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de Bourgogne, 9 Av. A. Savary, B.P. 47 870, Dijon Cedex, F-21078, France

Abstract

In Nuclear Magnetic Resonance (NMR), it is of crucial importance to have
an accurate knowledge of the sample probability distribution corresponding
to inhomogeneities of the magnetic fields. An accurate identification of the
sample distribution requires a set of experimental data that is sufficiently
rich to extract all fundamental information. These data depend strongly on
the control fields (and their number) used experimentally. In this work, we
present and analyze a greedy reconstruction algorithm, and provide the cor-
responding SPIRED code, for the computation of a set of control functions
allowing the generation of data that are appropriate for the accurate recon-
struction of a sample distribution. In particular, the focus is on NMR and
the Bloch system with inhomogeneities in the magnetic fields in all spatial
directions. Numerical examples illustrate this general study.
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3-clause/BSD 2-clause/GPLv3/GPLv2/LGPL/CC BY NC 3.0/MPL-2.0

Programming language: MATLAB

Nature of problem: Identify the sample probability distribution corresponding to

inhomogeneties of the magnetic field in Nuclear Magnetic Resonance from exper-

imental data. The data depends strongly on the control fields and their number,

and needs to be sufficiently rich in order to extract all fundamental information.

Solution method: Use greedy reconstruction algorithms to compute a set of control

functions that allows the generation of data that are appropriate for an accurate

reconstruction of the sample distribution.

Additional comments including restrictions and unusual features: Some routines

in the SPIRED use MATLAB’s fmincon-solver, which requires MATLAB’s Opti-

mization Toolbox to be installed.

1. Introduction

Quantum Control (QC) is nowadays a well-recognized area of research [1,
2, 3, 4, 5] with many applications ranging from magnetic resonance [6, 7, 8]
and atomic and molecular physics [9, 10, 11, 12] to quantum technologies [7,
13, 14]. Its goal is generally to design external control fields to perform quan-
tum operations on the studied system. A severe limitation of QC comes from
measurement processes which are much more difficult to account for than
their classical counterpart. This explains that a majority of QC protocols
are performed in an open-loop framework without any feedback from the ex-
periment when applying the control. A good agreement between theory and
experiment is achieved if all the parameters of the model system are perfectly
known within a given range of precision. The values of such parameters can
be estimated experimentally but can also be actively found by using specifi-
cally adapted controls. To this aim, different approaches using quantum fea-
tures have been developed recently with success [15, 16, 17]. Among others,
we can mention inversion techniques [18], selective controls [19, 20, 21, 22],
the maximization of quantum Fischer information [23, 24, 25, 26, 27] and
the fingerprinting approach [28, 29]. Such methods allow one to estimate the
value of the Hamiltonian parameter as well as its variation range. However,
this latter is not the only interesting quantity and the probability distribu-
tion is also a key feature of the experimental sample. When controlling an
ensemble of quantum systems, this distribution can be interpreted as the
number of individual systems having a given value of the parameter. The
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distribution can have a simple form such as a Gaussian or a Lorentzian one.
In this case, the identification is quite straightforward and can be done using
standard techniques. However, the identification is much more difficult when
the distribution has a complex structure with, e.g., several peaks.

In a previous work [30], we introduced a Greedy Reconstruction Algo-
rithm (GRA) to identify in a systematic way the probability distribution of
one given Hamiltonian parameter. This was based on the framework pre-
sented in [31, 18]. In particular, we focused on an ensemble of spin 1/2 parti-
cles in Nuclear Magnetic Resonance (NMR) subjected to an inhomogeneous
radio-frequency magnetic field [32, 6, 33, 8, 34, 35], where the algorithm was
successfully applied to identify the distribution of the scaling factor corre-
sponding to the sample inhomogeneity. Notice that a convergence analysis
was only briefly sketched in [30], without rigorous proof. The goal of the
present paper is to extend the work [30] from different points of view. First,
we extend the GRA for the reconstruction of joint distributions of two distinct
inhomogeneous Hamiltonian parameters. Second, we provide full MATLAB
codes implementing our GRA and its optimized version (called OGRA) to
find spin distribution. Such codes can be directly used to solve the problems
presented in [30] and those investigated in this study. Third, we take also the
opportunity of this paper to prove theoretical results covering also the ones
only stated in [30]. As a result, this paper not only considers a more general
problem than the one presented in [30], but also provides a full MATLAB
code and detailed and rigorous convergence analysis.

The paper is organized as follows. The identification problem of the
spin distribution in NMR is presented in Sec. 2. The different variants of
the greedy reconstruction algorithm are described in Sec. 3. Section 4 is
dedicated to the description of the structure of the code SPIRED and its use.
A convergence analysis of the algorithm is provided in Sec. 5. Numerical
results are presented in Sec. 6. Conclusion and prospective views are drawn
in Sec. 7. Additional results are presented in Appendix A.

2. Identification of spin distribution

The framework of our SPIRED code is illustrated in a standard control
problem in NMR, i.e. a spin ensemble subjected to inhomogeneous radio-
frequency magnetic fields [32, 36, 8]. In a given rotating frame, each isochro-
mat is characterized by a Bloch vector M = [Mx,My,Mz]

⊤, evolving in time
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according to the equations
Ṁx = −ωMy + (1 + α)ωyMz,

Ṁy = ωMx − (1 + α)ωxMz,

Ṁz = (1 + α)ωxMy − (1 + α)ωyMx.

Notice that the components of M satisfy M2
x + M2

y + M2
z = M2

0 , with M0

the equilibrium magnetization. Here, ωx and ωy are time-dependent controls
corresponding to the components of the magnetic field along the x- and
y- directions. The parameters ω and α correspond to offset and control
field inhomogeneities, respectively [6]. In standard experiments, we have
ω
2π

∈ [−20, 20] Hz and α ∈ [−0.2, 0.2]. For the purpose of this paper, we
assume that the probability densities of ω and α are unknown. The controls
ωx

2π
and ωy

2π
are expressed in Hz. We consider a typical field amplitude ω0 that

can be fixed, for instance, to ω0 = 2π × 100 Hz. We introduce normalized
coordinates as follows:

ux = 2π
ωx

ω0

; uy = 2π
ωy

ω0

; t′ =
ω0

2π
t; ∆ = 2π

ω

ω0

;X =
M

M0

.

In what follows, we omit the prime to simplify the notations. We deduce
that the differential system can be expressed in normalized units as:

ẋ = −∆y + (1 + α)uyz

ẏ = ∆x− (1 + α)uxz

ż = (1 + α)uxy − (1 + α)uyx

(1)

with x2 + y2 + z2 = 1. The initial state of the dynamics for each spin is the
thermal equilibrium point, i.e. X0 = [0, 0, 1]⊤. We consider a control time of
the order of 100 ms, that corresponds to a normalized time t′f of the order of
10. The range of variation of the parameter ∆ is ∆0 + 2π[−0.2, 0.2], where
∆0 is a frequency value that can be used to shift arbitrarily the interval. For
the purpose of this paper, we assume that ∆0 ≥ 0.4π, meaning that ∆ ≥ 0.

The goal of our SPIRED code is to estimate simultaneously the distribu-
tions for the parameters α and ∆ by designing specific controls (ux, uy). We
consider an ensemble of N spins whose dynamics are governed by Eq. (1).
We assume that the control amplitudes (ux, uy) belong to the admissible set
U = {(ux, uy) ∈ R2 | |ux| ≤ um, |uy| ≤ um}, where um is the maximum
amplitude of each component. A simple way to proceed can be described as
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follows. We consider that the system of N spins is divided into K∆ groups,
and we associate with the ℓ-th subgroup a certain value ∆ℓ and the corre-
sponding probability P∆

⋆ (ℓ) =
N∆,ℓ

N
, ℓ = 1, . . . , K∆, with

∑K∆

ℓ=1 P
∆
⋆ (ℓ) = 1.

The probability P∆
⋆ (ℓ) is unknown, which means that the number of ele-

ments N∆,ℓ of each group is to be found. Similarly, for the parameter α,

we have Kα groups with the probabilities Pα
⋆ (ℓ) =

Nα,ℓ

N
, ℓ = 1, . . . , Kα, with∑Kα

ℓ=1 P
α
⋆ (ℓ) = 1 to estimate.

This problem can be viewed as a natural extension of the work [30] and
leads to the identification of two independent discrete distributions. How-
ever, this approach has two main drawbacks. First, the two random variables
∆ and α are assumed to be independent. This is a limitation when trying
to reconstruct the two unknown distributions, since any possible correlation
is a priori neglected. Second, the final identification problem is nonlinear,
since the product of the two distributions would appear. This is in con-
trast with the case of the reconstruction of one single distribution, where
the identification problem is quadratic [30]. For these reasons, rather than
considering two independent distributions, we work directly with the joint
distribution, i.e. the system of N spins is divided into K groups and we
associate to each subgroup a pair (α,∆)ℓ and the corresponding joint prob-
ability P⋆(ℓ) = Nℓ

N
, ℓ = 1, . . . , K, with

∑K
ℓ=1 P⋆(ℓ) = 1. Now, the joint

probability P⋆(ℓ) is unknown, namely the number of elements Nℓ affected by
the pairs (α,∆)ℓ. This approach has the advantage of taking into account
correlation effects and the final identification problem remains quadratic. It
should be noted that these are acquired at the cost of an increase in the
dimension of the unknown object(s), i.e. from two one-dimensional functions
to a two-dimensional function. Finally, we point out that two independent
distributions can also be treated as a specific case of joint distributions.

Since we are dealing with an inverse problem, we need to define what
quantities can be observed in an experimental setting. In NMR, only the first
two coordinates of the magnetization vector can be directly measured. We
do not have accessed directly to the z component due to the strong constant
magnetic field applied along this direction [6]. We denote by Yu,(∆,α)(t) =
[x(t), y(t)]⊤ the projection of the Bloch vector onto the first two coordinates.
Here, the dependence on u and (∆, α) has been explicitly mentioned. The
corresponding experimental realization of this controlled dynamic is obtained
at t = tf and leads to Yexp

u (tf ) = [xexp
u (tf ), y

exp
u (tf )]

⊤, where Yexp
u (tf ) can be

viewed as the average at time tf of the experimental measures of all the spins
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of the set subjected to the control u. The coordinates xexp
u and yexpu are those

of this measured magnetization vector.
The relation between the theoretical description of the dynamical system

to the experimental outcome can be expressed as:

Yexp
u (tf ) =

K∑
ℓ=1

P⋆(ℓ)Yu,(∆,α)ℓ(tf ), (2)

in which the two sides of the equation crucially depend on the control u.
In general, one control protocol is not sufficient to obtain an appropriate

identification of the unknown P⋆, but a set of K̃ control processes with K̃
different control functions denoted uk, k = 1, · · · , K̃, needs to be used. On
the basis of the experimental outputs, a straightforward way to determine
P⋆ is to solve the following minimization problem:

min
P∈P

K∑
k=1

∥Yexp
uk

(tf )−
K∑
ℓ=1

P (ℓ)Yuk,(∆,α)ℓ(tf )∥
2, (3)

where ∥ · ∥ denotes the standard Euclidean vector norm, and P is the convex
and closed set of all the possible probability distributions P that satisfy
P (ℓ) ≥ 0 for 1 ≤ ℓ ≤ K and

∑K
ℓ=1 P (ℓ) = 1. At this point, it is clear that a

key ingredient of the accuracy of the identification process rests on the choice
of a set of K̃ controls uk. The identification of the number K̃ of control
functions is a difficult task. The theoretical analysis presented in Sec. 5
shows that the choice K̃ = K is sufficient. The GRA algorithm computes
exactly K̃ = K control fields. However, we will show that OGRA is capable
of reducing (halving) the number K̃ of control fields while guaranteeing an
accurate identification.

Let us now rewrite (3) in a form that we consider in our SPIRED implemen-
tation. We introduce a set Φ := {ϕj}Kj=1 of linearly independent functions
ϕj : {1, . . . , K} → R such that P ⊂ span(Φ), where span denotes the vector

space generated by the functions. Expressing P as P (ℓ) =
∑K

j=1 βjϕj(ℓ), the
minimization problem (3) becomes:

min
β∈R̂K

K∑
k=1

∥Yexp
uk

(tf )−
K∑

ℓ,j=1

βjϕj(ℓ)Yuk,(∆,α)ℓ(tf )∥
2, (4)

where the vector β = (βj)
K
j=1 is taken in R̂K , a subset of RK , so that P =∑

j βjϕj is a probability distribution.
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We show in this study that GRA allows us to design a set of controls uk

that makes (4) solvable and well conditioned. The algorithm is composed
of two steps, namely an offline and an online steps. In the offline step,
GRA computes the controls uk. In this step, only the theoretical model is
needed without any experimental input. The derived controls are used in
the online step in which the different magnetization vectors are measured
and the minimization problem (3) is solved. Note that the controls are the
same for any probability distribution to identify and only depend on the
model system under study. Finally, we point out that in our algorithms the
duration of each control pulse is considered as a variable to be optimized
together with its amplitude. In particular, we assume that the controls are
constant in time, i.e. u(t) ≡ u ∈ R2, and that we can freely choose the control
time up to a fixed maximum value tf . Since the initial state is an equilibrium
point, this is equivalent to turning on the control at a time t ≥ 0. We show
in Sec. 5 that these hypotheses are sufficient for the different examples to
identify the probability distributions. The generality of GRA allows one to
tackle this situation in a straightforward manner.

3. Greedy reconstruction algorithms

We present in this section the GRA in its classical form and in an opti-
mized extension called optimized GRA (OGRA).

GRA computes the controls uk and the corresponding control times tk by
solving a sequence of fitting-step and discriminatory-step problems. The goal
of the fitting step is to identify a defect of the system, namely a nontrivial
kernel of a certain matrix W introduced below, while the discriminatory
step designs a new control which is aimed to correct this discrepancy and to
eliminate the identified nontrivial kernel. The explicit formulation of GRA
is presented in Alg. 1 and is given in terms of the function h(k) defined by:

h(k)(β,u, t) =
K∑
ℓ=1

k∑
j=1

βjϕj(ℓ)Yu,(∆,α)ℓ(t), (5)

for any β in Rk. Notice that the fitting step minimizes over the full space Rk,
meaning that

∑
j βjϕj does not have to be a probability distribution. How-

ever, this is a restrictive condition. On the contrary, it allows the algorithm
to find and correct more nontrivial kernels than might be necessary.

7



Algorithm 1 Greedy Reconstruction Algorithm (GRA)

Require: A set of K linearly independent functions Φ = {ϕ1, . . . , ϕK}.
1: Compute the control u1 and the control time t1 by solving

max
u∈U

t∈[0,tf ]

∥h(1)(1,u, t)∥2, (6)

2: for k = 1, . . . ,K − 1 do
3: Fitting step: Find βk = (βk

j )j=1,...,k that solves

min
β∈Rk

k∑
m=1

∥h(K)(eeek+1,um, tm)− h(k)(β,um, tm)∥2, (7)

where eeek+1 is the (k + 1)-th canonical vector in RK .
4: Discriminatory step: Find uk+1 and tk+1 that solves

max
u∈U

t∈[0,tf ]

∥h(K)(eeek+1,u, t)− h(k)(βk,u, t)∥2. (8)

5: end for

One main characteristic of GRA is that the set Φ and its order have to
be fixed a-priori. However, the choice and order of Φ can have a crucial
impact on the outcome of the algorithm as shown in [31, Sec. 5.3]. Hence,
the idea of OGRA, which is stated in Algorithm 2, is to make the algorithm
independent of the choice and order of the set Φ. Additionally, it aims at
avoiding the computation of unnecessary control functions. This is achieved
by two adaptations in GRA. The first one is that in each step one does not
only consider the next element (the next canonical vector eeek+1) in the set, but
all remaining elements (the canonical vectors eeek+ℓ for all 1 ≤ ℓ ≤ K − k) in
parallel. Hence, it is also possible to enlarge the set Φ (and thus enlarge K)
by additional functions ϕk which do not have to be linearly independent. In
order to progressively remove linearly dependent functions in the set and to
avoid scaling issues, all remaining basis elements are orthonormalized against
the already selected ones after each iteration. The second adaptation is the
introduction of two tolerances tol1, tol2 > 0. The first tolerance tol1 is used
as a stopping criterion.
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Algorithm 2 Optimized Greedy Reconstruction Algorithm (OGRA)

Require: A set of K functions Φ = {ϕ1, . . . , ϕK} and two tolerances tol1 > 0 and
tol2 > 0.

1: Compute u1, t1 and the index ℓ1 by solving the initialization problem

max
ℓ∈{1,...,K}

max
u∈U

t∈[0,tf ]

∥h(1)(eeeℓ,u, t)∥2,

2: Swap ϕ1 and ϕℓ1 in Φ, and set k = 1, K̃ = 1, and fmax = ∥h(1)(eeeℓ,u1, t1)∥2.
3: while k ≤ K − 1 and fmax > tol1 do
4: for ℓ = k + 1, . . . ,K do
5: Orthonormalize all elements (ϕk+1, . . . , ϕK) with respect to (ϕ1, . . . , ϕk),

remove any that are linearly dependent and update K accordingly.
6: Fitting step: Find (βℓ

j)j=1,...,k that solve the problem

min
β∈Rk

k∑
m=1

∥h(K)(eeek+ℓ,um, tm)− h(k)(β,um, tm)∥2,

and set fℓ =
∑k

m=1 ∥h
(K)(eeek+ℓ,um, tm)− h(k)(βℓ,um, tm)∥2.

7: end for
8: if maxℓ=k+1,...,K fℓ > tol2 then
9: Set ℓk+1 = argmaxℓ=k+1,...,K fℓ.
10: else
11: Extended discriminatory step: Find uk+1, tk+1 and ℓk+1 that solve

max
ℓ∈{k+1,...,K}

max
u∈U

t∈[0,tf ]

∥h(K)(eeek+ℓ,u, t)− h(k)(βℓ,u, t)∥2.

12: Set K̃ = K̃ + 1.
13: end if
14: Swap ϕk+1 and ϕℓk+1

in Φ.

15: Set fmax = ∥h(K)(eeek+ℓk+1
,uk+1, tk+1)− h(k)(βℓk+1 ,uk+1, tk+1)∥2.

16: Set k = k + 1.
17: end while

The algorithm terminates if the function value in the initialization or
any of the discriminatory steps (denoted by fℓ in Alg. 2) is too small, thus
not adding new information. The second tolerance tol2 is used to skip the
computation of a new control field in the discriminatory step, if the minimum
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GRA routines Description
main Main function used to run the code.
GRA Greedy reconstruction algorithm.
OGRA Optimized greedy reconstruction algorithm.
discriminatory step Routine that solves the initialization and

discriminatory step problem using MATLAB’s
fmincon-solver.

fitting step Routine that solves the fitting step problem.
orthonormalize Routine that orthonormalizes all remaining

basis elements after each iteration of OGRA.
SVD solver Routine that solves the fitting step problem

using the singular value decompostion (SVD).

Tab. 1: Routines related to the greedy reconstruction algorithm.

cost function value computed by the fitting step is not small enough. If
this function value is large, then there already exists a control function that
discriminates between the two distributions ϕk+ℓ and

∑ℓ
j=1 β

ℓ
jϕj. Notice

that setting tol2 to a very small value is reasonable if the final identification
problem is quadratic. In this case, one can prove that a nonzero cost function
value in the fitting step implies that one does not need to compute a new
control for the corresponding set element (compare with [31]). However, if
the final identification problem is not quadratic, then it can make sense to
set tol2 to a larger value. In conclusion, the main adaptations of OGRA
in lines 3 and 8-9 allow the algorithm to reduce the number of computed
controls K̃, meaning that K̃ < K. On the other hand, as we mentioned
before, GRA is designed to always compute exactly K̃ = K controls. The
numerical implementation of GRA and OGRA is presented and discussed in
the following sections.

4. The SPIRED code

4.1. Structure of the code

In this section, we provide a full list of all MATLAB functions contained
in the SPIRED code. Inside the SPIRED folder the user can find the main

routine used to run the SPIRED code, as well as the routines that run GRA
and OGRA, and that solve their sub-problems (see Tab. 1). Additionally,
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Reconstruction routines Description
generate data Routine that generates the experimental

realizations for all computed controls.
reconstr Routine that either solves the final

identification problem (4) using a second
order interior-point algorithm, or the
compact form (compare (9) in Section 5)
using a solver based on the SVD.

Tab. 2: Routines related to the reconstruction of the probability distribution.

Test routines Description
starting Input function.
fun discriminatory Function computing the cost functional and

gradient for the discriminatory step problem.
NMR solver Routine that solves the (normalized) dynamical

system via direct calculations of the exponential
matrix (compare the proof of Theorem 2).

Tab. 3: Routines related to the test problems.

the SPIRED folder contains the routines that generate the synthetic experi-
mental data for the true parameter probability distribution, and that solve
the final identification problem (3) (see Tab. 2). Notice that the both the
discriminatory step and the reconstr routine use MATLAB’s fmincon-
solver, which requires MATLAB’s Optimization Toolbox to be installed.

There are also three subfolders labeled “Test1”, “Test2” and “Test3”.
These contain three test problems the user can choose from. “Test1” cor-
responds to the problem discussed in this paper. “Test2” is the same as
“Test1”, but only considers a control in the x direction (in other words
uy = 0 for all control fields). Finally, “Test3” corresponds to the problem
investigated in [30], where the resonance offset ∆ is fixed and one attempts
to reconstruct only the control inhomogeneity parameter α. Each of these
“Test” folders contains routines to set the input variables, describe the cost
function and its gradient for the discriminatory-step problem, and solve the
corresponding dynamical system (see Tab. 3). They also each contain two
routines used to plot the results and condition number of the reconstruction
process (see Tab. 4).
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Plotting routines Description
plot reconstr Routine that plots the true and reconstructed

probability distributions for the two control sets.
plot condition Routine that produces a table containing the

condition numbers corresponding to the
reconstruction process.

Tab. 4: Routines plotting the results for the test problem.

4.2. Usage of the code

Here we illustrate the working procedure of the SPIRED code with an
example. The user needs to define the test problem in the function main,
which is used to initialize the procedure.

f unc t i on [ cont ro l s , bases , model , r e s u l t s ] = main
% STEP 1 : Choice o f the Problem ;
addpath ( 'Test1 ' ) ;
% STEP 2 : Assemble problem va r i a b l e s ;
[ model , bases , opt ions ] = s t a r t i n g ( ) ;
% STEP 3 : Run !
[ c on t r o l s .GRA, r e s u l t s .GRA] = GRA( bases .GRA, model ,

opt i ons ) ;
[ c on t r o l s .OGRA, bases .OGRA, r e s u l t s .OGRA] = OGRA( bases .

OGRA, model , opt ions ) ;
% STEP 4 : Compute ( s yn the t i c ) exper imenta l data ;
Y exp .GRA = genera te data ( c on t r o l s .GRA, model ) ;
Y exp .OGRA = genera te data ( c on t r o l s .OGRA, model ) ;
% STEP 5 : Solve the f i n a l i d e n t i f i c a t i o n problem ;
...

In particular, at the “STEP 1” the user needs to define the path of the folder
containing the test routines. Then, the user can define the input variables in
the function starting, which is listed exemplary for the first test problem
in the following.

f unc t i on [ model , bases , opt ions ] = s t a r t i n g ( )
% STEP 1 : Input v a r i a b l e s ;
% con t r o l bounds and maximum con t r o l time ;
um = 10 ;
t f = 16 ;
% va r i a b l e s f o r the unknown parameters
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Delta0 = 4∗ pi ;
Delta1 = 0 . 2 ;
D e l t a i n t e r v a l = Delta0 + 2∗ pi .∗ [−Delta1 , Delta1 ] ;
a l p h a i n t e r v a l = [ −0.2 , 0 . 2 ] ;
% number o f g r id po in t s f o r the unknown parameters
nr a lphas = 10 ;
n r De l ta s = 10 ;
% open the f i l e to get the input p r obab i l i t y d i s t r i b u t i o n
load ( 'Test1/ D i s t r i bu t i o n s /Gaussian .mat ' , ' P star ' )
% number o f sp in s ;
n r s p i n s = 100000;
% opt ions f o r GRA and OGRA
i t e r a t i o n s = nr a lphas ∗ nr De l ta s ;
Display GRA = ' o f f ' ;
f l a g o r t h = 1 ;
% numerica l parameters f o r OGRA;
tol OGRA fit = 1e−4;
tol OGRA discr = 1e−14;
% to l e r an c e f o r the SVD so l v e r in the f i t t i n g step ( and

op t i o na l l y f o r the r e c on s t r u c t i on s o l v e r )
t o l s vd = 1e−10;
% opt imiza t i on method f o r the f i n a l i d e n t i f i c a t i o n problem
s o l v e r = ' fmincon ' ;

At “STEP 1” in this function, the user can define the input variables and
the path to the .mat file containing the true probability distribution P⋆. The
input parameters related to the problem are

• um: bound um for the absolute value of the control amplitudes;

• tf: maximum normalized control time tf ;

• Delta0: frequency shift ∆0 for the normalized resonance offset interval;

• Delta1: width ∆1 of the normalized resonance offset interval;

• Delta interval: interval boundaries for the normalized resonance off-
set ∆;

• alpha interval: interval boundaries for the control field inhomogene-
ity parameter α;

• nr alphas: number of grid points in the direction of α for the joint
discrete parameter probability distribution of α and ∆;
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• nr Deltas: number of grid points in the direction of ∆ for the joint
discrete parameter probability distribution of α and ∆;

• nr spins: number of spins in the system;

• iterations: (maximum) number of iterations performed by GRA and
OGRA; for any full basis of the discrete parameter space, the obvious
choice is the total number of discretization points, which is the product
of nr alphas and nr Deltas;

• Display GRA Display option to print information about the current
iteration of GRA and OGRA in the command window; can be set to
’off’ to display no output, ’iter’ to show the current substep of GRA
and OGRA, or ’iter-detailed’ to also show the current optimization
problem during the substeps of OGRA;

• flag orth: flag variable that turns the orthonormalization of the re-
maining basis elements during OGRA on or off;

• tol OGRA fit: tolerance tol2 for OGRA;

• tol OGRA discr: tolerance tol1 for OGRA;

• tol svd: tolerance for the SVD solver, used in the fitting step and
(optionally) for the final identification problem;

• solver: optimization method used to solve the final identification
problem (4); can be set to ’fmincon’ to solve (4) using the second-order
interior-point algorithm of MATLAB’s fmincon-solver, or to ’svd’ to
solve a compact form of the problem (compare (19) in Section 6) using
the SVD solver;

The .mat file has to contain the variable P star, which is the vectorized true
joint probability distribution P⋆. If the user is considering a true experimen-
tal (laboratory) setup, meaning that they perform real experiments for the
different controls to obtain the experimental data and that the true proba-
bility distribution is truly unknown, they should replace “STEP 4” in the
”main.m” file with a load command to fetch the real experimental data.

Finally, to run the code the user has to write on the MATLAB prompt
the following

>> [ c on t ro l s , bases , model , r e s u l t s ] = main

After the computations, the routine saves the results in the MATLAB work-
space (as documented in the code) and plots the reconstructed probability

14



Fig. 1: The plot on the left shows the true Gaussian probability distribution for K = 100
uniform mesh points. The plots in the middle and on the right contain the reconstructed
distributions for the control sets generated by GRA (containing 100 control fields) and
OGRA (containing 51 control fields).

Fig. 2: Difference between the true probability distribution P⋆ and the distributions Prec

reconstructed using the control sets generated by GRA (left) and OGRA (right). In
brackets are the number of control fields for each set.

distributions and their difference to the true one, as well as the condition
numbers for different mesh sizes.

In particular, the results obtained by running “Test1” are the true and re-
constructed probability distributions for the control fields generated by GRA
and OGRA, shown in Fig. 1. In Fig. 2 we show the difference between the true
and reconstructed distributions for the two control field sets. Additionally,
the routine provides a table containing the exact condition numbers corre-
sponding to GRA and OGRA. Since the solver for the discriminatory step
problem is initialized with a random vector, there may be small variations in
some results, without changing the overall outcome.

Examples of all figures produced by the different test problems are also
provided in the folder “Results” that can be found in the corresponding
“Test”-folder. There one can also find the .mat files containing the set of
random controls for each test problem, loaded in the main.
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5. Convergence analysis

In this section, we prove that the controls generated by GRA and OGRA
make possible the identification of the unknown probability distributions of
the parameters ∆ and α, i.e. they make problem (3) uniquely solvable.

We start by recalling that problem (3) is equivalent to (4). Assuming
that P⋆ can be written as P⋆(ℓ) =

∑K
j=1 β⋆,jϕj(ℓ), we can write equation (4)

in a compact form as follows:

min
β∈R̂K

⟨β⋆ − β|W |β⋆ − β⟩, (9)

where W :=
∑

k W (uk, tk) is the sum of symmetric and positive semi-definite
K ×K- matrices whose elements are defined as:

[W (uk, tk)]ℓ,j := ⟨γℓ(uk, tk)|γj(uk, tk)⟩ (10)

with
γj(uk, tk) :=

∑
ℓ

ϕj(ℓ)Yuk,(αℓ,∆ℓ)(tk). (11)

Since the set of vectors β is a convex subset of RK , we deduce that the
problem is uniquely solvable if the matrix W is positive definite. In the case
W has a non-trivial kernel, infinitely many solutions may exist which lead to
wrong probability distributions different from the experimental one P⋆. We
stress that the non-triviality of the kernel depends completely on the choice
of the controls uk and the corresponding control times tk.

Using the notation (10)-(11), we can now also rewrite the subproblems
of GRA in terms of the matrix W . The initialization problem (6) can be
written as

max
u∈U

t∈[0,tf ]

|[W (u, t)]1,1|2. (12)

The fitting step problem (7) is equivalent to

min
β∈Rk

⟨vβ|[W k][1:k+1,1:k+1]|vβ⟩, (13)

where W k :=
∑k

m=1 W (um, tm) and vβ := [β⊤,−1]⊤. Finally, the discrimi-
natory step problem (8) can be written as

max
u∈U

t∈[0,tf ]

⟨vβk |[W (u, t)][1:k+1,1:k+1]|vβk⟩. (14)
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A direct interpretation of these reformulated problems is that each control
uk generated by GRA at iteration k ensures that ⟨eeek|W |eeek⟩ > 0. Iteratively,
this implies that ⟨w|W |w⟩ > 0 for any w ∈ RK which is equivalent to W
being positive definite.

In more details, the first control u1 and the control time t1 are chosen
by the initialization (12) such that the first upper left entry of W (u1, t1) is
positive. This guarantees that ⟨eee1|W |eee1⟩ > 0 since

⟨eee1|W |eee1⟩ =
K∑
j=1

⟨eee1|W (uj, tj)|eee1⟩ ≥ [W (u1, t1)]1,1 > 0,

where we used that W (u, t) is positive semi-definite for any u and t. Assume
now that the upper left 2 × 2-submatrix of W 1 = W (u1, t1) is not positive
definite. Then it has a one-dimensional kernel spanned by a vector vβ1 :=
[β1,−1]⊤ ∈ R2 (see [31, Lem. 5.3]). The corresponding scalar β1 is clearly
the unique solution to the fitting step problem (13) for k = 1. Now, the
discriminatory step problem (14) attempts to find a control u2 ∈ U and a
control time t2 ∈ [0, tf ] such that the vector vβ1 is not in the kernel of the
upper left 2×2-submatrix ofW (u2, t2). If this is successful then the upper left
2× 2-submatrix of W 2 = W (u1, t1)+W (u2, t2) is positive definite. This also
implies that ⟨eee2|W |eee2⟩ > 0. Repeating this procedure for k = 2, . . . , K − 1,
we obtain ⟨eeek|W |eeek⟩ > 0 for all k ∈ 1, . . . , K, which guarantees that W
is positive definite. We summarize the arguments above in the following
theorem.

Theorem 1. Let {(uk, tk)}Kk=1 be a set of controls and corresponding control
times generated by GRA, such that [W (u1, t1)]1,1 > 0. Let βk be the solution
to the fitting step problem (13) for k = 1, . . . , K − 1, such that the vectors
vβk = [(βk)⊤,−1]⊤ are not in the kernel of [W (uk+1, tk+1)][1:k+1,1:k+1]. Then
the matrix W =

∑
k W (uk, tk) is positive definite.

It remains to show that the discriminatory step can always find a control
such that the vector vβk is not in the kernel of [W (u, t)][1:k+1,1:k+1]. In fact, it
is sufficient to show that for any k ∈ {1, . . . , K} there exists a control u ∈ U
and a t ∈ [0, tf ] such that ⟨vβk |[W (u, t)][1:k+1,1:k+1]|vβk⟩ > 0. We show in
Theorem 2 that this is valid in the context of this paper.

Theorem 2. Let k ∈ {1, . . . , K − 1}, W k
[1:k,1:k] be positive definite, βk the

solution to the fitting-step problem (13), and vβk = [(βk)⊤,−1]⊤. Then any
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solution (u, t) to the discriminatory-step problem (14) satisfies

⟨vβk |W[1:k+1,1:k+1](u, t)|vβk⟩ = ∥h(K)(eeek+1,u; t)− h(k)(βk,u; t)∥2 > 0.

Proof. For brevity, we identify α with 1 + α for the remainder of this proof.
We start by writing

h(K)(eeek+1,u, t)− h(k)(βk,u, t) =
K∑
ℓ=1

(
ϕk+1(ℓ)−

k∑
j=1

βk
j ϕj(ℓ)

)
Yu,(∆,α)ℓ(t).

Since the functions {ϕ1, . . . , ϕK} are linearly independent, it holds that

∃ℓ̃ ∈ {1, . . . , K} : ϕdiff (ℓ̃) := ϕk+1(ℓ̃)−
k∑

j=1

βk
j ϕj(ℓ̃) ̸= 0. (15)

According to (1), we have for any (α,∆)ℓ

d

dt
X(t) =

[
∆ℓA+ αℓ(uxBx + uyBy)

]
X(t), X(0) = X0, (16)

where

A =

0 −1 0
1 0 0
0 0 0

 , Bx =

0 0 0
0 0 −1
0 1 0

 , By =

 0 0 1
0 0 0
−1 0 0

 , X0 =

00
1

 .

Now, consider the control ũ := [0, b]⊤ and a corresponding control time
t̃ ∈ [0, tf ], where both b ∈ R \ {0} and t̃ are to be chosen later. We have
Yu,(∆,α)ℓ(t̃) = CX(u, (α,∆)ℓ; t̃), where X(u, (α,∆)ℓ; t̃) is the solution to (16)

and C =

[
1 0 0
0 1 0

]
. Thus, we obtain

Yũ,(∆,α)ℓ(t̃) = Cet̃(∆ℓA+αℓbBy)X0.

Since ∆ℓA+αℓbBy is skew-symmetric, we can compute its exponential matrix

explicitly. By setting Ã := t̃(∆ℓA + αℓbBy) and xℓ :=
√
∆2

ℓ + α2
ℓb

2, we have

eÃ = I3 +
sin(t̃x)

t̃x
Ã+ 1−cos(t̃xℓ)

t̃2x2
ℓ

Ã2 (see, e.g., [37]). Since CI3X0 = 0 and

Ã2 = t̃2

−∆2
ℓ − αℓb

2 0 0
0 −∆2

ℓ ∆ℓαℓb
0 ∆ℓαℓb −α2

ℓb
2

 ,
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we obtain

CX(ũ, αℓ; t̃) = C

(
sin(t̃xℓ)

xℓ

αℓb
0
0

+ 1−cos(t̃xℓ)

x2
ℓ

 0
∆ℓαℓb
−α2

ℓb
2

) =

[
sin(t̃xℓ)

xℓ
αℓb

1−cos(t̃xℓ)

x2
ℓ

∆ℓαℓb

]
.

Thus, we have

h(K)(eeek+1, ũ, t̃)− h(k)(βk, ũ, t̃) = b
K∑
ℓ=1

ϕdiff (ℓ)αℓ

[
sin(t̃xℓ)

xℓ

∆ℓ
1−cos(t̃xℓ)

x2
ℓ

]
=: F (t̃).

Now, seeking a contradiction, assume that h(K)(eeek+1, ũ, t̃)−h(k)(βk, ũ, t̃) = 0
for all t̃ ∈ [0, tf ] and all b ∈ R \ {0}. Since F is analytic in t̃, we obtain
F (k)(t̃) = 0 for all k ∈ N and all t̃ ∈ [0, tf ]. For k odd, we have

F (k)(t̃) = b
K∑
ℓ=1

ϕdiff (ℓ)αℓ(−1
k−1
2 )

[
xk−1
ℓ cos(Txℓ)

∆ℓx
k−2
ℓ sin(Txℓ))

]
. (17)

Since F (k)(T ) = 0 for all k odd, the first component of F (k)(T ) in (17), for
different k odd, implies that

1 1 · · · 1
x2
1 x2

2 · · · x2
K

x4
1 x4

2 · · · x4
K

...
...

...
...

xK̃
1 xK̃

2 · · · xK̃
K


︸ ︷︷ ︸

=:D


ϕdiff (1)α1 cos(Tx1)
ϕdiff (2)α2 cos(Tx2)

...
ϕdiff (K)αK cos(TxK)


︸ ︷︷ ︸

=:ϕϕϕt̃

= 0.

Notice that D is a Vandermonde matrix (see, e.g., [38]). Now, let K̃ = 2(K−
1), meaning that D ∈ R( K̃

2
+1)×K is a square matrix. Then, the determinant

of D is given exactly by

det(D) =
∏

1≤i<j≤K

(x2
j − x2

i ).

This implies that two rows of D are linearly independent if and only if |xi| ≠
|xj|. Hence, det(Dx) = det(Dy) ̸= 0 (and therefore ϕϕϕt̃ = 0) if and only

if |xi| ̸= |xj| for i ̸= j. Recalling that xℓ =
√
∆2

ℓ + α2
ℓb

2, |xi| ̸= |xj| is
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equivalent to ∆2
i + α2

i b
2 ̸= ∆2

j + α2
jb

2. For i ̸= j we also have αi ̸= αj and/or
∆i ̸= ∆j by definition. Since αℓ ∈ [0.8, 1.2] and ∆ℓ ∈ ∆0 + 2π[−0.2, 0.2]
with ∆0 ≥ 0.4π, we obtain α2

i ̸= α2
j and/or ∆2

i ̸= ∆2
j for i ̸= j. Thus, there

exists b ∈ R \ 0 such that ∆2
i + α2

i b
2 ̸= ∆2

j + α2
jb

2 for all i, j ∈ {1, . . . , K}
with i ̸= j. In conclusion, we have |xi| ̸= |xj| for i ̸= j, which implies that
ϕϕϕt̃ = 0 and therefore ϕdiff (ℓ)αℓ cos(t̃xℓ) = 0 for all ℓ ∈ {0, . . . , K} and all

t̃ ∈ [0, tf ]. However, we also have ϕdiff (ℓ̃) ̸= 0 by (15), αℓ̃ > 0 and xℓ̃ > 0.

Thus, there exists t̃ ∈ [0, tf ] such that ϕdiff (ℓ̃)αℓ̃ cos(t̃xℓ̃) ̸= 0, which is a
contradiction.

Analogously to the proof of Theorem 2, one can show that any solution
(u1, t1) to the initialization problem (12) satisfies [W (u1, t1)]1,1 > 0. We
conclude our analysis by the following theorem.

Theorem 3. Let (uk, tk), k = 1, . . . , K, be a set of controls and correspond-
ing control times generated by GRA. Then problem (4) is uniquely solvable
by β = β⋆.

Proof. Let βk be the solution to the fitting step problem (13) for k =
1, . . . , K − 1. By Theorem 2, the vector vβk = [(βk)⊤,−1]⊤ is not in the
kernel of [W (uk+1, tk+1)][1:k+1,1:k+1] for all k ∈ {1, . . . , K − 1}. Thus, we
obtain by Theorem 1 that the matrix W =

∑
k W (uk, tk) is positive defi-

nite. Hence, problem (9) is uniquely solvable by β = β⋆. By equivalency of
problems (9) and (4), we obtain the result.

Notice that, in the notation above, OGRA simply reorders rows and
columns of the matrix W k while attempting to find and correct its kernel.
In fact, the second improvement in lines 8-9 in OGRA skips the discrimina-
tory step only if there exists a row and column of W k with index ℓk+1 such
that, by swapping ϕk+1 and ϕℓk+1

, the matrix W k
[1:k+1,1:k+1] is positive definite.

Thus, if tol1 is sufficiently small, one can also prove convergence of OGRA
analogously to GRA.

6. Numerical Results

We test GRA and OGRA on the setting described in Sec. 2. We choose
a maximum control time of 160 ms, which corresponds to a normalized time
tf = 16. The shift of the parameter ∆ is set to ∆0 = 4π and the width of
its interval to 4π∆1, with ∆1 = 0.2. We consider two different probability

20



distributions P⋆, a simple Gaussian one (see panel on the left in Fig. 1) and
a step distribution with three peaks (see panel on the left in Fig. 3). They
are discretized by a uniform mesh of 100 points (10 points in each direction).
Similarly, we discretize the set of linearly independent functions {ϕj}Kj=1 by
setting K = 100 and ϕj = eeej ∈ R100 the j-th canonical vector in R100.
Finally, we fix the tolerances for OGRA to be tol1 = 10−14 and tol2 = 10−4.

Now, let us briefly discuss how we solve the sub-steps of the algorithms
numerically. The initialization and discriminatory step problems are solved
by a second-order trust-region method. For the fitting step, we use the equiv-
alent compact form (13). The corresponding first-order optimality system is
given by

[W k][1:k,1:k]β = [W k][1:k,k+1]. (18)

Since the matrix [W k][1:k,1:k] is symmetric and positive definite, any solution
to Eq. (18) is a global solution to Eq. (13). Hence, we solve the fitting
step problem by solving the linear system (18) using a solver based on the
SVD. This solver first computes the SVD of [W k][1:k,1:k], i.e. two orthogonal
matrices U, V ∈ Rk×k and a diagonal matrix Σ ∈ Rk×k such that UΣV ⊤ =
[W k][1:k,1:k]. To make the method more robust against numerical instabilities,
it then removes all singular values that are smaller than a given tolerance,
and the corresponding columns of U and V . Finally, it computes β by setting
β̃ = V ⊤β and solving Σβ̃ = U⊤[W k][1:k,k+1].

After running the algorithms, we reconstruct P⋆ by solving problem (4).
Notice that, using the notation (10)-(11), the gradient of the cost function
in (4) is given by Wβ −

∑
k Γ(uk, tk)

⊤Yexp
uk

(tk), where the columns of Γ are
given by the γj(uk, tk) defined in Eq. (11). We can also immediately see that
the Hessian of the cost function in Eq. (4) is exactly W , which is guaranteed
to be positive definite by our analysis in Sec. 5. Hence, the global solution
to Eq. (4) is given by the (unique) solution to

Wβ =
∑
k

Γ(uk, tk)
⊤Yexp

uk
(tk). (19)

However, in order to ensure that the coefficients of the computed solution
correspond to a probability distribution (i.e. belong to R̂K), we add the
necessary constraints and solve Eq. (4) with the second-order interior point
algorithm of MATLAB’s fmincon-solver. Nonetheless, the code includes an
option to solve directly Eq. (19) using a SVD solver (see Section 4).
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Fig. 3: Same as Fig. 1 but for a step distribution with three peaks. In brackets are the
number of control fields for each set.

Now, we run both GRA and OGRA on the canonical set {ϕj}100j=1 of hat
functions. In contrast to [30], we do not include any additional random vec-
tors in the canonical set for OGRA and also do not remove any elements
from the set during OGRA (but still reorder them). The reason for this is
that we experienced for the problem of this paper that additional random
elements do not improve the results and removing elements from the canon-
ical set does not reduce the number of controls, but is more likely to make
the final identification problem numerically unstable. While GRA computes
100 controls, OGRA only designs 51 by skipping 48 discriminatory steps.
We then choose P⋆ as the Gaussian distribution in Fig. 1 (left) and compute

the corresponding experimental realizations {Yexp
uk

(tk)}K̃k=1 for the two result-

ing sets of control fields, with K̃ = 100 for GRA and K̃ = 51 for OGRA.
Reconstructing P⋆ as described above, we obtain the coefficient vectors βrec

and thereby the distributions Prec =
∑100

j=1 βrec,jϕj corresponding to GRA
and OGRA, shown in Fig. 1. Looking at the errors with respect to the true
distribution P⋆ shown in Fig. 2, we observe that GRA outperforms OGRA
by one order of magnitude. However, the difference is so small that it is not
visible in the reconstructed distributions. Similar results are obtained for a
step distribution with three peaks in Fig. 3.

To investigate the dependence of the results on the choice of parameters,
we repeat the experiment for different maximum control times, widths of the
∆-interval and K = 400 mesh points. First, we take a look at the number
of control fields generated by OGRA in Tab. 5. We observe that the number
of generated control fields is increasing with decreasing maximum control
time and decreasing width of the ∆-interval. We also observe that the ratio
between the number of GRA controls (which is equal to the number of mesh
points K) and the number of OGRA controls is decreasing with an increasing
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K = 100 K = 400

∆1

tf 8 16 24 32 8 16 24 32

0.1 70 525252 505050 505050 259 299 276 240

0.2 585858 515151 505050 505050 305 288 223223223 220220220

0.4 565656 505050 505050 505050 326 256 211211211 200200200

0.8 515151 505050 505050 505050 292 210210210 200200200 200200200

1.6 505050 505050 515151 505050 275 205205205 200200200 200200200

Tab. 5: Number of controls computed by OGRA for a control bound um = 10, and different
numbers of discretization points K, maximum control times tf and widths 4π∆1 of the
∆-interval. Bold numbers indicate that the number of OGRA controls is less than 60% of
the number of GRA controls. Notice that GRA always generates K controls.

Fig. 4: Number of controls for GRA (dashed circles) and OGRA (solid crosses) for different
total numbers of mesh points. To highlight the ratio between the amount of controls, we
also plot half the amount of GRA controls (dotted squares).

number of mesh points. To validate this point, we plot the number of controls
for both algorithms, for different total numbers of mesh points in Fig. 4.

An explanation of this behaviour is given by the condition number of
the corresponding matrices W , defined in Eq. (10), representing the compact
form (9) of the final identification problem. The condition numbers corre-
sponding to GRA and OGRA for the settings in Tab. 5 are shown in Tabs. 6
and 7. Based on our theoretical results for GRA and OGRA proving that
K̃ = K controls are sufficient, we also add a set of fully random controls
(randomized within the given bounds um and tf ) that has the same number

of controls as GRA (i.e. K̃ = 100 and K̃ = 400, respectively). We observe
that the condition number shows the same correlation with respect to the
maximum control time, width of the ∆-interval and number of mesh points,
as the number of OGRA controls. In particular, the condition number of
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GRA OGRA random control set

∆1

tf 8 16 24 32 8 16 24 32 8 16 24 32

0.1 3e16 5e075e075e07 7e037e037e03 6e036e036e03 3e15 3e083e083e08 7e057e057e05 7e067e067e06 1e18 1e091e091e09 1e061e061e06 3e063e063e06

0.2 7e097e097e09 4e064e064e06 3e033e033e03 1e031e031e03 5e095e095e09 1e081e081e08 1e081e081e08 1e061e061e06 7e127e127e12 1e091e091e09 4e044e044e04 9e039e039e03

0.4 1e111e111e11 5e035e035e03 1e031e031e03 1e031e031e03 2e112e112e11 3e063e063e06 1e071e071e07 1e071e071e07 1e16 7e047e047e04 9e039e039e03 1e031e031e03

0.8 1e061e061e06 2e032e032e03 1e031e031e03 1e031e031e03 3e073e073e07 8e058e058e05 2e052e052e05 2e052e052e05 7e107e107e10 3e033e033e03 2e032e032e03 1e031e031e03

1.6 2e042e042e04 9e029e029e02 1e031e031e03 8e028e028e02 2e062e062e06 4e074e074e07 1e051e051e05 7e077e077e07 5e095e095e09 1e041e041e04 2e032e032e03 1e031e031e03

Tab. 6: Condition number of W for different control sets, maximum control times tf and
widths 4π∆1 of the ∆-interval. The total number of mesh points is K = 100 and the
bound on the control is um = 10. Bold numbers indicate that the condition number is
smaller than 1e15.

GRA OGRA random control set

∆1

tf 8 16 24 32 8 16 24 32 8 16 24 32

0.1 2e20 1e19 1e20 2e15 3e19 2e19 9e19 3e15 4e19 2e19 2e19 3e18

0.2 1e19 1e19 1e141e141e14 4e134e134e13 6e19 5e19 2e142e142e14 1e141e141e14 2e19 2e19 6e19 3e18

0.4 8e19 2e19 1e141e141e14 1e041e041e04 5e19 8e18 1e141e141e14 4e074e074e07 6e19 4e19 8e15 2e062e062e06

0.8 3e19 2e132e132e13 1e041e041e04 9e039e039e03 3e19 2e142e142e14 1e071e071e07 5e075e075e07 5e19 4e18 1e081e081e08 1e051e051e05

1.6 6e20 1e101e101e10 2e042e042e04 6e036e036e03 1e20 4e114e114e11 8e078e078e07 2e082e082e08 3e19 6e18 1e081e081e08 2e042e042e04

Tab. 7: Same as Tab. 6 but for a total number of mesh points K = 400.

OGRA is below 1e15 for all settings where OGRA computed less than 60%
of the number of GRA controls.

Regarding the condition numbers, GRA and random controls show the
same behaviour as OGRA. The reason can be found by taking a closer look
at the entries of the matrix W . It can be shown that the difference between
two adjacent rows or columns of W is bounded in norm by um, tf and the
mesh size for the probability distribution, i.e., αℓ+1−αℓ and ∆ℓ+1−∆ℓ. The
interested reader can find more details about this result in Appendix A. We
conclude that, if the control bound, the maximum control time, or the mesh
size (or equivalently the width of the ∆-interval) is too small, the difference
between two adjacent rows/columns of W can become numerically equal to
zero, implying that W has a nontrivial kernel.

In order to investigate the impact of this numerical instability on the
reconstructed results, we consider again the setting of the beginning of this
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Fig. 5: Same as Fig. 1 but for K = 400 and including the reconstructed distribution for
400 random control fields. In brackets are the number of control fields for each set.

Fig. 6: Same as Fig. 5 but for a step distribution with three peaks. In brackets are the
number of control fields for each set.

section (i.e. ∆1 = 0.2 and tf = 16), but forK = 400 mesh points. The results
for a Gaussian and a step distribution with three peaks are plotted in Figs. 5
and 6, respectively. We observe that all three control field sets are able
to fully reconstruct the step distribution and, at least partially, the Gaus-
sian distribution. This is because the admissible set of solutions for the final
identification problem (4) is restricted to R̂K . Thus, a bad condition number
does not necessarily imply that it is impossible to (at least partially) recon-
struct the true probability distribution. However, a good condition number
guarantees stability of the numerical solver and improves the accuracy of the
results. In this context, notice that if we would sufficiently increase either the
control bound um, or the maximum control time tf , both GRA and OGRA
would show better condition numbers and be able to perfectly reconstruct
also the Gaussian distribution in Fig. 5.

We observe also that, if one knows the number of sufficient control func-
tions K̃ = K, then even completely random control fields can be able to
perform similarly to GRA and OGRA controls. However, while OGRA finds
automatically K̃ (reduces the number of control fields to a sufficient amount),
there is no indicator for a sufficient amount of random controls in general.
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Additionally, the corresponding condition numbers are in many cases worse
than for GRA and OGRA, as seen in Tabs. 6 and 7, meaning that they are
more likely to show numerical instabilities. Thus, the recommended strategy
is clearly OGRA, since it is able to reduce the number of control fields by up
to 50%, while accurately reconstructing the probability distributions.

Lastly, we remark that making the tolerance tol2 smaller can generally
lead to even fewer controls being computed by OGRA. However, this in turn
can lead to less accurate results in the reconstructed solution, meaning the
user has to decide for themselves if such a trade-off is desirable.

7. Conclusion

In conclusion, we introduce SPIRED, a Greedy reconstruction algorithm to
estimate spin distribution in NMR. We show that this approach can be used
to jointly find the distribution of two Hamiltonian parameters, namely the
offset term and the magnetic field inhomogeneity. We discuss the accuracy
and limitations of this method through experimentally relevant numerical
simulations. We provide and describe the codes allowing to reproduce the
results of this paper. A proof of the algorithm convergence is also given.

This paper opens the way to a series of interesting questions in quan-
tum control. A first step is to apply this algorithm to other areas in which
an ensemble of quantum systems is used. Among others, we mention Bose
Einstein Condensates in an optical lattice [39, 11] or molecular rotational
dynamics in gas phase [10, 40]. The greedy reconstruction algorithm can
in principle be applied to these examples, but specific constraints related to
the corresponding experimental setups would be to take into account and
would require adaptations of the SPIRED code. A final stage concerns the
experimental implementation of this approach which seems realistic in the
near future in view of the current state of the art.

Acknowledgements

Simon Buchwald is funded by the DFG via the collaborative research
center SFB1432, Project-ID 425217212. Gabriele Ciaramella is member of
the INDAM GNCS. The research of D. Sugny has been supported by the
ANR project “QuCoBEC” ANR-22-CE47-0008-02.

26



Appendix A. Numerical stability of the matrix W

We study in this section the numerical stability of W . Notice that for
constant controls the solution to the dynamical equation (1) can be written
as

Xu,(∆,α)(t) = et(∆A+α(uxBx+uyBy))X0.

Recall that for two matrices X and Y , we have

∥eY − eX∥ ≤ ∥Y −X∥e∥Y ∥e∥X∥.

Now, consider two parameter pairs (αℓ,∆ℓ) and (αℓ+1,∆ℓ+1), and define
Dℓ := t(∆ℓA+αℓ(uxBx+uyBy)) and Dℓ+1 := t(∆ℓ+1A+αℓ+1(uxBx+uyBy)).
Since ∥X0∥ = 1, |ux| ≤ um and |uy| ≤ um, we obtain

∥Xu,(αℓ,∆ℓ)(t)−Xu,(αℓ+1,∆ℓ+1)(t)∥ ≤ e∥Dℓ∥e∥Dℓ+1∥∥t(∆ℓA+ αℓ(uxBx + uyBy))

− t(∆ℓ+1A+ αℓ+1(uxBx + uyBy))∥

≤ e∥Dℓ∥e∥Dℓ+1∥tf

(
|(∆ℓ −∆ℓ+1)|∥A∥

+ |αℓ − αℓ+1|um(∥Bx∥+ ∥By∥)
)
.

Since the exponential mapping is continuous, we have e∥Dℓ+1∥ → e∥Dℓ∥ for
∆ℓ+1 → ∆ℓ and αℓ+1 → αℓ. Thus, the norm of the difference between the
two solutions Xu,(αℓ,∆ℓ)(tf ) and Xu,(αℓ+1,∆ℓ+1)(t) is bounded by the differences
|∆ℓ−∆ℓ+1|, |αℓ−αℓ+1|, the bound to the control um and the maximum control
time tf . Recalling (11) and that ϕj = eeej in our example, the matrix entries
of W are given by

Wℓ,j =
∑
k

⟨Yuk,(αℓ,∆ℓ)(tk)|Yuk,(αj ,∆j)(tk)⟩.
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