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Abstract. This paper presents a method for the numerical treatment of reaction-
convection-diffusion problems with parameter-dependent coefficients that are arbitrary
rough and possibly varying at a very fine scale. The presented technique combines the
reduced basis (RB) framework with the recently proposed super-localized orthogonal
decomposition (SLOD). More specifically, the RB is used for accelerating the typically
costly SLOD basis computation, while the SLOD is employed for an efficient compression
of the problem’s solution operator requiring coarse solves only. The combined advantages
of both methods allow one to tackle the challenges arising from parametric heterogeneous
coefficients. Given a value of the parameter vector, the method outputs a corresponding
compressed solution operator which can be used to efficiently treat multiple, possibly
non-affine, right-hand sides at the same time, requiring only one coarse solve per right-
hand side.
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1. Introduction

Many phenomena in engineering and sciences can be modeled by partial differential
equations (PDEs) with highly heterogeneous and strongly varying coefficients with os-
cillations appearing on several non-separated scales. In the literature, such PDEs are
referred to as multiscale PDEs. Often, mathematical models also depend on a set of
parameters accounting, e.g., for varying material properties or geometric variability, lead-
ing to parametrized multiscale PDEs. Typical examples include subsurface fluid flows in
porous media and composite materials. For this class of problems - even for fixed values
of the parameter vector - the solution by means of classical finite element methods is
challenging. Indeed, a very fine mesh is required to resolve all fine-scale features, resulting
in large linear systems and possibly days of CPU time. If one is interested in the PDE
solution corresponding to various parameter input values, the repeated numerical solution
of the PDE may easily become computationally unfeasible.

Non-parametric multiscale PDEs have been intensively studied by the numerical anal-
ysis community over the last decades. For such problems, several kinds of methods have
been established which we summarize under the term numerical homogenization. Under
minimal assumptions on the coefficients, these methods are able to achieve uniform or-
ders of convergence. This is achieved by using problem-adapted ansatz spaces possessing
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local, efficiently computable basis functions. However, there is always a computational
overhead, i.e., either the support of the basis functions or the number of basis functions
needs to be increased with the desired accuracy. Prominent methods achieving almost op-
timal numerical homogenization include the multiscale spectral generalized finite element
method [BL11, EGH13, MSD22], the adaptive local basis [GGS12, Wey17], the localized
orthogonal decomposition method (LOD) [HP13, MP14, KPY18], rough polyharmonic
splines [OZB14], and gamblets [Owh17]. For an overview on numerical homogenization,
we refer to the textbooks [MP20, OS19] and the recent review article [AHP21]. Re-
cently, the super-localized orthogonal decomposition (SLOD) has been proposed [HP22]
which is a version of the LOD with significantly improved localization properties (see
also [FHP21, BFP22, HM22, FHKP22]). Using its super-localized problem-adapted basis
functions, the SLOD achieves a particularly efficient compression of the solution operator
of the PDE only requiring the solution of a sparse coarse linear system. For the construc-
tion of the SLOD basis functions, local PDEs need to be solved on the fine scale. While
this step can be performed at moderate computational costs for non-parameteric PDEs,
it may get unfeasible for parametric PDEs.

Thus, we handle the parameter dependence by adopting the model order reduction
(MOR) perspective. Namely, the high-fidelity problem - also referred to as full order
model (FOM) - is replaced by a suitable reduced order model (ROM), which is accurate
and at the same time fast to evaluate (in particular, its cost is independent of the dimen-
sion of the original FOM). ROM techniques are two-phase approaches. First an offline
training phase is performed, consisting in the numerical computation of FOM solutions
corresponding to an appropriate set of input values of the parameter vector. The resulting
set of solutions (also known as snapshots) are then employed for constructing an approxi-
mation of the parameter-to-solution map (the surrogate), which is then evaluated online at
any new parameter values of interest. Between the various ROMs, the reduced basis (RB)
method [QMN15, HRS16] represents a remarkable technique to perform model reduction.
It constructs the surrogate by projection over a (small) finite dimensional subset being
the output of a principal component analysis or of a greedy search procedure.

The efficient treatment of parametric multiscale PDEs - as we are interested in here
- calls for technologies that merge the features of model order reduction and numerical
homogenization. During the last decades, there have been many works in this direction
including the localized RB multiscale method [KOH11, KFH+15, OS14, OS15, AHKO12,
BIO+21], the RB-LOD which is a combination of the RB and LOD [AH15, KR21],
and ArbiLoMod [BEOR17]. Additionally, we mention the RB multiscale finite element
method [Ngu08, HZZ15] and the FE2-based MOR method [HAF20] which, however, re-
quire scale separation of the coefficients. The key idea of the above-mentioned methods
is to localize the snapshot computation, i.e., fine-scale snapshots are only computed lo-
cally on subdomains. This makes the snapshot computation feasible also for parametric
multiscale PDEs.

In this paper, we introduce the reduced basis super-localized orthogonal decomposition
(RB-SLOD), a novel methodology for the numerical treatment of reaction-convection-
diffusion problems with arbitrary rough and parameter-dependent coefficients. It is the
result of the careful combination of the SLOD method - used for the localization of the PDE
- with the RB method - used for the acceleration of local computations. The significantly
improved localization properties of the SLOD allow to compute the snapshots on much
smaller subdomains compared to the RB-LOD, the target accuracy being prescribed. This
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is the key to significant computational savings in both the offline and online phases. Given
a value of the parameter vector, the proposed method outputs a corresponding compressed
solution operator. A key strength is that the compressed solution operator can be used
for the efficient computation for various right-hand sides only requiring one coarse solve
per right-hand side. In particular, the proposed algorithm is not affected by right-hand
sides with a non-affine parameter dependence, while, typically, for such right-hand sides,
methods like the empirical interpolation method [BMNP04] need to be applied causing
extra computational costs. Moreover, it enables fast and accurate computations for any
parameter value, making the algorithm suitable in multi-queries and real-time scenarios.

The performed numerical tests confirm the proposed method’s effectiveness and high-
light its advantages compared to other state-of-the-art methodologies. For a pure diffusion
problem with a highly oscillating parametric diffusion coefficient, a comparison with the
RB-LOD shows that, for reaching the same accuracy, the RB-SLOD requires much smaller
oversampling domains. This results in smaller local patch problems and a sparser coarse
system. Moreover, the effectiveness of the RB-SLOD is also demonstrated for a paramet-
ric mass transfer problem (i.e., a reaction-convection-diffusion problem) with a non-affine
right-hand side.

The paper is organized as follows. In Section 2, we formulate the problem of interest and
introduce some notation. For a fixed parameter value, Section 3 then recalls the definition
of the SLOD. The core of this paper are Sections 4 and 5, where the RB-SLOD method
is introduced and analyzed. In a series of numerical experiments, Section 6 underlines
the method’s effectiveness for parametric multiscale PDEs. Finally, conclusions are drawn
in Section 7.

2. Problem setting

Let Ω ⊂ Rd, d ∈ {2, 3} be a polygonal/polyhedral Lipschitz domain which is scaled
such that its diameter is of order one. Denoting byM⊂ Rp, p ∈ N, a compact parameter
set, we consider the parameter-dependent reaction-convection-diffusion problem posed in
the domain Ω with parameters µ from M, i.e.,

(2.1) − div(aµ∇uµ) + bµ · ∇uµ + cµuµ = f,

where cµ, bµ, and aµ denote the reaction, convection, and diffusion coefficients, respectively
and f ∈ L2(Ω) is the parameter-independent right-hand side. We assume that cµ ∈
L∞(Ω,R) and bµ ∈ L∞(Ω,Rd) with L∞-norms bounded uniformly in the parameter µ.

Further, let the matrix valued diffusion coefficient aµ ∈ L∞(Ω,Rd×d) be symmetric and
uniformly positive definite, i.e., there exist parameter-independent constants 0 < λ ≤ Λ <
∞ such that, for all µ ∈M, η ∈ Rd, and almost every x ∈ Ω, it holds

(2.2) λ|η|2 ≤ η · (aµ(x)η) ≤ Λ|η|2,
with | · | denoting the Euclidean norm of Rd.

Given the pairwise disjoint partition of the boundary ∂Ω = Γ1∪Γ2∪Γ3 (with Γ3 closed),
we supplement (2.1) with the following homogeneous mixed boundary conditions

(2.3)

(aµ∇uµ) · ν = 0 on Γ1,

(aµ∇uµ) · ν + dµu = 0 on Γ2,

uµ = 0 on Γ3.
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In (2.3), ν denotes the outer unit normal vector and dµ ∈ L∞(Γ2,R) is non-negative and
its L∞-norm is uniformly bounded in µ.

Let V := {v ∈ H1(Ω,R) : v|Γ3 = 0}, where v|Γ3 shall be understood in the sense of
traces. We equip the space V with the standard H1-inner product and the corresponding
induced norm, namely:

(u, v)V := (∇u,∇v)L2(Ω) + (u, v)L2(Ω), ‖u‖2V := (u, u)V .

For any fixed parameter value µ ∈M, the weak formulation of equation (2.1) with bound-
ary conditions (2.3) reads: find uµ ∈ V such that, for all v ∈ V,

(2.4) Aµ(uµ, v) = (f, v)L2(Ω),

where the bilinear form Aµ : V × V → R is given by

Aµ(u, v) := (aµ∇u,∇v)L2(Ω) + (bµ · ∇u, v)L2(Ω) + (cµu, v)L2(Ω) + (dµu, v)L2(Γ2).

Under standard assumption on the coefficients dµ, cµ, and bµ (see, e.g., the textbook [KA03,
Ch. 3.2]) one can prove the coercivity and continuity of the bilinear form Aµ

(2.5) Aµ(u, u) ≥ α‖u‖2V , Aµ(u, v) ≤ β‖u‖V‖v‖V .
If conditions (2.5) are fulfilled, the well-posedness of the weak formulation (2.4) follows by
standard arguments and the Lax–Milgram theorem.

As customary in the reduced basis context, we make the following assumption.

Assumption 2.1 (Affine decomposition). The bilinear form Aµ can be decomposed into Q
terms as follows

(2.6) Aµ(u, v) =

Q∑

q=1

θq(µ)Bq(u, v)

with parameter-independent continuous bilinear forms Bq : V × V → R and measurable
functions θq : M→ R.

Remark 2.2 (Practical limitations). From the theoretical point of view, the RB-SLOD can
be applied as long as the bilinear form Aµ fulfills (2.6), i.e., independently of the actual
value of Q. However, as usual for RB methods, there are limitations on the number of
summands Q in (2.6) and smoothness requirements with respect to µ. Indeed, for large
numbers Q or lacking smoothness, the offline phase of the RB-SLOD gets increasingly
expensive since a lot of precomputations are required. In such cases, the proposed RB-
SLOD might not pay off, see also Remark 4.2.

Remark 2.3 (Approximate affine decomposition). If no affine decomposition of Aµ in the
sense of (2.6) is available, one can use the empirical interpolation method [BMNP04] to
compute affine approximations of the PDE coefficients dµ, cµ, bµ, and aµ. The RB-SLOD
can then be applied to these approximate coefficients. Note that the number of terms in
the affine approximations of the coefficients depends on their smoothness with respect to
µ, i.e., for a prescribed accuracy, smoother coefficients can be approximated by sums with
a smaller number of terms.

For the ease of presentation, we introduce notation which is frequently used in the
following sections. We denote the associated solution operator that maps a given right-
hand side f ∈ L2(Ω) to the corresponding unique solution uµ by A−1

µ : L2(Ω) → V.
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Moreover, for subsets ω ⊂ Ω, we denote by Aω,µ(·, ·), Bω,q(·, ·), (·, ·)V,ω, and ‖ · ‖V,ω the
restrictions of Aµ(·, ·), Bq(·, ·), (·, ·)V , and ‖ · ‖V to ω, respectively. We denote the local
solution space by

(2.7) Vω := {v ∈ H1(ω) : v|∂ω\(Γ1∪Γ2) = 0}
and define the local solution operator A−1

ω,µ : L2(ω) → Vω as the operator mapping any

right-hand side fω ∈ L2(ω) to the local solution uω,µ ∈ Vω satisfying, for all v ∈ Vω,

(2.8) Aω,µ(uω,µ, v) = (fω, v)L2(ω).

3. SLOD for non-parametric reaction-convection-diffusion problems

This section introduces the SLOD technique for non-parametric reaction-convection-
diffusion problems with arbitrary rough PDE coefficients dµ, cµ, bµ, and aµ. For this
purpose, we fix the parameter µ ∈ M throughout this section. We consider the pos-
sibly coarse, quasi-uniform triangular or quadrilateral mesh TH of Ω consisting of closed,
convex, and shape-regular elements, where the subscript H denotes the maximal element
diameter. In general, the mesh TH does not resolve the small scale variations of the PDE
coefficients. Let P0(TH) denote the space of TH -piecewise constants

P0(TH) = span {1K : K ∈ TH}
with 1K denoting the characteristic function of the element K ∈ TH . Furthermore, by
ΠH : L2(Ω) → P0(TH), we denote the L2-orthogonal projection onto P0(TH), namely, for
all K ∈ TH , ΠHv|K is given by

ΠHv|K =
1

|K|

ˆ
K
v dx.

Classical results (see, e.g., [PW60, Beb03]) state the following (local) stability and approx-
imation property of ΠH :

‖ΠHv‖L2(T ) ≤ ‖v‖L2(T ) for all v ∈ L2(T ),(3.1)

‖v −ΠHv‖L2(T ) ≤ π−1H‖∇v‖L2(T ) for all v ∈ H1(T ).(3.2)

3.1. Prototypical approximation. Similarly as in [Owh17, AHP21], we henceforth de-
rive prototypical problem-adapted ansatz spaces with uniform approximation rates inde-
pendent of the oscillations of the coefficients. The choice of ansatz space can be motivated
by a reduced basis approach in the right-hand side. In order to make this clear, we for
now consider the parameter-dependent right-hand side fϑ ∈ Hs(Ω), s ∈ [0, 1] with ϑ
denoting the right-hand side parameter. Besides the Hs-regularity, fϑ can be a general
parameter-dependent function which might depend on ϑ in a non-smooth and non-affine
way. For non-affine right-hand sides, one typically computes an approximate affine de-
composition using appropriate interpolation techniques, e.g., the empirical interpolation
method (cf. Remark 2.3).

Due to the lack of smoothness, sophisticated interpolation methods as the empirical
interpolation method are possibly ineffective. Indeed, for Hs-regular functions, the L2-
projection onto TH -piecewise constants has optimal approximation properties. Thus, we
employ the approximate affine decomposition

ΠHfϑ =
∑

K∈TH

(ΠHfϑ)|K 1K .
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We use the reduced basis space

(3.3) VH,µ := span{A−1
µ 1K : K ∈ TH}

which is not adapted to the precise parameter dependence of fϑ and therefore works for
any Hs-regular right-hand side. Note that we can only expect an algebraic decay of
the approximation error in the number of basis functions. More precisely, defining the
approximation uH,µ,ϑ to the solution uµ,ϑ = A−1

µ fϑ ∈ V in the finite dimensional space
VH,µ as

(3.4) uH,µ,ϑ := A−1
µ ΠHfϑ,

we obtain the following error estimate: there exists a constant C > 0 independent of H,µ,
and ϑ such that, for any fϑ ∈ Hs(Ω), s ∈ [0, 1], the following estimate holds

(3.5) πα‖uµ,ϑ − uH,µ,ϑ‖V ≤ H‖fϑ −ΠHfϑ‖L2(Ω) ≤ CH1+s|fϑ|Hs(Ω),

where |fϑ|Hs(Ω) denotes the Hs-seminorm of fϑ. This result can be proved following the
same steps as in the proof of [HP22, Lem. 3.1].

Due to the algebraic convergence of the prototypical approximation in (3.5), the dimen-
sion of the reduced basis space VH,µ is typically large. Additionally, the canonical basis
functions {A−1

µ 1K : K ∈ TH} of (3.3) are non-local and decay very slowly. Hence, without
modification, such approaches are intractable in practice. In order to cure this problem,
we subsequently introduce a localization approach identifying (almost) local basis func-
tions of (3.3). This allows one to reduce the required storage and the computational costs
to a practically feasible level. For the ease of presentation, we henceforth again consider a
parameter-independent right-hand side and drop the dependence of uH,µ,ϑ and uµ,ϑ on ϑ.

3.2. Super-localization technique. As localization approach, we use a variant of the
SLOD from [HP22]. The SLOD is an improvement of the LOD [MP14, HP13] that ex-
hibits super-exponential localization properties. For the definition of the method, we first
introduce some notations. Given a union of elements S ⊂ Ω, the `-th order patch of S is
defined recursively by

N0(S) := S, N`+1(S) :=
⋃{

K ∈ TH : K ∩ N`(S) 6= ∅
}
.

In order to simplify the notation in the subsequent derivation, we fix an element K ∈ TH
and the oversampling parameter ` ∈ N. We will refer to the `-th order patch of K by
ω := N`(K) and make the meaningful assumption that the patch ω does not coincide with
the whole domain Ω. We define Σ := ∂ω\∂Ω and denote by TH,ω the submesh of TH with
elements in ω.

For the patch ω, the SLOD aims at identifying an L2-normalized source term g =
gK,`,µ ∈ P0(TH,ω) that yields a rapidly decaying (or even local) response ϕ = ϕK,`,µ ∈ VH,µ
under the solution operator A−1

µ , i.e.,

ϕ = A−1
µ g.

Note that, throughout this paper, we will not distinguish between Vω-functions and their V-
conforming extension by zero to the full domain Ω. We define a patch-local approximation
ψ = ψK,`,µ ∈ Vω of the response ϕ by

(3.6) ψ := A−1
ω,µg,
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where we recall that Aω,µ denotes the local solution operator corresponding to (2.8). For
a generic right-hand side g ∈ P0(TH,ω), the local basis function ψ is a poor approximation
of the ideal basis function ϕ. Nevertheless, the appropriate choice of g leads to a small
localization error.

3.3. Choice of optimal local right-hand sides. Let us recall the definitions and some
properties of traces and extensions of Vω-functions. Defining the space U := V|ω, we
denote the trace operator defined for functions in U and restricted to Σ by

(3.7) trΣ : U → X := image trΣ ⊂ H1/2(Σ).

The space X is a Hilbert space which can be equipped with the norm

(3.8) ‖w‖X := inf{‖v‖V,ω : v ∈ H1(ω), trΣv = w},
where we recall that ‖ · ‖V,ω denotes the restriction of the V-norm to ω. By definition
of the ‖ · ‖X -norm, the continuity of the trace operator holds independent of the patch
geometry, namely, for all v ∈ U ,

(3.9) ‖trΣv‖X ≤ ‖v‖V,ω.
Generalizing the textbook result from [BF91, Ch. III.1, Eq. (1.5)], we can explicitly com-
pute the X-norm of a function in X as follows.

Lemma 3.1 (Computation of ‖ · ‖X). For any w ∈ X, the weak solution uw ∈ H1(ω) to
the boundary value problem

(3.10)





−∆uw + uw = 0 in ω,

uw = w on Σ,

∇uw · ν = 0 on ∂ω ∩ (Γ1 ∪ Γ2),

uw = 0 on ∂ω ∩ Γ3

satisfies

(3.11) ‖uw‖V,ω = ‖w‖X .
Proof. For any w ∈ X, the functional

J : {v ∈ H1(ω) : trΣv = w} → R, v 7→ 1

2
‖v‖2V,ω

is strictly convex. Thus, the condition that the functional’s Gateaux derivative is zero for
any direction η ∈ Vω is a sufficient optimality condition. For all η ∈ Vω, we obtain

( d

dt
J(uw + tη)

)∣∣∣
t=0

= (uw, η)V,ω = 0,

which is the weak formulation of (3.10). �

This result can be used to define a right-inverse of the trace operator, denoted by
tr−1

Σ : X → U , by setting tr−1
Σ w := uw. By definition, the right-inverse is continuous, more

specifically, by (3.11), there holds, for all w ∈ X,

(3.12) ‖tr−1
Σ w‖V,ω = ‖w‖X .

The conormal derivative of ψ at the boundary segment Σ = ∂Ω\∂ω is a functional in X ′

which is defined for all w ∈ X as follows

(3.13) 〈aµ∇ψ · ν, w〉X′×X = Aω,µ(ψ, tr−1
Σ w)− (g, tr−1

Σ w)L2(ω),
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where 〈·, ·〉X′×X denotes the duality pairing. Note that, the conormal derivative is inde-
pendent of the choice of extension operator tr−1

Σ .
The following crucial observation establishes a connection between the localization error

and the norm of the conormal derivative of ψ. For any v ∈ V, it holds

(3.14) Aµ(ψ − ϕ, v) = Aω,µ(ψ, v)− (g, v)L2(ω) = 〈aµ∇ψ · ν, trΣ v|ω〉X′×X .
It is possible to explicitly compute theX ′-norm of a functional by generalizing the textbook
result [BF91, Ch. III.1, Eq. (1.8)] as follows.

Lemma 3.2 (Computation of ‖ · ‖X′). For any q ∈ X ′, the weak solution uq ∈ H1(ω) to
the boundary value problem

(3.15)





−∆uq + uq = 0 in ω,

∇uq · ν = q on Σ,

∇uq · ν = 0 on ∂ω ∩ (Γ1 ∪ Γ2),

uq = 0 on ∂ω ∩ Γ3

satisfies

(3.16) ‖uq‖V,ω = ‖q‖X′ .
Proof. Employing that uq ∈ U is the weak solution to (3.15) and using (3.8) and (3.11),
we obtain

‖uq‖V,ω = sup
v∈U

(uq, v)V,ω
‖v‖V,ω

= sup
v∈U

〈q, trΣv〉X′×X
‖v‖V,ω

= sup
w∈X

〈q, trΣuw〉X′×X
‖uw‖V,ω

= sup
w∈X

〈q, w〉X′×X
‖w‖X

= ‖q‖X′

which proves the desired result. �

For the sake of notation, we abbreviate the mapping of a right-hand side g to the element
uq that solves (3.15) for q = aµ∇ψ · ν ∈ X ′ with ψ being the basis function corresponding
to g, by the operator R = RK,`,µ, i.e.,

(3.17) R : P0(TH,ω)→ U, g 7→ uq.

By observation (3.14) and Lemma 3.2, we achieve a minimal localization error by choosing
the right-hand side as the solution to the energy minimization problem

(3.18) g = arg min
p∈P0(TH,ω)

‖Rp‖2V,ω
‖p‖2

L2(ω)

.

It shall be noted that this problem is equivalent to solving an eigenvalue problem as the
following remark states.

Remark 3.3 (Equivalent eigenvalue problem). Instead of solving (3.18), it is equivalent to
compute the eigenvector corresponding to the smallest eigenvalue of the following gener-
alized eigenvalue problem

(3.19) Cx = λDx

with matrices C,D ∈ RJ×J , J := #TH,ω, defined as

Cij = (R1Tj ,R1Ti)V,ω, Dij := (1Tj ,1Ti)L2(ω)
,

with {Tj : j = 1, . . . J} being some numbering of the elements in TH,ω.
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3.4. Localization error indicator. We introduce the local error indicator σK,µ =
σK,µ(H, `) := ‖Rg‖V,ω which coincides with the X ′-norm of the conormal derivative of ψ.
Taking the maximum, we obtain an error indicator for the method’s localization error

(3.20) σµ = σµ(H, `) := max
K∈TH

σK,µ.

Based on extensive numerical studies in [HP22, FHP21, BFP22] and a justification [HP22,
Thm. 7.3] that relies on a conjecture from spectral geometry on the decay of Steklov
eigenfunctions, we conjecture that σ decays super-exponentially in the oversampling pa-
rameter `.

Conjecture 3.4 (Super-exponential decay of σµ). For all parameters µ ∈ M, the quan-
tity σµ decays super-exponentially in `, i.e., there exists a constants Cσ(H, `) > 0 depending
polynomially on H and ` and independent of µ and C > 0 independent of H, `, and µ such
that

σµ(H, `) ≤ Cσ(H, `) exp(−C` d
d−1 ).

Note that, using LOD techniques, one can prove a pessimistic bound still guaranteeing
an exponential decay of σ as ` is increased, cf. [HP22, Lem. 6.4].

3.5. Super-localized multiscale method. For computing a discrete approximation of
uµ ∈ V in the space

VH,`,µ := span{ψK,`, u : K ∈ TH},
we employ the so-called collocation variant of the SLOD [HP22, Rem. 5.1]. This variant
has the advantage that, compared to computing the Galerkin solution in VH,`,µ, no inner
products between basis functions need to be computed. Instead, we define the discrete
approximation uH,`,µ ∈ VH,`,µ as

(3.21) uH,`,µ =
∑

K∈TH

cK ψK,`,µ,

where (cK)K∈TH are the coefficients of the expansion of ΠHf in terms of the basis functions
gK,`,µ

ΠHf =
∑

K∈TH

cKgK,`,µ.

Remark 3.5 (Connection to isogeometric analysis). In 1d, the SLOD basis function for the
diffusion problem with constant coefficient aµ coincides with the quadratic B-splines. We
refer to [HP22, Fig. 4.1] for an illustration.

4. Reduced basis super-localized orthogonal decomposition

This section introduces the reduced basis super-localized orthogonal decomposition
(RB-SLOD) method which combines the SLOD presented in the last section with a reduced
basis approach enabling a significant acceleration in the context of parametric problems.
The algorithm consists of an offline phase and an online phase. The offline phase is ex-
ecuted only once and performs precomputations which are employed in the online phase
for the rapid computation of an approximation to the solution uµ.
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4.1. Offline phase. Henceforth, we fix an element K ∈ TH and its `-th order patch
ω := N`(K). Given a parameter µ ∈ M, the main computational effort required for the
computation of the basis functions ψ ∈ VH,µ in (3.6) and g ∈ P0(TH) in (3.18) is the
computation of the set

{χT,µ : T ∈ TH,ω}
with

(4.1) χT,µ := A−1
ω,µ1T .

For all T ∈ TH,ω, we employ a reduced basis approach for deriving approximations of χT,µ
that can be rapidly evaluated. Henceforth, we also fix the element T ⊂ N`(K) and omit
the subscript T for the ease of readability.

4.1.1. Initialization. The first step in the reduced basis approach is the selection of a
training set of parametersMtr ⊂M with size given by the prescribed integer L. Possible
options to select the elements ofMtr are random sampling or structured grids. Algorithm 1
shows the initialization of the set of reduced basis parametersMrb and the set of reduced
basis functions Wrb.

Algorithm 1 (Offline – Initialization with starting parameters).

1: Mtr ← {µ1, . . . , µL} with selected parameters from M
2: Mrb ← {µ1}
3: Wrb ← {χµ1} with χµ1 := A−1

ω,µ11T

4.1.2. Error estimation. Assume that we have already selected a set of reduced basis
parameters Mrb = {µ1, . . . , µM} with corresponding reduced basis functions Wrb =
{χµ1 , . . . , χµM }. Given the new parameter µ ∈Mtr\Mrb, we aim at

(1) computing an approximation χrb
µ of χµ = A−1

ω,µ1T in the span of Wrb and
(2) efficiently estimating the approximation error.

To perform the first task, we compute the Galerkin projection onto the span of Wrb, i.e.,
we seek χrb

µ =
∑M

m=1 cmχµm ∈ spanWrb such that, for all w ∈ spanWrb,

(4.2) Aω,µ(χrb
µ , w) = Aω,µ(χµ, w) = (1T , w)L2(ω).

Choosing test functions in Wrb, (4.2) turns into a small linear system with (cm)Mm=1 being
the unknowns. Note that χµ itself is not required for computing the approximation.

For estimating the approximation error, we compute the Riesz representation τµ of the
residual functional, i.e., we seek τµ ∈ Vω such that, for all w ∈ Vω,

(4.3) (τµ, w)V,ω = Aω,µ(χrb
µ , w)− (1T , w)L2(ω)

and define the following a posteriori error estimator

(4.4) ∆µ := ‖τµ‖V,ω.
The following lemma proves that this error estimator is reliable and efficient.

Lemma 4.1 (Reliability and efficiency of estimator). For any given µ ∈ Mtr\Mrb, the
reduced basis error for χµ can be bounded from below and above by ∆µ defined in (4.3),
i.e., there holds

β−1∆µ ≤ ‖χµ − χrb
µ ‖V,ω ≤ α−1∆µ.
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Proof. We define e := χµ − χrb
µ . Using (2.5) and (4.3) together with Vω ⊂ V, we obtain

‖τµ‖2V,ω = Aω,µ(χrb
µ , τµ)− (1T , τµ)L2(ω) = Aω,µ(e, τµ) ≤ β‖e‖V,ω‖τµ‖V,ω

which, after dividing by ‖τµ‖V,ω, implies the first inequality. For the second inequality, we
similarly obtain

α‖e‖2V,ω ≤ Aω,µ(e, e) = (1T , e)L2(ω) −Aω,µ(χrb
µ , e) ≤ ‖τµ‖V,ω‖e‖V,ω. �

Using the affine decomposition (2.6), and recalling that χrb
µ =

∑M
m=1 cmχµm , the a

posteriori error estimator can be efficiently computed observing that

(4.5) τµ =

Q∑

q=1

θq(µ)
M∑

m=1

cmsq,m − p,

where the sq,m ∈ Vω are the unique functions satisfying, for all w ∈ Vω,

(4.6) (sq,m, w)V,ω = Bω,q(χT,µm , w)

and p ∈ Vω is the unique function satisfying, for all w ∈ Vω,

(4.7) (p, w)V,ω = (1T , w)L2(ω).

Denoting, the sets in which we store the functions {sq,m : m = 1, . . . ,M} by Sq, we
can initialize the Riesz representatives as shown in Algorithm 2.

Algorithm 2 (Offline – Initialization Riesz representatives).

1: for q = 1, . . . , Q do
2: Sq ← {sq,1} with sq,1 solving (4.6)
3: end for
4: compute p by (4.7)

4.1.3. Greedy search. The greedy search algorithm iterates through the parameters µ ∈
Mtr\Mrb and, for each µ, estimates the error when approximating χµ by χrb

µ using the
error estimator ∆µ from (4.4). It then selects the parameter µ for which the estimator

is largest and adds it to the set Mrb . The corresponding function χµ is then computed

by (4.1) and added to the set of reduced basis functions Wrb. For numerical stability
reasons, we additionally perform an orthogonalization with respect to (·, ·)V,ω using a

Gram–Schmidt-type algorithm. Note that, due to the typically small size of Mrb the
numerical instability issues of the Gram–Schmidt algorithm are not noticeable in practice.

Given a tolerance tol > 0, this procedure is repeated until the training error satisfies
the following stopping criterion

(4.8)
maxµ∈Mtr ∆µ

‖p‖V,ω
≤ tol,

with p defined in (4.7). It is justified to use p instead of χµ in the denominator of (4.8) as

‖p‖V,ω = ‖1T ‖V ′ω ≈ ‖χµ‖V,ω,
where ‖ · ‖V ′ω denotes the canonical norm on the dual space V ′ω. In particular, this means
that both quantities have the same scaling in H. Algorithm 3 shows an implementation
of the greedy search in pseudo code.
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Algorithm 3 (Offline – Greedy search).

1: while
max
µ∈Mtr

∆µ

‖p‖V,ω > tol do

2: M ← #Mrb

3: // compute error estimators
4: for µ ∈Mtr\Mrb do
5: compute χrb

µ by (4.2)
6: compute τµ by (4.5)
7: ∆µ ← ‖τµ‖V,ω by (4.4)
8: end for
9: // select element with largest estimator

10: µM+1 ← argmax
µ∈Mtr\Mrb

∆µ

11: Mrb ←Mrb ∪ µM+1

12: compute χµM+1 by (4.1)

13: Wrb ←Wrb ∪ {χµM+1}
14: // update Riesz representatives
15: for q = 1, . . . , Q do
16: Sq ← Sq ∪ {sq,M+1} with sq,M+1 by (4.6)
17: end for
18: end while

The computation of χrb
µ in Line 5 of Algorithm 3 can be accelerated employing the

affine decomposition (2.6) of the bilinear form. After selecting an element µM+1, adding
it to Mrb and computing the function χµM+1 , one may precompute the inner products

(1T , χµM+1)
L2(ω)

and Bω,q(χµm , χµM+1), q = 1, . . . , Q, m = 1, . . . ,M.

This is especially important, as the training setMtr is typically large and the computation
of (4.2) in Line 5 has to be repeated many times. By precomputation, one can reduce the
complexity of Line 5 to polynomial complexity in #TH,ω.

Remark 4.2 (Decay of training error). In practice, provided that the bilinear form Aµ
depends smoothly on the parameter µ, typically a (sub-)exponential decay of the training
error (4.8) can be observed. For a numerical investigation, see the experiments in Section 6.
Theoretically, it is difficult to derive explicit rates of decay of the training error, see
e.g. [BMP+12, AH15, OR16] for an investigation.

All the computations described in this sections need to be repeated for all T ∈ TH,ω
and K ∈ TH . This can be done in parallel. Hence, the final output of the offline phase is
the collection of RB spaces Wrb as the element K varies in TH and T varies in TH,ω.

4.2. Online phase. Given any parameter value of interest µ ∈ M, the online phase
rapidly computes approximate SLOD basis functions using the precomputations that were
performed in the offline phase. The RB-SLOD solution is then obtained after solving a
sparse coarse linear system.

4.2.1. Basis computation. As before, we fix the element K ∈ TH and denote its `-th order
patch by ω := N`(K). We aim at constructing an approximation of the SLOD basis
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function ψ = ψK,`,µ from (3.6) by

(4.9) ψrb :=
∑

T∈TH,ω

cTχ
rb
T,µ,

where the coefficients (cT )T∈TH,ω will be determined subsequently and χrb
T,µ denotes the

RB approximation of χT,µ = A−1
ω,µ1T computed by solving the small linear system in (4.2).

Note that, unlike the SLOD basis functions (3.6), their RB approximations (4.9) admit
no L2-regular right-hand side via the PDE operator Aω,µ. Nevertheless, by analogy with

the super-localization technique for non-parametric PDEs, we define grb = grb
K,`,µ as

(4.10) grb :=
∑

T∈TH,ω

cT1T ,

where the coefficients (cT )T∈TH,ω are the same as in (4.9). In particular, we have established

an one-to-one relationship between grb ∈ P0(TH,ω) and ψrb ∈ H1(ω). Unfortunately, the
straightforward adaptation of the super-localization procedure illustrated in Section 3 can
not be pursued here, since the conormal derivative of ψrb, in general, does not exist as
a functional in X ′ with X defined in (3.7). Recalling the definition of the extension
operator tr−1

Σ : U → X with Σ = ∂ω\∂Ω and U = V|ω in (3.7), we define an analogue to

the conormal derivative of ψrb similarly as (4.11) by

(4.11) 〈aµ∇ψrb · ν, w〉X′×X := Aω,µ(ψrb, tr−1
Σ w)− (grb, tr−1

Σ w)L2(ω).

Note that this functional clearly is an element of X ′ which however depends on the choice
of extension operator, i.e., for two different extension operators, the respective functionals
might not coincide. Nevertheless, the X ′-norm of the difference of the functionals is
determined by the tolerance (4.8) of the greedy search algorithm, i.e., for small tolerances
the functionals corresponding to different extension operators (almost) coincide.

We denote with Rrb = Rrb
K,`,µ : P0(TH,ω) → H1(ω) the operator mapping a right-hand

side grb as in (4.10) to v ∈ H1(ω) being the unique solution to (3.15) with q = aµ∇ψrb ·ν ∈
X ′. Similar as in (3.18), we choose the right-hand side grb so that the conormal derivative
of the basis function ψrb is minimal which translates to a small localization error. More
precisely, we choose

(4.12) grb := arg min
p∈P0(TH,ω)

‖Rrbp‖2V,ω
‖p‖2

L2(ω)

.

In Algorithm 4, we denote by B and G the sets, where the RB-SLOD basis functions
{ψrb

K,`,µ, K ∈ TH , µ ∈Mtr} and the corresponding {grb
K,`,µ, K ∈ TH , µ ∈Mtr} are stored,

respectively. See Figure 6.5 for a depiction of grb and ψrb for a parametric reaction-
convection-diffusion problem for several choices of parameters.

The above computations need to be repeated for all K ∈ TH . The intermediate output
of the online phase is the pair of sets B and G, collecting all the basis functions and
corresponding right-hand sides. This information will be then used during the coarse
solve for the computation of the RB-SLOD approximation.

4.2.2. Coarse solve. For the computation of the RB-SLOD approximation of uµ, we pro-
ceed similarly as in (3.21). First, we express ΠHf as linear combination of the right-hand



14 F. BONIZZONI, M. HAUCK, D. PETERSEIM

Algorithm 4 (Online – RB-SLOD Basis computation).

1: B, G ← {}
2: for K ∈ TH do
3: // compute reduced basis approximations
4: for T ∈ TH,N`(K) do

5: compute χrb
T,µ by (4.2)

6: end for
7: // compute and save basis functions
8: compute grb

K,`,µ by (4.12)

9: G ← G ∪ {grb
K,`,µ}

10: obtain ψrb
K,`,µ by (4.9) with coefficients from (4.10)

11: B ← B ∪ {ψrb
K,`,µ}

12: end for

sides in G, namely we compute coefficients (cK)K∈TH such that

(4.13) ΠHf =
∑

K∈TH

cKg
rb
K,`,µ,

cf. Algorithm 5. Then, following the collocation approach, we define the RB-SLOD solu-
tion as the linear combination of the basis functions in B with exactly these coefficients,
i.e.,

(4.14) urb
H,`,µ :=

∑

K∈TH

cKψ
rb
K,`,µ.

In Algorithm 5, we denote by G ∈ R#TH×#TH the matrix which has the (TH -piecewise
constants) functions in G as its columns, and by f the load vector having the element
values of ΠHf as its entries. Note that in Algorithm 5, no inner product between basis
functions are computed.

Algorithm 5 (Online – Coarse solve)

1: assemble G from G
2: compute f
3: solve c = G\f
4: compute urb

H,`,µ by (4.14) with coefficients (ci)i=1,...,#TH

Remark 4.3 (Built-in reduced basis approach in the right-hand side). It is noteworthy
that the right-hand side f first appears in Algorithm 5, i.e., the offline phase and the basis
computation are completely independent of f . This feature makes the RB-SLOD method
suitable for applications, where the solution for various right-hand sides is of interest. In
particular, parameter-dependent and possible non-affine right-hand sides do not pose any
further difficulties. In the implementation, the right-hand side parameters only concern
the coarse solve and the actual reduced basis approach is independent of these parameters,
see also Section 3.1 and the numerical example in Section 6.2.
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4.3. Practical implementation. In a practical implementation, we perform a fine-scale
discretization of the infinite dimensional patch problems (4.1), (4.3), (4.6), and (4.7). For
any patch ω = N`(K), we obtain a fine patch mesh Th,ω by uniform refinement of the
coarse patch mesh TH,ω. For discretizing the patch problems, one may employ first order
continuous finite elements on the fine patch mesh.

4.3.1. Practical basis computation. Similar to (4.9), we define the discrete localized basis
function ψrb

h supported on the patch ω, as sum of discretized reduced basis approximations

{χrb
T,µ,h : T ∈ TH,ω} with coefficients being the element values of the function grb

h ∈
P0(TH,ω). Exploiting that the conormal derivative of ψrb

h exists in the L2(∂ω)-sense enables
alternatives choices of the right-hand sides with reduced computational costs.

For example, instead of (4.12), one may minimize the L2(Σ)-norm of the conormal
derivative (aµ∇ψrb

h · ν)|Σ. It is also possible to omit the diffusion tensor in (4.15), i.e., we

minimize the normal derivative (∇ψrb
h · ν)|Σ instead of the conormal derivative. This is

justified since by (2.2), a small norm of the normal derivative implies a small norm of the
conormal derivative. Hence, in the practical implementation, we choose grb

h as the solution
to the following constraint minimization problem

(4.15) grb
h := arg min

p∈P0(TH,ω)

‖Rrb
h p‖2L2(Σ)

‖p‖2
L2(ω)

,

where Rrb
h : P0(TH,ω)→ L2(Σ) denotes the mapping of grb

h to the normal derivative (∇ψrb
h ·

ν)|Σ of the corresponding basis function. Such an approach is for example employed
in [BFP22] for the convection-dominated diffusion problem.

In a practical implementation, instead of (4.12), we solve the equivalent generalized
eigenvalue problem Cx = λDx stated in Remark 3.3 with R replaced by Rrb

h . An ac-
celerated assembly of the matrix C can be achieved by precomputing the following four
dimensional array in the offline phase

(∇χTj ,µm · ν,∇χTi,µl · ν)
L2(Σ)

, l = 1, . . . ,Mi, m = 1, . . . ,Mj , i, j = 1, . . . , J

with Mi and Mj denoting the cardinality of the parameter sets Mrb corresponding to
elements Ti and Tj , respectively and J = #TH,ω. As the mass matrix D is parameter-
independent, it only needs to be assembled once.

4.3.2. Choice of basis. Note that it is neither guaranteed that the minimization prob-
lems (3.18), (4.12), and (4.15) have a unique solution, nor that the right-hand sides in B
form a stable basis of P0(TH) which is necessary for (4.13). In [HP22, App. B], a stable
and efficient algorithm for the selection of the right-hand sides is proposed which can also
be applied in the current setting. Based on the observation that selection issues only oc-
cur for patches close to the boundary, the algorithm conducts a special treatment of such
troubled patches for resolving possible uniqueness and stability issues. For details and a
detailed illustrative description of the algorithm, see [HP22, App. B].

4.3.3. Complexity. Due to the precomputations in the offline phase, no (local or global)
fine-scale solves are needed in the online phase. More specifically, the only fine-scale oper-
ations in the online phase are (i) adding up (local) fine-scale functions in the computation
of the SLOD basis (see Algorithm 4, Line 5 and 10) and (ii) adding up the SLOD basis
functions using the coefficients computed by solving a coarse system (see Algorithm 5,
Line 4).
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Note that, if one is only interested in coarse quantities of the solution, fine-scale oper-
ations can be completely avoided in the online phase. In the offline phase, one can addi-
tionally compute the element averages of the fine-scale functions in Algorithm 3, Line 12.
This can then be used in the online phase for the computing the element averages of the
SLOD basis functions without fine-scale operations. By adding up the element averages
of the SLOD basis functions using the same coefficients as in Algorithm 5, Line 4, one
obtains a TH -piecewise constant approximation of the solution without performing any
fine-scale operations in the online phase.

5. Error analysis

In this section, we derive upper bounds for the RB-SLOD approximation error. As
observed in Section 4.3.2, it is crucial that the right-hand sides in G form a stable ba-
sis of P0(TH). In practice, this condition can be enforced numerically by the algorithm
proposed in [HP22, App. B]. Since, we cannot a priori control the stability of the basis
constructed by this algorithm, we make the following assumption for the error analysis of
the RB-SLOD.

Assumption 5.1 (Riesz stability). The set {grb
K,`,µ : K ∈ TH} is a Riesz basis of P0(TH),

i.e., for all µ ∈ Mtr, there exists Cµ(H, `) > 0 depending polynomially on H, ` such that,
for all (cK)K∈TH ,

C−1
µ (H, `)

∑

K∈TH

c2
K ≤

∥∥∥
∑

K∈TH

cKg
rb
K,`,µ

∥∥∥
2

L2(Ω)
≤ Cµ(H, `)

∑

K∈TH

c2
K .

We obtain the following error estimate.

Theorem 5.2 (Upper bound on the RB-SLOD error). Given the parameter µ ∈Mtr, we
assume that {gK,`,µ : K ∈ TH} is stable in the sense of Assumption 5.1. Let uµ ∈ V and

urb
H,`,µ ∈ Vrb

H,`,µ denote the unique solutions to (2.4) and (4.14), respectively. Then, there

exist C, C ′ > 0 independent of H, `, and µ such that, for all f ∈ Hs(Ω), s ∈ [0, 1],

‖uµ − urb
H,`,µ‖V

≤ C
(
H‖f −ΠHf‖L2(Ω) + C1/2

µ (H, `)`d/2(σµ(H, `) + tol`d/2)‖f‖L2(Ω)

)

≤ C ′
(
H1+s|f |Hs(Ω) + C1/2

µ (H, `)`d/2(σµ(H, `) + tol`d/2)‖f‖L2(Ω)

)
,

(5.1)

with Cµ from Assumption 5.1 and | · |Hs(Ω) denoting the Hs-seminorm.

From (5.1), we can identify the three ingredients that contribute to the overall RB-
SLOD error, namely (i) the approximation of f by the L2-projection onto P0(TH), (ii) the
super-localization error, and (iii) the RB error.

Proof of Theorem 5.2. Let µ ∈Mtr be arbitrary but fixed. We first add and subtract the
function ūµ := A−1

µ ΠHf ∈ VH,µ and apply the triangle inequality to obtain

‖uµ − urb
H,`,µ‖V ≤ ‖uµ − ūµ‖V + ‖urb

H,`,µ − ūµ‖V .
For the first term, one can show using the definition of ūµ, (2.5) and (3.2) that

α‖uµ − ūµ‖V ≤ sup
v∈V

Aµ(uµ − ūµ, v)

‖v‖V
= sup

v∈V

(f −ΠHf, v −ΠHv)L2(Ω)

‖v‖V
≤ π−1H‖f −ΠHf‖L2(Ω).
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For the second term, we define

ϕ̄K,`,µ := A−1
µ grb

K,`,µ

and denote by (cK)K∈TH the coefficients of the expansion of ΠHf in terms of the right-hand
sides grb

K,`,µ. Using the same coefficients, ūµ can be expanded as

ūµ =
∑

K∈TH,ω

cKϕ̄K,`,µ.

Abbreviating e := urb
H,`,µ − ūµ, using (2.5) and the definition of the collocation solu-

tion (4.14), we obtain

α‖e‖2V ≤ Aµ(e, e) =
∑

K∈TH

cKAµ(ψrb
K,`,µ − ϕ̄K,`,µ, e).(5.2)

We consider the summand corresponding to element K ∈ TH separately and denote the
`-th order patch around K by ω := N`(K). We omit the fixed indices K, `, and µ of the
functions ϕ̄K,`,µ and ψrb

K,`,µ and denote by trΣ and tr−1
Σ the trace and inverse trace operators

with respect to Σ = ∂ω\∂Ω, respectively, see (3.7) and (3.12). Defining ψ̄ := A−1
ω,µg

rb,

using (4.11) and e− tr−1 tr e ∈ Vω, we obtain

Aµ(ψrb − ϕ̄, e) = Aµ(ψrb, e)− (grb, e)L2(ω)

= Aω,µ(ψrb, tr−1
Σ trΣe)− (grb, tr−1

Σ trΣe)L2(ω) +Aω,µ(ψrb − ψ̄, e− tr−1
Σ trΣe)

= 〈aµ∇ψrb · ν, trΣe〉X′×X +Aω,µ(ψrb − ψ̄, e− tr−1
Σ trΣe).(5.3)

For the bound of the first term in (5.3), we denote by g ∈ P0(TH,ω) the L2-normalized
SLOD right-hand side (3.18) and define

ψ̃rb :=
∑

T∈TH,ω

g|Tχrb
T,µ, ψ := A−1

ω,µg

with χrb
T,µ defined in (4.2). Using Lemma 3.2, the definition of the conormal deriva-

tive (3.14), the definitions of grb and σµ in (3.20) and (4.12), respectively, as well as (2.5)

and the continuity of tr−1
Σ in (3.12), there holds

‖aµ∇ψrb · ν‖X′ = ‖Rrbgrb‖V,ω ≤ ‖Rrbg ‖V,ω
= sup

w∈X : ‖w‖X=1
|Aµ(ψ̃rb, tr−1

Σ w)− (g, tr−1
Σ w)L2(ω)|

≤ ‖aµ∇ψ · ν‖X′ + sup
w∈X : ‖w‖X=1

|Aµ(ψ̃rb − ψ, tr−1
Σ w)|

≤ σµ(H, `) + β ‖ψ̃rb − ψ‖V,ω.(5.4)

Using that the norm of p in (4.8) can be bounded as follows

‖p‖V,ω = ‖1T ‖V ′,ω ≤ ‖1T ‖L2(ω),

we obtain for the second term in (5.4)

‖ψ̃rb − ψ‖V,ω ≤
∑

T∈TH,ω

|g|T |‖χrb
T,µ − χT,µ‖V,ω ≤ α−1tol

∑

T∈TH,ω

g|T ‖1T ‖L2(ω)

≤ Cpα
−1tol `d/2,

(5.5)
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where Cp > 0 is some constant satisfying #TH,ω ≤ C2
p`
d. In estimate (5.5), we em-

ployed Lemma 4.1, abortion criterion (4.8), the discrete Cauchy–Schwarz inequality and
the normalization ‖g‖L2(ω) = 1.

For the second term in (5.3), we obtain, using the continuity of trΣ and tr−1
Σ in (3.9)

and (3.12), respectively, that

Aω,µ(ψrb − ψ̄, e− tr−1 tr e) ≤ β‖ψrb − ψ̄‖V,ω‖e− tr−1 tr e‖V,ω ≤ 2β‖ψrb − ψ̄‖V,ω‖e‖V,ω.
Here, the first term can be estimated similarly as (5.5) by

‖ψrb − ψ̄‖V,ω ≤ Cpα
−1tol`d/2

using that ‖grb‖L2(ω) = 1.
Finally, combining the above estimates, we are able to continue estimate (5.2). Us-

ing (3.1) and Assumption 5.1, we obtain

α‖e‖2V ≤
∑

K∈TH

cKAµ(ψrb
K,`,µ − ϕ̄K,`,µ, e)

≤ CCol`
d/2
(
σµ(H, `) + Cptolβα

−1`d/2
)√ ∑

K∈TH

c2
K ‖e‖V

≤ CColC
1/2
µ (H, `)`d/2

(
σµ(H, `) + Cptolβα

−1`d/2
)
‖f‖L2(Ω) ‖e‖V ,

where Col > 0 reflects the overlap of the patches N`(K) and C > 0 is a generic constant
independent of the discretization parameters. The assertion follows immediately. �

Remark 5.3 (Choice of parameters). This remark investigates the choices of the oversam-
pling parameter ` and the minimal number of elements M in the sets Mrb required for
achieving an error of order H in (5.1). By the super-exponential decay of the quantity σµ
as stated in Conjecture 3.4, we need to choose ` of order | logH|(d−1)/d. For the choice of
M , let us recall from Remark 4.2 that the greedy search error (4.8) and, in particular, the
achievable tolerance tol, decay (sub-) exponentially in M . Denoting the exponent of M

by γ > 0, we need to choose M of order | log `H|1/γ .

6. Numerical experiments

For the numerical experiments, we consider the domain Ω = (0, 1)2 equipped with a
coarse Cartesian mesh TH . Note that H henceforth denotes the side-length of the mesh
elements instead of their diameter. For any patch ω = N`(K), we discretize the corre-
sponding local patch problems using the Q1-finite element method on the fine Cartesian
meshes Th,ω obtained by uniform refinement of the coarse patch mesh TH,ω. In the sub-
sequent numerical experiments, we employ the version of the RB-SLOD as described
in Section 4.3.1.

6.1. Model diffusion problem. The first numerical experiment is taken from [AH15,
Sec. 4.1] and considers a pure diffusion problem with homogeneous Dirichlet boundary con-
ditions. Its anisotropic multiscale diffusion tensor exhibits oscillations on various scales,
the smallest being at the scale 2−6 (see the reference for the exact definition of the coeffi-
cient). The problem’s bilinear form admits an affine decomposition as in (2.6) with Q = 4
terms. The parameter space is the one-dimensional interval M = [0, 5] and, as training
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set Mtr, we use 100 equidistantly distributed points. For the fine-scale discretization of
the patch problems, we use the mesh size h = 2−8.

For demonstrating the decay of the training error in the greedy search algorithm, we
fix a patch ω = N`(K) in the interior of Ω along with an element T ⊂ ω. Recalling that
the error estimator ∆µ defined in (4.4) depends on the number of elements M inMrb, we
define

(6.1) trerr(M) :=
maxµ∈Mtr ∆µ(M)

‖p‖V,ω
,

which is the achievable tolerance of the greedy search algorithm (p is defined in (4.7)).
Figure 6.1 shows the decay of the training error for several pairs of H and ` as M is
increased. In particular, we can observe a (sub-)exponential decay of the training error in
M confirming Remark 4.2. The discretization parameters H and ` have a small impact on
the training error. Note that the qualitative decay behavior and the order of magnitude of
the training errors are similar for all patches. Thus, given the discretization parameters H
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Figure 6.1. Decay of training error in greedy search algorithm for fixed
patch ω and element T .

and ` and a tolerance tol, one can read off the approximate size of the setsMrb necessary
for reaching the desired tolerance from Figure 6.1.

Next, we consider the constant right-hand side f ≡ 1 ∈ P0(TH). Note that, for such
right-hand sides, only the localization error and the RB error is present, i.e., the first
term in (5.1) vanishes. We compute the RB-SLOD solution for µ ≈ 2.129, which is not
contained in the training set Mtr. In order to highlighting that fine-scale discretizations
of the patch problems (4.1), (4.3), (4.6), and (4.7) are involved, we henceforth denote the
RB-SLOD solution by urb

H,`,µ,h. We compute the relative errors in the V-norm with respect
to the Q1-finite element reference solution uµ,h on the global Cartesian mesh of mesh size
h = 2−8. As comparison, we also depicted the respective errors for the SLOD. Figure 6.2
shows that the error curve of the RB-SLOD approaches the error curve of the SLOD as
tol is decreased. In the left plot, the error of the SLOD is reached for the value of the
tolerance in greedy search tol = 10−6, whereas in the right plot, an even smaller tolerance
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Figure 6.2. Relative errors of the RB-SLOD and SLOD for various toler-
ances of the greedy search versus the oversampling parameter ` for H = 2−3

(left) and H = 2−4 (right).

would have been necessary. The error curve of the SLOD decays quadratic-exponentially
(note that the quadratic scaling of the x-axis lets a quadratic-exponentially decaying curve
appear linear), which is in line with the original results from [HP22] and in agreement with
Conjecture 3.4.

For confirming the method’s optimal order of convergence in the mesh size H, as stated
in Theorem 5.2, we pick the right-hand side

(6.2) f(x1, x2) = sin(x1) sin(x2).

Note that for both right-hand sides, one can use the same reduced basis spaces and only the
cheap coarse solve in Algorithm 5 needs to be repeated, see Remark 4.3. Figure 6.3 shows
the relative errors of the RB-SLOD and the SLOD as a function of H. As reference, also
a line of slope two is depicted which is the expected order of convergence, cf. Theorem 5.2
(recall that f ∈ H1(Ω)). For sufficiently large oversampling parameters `, the expected
second order convergence is clearly visible. Again, it can be observed that the RB-SLOD
error curve approaches the SLOD error curve as tol is decreased.

Note that a direct comparison of the proposed method to the RB-LOD from [AH15]
is difficult. More specifically, for the only considered right-hand side f ≡ 1 in [AH15],
the SLOD is unbeatable, as only the localization error and the RB error are present. In
comparison, for the RB-LOD, due to a different construction of the ansatz space, also
the spatial approximation error is present. Hence, it seems reasonable to compare the
magnitude of the errors of the RB-SLOD for the sinusoidal right-hand side (6.2) with the
one of the RB-LOD for the constant right-hand side. It can be observed, that for the same
magnitude of errors, the proposed method requires much smaller oversampling parameters
than the RB-LOD. For example, given H = 2−4, both methods achieve a relative V-norm
error of order 10−2 with ` = 2 for the RB-SLOD (2.038×10−2) and ` = 4 for the RB-LOD
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Figure 6.3. Relative V-norm error for the RB-SLOD and SLOD in de-
pendence of H for several pairs of discretization parameters ` and tol.

(2.834 × 19−2, cf. [AH15, Tbl. 1]). This allows for a sparser coarse system of equations
and a more localized computation of the basis functions.

6.2. Parameterized mass transfer with parameterized source. As second numer-
ical experiment, we consider the example from [QMN15, Ch. 8.4]. It is a reaction-
convection-diffusion problem, where the magnitude of the diffusion coefficient, the direc-
tion of the advection, and a Gaussian source term are modeled using a five-dimensional pa-
rameter vector µ ∈ R5 with components µ1 ∈ [0.01, 0.1], µ2 ∈ [0, 2π), µ3, µ4,∈ [0.25, 0.75],
and µ5 ∈ [0.1, 0.25]. More precisely, in strong form, the equation reads

−µ1∆u− bµ · ∇u+ u = fµ in Ω := (0, 1)2,

µ1∇u · ν = 0 on ∂Ω,

with

bµ = (cos(µ2), sin(µ2))T ,

and

fµ(x1, x2) = exp
(
− (x1 − µ3)2 + (x2 − µ4)2

µ2
5

)
.

This problem is challenging due to several reasons. First, the problem’s nature is
strongly dependent on the magnitude of diffusion µ1, i.e., the proposed reduced basis
method must be able to deal with both the diffusion and convection-dominated regime at
the same time. Second, the parameter space is relatively high-dimensional which makes RB
methods typically quite expensive. Third, the chosen source term does not admit an affine
decomposition. This prevents the straightforward application of standard RB approaches
and, typically, further tools (like the empirical interpolation method [BMNP04]) need to
be employed, causing extra computational costs.

For such numerical examples, the RB-SLOD has the decisive advantage that it has
a built-in RB approach in the right-hand side. More specifically, the right-hand side
parameters are only important for the coarse solve in Algorithm 5 and can be ignored in
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the actual reduced basis approach, see Section 3.1 and Remark 4.3. In addition, as the
considered coefficients are constant in space and in particular periodic with respect to TH ,
only O(`d) patches need to be considered for the computations and one can deal with
the remaining patches by translation, see [HP22, Rem. B.1]. This drastically reduces the
computational costs.

In the implementation, we use a training set Mtr of 400 points on a Cartesian grid
of the two dimensional parameter set M = [0.01, 0.1] × [0, 2π], where we ignore the pa-
rameters stemming for the right-hand side. For the fine-scale discretization of the patch
problems, we use the mesh size h = 2−8. We again start by demonstrating the decay of the
training error (6.1) as the size M of the set Mrb is increased, see Figure 6.4. Compared
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Figure 6.4. Decay of training error in greedy search algorithm for fixed
patch ω and element T .

to Figure 6.1, the magnitude of training errors is significantly larger which is due to the
more complicated nature of the underlying problem. Here, the magnitude of the error
depends on the choice of H and ` in the sense that for patches with a large diameter, also
the training error is large.

Next, we consider a coarse mesh with mesh size H = 2−4 and the oversampling param-
eter ` = 2. For this choice of discretization parameters, the largest patches make up at
most 10% of the whole domain’s volume and the maximal number of elements in the sets
Mrb is 34. In Figure 6.5, we depict one RB-SLOD basis function and the corresponding
right-hand side for three different parameter values of µ1 and µ2. Note that the basis
functions are independent of µ3, µ4, and µ5. Figure 6.6 depicts the RB-SLOD solution
and the absolute value of the error with respect to the reference solution uh,µ for the same
parameter pairs as in Figure 6.5 and some random choices of the parameters µ3, µ4, and
µ5. Note that all plots in the same row have the same color scale. From left to right, the
relative errors in the V-norm are 5.62× 10−2, 4.53× 10−2, and 6.29× 10−2. For this nu-
merical experiment, a direct comparison to [QMN15, Ch. 8.4] is again difficult. Therein,
in the numerical experiments, the parameters µ1 and µ5 are fixed which simplifies the
resulting problem. In particular, the nature of the problem does no longer depend on the
choice of parameters (diffusion µ1 is fixed). In addition, the proposed method is able to
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µ1 ≈ 0.048, µ2 ≈ 5.118 µ1 ≈ 0.090, µ2 ≈ 5.391 µ1 ≈ 0.027, µ2 ≈ 2.046

Figure 6.5. Depiction of RB-SLOD basis functions (top) and the corre-
sponding right-hand sides (bottom) for three different parameter pairs (left
to right).

avoid the extra difficulties with non-affine right-hand sides f which classical reduced basis
approaches have.

7. Conclusion and outlook

We have presented a novel method for the efficient approximate solution of parametric
and strongly heterogeneous reaction-convection-diffusion problem. It combines the main
principles of RB and SLOD: the RB is used for accelerating the typically costly SLOD basis
computation, while the SLOD is employed for an efficient compression of the problem’s
solution operator requiring coarse solves only. Numerical experiments have confirmed the
superiority of the proposed method, when compared to other state-of-the art techniques,
like the RB-LOD. The super-localization properties of the SLOD allow one to perform the
local computations on significantly smaller patches (for the same accuracy) reducing the
computational costs considerably. Further, the more local support of the basis functions
implies enhanced sparsity properties of the coarse system matrix. Given a value of the
parameter vector, the method outputs a corresponding compressed solution operator which
can be used for the efficient treatment of multiple, possibly non-affine, right-hand sides,
only requiring one coarse solve per right-hand side.

A natural follow up of the present work concerns the study of wave propagation and
scattering problems in highly heterogeneous media. For such target, the SLOD has been
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µ1 ≈ 0.048, µ2 ≈ 5.118,
µ3 ≈ 0.512, µ4 ≈ 0.703,

µ5 ≈ 0.140

µ1 ≈ 0.090, µ2 ≈ 5.391,
µ3 ≈ 0.293, µ4 ≈ 0.286,

µ5 ≈ 0.130

µ1 ≈ 0.027, µ2 ≈ 2.046,
µ3 ≈ 0.608, µ4 ≈ 0.703,

µ5 ≈ 0.136

Figure 6.6. Depiction of RB-SLOD solutions (top) and the absolute value
of the error (bottom) for three different parameter pairs (left to right).

developed in [FHP21] and model order reduction techniques for the frequency response
map are studied in [BNP18, BNPP20a, BNPP20b, BP21, BPR21]. Moreover, the possible
application of the SLOD to improve numerical stochastic homogenization methods [GP19,
FGP21, FP20] will be object of future investigation.
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