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1 Introduction

Substructured Schwarz methods are interpretations of volume Schwarz methods as
algorithms on interface variables. We here consider the substructured version of the
Parallel Schwarz Method (PSM) as presented in [GH12, p.24] and recently extended
to a two-level (i.e. coarse-corrected) framework in [CV22b] and [CV22a], using a
geometric and spectral approach for the definition of the coarse space.

The expected gain of substructured methods relies on the smaller size of the
resulting problems, notably with Krylov-type acceleration techniques when the di-
mension of the subspace of approximants becomes large [Saa03]. Moreover, with
the coarse functions being defined only on interfaces, the size of the resulting coarse
matrices may be smaller than their volume counterparts, giving a competitive ad-
vantage to two-level substructured methods. However, note that the local subdomain
solves appearing in substructured methods (already at one-level) require an exact
solution to guarantee convergence [CV22b].

We here present an implementation of the substructured PSM based on the PET-
Sc (Portable, Extensible Toolkit for Scientific Computation) linear algebra package
[BAA+22a, BAA+22b, BGMS97], successively considering one- (section 2) and
two- (section 3) level methods. For the latter, four coarse spaces are introduced,
all based on a geometric approach. Note that, at this time, spectral approaches still
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require further investigations and are therefore not presented here (- the reason being
that the eigenvectors on which spectral coarse spaces are based in [CV22a] are in
general complex and in turn necessitate a PETSc installation adapted to complex
arithmetic, which has a negative influence on the resulting computational times). We
compare our substructured numerical results to the RAS volume method [CS99] for
which a two-level PETSc implementation has already been presented by the authors
[GV19, GV21] using various coarse spaces.

2 The one-level substructured formulation

We consider the system Au = f for the Laplace problem with Dirichlet boundary
conditions discretizedwith finite differences.Wefirst derive the substructured system
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Fig. 1: Two subdomain decomposition in the 1-D case.

for the 1-D case, namely the [0,1] interval subdivided into J +1mesh cells of size h
as depicted in Fig. 1 in the two-subdomain case. Following [GH12], we decompose
A ⊂ R(J−1)×(J−1) in two different ways as

A =

(
A1 B1

C1 D1

)
=

(
D2 C2

B2 A2

)
, (1)

where A1 ⊂ R(b−1)×(b−1) and A2 ⊂ R(J−a)×(J−a). Our starting point is the
discretized Parallel Schwarz Method (PSM) for Au = f which reads

A1u
n+1
1 = f1 − B̃1u

n
2 , (2)

A2u
n+1
2 = f2 − B̃2u

n
1 , (3)

where B̃1 = [0b−1,d−1B1] and B̃2 = [B20J−a,d−1] (with d = b − a the overlap)
are extensions by zeros of the B1 and B2 matrices of (1) such that

B̃1u2 = (0, ..., 0,− 1

h2
(u2)b) ⊂ Rb−1,

B̃2u1 = (− 1

h2
(u1)a, 0, . . . , 0) ⊂ RJ−a.

Thus B̃1 maps a vector defined on Ω2 into one defined on Ω1, extended by zero out
of Ω2 (and similarly for B̃2). We introduce the trace operators
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G1 : (v1, . . . , va, . . . , vb−1)→ va,

G2 : (va+1, . . . , vb, . . . , vJ)→ vb,

such that G1u1 = (u1)a and G2u2 = (u2)b, as well as the extension by zero
operators

E1 : vb → (0, . . . , 0, vb) ⊂ Rb−1,

E2 : va → (va, 0, . . . , 0) ⊂ RJ−a,

such that B̃1u2 = − 1
h2E1(u2)b and B̃2u1 = − 1

h2E2(u1)a. Applying the trace
operators to the PSM system (2)-(3) then yields

(un+1
1 )a =

1

h2
G1A

−1
1 E1(u

n
2 )b +G1A

−1
1 f1,

(un+1
2 )b =

1

h2
G2A

−1
2 E2(u

n
1 )a +G2A

−1
2 f2.

Defining interface unknowns gT = (g1, g2) = ((u1)a, (u2)b), this is the block
Jacobi method applied to the substructured system

Tg = fg, (4)

where

T =

(
I − 1

h2 G1A
−1
1 E1

− 1
h2 G2A

−1
2 E2 I

)
and fg =

(
G1A

−1
1 f1

G2A
−1
2 f2

)
. (5)

This system can also be solved using a Krylov method (GMRES here).
From a parallel data transfer point of view, in the two-subdomain case of Fig.1,

we have that Ω1 sends ua to Ω2, while Ω2 sends ub to Ω1. In the three subdomain
case (Fig.2), two trace operators are necessary for the central subdomain Ω2, ex-
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Fig. 2: Three subdomain decomposition in the 1-D case.

tracting respectively ub and uc and sending them to Ω1 and Ω3, again respectively.
Meanwhile, subdomain Ω2 receives ua from Ω1 and ud from Ω3.

In 2-D, for a typical non-boundary subdomain, data exchange consists in receiving
data on a square skeleton obtained by extending the domain by the size of the overlap
(Fig. 3a) and sending local data from four “portions” within the domain, at overlap
distance from the interface (Fig. 3b). Furthermore, in 2D a partition of unity is
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(a) (b)

Fig. 3: Dotted are the substructure values to be received (a) or sent (b) by the central
subdomain.

required and we investigated two data exchange options, with or without transfers
from diagonal neighbours, as illustrated in Fig. 4 for the left-to-right data exchange.
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(b)

Fig. 4: Schematic representation of left-to-right data exchange with (a) or without
(b) transfers from diagonal neighbours. The transferred data are in red.

The T substructured system matrix defined in (5) is implemented matrix-free
in our PETSc implementation, using the MatCreateShell and MatShellSet-
Operation tools. Each multiplication by T implies data transfer (with or without
diagonal transfers), extension by zero (Ei), exact solve by the local matrices Ai

(direct solver with LU decomposition computed only once) and taking the trace in
the subdomain (Gi). To solve the substructured system (4), we apply GMRESwithout
preconditioner, since this system is in fact already preconditioned by the Schwarz
method.

We compare our substructured method to the (volume) RAS method [CS99]
(implemented in PETSc as PCASM) on a weak scaling experiment for the 2-D Laplace
problem on the unit square with 5-point finite difference scheme, using square
decompositions into 2 × 2 to 32 × 32 subdomains (one processor per subdomain)
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and a 256 × 256 fine mesh within each subdomain. Several observations can be

(a) Iteration count (b) Timing results

Fig. 5: Weak scaling results for the 2 × 2 to 32 × 32 square decompositions, using
various GMRES restart parameters. Volume methods (solid lines) and substructured
methods with (dashed lines) or without (dashdot lines) diagonal transfer are used.

made from the results displayed in Fig.5. First, there is virtually no difference in
the number of iterations with or without diagonal transfers, so that the extra cost of
the diagonal transfers is not compensated by a decrease in iterations. Consequently,
we stick to the no diagonal transfer option in the remainder of our study. Second,
when looking at computational times, the optimal GMRES restart parameter for the
substructured method (here 500, which in fact means no restart since a bit less than
500 iterations are then performed) appears to be larger than for the volume method
(here 400 with 200 being very close), the smaller size of the substructured problem
thus making a larger Krylov space profitable. Third, and most importantly, at high
restart parameters and in particular at the optimal one, substructured methods yield
better timing performances than volume methods. This appears to be due to the
smaller size of the substructured systems since the number of iterations with both
methods is similar.

3 Two-level substructured methods

Wemodel our two-level substructured method on the (volume) two-level RAS meth-
ods (“RAS2”) developped in [GV19], namely

un+1/2 = un +

J∑
j=1

R̃T
j A

−1
j Rj (f −Aun),

un+1 = un+1/2 +RT
c A

−1
c Rc (f −Aun+1/2),
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where Rj are restriction operators to the (possibly overlapping) Ωj subdomains
decomposing the global domain Ω, R̃j are the equivalents for a non-overlapping
decomposition of Ω into Ω̃j , and Rc is the restriction operator to the coarse space.
Moreover, we have defined the localmatrices asAj = Rj AR

T
j and the coarsematrix

asAc = RcAR
T
c . In our PETSc implementation, this is implemented as amultiplica-

tive composition (PCCOMPOSITE) of RAS (PCASM) with a hand-made second-level
correction (PCSHELL framework). The coarse solve A−1

c is performed with the di-
rect solver MUMPSwith agglomeration of the coarse unknowns. A GMRES acceleration
can be applied to the (full) iteration. The volume RAS2 coarse correction chosen
here is Q1, a coarse space made out of linear functions with, in 2-D, four coarse
nodes placed around each cross-point [DGL+12, GHS14, GV19].

We proceed similarly for our two-level substructured implementation: for the
system Tg = fg , our two-level method reads

gn+1/2 = gn + (fg − Tgn), (6)
gn+1 = gn+1/2 +RT

c T
−1
c Rc (f

g − Tgn+1/2), (7)

where Rc is again the restriction operator to the coarse space and Tc = RcTR
T
c is

the coarse matrix. In PETSc, we proceed again with a multiplicative composition of,
this time, PCNONE (no preconditioner) with a hand-made second-level correction.
The Tc matrix is built once and for all at the begining of the calculation, as well as its
LU decomposition using MUMPS. Here also GMRES can be applied to the full iteration.

Our substructured coarse space functions will be defined exclusively on the inter-
faces, more precisely, for each of them, on the four substructure portions of a typical
non-boundary subdomain (Fig. 3b). We here consider four geometric substructured
coarse spaces, namely Constant with one constant coarse function per portion (so
4 functions for a non-boundary subdomain), Linear (Fig. 6a) with two linear coarse
functions per portion (so 8 coarse points and functions for a non-boundary subdo-
main), Linear4 (Fig. 6b) with four linear functions (and as many coarse points) for
a non-boundary subdomain (- this space can be seen as the volume Q1 coarse space
restricted to the substructure) and Enriched (Fig. 6c) with three linear coarse func-
tions per portion (so 12 coarse points and functions for a non-boundary subdomain).
Thus, for anN ×N decomposition, the coarse space sizes asymptotically behave as
4N2 with Constant and Linear4, 8N2 with Linear and 12N2 with Enriched.

Fig. 7 displays iteration count and computational (wall-clock) times for the weak
scaling experiment described above using the two-level volume and substructured
methods, with square decompositions up to 128×128 subdomains (- the solving time
results, not shown here, exhibit a very similar behavior). There is no GMRES restart
performed here. We observe that all our two-level methods achieve scalability in
terms of number of iterations. Scalability in terms of computational times is quite
well achieved even though not perfectly, with performances slightly below the two-
level volume Q1 method. Various implementation optimizations might in the future
improve these already encouraging results. For example, the two-level iteration (6)-
(7) requires the computation of two actions of the operator T , which correspond to
two steps of the one-level PSM. Notably, one of the two actions can be eliminated
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Fig. 6: Schematic view of substrucutred coarse space options, with coarse point
positions (above) and coarse function sketch (below).

(a) Iteration count (b) Wall-clock times

Fig. 7: Two-level numerical results up to 16,384 processors.

using, e.g., the strategy proposed in [CV22b, CV22a]. However, this requires extra
work on the PETSc implementation. Note also the particularly interesting behavior
of the Linear4 coarse space, yielding less iterations than the Constant one with
asymptotically the same number of coarse functions.

4 Conclusions

A PETSc implementation of the substructured one-and two-level PSM has been
presented. Our one-level results show that the smaller size of the substructured
system compared to the volume one makes the use of larger Krylov spaces (i.e.,
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using larger GMRES restart parameters, or no restart at all) profitable, resulting in
better computational times. Furthermore, we introduced four new substructured
geometric coarse spaces defined exclusively on the interfaces and our numerical
results up to 16,384 cores show that the resulting two-level methods achieve a
perfect scalability in terms of number of iterations and a very decent scalability in
terms of computational solving and wall-clock times.
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