots with different noise levels are also
presented.
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Figure 8: Predicted solution fields in example (I) by MF-POD with “static” feed-forward neural networks, instead of LSTM net-
works. The snapshots refer to two extrapolated time instances t ∈ {45, 65.5} for two testing parameter values µ ∈ {0.875, 1.375}.
Absolute error shows the discrepancy between the “static” MF solution and the HF reference.

4. Numerical example (II): Advection-diffusion in shallow water

In this example, we consider an advection-diffusion problem describing a fluid motion in the shallow
water limit [76] given by

∂ω

∂t
+ µ

(
∂ψ

∂x

∂ω

∂y
− ∂ψ

∂y

∂ω

∂x

)
= d∇2ω, (8a)

∇2ψ = ω, (8b)

defined over a spatial domain (x, y) ∈ [−L,L]2 and a time span t ∈ [0, T ]. Here ω(x, y, t) and ψ(x, y, t)
represent the vorticity and streamfunction, respectively, ∇2 = ∂2x + ∂2y is the two-dimensional Laplacian,
d = 0.001 is the diffusion coefficient, and we take L = 10 and T = 20. We assume periodic boundary
conditions and a stretched Gaussian function as the initial condition of vorticity:

ω(x, y, 0) = exp

(
−2x2 − y2

20

)
, (x, y) ∈ [−L,L]2 . (9)

We are interested in approximating the time-dependent vorticity field ω as the parameter µ varies over
P = [1, 5]. The general procedure for solving the system (8) numerically is to (i) compute the streamfunction
ψ(x, y, 0) at t = 0 by solving the elliptic equation (8b) given the initial condition of vorticity (9), (ii) use a
time-stepper on (8a) to advance the vorticity ω by one step ∆t, and (iii) repeat (i) and (ii) starting with
the updated ω(x, y, t + ∆t) until the final time T is reached. A small time-step ∆t implies a large number
of iterations, and a fine spatial discretization requires solving a large linear system in (i). Moreover, this
procedure must be repeated for each instance of parameter µ, which makes HF simulations impractical. We
use the proposed MF-POD method to relieve these heavy computational burdens. In particular, we consider
LF solutions on a coarser spatial grid with larger time-steps, while only evaluating a limited number of HF
solution data at several parameter locations for MF-POD training.

4.1. Multi-fidelity setting

As in the previous example, we adopt two fidelity levels that differ in the spatial resolution of discretiza-
tion, but also consider larger steps of time integration in the LF model than its HF counterpart. Specifically,
the HF (resp. LF) solution data are generated via the Fourier spectral method on an equispaced spatial
grid of nHF = 200 (resp. nLF = 50) nodal points along each direction with time-step size ∆tHF = 0.25
(resp. ∆tLF = 1.00). The bi-fidelity training data cover a limited time window [0, Ttrain] = [0, 12] with
Ttrain < T = 20, only at a small number (Nµ = 5) of parameters locations equispaced over P. Thereafter,
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Figure 9: The first four spatial modes identified by the POD (left) and the bi-fidelity data of corresponding expansion coefficients
(right) in example (II) (µ = 3). Note that the training data only cover a limited time window [0, Ttrain] = [0, 12] with
Ttrain < T = 20.

the training data are fed to the offline algorithm of MF-POD. In this example, we retain the first NPOD = 17
POD modes and consider linear interpolation both in time and space to lift LF data to the HF dimension-
ality for the POD projection. The first four POD modes and the corresponding time-dependent expansion
coefficients at µ = 3 are depicted in Fig. 9. Regarding the network architecture, an LSTM with 1 layer,
52 nodes and K = 39 is employed. The predictive performance of MF-POD is tested for N test

µ = 4 unseen
parameters values µ ∈ {1.5, 2.5, 3.5, 4.5} ⊂ P.

4.2. Results

The MF-POD method allows us to create an efficient, reliable, low-dimensional surrogate model for the
advection-diffusion in shallow water. As presented in Table 2, parametric solutions can be evaluated with
MF-POD at a computational cost comparable to that of the LF, yet with a significant improvement in
accuracy as highlighted by the substantial reduction in predictive error.

This example is challenging for data-driven surrogate modeling, especially in terms of the approximation
of POD coefficients describing a parametric coherent structure that propagates over time (i.e., the wave-type
phenomena). If only the time-parameter inputs are accounted for, the regression may very likely suffer
from difficulties with limited data, leading to poor generalization performance, and extrapolation beyond
the training time window would thus be barely possible. The proposed MF-POD method mitigates such
technical risks by incorporating physically meaningful LF solutions, which can capture unseen dynamical
characteristics and inform the solution approximation via the LF-to-HF mapping on POD coefficients.

To illustrate the effectiveness of MF-POD in predicting forward in time and for new parameter instances
simultaneously, we depict in Fig. 10 the evolution of vorticity ω at an unseen testing parameter value
µ = 3.5. The physical behavior is accurately predicted by the MF-POD approach, even with very low
resolution on the LF level. As time evolves, the wave propagation presents finer spatial patterns, and the
temporal extrapolation becomes more complex, especially considering that no HF information is available
after t = Ttrain = 12, and the LF input does not have sufficient resolution to perfectly detect fine patterns.
Nevertheless, the proposed method allows to accurately extrapolate (see, e.g., the prediction at t = 15 in

Table 2: Comparison of computational time and accuracy in example (II).

Low-fidelity input MF-POD predicted High-fidelity reference

Computational time 3.23s (1.03%) 4.12s (1.32%) 311s (100%)
Relative error 12.8% 3.35% -
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Figure 10: Comparison of solution fields in example (II) among the approximation by MF-POD, the corresponding LF input,
and the HF ground truth (used as reference). The snapshots refer to two training time instances t ∈ {5, 10} and two extrapolated
time instances t ∈ {15, 20} (being Ttrain = 12 the end of HF training coverage) for the testing parameter µ = 3.5 that is unseen
during the training. Absolute error shows the discrepancy between the MF solution and the HF reference.

Fig. 10) up to time T = 20, showing the power of MF data fusion, though such power is not unlimited as
the predictive error in wave propagation is no longer negligible after T .

5. Numerical example (III): Navier-Stokes equations

For the last example, we consider a two-dimensional fluid flow around a cylinder — a benchmark problem
in computational fluid dynamics. Our goal is to efficiently approximate the velocity and pressure fields of
a viscous, incompressible Newtonian fluid flow as its Reynolds number varies. The problem is governed by
the following Navier-Stokes equations

ρ
∂v

∂t
− ρv · ∇v−∇ · σ(v, p) = 0, (x, t) ∈ Ω× (0, T ) ,

∇ · v = 0, (x, t) ∈ Ω× (0, T ) ,
(10)

where v(x, t) and p(x, t) represent the velocity and pressure field, respectively, and ρ = 1.0 kg/m
3

is the
fluid density, σ(v, p) = −pI+2νε(v) is the stress tensor with ε(v) denoting the strain tensor. The kinematic
viscosity is defined as ν = 1/Re [77], in which the Reynolds number, Re, is the system parameter of interest.
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Figure 11: Geometry for a 2D channel flow around a cylinder. All lengths are measured in meters.

As initial conditions we consider the fluid at rest

v(x, 0) = 0, x ∈ Ω ,

and we provide the following boundary conditions for the domain Ω = (0, 2.2) × (0, 0.41)\Br(0.2, 0.2) (r =
0.05), representing a 2D channel with a cylindrical obstacle (see Fig. 11):

v = 0, (x, t) ∈ ΓD1
× (0, T ) ,

v = h, (x, t) ∈ ΓD2
× (0, T ) ,

σ(v, p)n = 0, (x, t) ∈ ΓN × (0, T ) ,

which include a no-slip condition on ΓD1
, a parabolic inflow

h(x, t) =

(
4U(t)x2(0.41− x2)

0.412
, 0

)
, U(t) =

{
0.75(1− cos (πt)), t < 1
1.5, t ≥ 1

on the inlet ΓD2
, and an open boundary condition at the outlet ΓN.

In the present study, we consider µ = Re ∈ P = [30, 100]. When Re < 49, the flow presents a steady
behavior; for larger values of Reynolds number, the flow transitions to an unsteady state and a pair of vortices
form in the wake of the cylinder, oscillating periodically between top and bottom sides [78, 79]. As Re varies
across steady and unsteady ranges, we use the MF-POD method to construct efficient MF surrogate models
for the velocity and pressure fields up to T = 18 s, at which time the fluid is fully developed and presents a
periodic behavior.

5.1. Multi-fidelity setting

Solution data are generated through a finite element approximation of (10) with the backward differen-
tiation formula provided by the MATLAB library redbKIT [80]. We consider a training set computed over a
short time window Ttrain = 12 s < T = 18 s at Nµ = 15 Reynolds numbers equispaced over P. In this case,
the difference between the fidelity levels incorporates all the characteristics considered so far in the previous
examples, namely the choice of spatial mesh size and time step, as well as whether the physical characteristic
Re is corrupted.

For the HF data, the total number of spatial degrees of freedom is Ndof
HF = 73131, obtained with quadratic

finite elements for the velocity field and linear finite elements for the pressure field over a mesh with 16478
triangular elements and 8239 vertices, while the temporal discretization is with step size ∆Ttrain = 5 ms.
Instead, LF data are computed with a larger time step ∆TLF = 50 ms over a coarser mesh consisting of
7789 triangular elements and 3899 nodes, thus resulting in snapshots with Ndof

LF = 34439. The LF solutions
can be computed with significantly reduced time in comparison with the HF ones. Moreover, we consider a
corruption factor of α = 0.95 that multiplies Re in the generation of LF data. For example, when Re = 60
for the HF level, the LF solution is evaluated at R̃e = αRe = 57.

Once solution data are prepared, POD reduction is applied to the HF snapshots and the first NPOD = 32
modes are retained. LF data are lifted by linear interpolation over the spatial and temporal domains, and
the POD coefficients, obtained by projecting the HF and lifted LF data onto the reduced basis, are then
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passed to the MF LSTM network for training. In this example, an LSTM network with 1 layer, 64 nodes
and subsequences of length K = 158 is considered.

5.2. Results

The MF-POD method is tested for approximating the fluid velocity and pressure fields at unseen param-
eter values Re ∈ {37, 48, 63, 78, 92}, while simultaneously extrapolating into the time window [Ttrain, T ] =
[12 s, 18 s] over which no training data are provided. For a given new value of Re, the LF solution is
evolved up to the final time of interest T = 18 s, then the LF POD coefficients are computed and mapped
through the LSTM network to their HF counterparts, from which the whole velocity and pressure fields are
reconstructed.

In Table 3, we report the computational costs and predictive errors evaluated over the test set. Once
again, we observe that the MF-POD method achieves advantages over the HF and LF models, by drastically
reducing computational time while preserving a good accuracy, respectively. Moreover, in Fig. 12, we
illustrate the MF predictive solutions for two testing parameter values Re ∈ {48, 63} and one training value
Re = 50 in comparison with their LF inputs and HF references. The testing values Re ∈ {48, 63} correspond
to two different regimes of the fluid flow — steady and unsteady, respectively. In both cases, the proposed
model is able to capture correct fluid behaviors with a good accuracy. For Reynolds numbers close to
the bifurcation (Re = 49) between the two regimes, a coarse approximation may lead to significant errors
in simulating the dynamical behaviors of the fluid. For example, when Re = 48, we observe that the LF
solution exhibits the onset of unsteady oscillatory phenomena, which are, instead, absent in the reference HF
solution, which exhibits the expected steady behavior. This is even more evident by observing the temporal
evolution of POD coefficients as shown in Fig. 13, where we notice that the LF solution features a non-
negligible oscillatory contribution from the third and fourth POD coefficients; these latter are instead almost
vanishing for the reference HF solution. We note that MF-POD is able to accurately recover the correct HF
physical characteristics. In Fig. 12, the solutions for the training instance Re = 50 are also presented. This
parameter value falls within the unsteady regime just past the bifurcation at Re = 49, in comparison with
the aforementioned steady solution with Re = 48. The predicted MF-POD solution accurately portrays the
onset of oscillatory phenomenon in the unsteady regime. This further demonstrates the proposed method’s
ability to preserve physical characteristics in the observational data.

Table 3: Comparison of computational time and accuracy in example (III).

Low-fidelity input MF-POD predicted High-fidelity reference

Computational time 108s (4.05%) 111s (4.17%) 2664s (100%)
Relative error 18.5% 3.48% -

6. Conclusions

We have developed a new reduced-order surrogate modeling method that relies on solution data from
different fidelity levels to reduce computational costs while preserving predictive accuracy. Like traditional
model reduction, the MF-POD architecture employs POD to extract a low-dimensional basis that approxi-
mates the solution manifold from a limited amount of HF data. An MF LSTM model is subsequently trained
to infer the temporal evolution of the HF solution on the POD manifold from its LF counterpart. Once
trained offline, the proposed model can be deployed online to generate new solutions that approach HF
accuracy at the computational cost of LF evaluations. The advantages of the MF POD technique has been
compared to both HF and LF methods directly through a diverse number of example PDEs with the results
summarized in Fig. 14.

By incorporating physically meaningful LF data, MF-POD addresses the potential lack of physical con-
sistency in purely data-driven methods, thereby ensuring interpretability and reliability in parametric gen-
eralization and temporal forecasting while still benefiting from its non-intrusive nature. A limitation of the
proposed framework is the assumption of a strict hierarchy among fidelity levels, which implies that LF
solutions are required at parameter configurations in which we are interested on the HF level. A further
limitation is that this method has not fully benefited from the large availability of LF data. In fact, the
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Figure 12: Comparison of solution fields in example (III) among the approximation by MF-POD, the corresponding LF
input, and the HF ground truth (used as reference). The snapshots refer to the extrapolated time instance t = 17.25 s
(being Ttrain = 12 s the end of HF training coverage) for two testing values of Reynolds number Re = 48 (top) and 64
(bottom), as well as for the training value Re = 50 (middle). Note that Re = 48 and 50 respectively represent the values
right before and after the bifurcation (at Re = 49) between steady and unsteady regimes. The closest training Re values
to the bifurcation are 45 and 50. Absolute error shows the discrepancy between the MF solution and the HF reference.

MF LSTM networks are trained on the same amount of LF and HF data to learn the LF-to-HF mapping,
sampled at the same parameter locations (see Fig. 3). Moreover, the low-dimensional basis is constructed
solely with the HF data. Therefore, potential LF information could be additionally exploited to improve
both the construction of reduced basis and the MF regression for the expansion coefficients.

However, the non-intrusiveness of the proposed method guarantees remarkable flexibility in numerical
implementations, and enables seamless adaptation, extension, and enhancement of its individual components.
For instance, the use of other techniques for reduced basis construction, which may be better tailored to
suit specific applications of interest, can replace the POD reduction. Moreover, alternative recurrent neural
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Figure 13: Comparison of the time evolution of POD coefficients in example (III) among MF solution, LF input, and HF
reference at testing parameter instances Re = 48 (above) and 63 (below). The dashed line at Ttrain = 12 s indicates the end
time of HF data coverage in training, i.e., no HF information is available over t ∈ [Ttrain, T ] = [12 s, 18 s].

Figure 14: Comparison of the LF, HF, and the proposed MF approaches in terms of computational times and accuracy. For
each considered example, we provide a plot with the visualizations of the values collected in Tables 1-2-3. Online computational
costs are evaluated on a workstation with an MD Ryzen 9 5950X 16-core processor. Values of the computational costs are
indicated on the left vertical axis as percentages with respect to the computational costs of running HF solvers, while relative
prediction errors with respect to the HF reference solutions are indicated on the vertical axis on the right. We observe how
the proposed MF method allows for a significant improvement in predictive accuracy with respect to the LF approach, while
maintaining extremely limited online computational costs, in particular as compared to the HF ones.

network or other emerging architectures (e.g., transformers [81]) can be employed instead of the LSTM layers
in the MF regression task. Such refinements will further empower the proposed method to evolve and excel
in diverse physical simulations in computational science and engineering.

In particular, as a direction for future development, the presented framework can be naturally extended to
real-life applications, in which experimental measurement data can be fused with synthetic (LF) simulation
data to create surrogate models that produce accurate real-time predictions beyond the experimental data
coverage.

Data Avaialbility

The source code of the proposed method is made available in the following public repository [67]:
https://github.com/ContiPaolo/MultiFidelity POD .

The full training and testing datasets are available at https://doi.org/10.5281/zenodo.8316324 [82].
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