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Summary

Class imbalance is a common issue in many domain applications of learning algo-
rithms. Oftentimes, in the same domains it is muchmore relevant to correctly classify
and profile minority class observations. This need can be addressed by Feature Selec-
tion (FS), that offers several further advantages, s.a. decreasing computational costs,
aiding inference and interpretability. However, traditional FS techniquesmay become
sub-optimal in the presence of strongly imbalanced data. To achieve FS advantages
in this setting, we propose a filtering FS algorithm ranking feature importance on
the basis of the Reconstruction Error of a Deep Sparse AutoEncoders Ensemble
(DSAEE). We use each DSAE trained only on majority class to reconstruct both
classes. From the analysis of the aggregated Reconstruction Error, we determine the
features where the minority class presents a different distribution of values w.r.t.
the overrepresented one, thus identifying the most relevant features to discriminate
between the two. We empirically demonstrate the efficacy of our algorithm in sev-
eral experiments, both simulated and on high-dimensional datasets of varying sample
size, showcasing its capability to select relevant and generalizable features to pro-
file and classify minority class, outperforming other benchmark FS methods. We
also briefly present a real application in radiogenomics, where the methodology was
applied successfully.
KEYWORDS:
Feature Selection, Imbalanced Data, AutoEncoder, Minority Class Profiling, Ensemble Methods

1 INTRODUCTION

A well-known problem of many real life applications of statistical models and machine learning algorithms is class imbalance
[5]. Examples can be found in many sensitive domains such as medicine [37], especially in case of rare disease classification
tasks [22], fraud detection [46], fault detection [54], cyber security [49] and many others [2]. All these domains share the same
peculiarity: the importance of correctly identifying and profiling the minority class. In these contexts, a false negative is usually
much more expensive than a false positive. A straightforward example comes from the medical field, where a missed diagnosis
in many cases is extremely risky for the patient’s health and costly for the healthcare system [4, 43].

0Abbreviations:DSAEE, deep sparse autoencoder ensemble; FS, feature selection; AE, autoencoder; DSAE, deep sparse autoencoder; RE, reconstruction error; ML,
machine learning; FSDS, feature selection dataset; CDS, classification dataset; LR, logistic regression; DT, decision tree; SVM, support vector machine; NB, naive bayes;
NN nearest neighbor; AUROC, area under the roc curve; RFE, random feature elimination; LT, late toxicity
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Moreover, on top of precise classification of minority class observations, domain experts are oftentimes interested in under-
standing which specific features (i.e. characteristics of their patients, or customers, etc.) should be kept under control or to
investigate to drive decisions or invest in future research. The importance of identyfying the discriminant characteristics of
the minority class is particularly evident in the clinical field, where an inaccurate feature selection can lead to an inaccurate
diagnosis [25]. This observation holds for Genome Wide Association Studies for precision medicine [24], where the clinical
interest lies on detecting the traits that are associated to a specific disease [6]. Answering to this question, rather than merely
classifying observations, gets harder as the number of features and the non-linearity of their interrelationships rises, driving
growth in models’ complexity. One way of addressing this need is through Feature Selection (FS) techniques.

In general, FS helps in identifying highly influential features that provide intrinsic information and discriminant property for
class separability, while decreasing computational costs, aiding inference and giving better understanding on model representa-
tion [17, 45]. However, it has been argued that traditional FS techniques become sub-optimal or even prejudicial to classification
effectiveness when the classes are strongly imbalanced [48, 53]. In [48], the authors demonstrate through a simulation study
how the overlapping of the classes’ distributions after feature selection increases because of the strong bias towards the majority
class, hindering classification performance. Therefore, to achieve the advantages granted by FS, a method tailored to address
imbalanced settings without affecting classification accuracy is desirable.
Indeed, we argue that a FS robust to class imbalance can address both needs for accurate classification of the underrepresented
class and for the identification of the specific pieces of information that are the most relevant for its identification. In other
words, by selecting the most informative features to discriminate between classes, such a FS method can serve as a useful
tool for the task of minority class profiling. In Section 5.5 we will briefly describe a real case study where the methodology
presented in this work successfully played this role in a complex research setting. Nonetheless, although FS for imbalanced
classification is recently gaining momentum, the number of reported works on the subject is still limited [2]. Few contributions
dealt with this multi-faceted problem [22].

For these reasons, in this work we focused on developing a novel FS method tailored to identify relevant features to discriminate
the minority from the majority class in strongly imbalanced binary classification settings. In order to accomplish this task, in
this paper we propose a filtering algorithm that ranks feature importance on the basis of a Deep Sparse AutoEncoders Ensemble
(DSAEE).

From a methodological standpoint, the value provided by our proposal comes from the combination of two aspects: on the one
hand, the choice of a particular type of AutoEncoder (AE) [23] as underlying model, on the other, the inclusion of this model
within an ensemble algorithm.
Indeed, AEs are Neural Network (NN) models capable of flexibly capturing non-linear relationships among features [21].
These models have been exploited as feature selectors but, to the best of our knowledge, never tailored to class imbalance
(cfr. Section 2.2). Here we claim they can be effectively exploited as feature selectors specifically for an imbalanced setting if
we consider the duality between imbalanced minority class classification and outlier detection. Indeed, as the minority class
is rare w.r.t. the majority one, its observations might be considered outliers w.r.t. the normal population (inliers) constituted
by the overrepresented class. AEs were previously recognized as powerful reconstruction-based outlier detection methods
[10, 12, 27, 34, 40, 42] that rely on scoring outliers by aggregating the Reconstruction Error (RE) for each observation. In this
work, we propose to repurpose this reconstruction-based outlier detection approach to solve the problem of feature selection in
imbalanced settings instead. Indeed, we apply an AE trained only on majority class observations to reconstruct both majority
and minority classes: from the aggregation of the REs for each feature within each class, we determine which features are
associated to the highest differences between the REs of the minority class w.r.t. the majority class - thus identifying the most
relevant features to discriminate between the two classes.
However, there exists the risk that a single AE fails in capturing the correlations among features, especially in high dimensional
settings [12], and a natural variance in results that might depend on the data, the design of the model and the local search for
parameters typical of many Machine Learning (ML) methods. By using an ensemble approach, as the one proposed in this
work, and taking a central estimator of the RE, like the mean or the median, this variance is reduced [10, 14]. Nevertheless,
in order to make ensemble learning methods work, the individual ensemble components must be adequately diverse [10, 42].
This is achieved in our proposition by designing the algorithm s.t. each ensemble component can capture different aspects of
the underliyng majority class distribution. In particular, the novelty of our approach resides in fostering this diversity among
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components through (i) a sampling procedure tailored for imbalanced settings that builds different training and test sets to
supply to each learner, and (ii) a sparsity constraint imposed on the models.

In light of the above, the contributions of this work are multiple. We enlarge the limited literature on FS tailored to deal with the
daunting real-life issue of class imbalance. We do that by presenting an algorithm that repurposes the power of AEs as outlier
detectors for reconstruction-based minority class-specific feature selection, which is a novelty for AE-based feature selectors
in general. Finally, we robustify the selection thanks to its ensemble approach, designed to foster diversity of components and
accuracy on minority class.

The remainder of the paper is organized as follows. In Section 2 we discuss some related works, strenghtening our positioning
w.r.t. other approaches; in Section 3 we provide some background on DSAEs, then we describe and discuss the proposed
DSAEE algorithm in detail. In Section 4 we describe a simulation study on synthetically generated data, devoted to prove the
concepts underlying our proposed approach, while in Section 5 we detail a series of experiments on several benchmark datasets
of varying sample size and dimensionality: firstly we validate the good performance of the selected feature subset despite
the dimensionality reduction (Section 5.2), then, we compare our proposed methodology with other state-of-the-art and more
traditional FS methods (Section 5.3). Additionally, we display some visualizations of the selected features to demonstrate their
meaningfulness in discriminating minority from majority class (Section 5.4) and finally we briefly describe an application on
real clinical data (Section 5.5). In Section 6 we highlight some relevant considerations on the proposed approach, and conclude
with some final remarks and possible extensions.

2 RELATEDWORKS

As stated in the introduction, we aim at presenting a novel FS method tailored to tackle class imbalance. Indeed, the method is
designed to select a subset of informative features to reduce the impact of the strong imbalance between minority and majority
classes on the classification performance. To frame the position of our proposal from a methodological point of view, in this
section we will first describe other works that developed methods to this aim. Then, as we are exploiting AEs as building blocks
of our ensemble method for FS, we will report on studies that utilized these models for this task, irrespective of the classes’
distribution.

2.1 Feature Selection for Imbalanced Data
In general, there are three approaches to apply FS algorithms in classification: wrapper, embedded and filter methods [51].
Wrapper methods [31] make the FS revolve around the optimization of the performance of a predetermined classifier: the feature
subset that maximises the defined performance metric is selected. In an imbalanced setting, the choice of the optimization metric
is crucial. Indeed, among the available examples in the literature, some exploited the area under the ROC curve as a metric
to select the best mix of features [11], others the F-measure [2, 33, 51], while in [35] they exploit, among others, a balanced
loss function which takes the weighted average of false positives and false negatives. Despite their optimal results in terms of
classification accuracy, wrapper methods are generally computationally expensive, and there is no guarantee of reaching a global
optimum.
Embedded methods [28] overcome this issue by determining the feature subset autonomously during classifier learning, by
including for instance a regularization term in the loss function [38]. However, to the best of our knowledge, no embedded
method has been designed specifically to tackle class imbalance. An hybrid embedded and wrapper approach is instead proposed
in [32]. Nonetheless, all the aforementioned methods are strictly bounded to a specific classifier.
Filter methods [41] are pre-processing algorithms that measure the usefulness of the feature subset for classification by working
on the original data without involving any classifier. They usually rank features’ importance on the basis of suitable metrics,
some specifically tailored for imbalanced classification problems [13, 48, 53]. Our proposal belongs to this classifier-agnostic
type of algorithms.
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2.2 AutoEncoder-based Feature Selection
Wewill now provide a brief overview of how AutoEncoders (AEs) were employed as feature selectors in the available literature.
As mentioned, AEs [23] are a particular class of NNs widely used for learning of data representations [7], dimensionality
reduction [23] and outlier/anomaly detection [1, 10, 12, 27, 34, 40, 42]. This powerful representation learning method has been
recently exploited for reconstruction-based feature selection as well. For instance, in [9] AEs are exploited as an unsupervised
feature selection method, masking input features and using the Reconstruction Error (RE) of masked input features to compute
feature weights in a moving average manner. In [21] the authors combine AE regression and a weight penalization on the
input layer: feature importance is then derived from the value of the weights associated to each feature. Another sparsity-based
unsupervised approach can be found in [16] and [50]. Finally, in the most recent work in [8], the authors propose the Concrete
AutoEncoder Feature Selector (CAEFS), that exploits the Concrete distribution to differentiate through the reconstruction loss
and selects input features to minimize it.
All these approaches share an unsupervised setting and have demonstrated their potential as feature selectors against other state
of the art techniques. Nonetheless, they all train one AE model only, incurring in the risks discussed in Section 1. Moreover,
they all are FS methods designed for balanced classification. This balanced selection of features was argued potentially harmful
in strongly imbalanced settings [48, 53]. What distinguishes our DSAEE from the available examples of AE-based feature
selectors, is the ensemble approach to the problem - where each of the AE is one of a set of weak learners - and the tailoring of
each model’s training procedure inspired by outlier detection methods, to approach specifically imbalanced datasets.

3 DSAE ENSEMBLE (DSAEE) FOR MINORITY CLASS FEATURE SELECTION

In Section 3.2 we provide some background on the DSAE components and we detail the regularization we impose on the models
to foster the diversity among each component. In Section 3.3 we detail how the proposed algorithm encapsulates each component
into a tailored training procedure to identify the most relevant features to discriminate minority class in imbalanced settings.

3.1 Problem Statement
3.2 Background: AutoEncoders and Deep Sparse AutoEncoders
An AE [23] is a NN trained to attempt to copy its input to its output. Let the matrixX ∈ IRN×J be the input data,X = {x1, ..., xN}
set ofN training vectors i (i ∈ {1, ..., N}), characterized by J features. The shallow version of an AE is constituted by an input
layer with J nodes, a hidden layer with H (with H usually smaller than J ) nodes that describes a code used to represent the
input, and an output layer of size J . The network can be seen as constituted by two parts: an encoder and a decoder. The encoder
function hi = f (Wxi+b), encodes each input vector xi into an encoded version of itself of sizeH . Here f is usually non-linear
and is referred to as activation function, W ∈ IRH×J is called weight matrix and b is aH-dimensional bias vector. The decoder
maps back the encoded vector to the J -dimensional space inmost cases using a squashing non-linear function x̂i = g(W′hi + b′),
with parametersW′ ∈ IRJ×H and b′ ∈ IRJ. The model is trained through gradient descent of the loss function L(x, x̂); where
L is typically the Mean Squared Reconstruction Error (MSRE), i.e. the mean squared Euclidean distance between the input
values and the reconstructed values for each observation. Each training observation xi is thus mapped to a corresponding hi
which is then mapped to a reconstruction x̂i s.t. x̂i ≈ xi. In general, we can define an AE as a map �(xi) ∶ IRJ → IRJ, such that
�(xi) = g(W′f (Wxi + b) + b′) and the optimal representation of xi, x̂i, is given by:

�̂(xi) = argmin
�

||xi − �(xi)||2 = argmin
�

J
∑

j=1
(xij − �(xij))2.

To expand the shallow network to a deep version, the formulation is similar, with the output of one layer being the input of
the following layer. In this case, the map � will be the results of multiple compositions.
Usually, AEs are built with constraints that force them not only to replicate the input, but to learn effective representations of
such input in the hidden layer. One way to obtain useful representations from the autoencoer is to introduce sparsity in the
code layer (Sparse AutoEncoders - SAE) by imposing a regularization term in the loss function. In order to do that, the model
includes a sparsity penalty Ω(h) on the hidden layer (or the most internal layer in case of deep architectures) h, additionally to
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FIGURE 1 Training and FS of DSAEE algorithm. Panel (a) is a schema of the sampling procedure, repeated for each ensemble
component. Blue and red dots represent majority and minority class’ observations respectively. Panel (b) represents the steps
of the algorithm from the concatenated Q matrix of RE to the feature selection. Blue bars represent average RE by feature for
majority class observations, while red bars represent average RE on minority class. Finally, panel (c) reports the pseudo-code
of the whole DSAEE algorithm.

the reconstruction error:
Li = L(xi, x̂i) + Ω(hi).

The regularization can take various forms. In a deep architecture (Deep Sparse AutoEncoder - DSAE), let us consider h(l)ias the activation of the most internal hidden layer (l) for the i-th observation vector xi, i.e. the value of the function h(l)i =
f (l)(W(l)h(l−1)i + b(l)). One way of obtaining a sparse representation is to add a penalty term that penalizes the L1 norm of the
vector h(l)i for each observation i, controlled by a parameter �, i.e.

Li = L(xi, x̂i) + �|h
(l)
i |. (1)

The parameter � can be optimized through grid search or can be arbitrarily chosen in the design phase of the model.
This penalization term forces the model to activate the minimum number of hidden nodes to reconstruct the input. Paired with
the input sampling described below, it increases the diversity among each learner in the ensemble. Moreover, it reduces the need
for tailored choices or expensive optimization to define the proper architecture.

3.3 The Ensemble Algorithm
Let us consider the binary supervised learning setup with a training set of N (input, target) pairs D = {(x1, y1), ..., (xN , yN )} ,
where yi is the target that takes values is {0, 1} and X ∈ IRN×J is the input matrix. We consider the supervised learning to be
imbalanced, thus the number of observations in the minority class (O = {xi|yi = 1}) is relevantly smaller than the number of
observations in the majority class (M = {xi|yi = 0}). We assume that our observations xi are the realizations of two random
vectors. Specifically, the observations from the minority class are the realizations of Xi|Yi = 1 ∼ 1, while the ones from
the majority class are the realizations of Xi|Yi = 0 ∼ 0. 0 and 1 are two unknown conditional multivariate probability
distributions in IRJ. The idea behind this project is that it is possible to distinguish between 0 and 1 thanks to a determined
set of features F, with |F | < J (from now on the notation | ⋅ | will represent the cardinality of a set) and our final objective
consists in identifying this set F.
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With the intention of building an ensemble of B different learners from which to aggregate information to rank features,
we first develop a tailored sampling procedure, inspired by the outlier detection approaches, to train each learner on a different
sample of data selected with the rationale detailed in the following, and schematized in Figure 1 (a).
In particular, we define XO ∈ IR|O|×J as the features related to the minority class and XM ∈ IR|M|×J as the ones associated to the
majority class. From XO and XM and the respective outcomes yO, and yM we generate a training set Xb

train and a test set Xb
test,where b ∈ {1,… , B}. Each test set contains P = 2|O| data points, including all the minority class observations, and an equal

number of majority ones randomly drawn from M . The training set is instead composed by the majority class data excluded
from the test set.
This structure of the two datasets allows us to train each DSAE learner in an unsupervised fashion only on the overrepresented
population, and to test their performance when facing both majority and minority class examples, so that we can compare the
RE made on the two populations. The rationale behind this sampling procedure is based on the fact that DSAEs trained to
reconstruct normal observations only (i.e. the majority class) will make higher RE when tested on outlier observations (i.e.
minority class examples) never experienced during training. Following the notation in Section 3.2 and considering the different
generating mechanisms behind the minority and majority populations, we expect that the optimal representations of Xi|Yi = 0
and Xi|Yi = 1 are different and we define them as �̂0(⋅) and �̂1(⋅), respectively. Training the DSAE on Xb

train by minimizing
the loss function formulated in (1) leads to the estimate of �̂0(Xb

train|Y
b
train = 0). This representation is optimal, since we are

sampling all units from the majority class. This consideration does not hold for the test set Xb
test. Indeed, �̂0(⋅) is the optimal

representation only for half of the data point, while it is suboptimal for those data points selected from the minority class. By
definition, if a data point i belongs to the minority class, then Equation 2 holds, while if a data point r belongs to the majority
class, then Equation 3 holds.

||(Xb
test,i|Y

b
test,i = 1) − �̂0(X

b
test,i|Y

b
test,i = 1)||

2 ≥ ||(Xb
test,i|Y

b
test,i = 1) − �̂1(X

b
test,i|Y

b
test,i = 1)||

2 (2)

||(Xb
test,r|Y

b
test,r = 0) − �̂0(X

b
test,r|Y

b
test,r = 0)||

2 ≤ ||(Xb
test,r|Y

b
test,r = 0) − �̂1(X

b
test,r|Y

b
test,r = 0)||

2 (3)
Furthermore, we expect that for the two generic data points i and r defined above Equation 4 is satisfied.

J
∑

j=1
( (Xb

test,ij|Y
b
test,i = 1) − �̂0(X

b
test,ij|Y

b
test,i = 1))

2 ≥
J
∑

j=1
((Xb

test,rj|Y
b
test,r = 0) − �̂0(X

b
test,rj|Y

b
test,r = 0) )

2 (4)
The most discriminating set of features, F, between the majority and the minority classes are the ones that contribute the most

to the RE difference (elements in the sum reported in Equation 5).
J
∑

j=1
( (Xb

test,ij|Y
b
test,i = 1) − �̂0(X

b
test,ij|Y

b
test,i = 1))

2 − ((Xb
test,rj|Y

b
test,r = 0) − �̂0(X

b
test,rj|Y

b
test,r = 0) )

2 (5)
To get a robust ranking procedure, we extend this reasoning from a simple comparison between the REs associated with two

data points towards all the RE evaluated on the B test sets. The REs evaluated for a specific feature j for a specific data point p
of the b-th test set, lbp, is defined in Equation 6:

lbp = {( (X
b
test,pj|Y

b
test,pj) − �̂0(X

b
test,pj|Y

b
test,pj) )

2}Jj=1. (6)
The REmade on the whole test set b are collected in the REmatrixRb ∈ IRP×J, whose p-th row is given by lbp and p ∈ {1,… , P =
2|O|}.
Then we concatenate by rows the B matrices Rb, building the final RE matrix Q = {Rb}Bb=1 ∈ IRPB×J, where PB is the total
number of tested observations and J is the number of features. For a schema of the algorithm described in the following, refer
to Figure 1 (b).
In order to select the most representative features to discriminate between minority and majority class, we subdivide the rows
ofQ in two matrices: one composed by minority class RE (see Equation 7) and the other by majority class RE (see Equation 8).

Qmin = {( (Xtest,pj|Ytest,pj = 1) − �̂0(Xtest,pj|Ytest,pj = 1) )2}
j={1,..,J}
p={1,..,T }. (7)

Qmaj = {( (Xtest,pj|Ytest,pj = 0) − �̂0(Xtest,pj|Ytest,pj = 0) )2}
j={1,..,J}
p={1,..,T }. (8)
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According to the model design, both Qmaj and Qmin belong to IRT×J, where T = |O|B is the number of both minority and
majority class examples, after splitting Q in two. . From these matrices we can estimate the vectors of average RE per feature j
per class: lmin and lmaj , both belonging to IRJ, where each element is computed as

lj,min =
1
T

T
∑

t=1
Qtj,min, (9)

lj,maj =
1
T

T
∑

t=1
Qtj,maj , (10)

Once we have computed the class specific average REs per feature, we can proceed to the feature selection by studying how
the RE of each feature varies between classes. We can accomplish this goal by extending the concept expressed in Equation 5
to Equation 11, where we evaluate � as the J-elements vector resulting from the difference of the average RE on the minority
class, lmin, and the one on the majority class, lmaj .

� = lmin − lmaj . (11)
Finally, we are able to identify the set of discriminating features F, by ranking the elements of �. Indeed, higher values ofΔj are
associated to those features that have been reconstructed more accurately by the DSAE on the majority class (low RE), but are
not reconstructed accurately on the minority class (high RE). Furthermore, it is impossible that we incur in a degenerate case,
such as all RE equal to 0, because of the bottleneck and the sparsity constraint imposed in each DSAE.
To identify an exact set F we need to define a threshold � ∈ (0, 1), as it is often required in FS ranking method. Specifically, Δ�
is the �-th quantile evaluated on the distribution of {Δj}Jj=1. We therefore select all those features j whose average RE difference
is above the pre-defined threshold:

F = {j|Δj > Δ� , j ∈ {1, .., J}}. (12)
From the original dataset X we can extract a subset of features whose size can be tuned according to the problem at hand to

either analyze per se or feed to any classifier.
There is an inverse relation between � and the number of selected features: the higher the �, the lower the number of selected
features.
Algorithm 1 in Figure 1 (c) reports the pseudo-code of the whole FS procedure.

3.4 Computational Complexity
Each DSAEE component has a complexity O(nwe) dependent on n (the number of observations in the data matrix), w (the
number of weigths in the network) and e (the number of epochs, or iterations in the training).
The complexity of the training of an Ensemble of DSAEs becomes ∼ O(Bnwe), growing linearly with the number of B trained
models. Both the number ofB employed components and the architectural choices impactingw and e can be optimized to reduce
training time and improve results as well. Moreover, the ensemble training can be easily parallelized, thus significantly cutting
training time.

4 SIMULATION STUDY

In order to verify the hypothesis underlying our approach we run an extensive simulation study. In particular we were interested
in verifying (i) the capability of the DSAEE to induce and capture two significantly separated distributions of average RE for
majority and minority classes and (ii) the consequent usefulness of � distribution to select relevant features to separate the
two. Additionally, we aimed at testing (iii) the relevance of the sparsity constraint in determining the separation between the
aforementioned distributions and finally (iv) the robustness of this approach to the complexity of the task, both in terms of class
separability and class imbalance.
In this section we will first describe the defined simulation setting and then detail the results of the experiments we run for the
validation of the aforementioned aspects.
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4.1 Experimental Setting
Simulated Data
To validate the assumptions underlying the DSAEE approach to feature selection, while justifying the application of a complex
non-linear model (i.e. the AE components) to the task, we needed a generative model for our simulated data that reproduced
complex multi-dimensional relationships among features. To this aim, we relied on the generative principles designed by Guyon
et al. [19] to generate simulated data in NIPS2003 Feature Selection Challenge, adapted and implemented within Python scikit-
learn library1. Specific details on the generative process can be found in [19] and in Appendix A.1.
In a nutshell, the data generating algorithm allows to define a number of informative features (JI = |FInf |) and an hyparameter s,
hereby defined as class separation, defining how far apart the classes lie in the multidimensional space they live in. In particular,
for each class, JI features are drawn independently fromN(0, 1) and then randomly linearly combined within each class to add
covariance. The clusters are then placed on the vertices of a JI -dimensional hypercube, with sides of length proportional to
s. Additionally, further sets of features can be defined to increase the complexity of the FS task. Indeed, the total number of
features for each simulated dataset is defined as JSIM = JI + JR + JU , where JR is the number of Redundant Features (i.e.
linear combination of the FInf set), and JU useless features drawn at random.
In particular, for all the experiments described here we generated datasets with N = 1500 and JSIM = 150, of which JI = 25
and JR = 25. Notably, all datasets were characterized by strong imbalance: 95% of the generated data belongs to majority class,
5% (75 observations only) to minority class. The class separation hyperparameter swas set according to the specific experimental
goal.
Implementation details and evaluation metrics
To test our assumptions we defined a simple and fixed toy architecture across all experiments, to make them comparable. Each
AE component’s encoder has one 100-nodes hidden layer, followed by a bottleneck layer of 50 nodes. This choice of a fixed
AE structure is meant to demonstrate the robustness of our method to poorly optimized architectures, aided by the sparsity
constraint. Specific hyperparameter details for each experiment described in this section can be found in in Appendix A.2 and
in Table B7 therein.
To quantify and evaluate the separation of the class-specific RE distributions, we decided to adopt non parametric methods to
avoid strict assumptions on the distributions of RE. In particular, we exploited the Wasserstein Distance [44] to quantify the
difference in shape of the two empirical distributions, and the Wilcoxon paired signed-rank test, to evaluate whether the two
related samples (i.e. same features’ average RE observed in two groups) come from the same distribution (two-sided test), or
there is a stochastic order between the two distributions (one-sided test). Note that this test is particularly meaningful in our
context as it assumes there is information in the magnitudes and signs of the differences between two samples (i.e. � in our
context) and studies the distribution of those differences treated as a rank: it is indeed by ranking features on the basis of � that
we select the most relevant ones. For this study we performed both two sided and one sided tests and reported their statistics
and p-values.
Finally, we introduce a metric named Feature Selection Performance (FSP) to evaluate the capability of the algorithm to produce
a meaningful ranking of features and select the most informative features to discriminate the two classes first. Indeed, FSP is
computed as FSP� = |IRF |�∕|F |� , where |IRF |� is the total number of Informative and Redundant Features selected with
the threshold �, and |F |� is the total number of selected features with the same threshold. Note that in this useful-to-selected
ratio, both informative and redundant features are considered useful, since they both carry information to separate the classes
and there is no point in preferring one over the other for any downstream task. On the other hand, this metric quantifies the
precision in discarding noisy features.

4.2 Distribution of � elements and Relevant Feature Selection
To validate points (i) and (ii) as mentioned at the beginning of this section, we generated 10 independent datasets with s = 2,
and 10 with s = 0.1. We assigned to all JI features the first 25 positions in the dataset, followed by the 25 JR features. For each
dataset, we trained and tested B = 20 DSAE components and collected the RE.
For illustrative purposes, in Figure 2 we plot the distribution of the average RE of the two classes (lmin and lmaj) and the
distribution of the respective � for the first simulated datasets, for both values of s. While s = 2 corresponds unsurprisingly

1https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_classification.html
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FIGURE 2 Distributions of the average RE associated to the majority class (lmaj) in blue and to the minority class (lmin) in
orange, for the experiments described in Section 4.2. Panel (a.1) reports the histogram of log(average RE), while (a.2) displays
average RE density functions of majority class (blue), minority class (orange) and � distribution (green), for the first of the 10
datasets generated with s = 2. Vertical lines represent the mean. Panels (b.1) and (b.2) display the same results for s = 0.1

to a larger distance between the classes’ RE distributions, minority class average RE (lmin) distributions have a longer right
tail in both cases nonetheless. Moreover, note that majority class average RE (lmaj) distributions are bimodal, as their RE is
affected by the large amount of noise and useless features (JU = 100) in the dataset. A first lower peak should correspond to
the 50 informative features, while the higher peak is induced by the larger pool of 100 noisy features. Indeed, to maximize
reconstruction accuracy, the AE is induced to learn how to reconstruct informative features first, as they carry all the needed
information to reconstruct the characterizing traits of the class it is trained on (i.e. majority class observations). This behavior
leads to the desired higher values of Δj , associated with j-th informative covariate.
For the datasets displayed in Figure 2 , Wasserstein Distance was 0.407 s = 2 and 0.395 for s = 0.1, withWone−sided equal to
11,244 and 11,214 respectively, both with a p-value close to zero. These results support our claim on DSAEE’s capability to
induce significantly different RE distributions, irrespective of the complexity of the task. Wilcoxon tests’ results and Wasser-
stein distances for all the 10 datasets of each experiment can be found in Appendix A.3 in Tables A2 and A3 .

Once verified that the DSAEE can induce class separability in terms of RE distributions, we seek to validate the use of quantile
thresholding on the � distribution to select the most relevant features. To this aim, we pick again the first generated datasets,
we compute the two � and we report in Table 1 the FSP metric for a range of � thresholds. Note that in the easiest setting
(s = 2) up to the low threshold value of � = 0.75 the DSAEE picks only meaningful features, and for s = 0.1 the algorithm
keeps a very high useful-to-selected ratio nonetheless.

4.3 On Sparsity of the Hidden Layer
Having demonstrated our hypotheses on class-specific RE and � distributions, we aimed at evaluating the value added by the
sparsity constraint on the hidden layer of the AE to the task of separating minority and majority average REs. Indeed, we claim
that a proper level of sparsity in the model allows for better separation of the distributions, while reducing the need for an
extensive architecture optimization of the AE. To do that, we kept the same toy architecture and run a series of experiments,
varying the � parameter (i.e. the weight associated to the L1 constraint). In particular, for each value of �, � ∈ [0, 1], we generated
10 independent datasets with class separation s = 1, and we collected all the aforementioned metrics. In Table 2 are reported
the results aggregated across the 10 datasets, additional metrics can be found in Appendix A.3 in Table A4 .
Note that despite the � value, the Wilcoxon tests confirm the separation of the two classes in terms of RE. However, both null
regularization (i.e. � = 0) and strong regularization (w.r.t. average RE values, thus impacting the optimization significantly, i.e.
� = 1) provide sub-optimal results. Conversely, a peak can be noted for the following values of �: {0.001, 0.05, 0.1}, supporting



10 Massi M.C. ET AL

Class separability s = 2 Class separability s = 0.1
� |F | |IRF | FSP [%] |F | |IRF | FSP [%]
0.6 60 41 68.33 60 41 68.33
0.7 45 37 82.22 45 37 82.22
0.75 38 34 89.47 38 33 86.84
0.8 30 30 100 30 29 96.67
0.85 23 23 100 23 22 95.65
0.9 15 15 100 15 14 93.33
0.95 8 8 100 8 8 100
0.99 2 2 100 2 2 100

TABLE 1 Feature selection results of the first simulated dataset for s = {2, 0.1}, for different � thresholds. |F | is the total
number of features selected; the column |IRF | reports the total number of selected features that are either informative or
redundant; the column FSP reports the useful-to-selected ratio.

dWass Wone-sidedlog(p-val)
� mean std mean std
0 0.182 0.031 -34.491 6.143

1e−06 0.182 0.032 -34.044 5.985
1e−05 0.179 0.035 -33.953 5.915
1e−04 0.185 0.035 -36.089 6.709
0.001 0.205 0.032 -43.535 6.347
0.05 0.248 0.04 -43.687 6.794
0.1 0.255 0.055 -37.225 8.953
0.25 0.165 0.016 -3.63 2.126
0.5 0.166 0.017 -3.241 2.089
1 0.164 0.018 -3.602 2.446

TABLE 2 Average RE distributions distances
(Wasserstein) and Wilcoxon one-sided log(p-
values) for varying L1 penalization. Each row rep-
resents aggregated results over 10 independently
generated datasets.

dWass Wone-sidedlog(p-val)
s mean std mean std

0.01 0.158 0.024 -30.583 4.412
0.1 0.154 0.023 -29.44 4.563
0.3 0.162 0.021 -31.916 3.182
0.5 0.178 0.025 -34.926 4.595
0.7 0.202 0.034 -39.363 6.634
1 0.247 0.047 -47.598 7.132
1.5 0.352 0.075 -55.35 3.738
2 0.486 0.108 -58.713 1.855
3 0.783 0.165 -59.697 0.076
5 1.271 0.168 -59.72 0.019
10 2.133 0.292 -59.726 0.006
TABLE 3 Average RE distributions distances
(Wasserstein) and Wilcoxon one-sided log(p-
values) for varying class separability (s). Each
row represents aggregated results over 10 indepen-
dently generated datasets.

our hypothesis that a properly balanced regularization does affect the separability of RE distributions, pushing minority class
average RE distribution towards higher error values.

4.4 On Robustness to Class Separability and Class Imbalance
Real world data may be arbitrarily complex and majority and minority classes may get extremely hard to separate, once validated
our assumptions on the proposed approach, we aimed at testing the robustness of the DSAEE to class separability. To do that we
exploited once again our simulation framework, generating 10 independent datasets for each value of s in a wide range from 0.01
(i.e. almost overlapping classes) to 10, setting � to 0.05. In Table 3 we report all the tested s values and the resultingWasserstein
Distance metrics and Wilcoxon test log(p-values). Further details and Two-sided test results can be found in Appendix A.3 in
Table A5 , aggregated across 10 datasets. Irrespective of inter-class distance, the distribution of minority class RE remains
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skewed to the right w.r.t. majority class’ distribution. Moreover, all measures behave as expected, growing almost monotonically
as classes are generated further apart (see Table 3 ).
Finally, we aimed at testing the DSAEE robustness to class imbalance. Note that all the analyses described so far were performed
in a rather imbalanced setting, with minority class observations representing the 5% of each dataset only. However, in order to
prove the applicability of our proposal on extreme class imbalance, we designed a final experiment with a range of minority
class percentages. In particular, for each majority-minority class splits in [0.9-0.1, 0.95-0.05, 0.97-0.03, 0.99-0.01] we generated
10 datasets, we measured the usual metrics on the average RE distributions, we performed feature selection and evaluated FSP
by setting � = 0.9. To generate all datasets we set s = 1 and we trained the DSAEE running B = 15 components. All results
are reported in Table A6 in Appendix A.3. Notably, the class-specific distributions are consistently different, and the useful-to-
selected features ratio remains extremely high. Indeed, with a threshold of � = 0.9 the algorithm selects 15 features, on average
all informative up to minority class sample size percentage of 1% (i.e. 15 observations): in this case 0.89± 0.09 are informative
to separate the classes.

5 EXPERIMENTS WITH BENCHMARK AND REAL DATA

Besides validating our assumptions on simulated data, we aimed at studying the performance of our proposed algorithm on
datasets mimicking real life scenarios and complexities. However, in this case we had no access to a precise definition of the
informative features set, therefore we focused on the classification performance of the selected subset, another fundamental
aspect for any FS method.
In particular, we were interested in testing the capability of our algorithm to select even extremely small subsets of features
while keeping the classification performance sufficiently high, especially on the minority class. This evaluation was carried
out in settings of varying dimensionality and sample size (see Section 5.2). Moreover, we compared the performance of our
method against some benchmark FS algorithms (Section 5.3) and finally, we investigated in an interpretable and visual way
the meaningfulness of the selected features and their capability to provide useful insights to discriminate between minority and
majority classes (Section 5.4). To conclude, we also provide a brief description of a real data application in the challenging
field of radiogenomics (see Section 5.5). Through this analysis, we highlight the relevant impact that we are bringing in terms
of minority class profiling in complex real-life research scenarios.

5.1 Datasets and Performance Measures
For all the aforementioned numerical experiments we decided to adopt freely distributed datasets to make results accessible and
reproducible. Moreover, some peculiar characteristic of each of the exploited data allowed us to showcase different aspects of our
algorithm and discuss its potential when applied to multifaceted scenarios. Note that the datasets exploited in our experiments
were not originally imbalanced and in most cases they were meant for multiclass classification problems. As a consequence,
a preliminary subsetting of the chosen data was conducted. In the following, we will list the adopted datasets and describe in
details the dataset-building choices we made for each of them.
For all datasets, we selected one of the classes as the majority class, and we undersampled another class to represent the minority
category. From the derived datasets, we extracted one subset onwhichwe applied our feature selectionmethod (Feature Selection
DataSet - FSDS), while the remaining was held out to evaluate the classification accuracy of the selected features (Classification
DataSet, CDS). In Table 4 we report all datasets, their composition, and the type of experiment they were exploited for.

1. ISOLET [15] (number of observations N = 370; number of features J = 617). It consists of preprocessed speech data
of people pronouncing the names of the letters in the English alphabet, and is widely used as a benchmark in the feature
selection literature. Each feature is one of the 617 quantities produced as a result of the preprocessing. We chose class ’A’
as the majority class, and ’B’ as the minority one. Given the small number of observations available per class, this dataset
allowed us to test the applicability of our algorithm in high dimensionality and small sample size settings.

2. GISETTE [18] (N = 3, 300; J = 5, 000) This dataset was built for NIPS2003 feature selection challenge. The whole
dataset contained 6,000 observations equally split between classes, with 5,000 features (50% of which are probes with
no predictive power). We created 5 datasets including all 3,000 majority class observations and 300 randomly sampled
minority class observations (9.05%), and we splitted them into FSDS and CDS according to a 75/25 ratio.
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DATASET CLASS FSDS - N (%) CDS - N (%) EXPERIMENTS

ISOLET ’A’ 225 (81.9%) 75 (80.7%) FEATURE SUBSET PERFORMANCE
’B’ 52 (18.1%) 18 (19.3%) BENCHMARK

GISETTE ’0’ 2,250 (90.91%) 750 (90.91%) FEATURE SUBSET PERFORMANCE
’1’ 225 (9.09%) 75 (9.09%)

EP. SEIZURE ’N’ 6,440 (94.96%) 2,760 (94.96%) FEATURE SUBSET PERFORMANCE
’Y’ 350 (5.04%) 150 (5.04%)

F-MNIST T-SHIRTS 5,250 (95.90%) 1,750 (95.90%) FEATURE SUBSET PERFORMANCE
PULLOVERS 225 (4.10%) 75 (4.10%) BENCHMARK

T-SHIRTS 6,000 (95.3%) 1,000 (92.2%) INTERPRETABILITY
COATS 300 (4.7%) 50 (7.8%)

MNIST ’1’ 6,742 (93.1%) 1,000 (92.2%) INTERPRETABILITY
’7’ 500 (6.9%) 50 (7.8%)

TABLE 4 Feature Selection Dataset (FSDS) and Classification Dataset (CDS) composition for the datasets adopted in the
experiments.

3. Epileptic Seizure [3] (N = 11, 500; 7, 300; J = 178). In this functional dataset, each data point represents 178 seconds
of EEG recording for one of the 500 patients in the study. Each of the 178 features is the value of the EEG at that time-
stamp. The label indicates whether the EEG is recording seizure activity (’Y’) or not (’N’). This dataset was originally
imbalanced, but we decided to increase the complexity by subsampling minority class further (cfr. Table 4 ).

4. Fashion MNIST [47] (N = [7, 350; 7, 300]; J = 784). This dataset is composed by 28x28 grayscale images of clothing.
To test our model we built two datasets with different imbalance rates. T-shirts were selected as the majority class, and
coats as the minority one for the first dataset (∼ 5% of the whole dataset, with 7,350 total observations), while pullovers
for the second (∼ 4% withN = 7, 300).

5. MNIST [29] (N = 8, 292; J = 784). This dataset is composed by 28x28 grayscale images of hand-written digits. We
selected two quite overlapping classes to test our model: the ’7’ digit class as the minority class and the ’1’ digit class
as the majority one. This dataset, together with the two extracted from Fashion MNIST, simulate a setting of extreme
imbalance (below 95 ∶ 5 ratio) and moderately high dimensionality, but with a large sample size.

It should be noted that the proposed algorithm is meant to be applied to features that do not present any dependence (i.e. the order
of the features is irrelevant). Its applicability to image datasets is guaranteed by the fact that all images are centered, allowing us
to meaningfully treat each pixel as an independent feature. The choice to add image datasets to these experiments derives from
both their dimensionality and the clear readability of their results, that allow for visually investigating the selected features by
representing them as pixels.
To evaluate the classification performance in an imbalanced setting, we decided not to adopt the classical accuracy on both

classes. Instead, we chose the Sensitivity metric (i.e. the ratio of true positives and the sum of true positives and false negatives
for observations belonging to the minority class) and the Area Under the Receiver Operating Characteristic (AUROC), that
estimates the performance of a binary classifier comparing false positive rates with true positive rates and is a widely used metric
to evaluate model’s capability to correctly classify both classes, especially in imbalanced settings.
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FIGURE 3 AUROC and Sensitivity improvement in the classification of FMNIST dataset (first two plots) and ISOLET dataset
(second couple of plots) with different variables’ subsets. The lines represent the average performance on 5 trials. Standard errors
define the lighter areas around the line. The first number of features in each plot is the performance with the whole original
features set.

5.2 Classification Performance of Selected Feature Subsets
Dimensionality reduction has impacts on computational time and complexity, noise reduction, model significance and results
interpretability, but all these improvements should not come at the cost of a good classification performance on the classes of
interest. In particular, in research scenarios as those presented in Section 1, a minimum level of precision on Minority Class
observations is desirable.
To test our algorithm, we applied it to the FSDS for various � values (� ∈ {0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 0.97, 0.99}),
selecting different subsets of variables. For each � we created from the CDS a dataset containing the selected features only.
The CDS was subsequently subdivided in training set and test set according to a 70-30 split that was held constant across all
experiments.
On the obtained datasets we trained and tested five classifiers: Logistic Regression (LR), Decision Tree (DT), Support Vector
Machines (SVM), Naive Bayes (NB) and Nearest Neighbor (NN) classifier. We chose to test different classifiers to verify
whether our model-agnostic feature selection approach provided good results indepently of the subsequent classifier adopted.
All algorithms were drawn from scikit-learn library for Python [39] and their hyperparameters were kept in default mode, unless
differently stated. Note that we applied the same classifiers to all experiments without tailoring their parameters to the data at
hand. This choice does not resemble a traditional classification process in a real-life scenario, where classifiers are optimized
to improve the performance on the data at hand, but aimed at showcasing the impact of the feature subset selection alone.
Details on the code, the implementation and the specific architectural choices for the DSAEE are described and discussed in
Appendix.
We tested the DSAEE feature selector on Isolet, Fashion-MNIST, Gisette and Epileptic Seizure datasets. Results for FMNIST
and Isolet datasets are reported in Figure 3 , where performance metrics are averaged over 5 trials and the x-axes display the
size of the selected feature sets.
On FMNIST Dataset (Figure3 , first two panels) most classifiers suffered the dimensionality reduction up until smaller subsets,
when their performance started growing again. On the contrary, NB classifier had a steep improvement on both AUROC and
Sensitivity, reaching almost perfect scores for subsets of extremely small dimensionality (8 features, ∼ 1% of the original 28x28
image).
On Isolet Data, where the sample size is extremely small compared to the number of features and the minority class in the
training set contains 52 observations only, the five classifiers performed most of the times as good as the baseline performance
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Naïve Bayes SVM
AUROC Sensitivity AUROC Sensitivity

|F| mean std mean std mean std mean std
178 0.932 0.029 0.89 0.057 0.907 0.027 0.827 0.055
54 0.924 0.031 0.876 0.064 0.894 0.018 0.800 0.035
45 0.926 0.017 0.880 0.034 0.890 0.019 0.791 0.037
36 0.924 0.018 0.876 0.037 0.890 0.021 0.791 0.043
27 0.922 0.014 0.871 0.029 0.881 0.018 0.773 0.037
18 0.912 0.022 0.853 0.046 0.867 0.035 0.742 0.071
13 0.906 0.022 0.840 0.046 0.852 0.038 0.711 0.079
9 0.898 0.027 0.822 0.052 0.835 0.035 0.680 0.071

TABLE 5 Classification results for Epileptic Seizure
Dataset with NB and SVM classifiers. Mean and Standard
deviations are averaged over 5 trials. FIGURE 4 Classification results for GISETTEDataset with all

5 classifiers. Mean and Standard deviations are averaged over 5
trials.

with all variables, despite the reducing size of the features subset. Sensitivity (Figure 3 fourth panel) increased substantially
for KNN and SVM, while the LR classifier kept attaining an almost perfect score even as the cardinality (|F |) of the selected
features set decreased substantially (while improving on AUROC score, as shown in Figure 3 third panel). In many cases, the
classifiers obtained their best results as |F | decreased.

In Table 5 we report the classification performance on the Epileptic Seizure Dataset. The first line summarizes baseline
results. Note that we chose to include only NB and SVM classifiers, as LR, KNN and DT demonstrated a baseline performance
that was too poor to meaningfully consider them for classification on this data. On the contrary, NB and SVM showed a high
baseline performance despite the strong imbalance. Decreasing the amount of features used in classification did not hinder the
performance, while reducing the dimensionality of the problem. For example, by reducing it to a third (|F | = 54), NB did not
significantly reduce AUROC or Sensitivity metrics, while the performance for much smaller subsets (|F | = {18, 13, 9}) remains
comparable with the baseline. In Figure 4 we report the results of the experiment on Gisette data. Note that this dataset was
designed for feature selection benchmarking experiments, by including 2,500 predictive features and 2,500 probes. By looking
at |F | values on the x-axis, one can note that the feature subsets selected by the DSAEE are way smaller than the original number
of noisy features. However, irrespective of the baseline performance with |F | = 5, 000, all classifiers showed an increase in
performance for some |F | values. This could mean that the algorithm is first correctly excluding noisy features; then, among
the informative predictors, it is progressively excluding correlated or reduntant features, identifying the most useful for the
classification task at hand. This hypothesis is well supported by the behavior of NB classifier, that by design requires conditional
independence to reach optimal classification [52]. In this experiment, NB yields a steep increase on both metrics for smaller |F |
values. Only LR suffered a steep decrease in Specificity, that was however balanced by the significant improvement in AUROC
(meaning that the performance is better balanced between the two classes) for subsets between 1,000 and 250 features.

5.3 Feature Selection Benchmarking Experiment
We selected the benchmark feature selection methods for the performance comparison with our DSAEE approach s.t. they
would be representative of different types of algorithms. In particular, we included (i) Chi-squared, a supervised filtering feature
selection method based on univariate �2 statistical tests, and (ii) Recursive Feature Elimination (RFE) [20] - supervised wrapper
method, that when combined with SVM classifier (RFE-SVM) was proven one of the best performing methods in [35] for
feature selection in imbalanced settings. Finally, we also included (iii) Concrete AutoEncoder Feature Selector (CAEFS), an
unsupervised feature selection method based on AEs2, that in [8] was proven superior to most related algorithms mentioned in

2The number of features selected is defined as the K nodes of the concrete layer. To compare the two models we trained the each DSAE learner and the CAEFS for
the same number of epochs using the same batch size, and the architecture of the decoder was built equal to that of the DSAEs.
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FIGURE 5 Classification benchmarking against other FS methods for ISOLET Datasets, for NB, LR, SVM and DT classifiers.
Each classifier has one plot per metric (AUROC on the left, Sensitivity on the right)

Section 2.2.
All benchmark methods were applied to the FSDS imposing a number of selected features equal to the features selected by

DSAEE for the different � levels, then the subsets of selected features were extracted from the CDS to test classification accuracy.
We compared the performance on Isolet dataset and Fashion MNIST dataset averaging on 5 trials for each experiment. In both
cases we trained an ensemble of B = 25 DSAEs.
In Figure 5 we report the results on Isolet using four different classifiers, on Sensitivity and AUROC. Varying the threshold
� we selected a different subset of variables: the cardinality (|F |) of such subsets is reported on the x axes. For what concerns
NB and SVM classifiers, the DSAEE performed better than the competitors for almost all variables subsets on both indicators.
In particular, it significantly outperformed the unsupervised CAEFS for smaller subsets, while the major competition on the
smallest dimensionalities was represented by the supervised RFE. Note that RFE-SVM is a feature selection method proved
among the best performers for imbalanced settings [35], and the DSAEE either surpasses or reaches comparable performance
levels in most cases (see the two plots in the left bottom part of Figure 5 ). Similar results were obtained with the NB classifier.
Regarding LR classifier, all methods seemed to performwell on this dataset, but our methodology reaches an almost perfect score
on Sensitivity irrespective of the threshold level, up until to only 7 variables, where the other AE-based FS method (CAEFS)
lowered its average performance. These levels of Sensitivity and AUROC - irrespective of the adopted classifier - on a dataset
with significantly small sample size and extremely high dimensionality testify in favour of the applicability of our methodology
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FIGURE 6 Classification benchmarking against other FS methods for Fashion MNIST dataset using NB classifier.

Dataset DSAE CHISQ RFE CONCRETE DSAE PARALL.

ISOLET Average Time [min] 14.010 0.046 1.246 117.268 0.560
Std [min] 5.927 0.005 0.048 78.034 0.237

FMNIST Average Time [min] 7.687 0.087 22.852 0.618 0.256
Std [min] 0.201 0.001 1.424 0.017 0.007

TABLE 6 Comparison of average runtime performance of all benchmark methods on the Isolet Dataset. The average time is
computed considering total process time to select feature subsets for all � thresholds, and averaged over 5 trials.

in many real-life scenarios where the collection of observations might be costly or difficult.

In Figure 6 we compare the performance of the DSAEE on FMNIST dataset using the best performing classifier in terms
of performance improvement (Figure 3 ). Our algorithm confirmed its superiority w.r.t. the competing AE-based FS method,
while keeping a comparable performance to the other benchmark algorithms, all set to a very high performance up until an
extremely small feature subset (8 pixels from the original 784).
Note that, as can be noticed from Figure 3 , both datasets allowed for high prediction accuracy on both classes even before
feature selection. This indicates that probably, despite the imbalanced setting, the two classes are sufficiently separated and
consistently characterized to allow classifier to correctly separate them and generalize well just by seeing few examples of the
underrepresented class. For this reason, it is not surprising to see all algorithms (especially the supervised ones) perform quite
well on this feature selection and classification task. Nonetheless, although our ensemble algorithm is based on unsupervised
learners, it consistently reached or surpassed the supervised approaches, and performed significantly better than the unsupervised
one.
In Table 6 we report the total process runtime to complete all feature subsets selections (for all � values) for the different
algorithms, averaged over all trials. In the first column each of the trained DSAEs are processed in sequence, while in the last
one we report the estimated average time to perform the algorithm’s training in parallel. Even though the sequential training
time is not prohibitive per se, its parallelized version outperforms the wrapper RFE and the other AE-based algorithm (CAEFS)
by far, while enjoying the beneficial robustness of an ensemble framework.
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FIGURE 7 Results of the experiment on the 7 (minority) and 1 (majority) classes. In these 28x28 pixels images each pixel
represents a feature. Subfigures (a) and (b) represent the mean of all values the two classes take in the FS dataset. The color scale
is shared across all six subfigures. Subfigure (c) reports the average RE for the minority class, while (d) is the representation
of the majority class average RE - Note that being the ’1’s class the majority one, the model learns to reconstruct precisely the
center of the vertical line that draws the digit. The vector � is reported in (e), while (f) depicts the selected variables with a
threshold � = 0.9.

FIGURE 8 (a) MNIST Dataset. The most relevant identified features are represented in gray scale over the average minority
(right) and majority class (left) representations. (b) Fashion MNIST Dataset. Here, it is clear how the most relevant features to
distinguish coats from t-shirts are the pixels that compose the sleeves of the coat.

5.4 Interpretability
One advantage of FS for classification lies in the increased interpretability of the subsequent algorithms and results. Indeed,
identifying features that are the most informative, w.r.t. a target class within a dataset is an insightful information by itself in
many application contexts. In the era of black-box classifiers, a reduction in the amount of information fed to these algorithms is
per se a way of improving the interpretability of (and the control over) the obtained classifications. In the case of our proposed
algorithm, the selected features are the subset of variables where the minority class distances the majority one the most.
In Figure 7 we report some visualizations from the MNIST Dataset that help in understanding the feature selection process
performed by our algorithm. The small set of selected features for � = 0.90 (Figure 7 .f) is then overlapped (in gray scale) to
the average representation of the two classes (Figure 8 .a). This visualization allows us to recognize how the selected features
include all pixels where the minority class (’7’ digits) have different characteristics w.r.t. the ’1’ digits class.
In Figure 8 .b we propose the same visualization for the Fashion MNIST dataset. Note that these features subsets were obtained
in an highly imbalanced setting, as reported in Table 4 , but the selected features are extremely meaningful nonetheless.
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5.5 Case Study application in Radiogenomics
Class imbalance is a daunting issue in many real life applications, especially when dealing with medical and biological data [43]
(cfr. Section 1). So far, we presented simulation studies and proofs of concept to demonstrate the generalizable potential of the
proposed algorithm. However, the value of the presented approach lies in its demonstrated applicability to complex scenarios
arising from real life research settings. Indeed, in this section we present a real data application of the DSAEE FS algorithm in
the field of radiogenomics. A detailed report on the study can be found in [36]. However, because of the aforementioned reasons,
we were interested in providing here a brief description nonetheless. Specifically, we focused on the long term outcomes of
radiotherapy on patients suffering from prostate cancer. The final aim was to validate genetic locations (in the form of Single
Nucleotide Polymorphisms, or SNPs) that can be associated with Late Toxicity (LT) outcomes. Experts were indeed interested
in finding whether among the features (i.e. the SNPs) with high association to the 5 considered LT endpoints in previous studies
on different cohorts, some could be validated as relevant for the cohort at hand (∼ 1,700 patients with an incidence of the positive
class always below 10% for each endpoint and a total number of 43 SNPs to evaluate). We applied our DSAEE on each of the 5
endpoints separately, and we selected SNPs with different � thresholds (� = {0.7, 0.8, 0.9, 0.95}). This being an unsupervised
setting it is hard to comment on precision of the results without the required clinical expertise. However, notably, for one of the
endpoints (i.e. Late Urinary Frequency) 3 SNPs identified as relevant by our method for all � values were previously mentioned
in literature [26] as the most strongly associated to this endpoint.
This is an interesting application case in which FS methods are useful to profile minority class, and provide useful insights to
researchers. As introduced in Section 1, our FS algorithm is indeed tailored to respond to similar needs and to deal with complex
scenarios where the class of interest is extremely rare.

6 DISCUSSION AND CONCLUSIONS

In this paper we presented a Deep Learning-based ensemble approach to select features for highly imbalanced classification
tasks. The proposed approach exploits Deep Sparse AutoEncoders as weak learners, each trained to learn the normal patterns
in majority class observations, and tested on both majority and minority class data. Diversity among components of the ensem-
ble is fostered by a tailored sampling procedure and the sparsity constraint on the training loss function. Features are ranked
averaging on the RE of the ensemble of learners to identify the most informative ones, where minority class distribution differs
from majority class the most.
We performed a series of analyses, on simulated and real data, to validate our claims and test the potential of our DSAEE. First,
in a simulation setting, we evaluated the capability of DSAEE algorithm to induce well separated average RE distributions of
the two classes, and the value of their differential distribution (i.e. �) to identify the most informative features. This synthetic
and controlled setting allowed us to support at least empirically all the hypotheses underlying our design choices, despite the
lack of a complete theoretical framework regarding complex DL-based methods. Then, exploiting a wide range of benchmark
data to mimick real research settings, we verified DSAEE’s ability to avoid the degradation of classification performance
induced by selecting feature subsets in the presence of strong imbalance [48]. We compared baseline performances including
the entire original feature set, with that obtained with subsets of increasingly small dimensionality. We also benchmarked our
method against other feature selection methods, demonstrating the superior or comparable performance of the DSAEE feature
selector. Note that most of the algorithms we compared the DSAEE with had the advantage of being supervised, or even
tailored to maximize prediction accuracy on minority class (RFE-SVM).
Our FS algorithm is tailored to manage extremely imbalanced settings with the aim of attaining all the advantages of FS
methods without sacrificing too much on the classification performance by reducing the amount of information supplied to
classifiers. First we validated DSAEEs capability to discard useless information in the first simulation experiment, then we
evaluated its robustness in selecting informative features up to extreme imbalance levels. Additionally, when measuring classi-
fication performance on real data, in some cases we observed the algorithm identify subsets of the original features yielding an
improved AUROC and/or Specificity (cfr. Figure 3 and Figure 4 ). In particular, the improved Specificity might be induced by
the training procedure of each ensemble DSAE component: indeed, AEs by nature represent an approximation of the identity
function and the applied model is compelled to learn the common characteristics of the data [42]. By training on majority
class only, the learnt data distribution does not include the characterization aspects of minority class instances, thus generating
higher reconstruction errors on those features. Moreover, the initial data sampling, once included in an ensemble framework,
allows to extract reliable information even when the observations belonging to the minority class are limited. While creating
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the different sampled training and test set for each ensemble component, the minority class is indeed studied against various
subsets of the majority one, thus enhancing the informative power of the small underrepresented sample. Indeed, when tested
against very small minority class samples in our simulation (i.e. 15 or 45 observations), the algorithm consistently selected
relevant features carrying class-separating information.
On top of the sampling procedure we included to the training loss function of our components a sparsity penalty term,
that besides fostering components’ diversity reduces the need for lengthy optimization of the DSAEs’ architecture. Indeed,
the penalty term forces the number of active nodes in the hidden layer to adapt to the sample of training data, reducing
autonomously the risk of learning trivial representations. We validated the value of sparsity in our simulation study, where the
right regularization balance obtained the best separation of the two class-specific average RE distributions. Moreover, the same
unoptimized toy architecture was capable of excluding all uninformative features from selection up until a quite low � threshold
value, irrespective of inter-class separability.
In addition to all the above, the DSAEE Feature Selection algorithm is a filtering method, meaning that it is agnostic to the
classifier exploited to discriminate between classes. This may slightly hinder classification accuracy compared for instance
to wrapper methods, but gains generalizability of the identified features. Moreover, when compared to wrapper methods, our
approach does not incur in the risk of sub-optimal solutions in high-dimensional settings, where evaluating all possible com-
binations of features would be computationally intractable. When compared to embedded methods, our AE-based approach is
capable of capturing nonlinear relationships among features. Kernel-based embedded feature selection methods were proposed
to learn nonlinear representations [30], but they are limited by the fixed kernel, and the choice of the optimal kernel or combi-
nation of kernels is not straightforward.

In conclusion, with this work we are taking inspiration from different methodological domains to develop a novel filtering
feature selection algorithm that is (i) robust thanks to its ensemble nature, (ii) capable to learn complex patterns in data because
of its AE components, (iii) provides interpretable insights and (iv) is specifically tailored to tackle class imbalance. All these
considerations promote the usefulness of our DSAEE feature selector in real-life contexts where data are imbalanced, minority
class observations have great relevance, sample size is small, and interpretability of results is crucial. We provided a direct
example in Section 5.5, where a real data application is briefly described.
Future works might be devoted to studying the applicability of the DSAE feature selector to imbalanced multi-class classification
problems or to further develop the analysis of the RE distributions to select features.
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APPENDIX

A SIMULATION STUDY SUPPLEMENTARY MATERIAL

In the following section we provide all the supplementary information regarding the simulation study experiments.

A.1 Simulated Data
The simulated data was constructed exploiting Python Scikit-learn implementation of the algorithm to generate MADELON
dataset for NIPS2003 Variable Selection Challenge. Specific details on the pre-implemented code can be found at
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_classification.html.However, for the purpose of our
analyses the algorithm was adapted from the original and specific choices were made, therefore in this section we will provide
details about the generative mechanism of our simulated data.

In particular, the algorithm generating our simulated data takes as an input the number of features that will be informative
to characterize the generated data-clouds (JI = |Finf |) representing the two classes of interest. As a first step, it creates JI -
dimensional gaussian clusters by sampling JI independent features from a Normal DistributionN(0, 1). In our implementation,
each of the two classes are composed of one of those clusters, and class sample sizes are defined by assigning class weights as
the proportion of N generated data assigned to each class. Then, some covariance is added within each cluster by multiplying
by a random matrix A, with uniformly distributed random numbers between -1 and 1.
At this point, each class is placed at random on the vertices of a hypercube in a JI -dimensional space. The length of the hyper-
cube’s sides is proportional to the class separation hyperparameter s. In particular, each side is 2s long, and larger s values
place the clusters (i.e. the classes) further apart, making the classification task easier.
At this point, JR features carrying redundant information are added, obtained by random linear combination of the informative
features. Last, a set of JU uninformative features is added, filled by random Gaussian noise fromN(0, 1).
In conclusion, the total number JSIM of features comprise

• JI informative features,
• JR redundant features, and
• JSIM − JI − JR useless features drawn at random.

We set the order of the features in the output dataset so that the informative features are assigned to the first JI columns, followed
by the JR reduntand features. The remainder of the dataset is filled with uninformative features.
As mentioned in the paper, for all our experiments we set N = 1500, JSIM = 150, JI = JR = 25, s.t. each dataset contained
100 useless random probes. Class Weights and s were defined according to the specific experiment, as reported in the following
sections and in the main corpus of the paper.

A.2 Implementation and Architectural Details
For the whole Simulation Study we exploited the same toy architecture for each AE component in the ensemble, that is reported
in Figure A1 . In particular, each AE component was designed as a fully connected AE with an input layer, a 100-nodes hidden
layer and a 50-nodes bottleneck layer. The decoder was composed of only one 100-nodes hidden layer followed by the output
layer (150 nodes, as the input dimension). The specific activation function applied to the nodes of each layer is reported within
parenthesis in Figure A1 .
Each component was trained for 500 epochs with a batch size of 300 observations. Further specific details for each experiment
can be summarized as in Table A1 . The first two experiments presented in the paper in Section 4.2 are referred to as Baseline
1 and Baseline 2 in the table.

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_classification.html
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Experiment s B � Class Weights
Baseline 1 2 20 0.05 [0.95-0.05]
Baseline 2 0.1 20 0.05 [0.95-0.05]
Varying L1 10 [1.0, 0.5, 0.25, 0.1, 0.05, 0.001,

0.0001, 0.00001, 0.000001, 0.0] [0.95-0.05]

Robustness to s [0.01, 0.1, 0.3, 0.5, 0.7,
1, 1.5, 2, 3, 5, 10] 10 0.05 [0.95-0.05]

Robustness to Imbalance 1 15 0.05 [0.9-0.1], [0.95- 0.05], [0.97-0.03], [0.99-0.01]

TABLE A1 Simulation Experiments details

FIGURE A1 Toy Architecture exploited across the whole simulation study for each AE ccomponent in the ensemble.In
parenthesis we report the activation function exploited in the specific layer.

A.3 Further Results
In Table A2 are reported the complete results for the experiment described in Section 4.2, here referred to as Baseline 1, with
s = 2.
In Table A3 are reported the complete results for the experiment described in Section 4.2, here referred to as Baseline 2, with
s = 0.1.
In Table A4 are reported the complete results for the experiment described in Section 4.3, testing the effect of L1 penalization.
In Table A5 are reported the complete results for the experiment described in Section 4.4, testing the robustness to class
separability (s).
In Table A6 are reported the complete results for the experiment described in Section 4.4, testing the robustness to class
imbalance, both in terms of class-specific RE distribution separation and informative feature selection (FS performance).

B DSAEE ARCHITECTURAL AND IMPLEMENTATION DETAILS FOR REAL DATA
EXPERIMENTS

In the following section we provide the details of the architectural and implementation choices made on the DSAEs for the
different experiments on real datasets, as described in Section 5. Note that these choices are provided for the sake of results’
reproducibility, but they should not be considered a strict guideline about how the components in the ensemble should be built.
Indeed, the DSAE is a fundamental building block of our methodology, but just as in any application of deep learning models,
it should be customized to the problem at hand. For that reason, we did not focus all our effort in seeking for the lightest and
fastest possible architecture. Our focus and concern was on the demonstration of the potentials of the methodology as a whole,
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dataset id Wasserstein Wilcoxon p-value Wilcoxon Stat Wilc. two-sided p-value Wilc. two-sided Stat
1 0.407 1,16E-09 81.0 5,79E-11 11244.0
2 0.583 2,35E-10 1.0 1,17E-10 11324.0
3 0.459 3,17E-11 16.0 1,59E-11 11309.0
4 0.313 6,29E-10 167.0 3,15E-09 11158.0
5 0.650 2,30E-10 0.0 1,15E-10 11325.0
6 0.440 2,44E-10 3.0 1,22E-10 11322.0
7 0.544 2,39E-10 2.0 1,20E-10 11323.0
8 0.402 4,28E-10 31.0 2,14E-10 11294.0
9 0.574 2,30E-10 0.0 1,15E-10 11325.0
10 0.506 2,30E-10 0.0 1,15E-10 11325.0

TABLE A2 Results for each of the 10 datasets generated for the first experiment described in Section 4.2, with s = 2

dataset id Wasserstein Wilcoxon p-value Wilcoxon Stat Wilc. two-sided p-value Wilc. two-sided Stat
1 0,395 2,10E-10 111.0 1,05E-10 11214.0
2 0.576 2,30E-10 0.0 1,15E-10 11325.0
3 0.470 4,11E-11 29.0 2,06E-10 11296.0
4 0.317 9,11E-10 186.0 4,56E-10 11139.0
5 0.653 2,30E-10 0.0 1,15E-10 11325.0
6 0.478 3,17E-11 16.0 1,59E-11 11309.0
7 0.528 2,30E-10 0.0 1,15E-10 11325.0
8 0.405 3,11E-10 15.0 1,55E-10 11310.0
9 0.576 2,30E-10 0.0 1,15E-10 11325.0
10 0.506 2,30E-10 0.0 1,15E-10 11325.0

TABLE A3 Results for each of the 10 datasets generated for the first experiment described in Section 4.2, with s = 0.1

that exploits this well known building block within a novel algorithm to robustly identify features to separate the two classes.

The algorithm was developed in Python 3.6, using Keras and Tensowrflow as back-end. The code was run on Jupyter notebooks
hosted on Google Colab Virtual Machines3, with access to GPUs and Fast VMs thanks to the Pro subscription. The types of
GPUs that are available in Colab vary over time. The GPUs available in Colab often include Nvidia K80s, T4s, P4s and P100s.
There is no way to choose what type of GPU you can connect to in Colab at any given time.

An overview of the architectural and implementation choice of the proposed method for the four different datasets evaluated in
this work is reported in Tab.B7 . In this table we give details about the Encoder (number of nodes for input and hidden layers,
activation function per layer) and the Decoder (number of nodes in the hidden and output layers, activation function per layer).
If a single type of function is reported (like tanh as activation function in the Decoder for ISOLET data), this means that we
chose the same activation function across all layers. In the bottom part of Tab. B7 , we describe the number of epochs, the
batch size and the parameter B of the algorithm.
The following parameters have been selected consistently across the four different datasets:
• the last hidden layer in the Encoder had an L1 penalization on the activation of the 200 nodes, with � = 10e−5. The value

of this hyperparameter was chosen between � = (10e−5, 10e−10, 10e−20) as the one that guaranteed a low reconstruction
error, while favouring a sufficient penalization on the activation of the hidden nodes.

3https://colab.research.google.com/notebooks/intro.ipynb

https://colab.research.google.com/notebooks/intro.ipynb
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Wasserstein Wilc. log(p-value) Wilc. Stat Wilc. two-sided log(p-value) Wilc. two-sided Stat
� mean std mean std mean std mean std mean std
0 0.182 0.031 -33.798 6.143 1450 404.865 -34.491 6.143 9875 404.865

1.00E-06 0.182 0.032 -33.351 5.985 1480.3 410.934 -34.044 5.985 9844.7 410.934
1.00E-05 0.179 0.035 -33.26 5.915 1485.6 401.693 -33.953 5.915 9839.4 401.693
0.0001 0.185 0.035 -35.396 6.709 1349.2 451.416 -36.089 6.709 9975.8 451.416
0.001 0.205 0.032 -42.842 6.347 884.4 380.175 -43.535 6.347 10440.6 380.175
0.05 0.248 0.04 -42.994 6.794 876.5 394.759 -43.687 6.794 10448.5 394.759
0.1 0.255 0.055 -36.532 8.953 1287.6 564.676 -37.225 8.953 10037.4 564.676
0.25 0.165 0.016 -2.937 2.126 4694.6 437.508 -3.63 2.126 6630.4 437.508
0.5 0.166 0.017 -2.548 2.089 4808.2 493.277 -3.241 2.089 6516.8 493.277
1 0.164 0.018 -2.908 2.446 4723.1 506.049 -3.602 2.446 6601.9 506.049

TABLE A4 Complete results for Experiment with varying L1 penalization, as described in Section 4.3.

Wasserstein Wilc. log(p-value) Wilc. Stat Wilc. two-sided log(p-value) Wilc. two-sided Stat
s mean std mean std mean std mean std mean std
0.01 0.158 0.024 -29.89 4.412 1710.4 312.218 -30.583 4.412 9614.6 312.218
0.1 0.154 0.023 -28.747 4.563 1794.7 349.391 -29.44 4.563 9530.3 349.391
0.3 0.162 0.021 -31.222 3.182 1612.2 222.317 -31.916 3.182 9712.8 222.317
0.5 0.178 0.025 -34.233 4.595 1414.5 313.897 -34.926 4.595 9910.5 313.897
0.7 0.202 0.034 -38.67 6.634 1138.4 412.989 -39.363 6.634 10186.6 412.989
1 0.247 0.047 -46.905 7.132 653.1 405.855 -47.598 7.132 10671.9 405.855
1.5 0.352 0.075 -54.656 3.738 225.1 194.991 -55.35 3.738 11099.9 194.991
2 0.486 0.108 -58.02 1.855 51.4 94.669 -58.713 1.855 11273.6 94.669
3 0.783 0.165 -59.004 0.076 1.5 3.808 -59.697 0.076 11323.5 3.808
5 1.271 0.168 -59.026 0.019 0.4 0.966 -59.72 0.019 11324.6 0.966
10 2.133 0.292 -59.032 0.006 0.1 0.316 -59.726 0.006 11324.9 0.316

TABLE A5 Complete results for Experiment on Robustness to Class Separation s, as described in Section 4.4

Wasserstein Wilc. log(p-value) Wilc. Stat Wilc. two-sided log(p-value) Wilc. two-sided Stat FSP
Class Weights mean std mean std mean std mean std mean std mean std

[0.9, 0.1] 0.261 0.05 -55.394 3.929 187.5 208.349 -56.087 3.929 11137.5 208.349 1 0
[0.95, 0.05] 0.244 0.042 -47.188 6.177 633.3 346.259 -47.881 6.177 10691.7 346.259 1 0
[0.97, 0.03] 0.246 0.04 -39.776 5.598 1065.9 351.498 -40.469 5.598 10259.1 351.498 0.987 0.028
[0.99, 0.01] 0.265 0.062 -27.001 5.822 1930.1 431.071 -27.694 5.822 9394.9 431.071 0.893 0.095

TABLEA6 Complete results for Robustness to class imbalance experiment, as described in Section 4.4. FS Performance (FSP)
is defined as the proportion of useful features selected among all selected features with � = 0.9 (i.e. 15 features).

• the DSAE was trained with the Adam optimization algorithm (learning_rate = 0.001, �1 = 0.9, �2 = 0.999). We decided
not to optimize these hyperparameters because of computational time of the experiments. Therefore we kept them as the
default standard suggested by literature when analyzing all the four different datasets.



24 Massi M.C. ET AL

TA
BL

E
B7

De
tai

lso
fth

ea
rch

ite
ctu

ral
and

of
the

im
ple

me
nta

tio
na

re
rep

ort
ed

her
efo

rth
efo

ur
ana

lys
ed

dat
ase

ts.
Th

ef
un
cti
on

tan
hi
sth

eh
yp
erb

oli
cta

nge
nt,

the
Re

Lu
ist

he
Re

cti
fie

dL
ine

ar
Un

itf
un
cti
on
.E

nc
.se

cti
on

of
the

tab
le

rep
ort

st
he

enc
od
er

arc
hit

ect
ure

,w
hil

eD
ec
.d

eta
ils

the
dec

od
er.

Th
eb

ott
om

par
to

fth
et

abl
e(

Tr
ai
n.
)

rep
ort

sd
eta

ils
on

the
tra

ini
ng

pro
ced

ure
(nu

mb
er

of
epo

chs
,b
atc

hs
ize

and
nu
mb

er
of

ens
em

ble
com

po
nen

tsB
).

IS
O
LE

T
G
IS
ET

TE
M
N
IS
T

F-
M
N
IS
T

EP
.S

EI
ZU

R
E

En
c.

No
des

61
7-6

00
-50

0-2
50
-20

0
50
00
-10

00
-50

0-2
50
-25

0
78
4-7

00
-50

0-2
50
-20

0
78
4-7

00
-50

0-2
50
-20

0
17
8-1

32
-64

-32
Ac

t.
fun

ct.
tan

h-t
anh

-ta
nh
-Re

Lu
sig

mo
id-

sig
mo

id-
Re

Lu
-Re

Lu
sig

mo
id

tan
h-t

anh
-ta

nh
-Re

Lu
tan

h

De
c.

No
des

25
0-5

00
-60

0-6
17

25
0-5

00
-10

00
-50

00
25
0-5

00
-70

0-7
84

25
0-5

00
-70

0-7
84

64
-13

2-1
78

Ac
t.

fun
ct.

tan
h

Re
Lu

-si
gm

oid
-si

gm
oid

-si
gm

oid
sig

mo
id

tan
h

tan
h

Tra
in.

Ep
och

s
10
0

50
50

10
0

20
0

Ba
tch

sz.
10

10
00

10
0

10
0

10
00

B
25

25
50

50
30



Massi M.C. ET AL 25

References

[1] Aggarwal, C. C., 2015: Outlier analysis. Data mining, Springer, 237–263.
[2] Ali, A., S. M. Shamsuddin, A. L. Ralescu, et al., 2015: Classification with class imbalance problem: a review. Int. J.

Advance Soft Compu. Appl, 7, no. 3, 176–204.
[3] Andrzejak, R. G., K. Lehnertz, F. Mormann, C. Rieke, P. David, and C. E. Elger, 2001: Indications of nonlinear determin-

istic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain
state. Physical Review E, 64, no. 6, 061907.

[4] Annemans, L., K. Redekop, andK. Payne, 2013: Current methodological issues in the economic assessment of personalized
medicine. Value in Health, 16, no. 6, S20–S26.

[5] Anwar, N., G. Jones, and S. Ganesh, 2014: Measurement of data complexity for classification problems with unbalanced
data. Statistical Analysis and Data Mining: The ASA Data Science Journal, 7, no. 3, 194–211.

[6] Austin, E., W. Pan, and X. Shen, 2013: Penalized regression and risk prediction in genome-wide association studies.
Statistical Analysis and Data Mining: The ASA Data Science Journal, 6, no. 4, 315–328.

[7] Baldi, P., 2012: Autoencoders, unsupervised learning, and deep architectures. Proceedings of ICML workshop on
unsupervised and transfer learning, 37–49.

[8] Balın, M. F., A. Abid, and J. Zou, 2019: Concrete autoencoders: Differentiable feature selection and reconstruction. Pro-
ceedings of the 36th International Conference on Machine Learning, PMLR, Long Beach, California, USA, volume 97,
444–453.
URL http://proceedings.mlr.press/v97/balin19a.html

[9] Chandra, B. and R. K. Sharma, 2015: Exploring autoencoders for unsupervised feature selection. 2015 International Joint
Conference on Neural Networks (IJCNN), IEEE, 1–6.

[10] Chen, J., S. Sathe, C. Aggarwal, and D. Turaga, 2017: Outlier detection with autoencoder ensembles. Proceedings of the
2017 SIAM international conference on data mining, SIAM, 90–98.

[11] Chen, X.-w. and M. Wasikowski, 2008: Fast: a roc-based feature selection metric for small samples and imbalanced data
classification problems. Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and
data mining, ACM, 124–132.

[12] Chen, Z., C. K. Yeo, B. S. Lee, C. T. Lau, and Y. Jin, 2018: Evolutionary multi-objective optimization based ensemble
autoencoders for image outlier detection. Neurocomputing, 309, 192–200.

[13] Cuaya, G., A. Munoz-Meléndez, and E. F. Morales, 2011: A minority class feature selection method. Iberoamerican
Congress on Pattern Recognition, Springer, 417–424.

[14] Dietterich, T. G., 2000: Ensemble methods in machine learning. International workshop on multiple classifier systems,
Springer, 1–15.

[15] Fanty, M. and R. Cole, 1991: Spoken letter recognition. Advances in Neural Information Processing Systems, 220–226.
[16] Feng, S. and M. F. Duarte, 2018: Graph autoencoder-based unsupervised feature selection with broad and local data

structure preservation. Neurocomputing, 312, 310–323.
[17] Guyon, I. and A. Elisseeff, 2003: An introduction to variable and feature selection. Journal of machine learning research,

3, no. Mar, 1157–1182.
[18] Guyon, I., S. Gunn, A. Ben-Hur, and G. Dror, 2005: Result analysis of the nips 2003 feature selection challenge. Advances

in neural information processing systems, 545–552.

http://proceedings.mlr.press/v97/balin19a.html


26 Massi M.C. ET AL

[19] Guyon, I., S. Gunn, A. B. Hur, and G. Dror, 2006: Design and analysis of the nips2003 challenge. Feature extraction,
Springer, 237–263.

[20] Guyon, I., J. Weston, S. Barnhill, and V. Vapnik, 2002: Gene selection for cancer classification using support vector
machines. Machine learning, 46, no. 1-3, 389–422.

[21] Han, K., Y. Wang, C. Zhang, C. Li, and C. Xu, 2018: Autoencoder inspired unsupervised feature selection. 2018 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2941–2945.

[22] He, J. and J. Carbonell, 2010: Coselection of features and instances for unsupervised rare category analysis. Statistical
Analysis and Data Mining: The ASA Data Science Journal, 3, no. 6, 417–430, doi:https://doi.org/10.1002/sam.10091.
URL https://onlinelibrary.wiley.com/doi/abs/10.1002/sam.10091

[23] Hinton, G. E. and R. R. Salakhutdinov, 2006: Reducing the dimensionality of data with neural networks. science, 313, no.
5786, 504–507.

[24] Hira, Z. M. and D. F. Gillies, 2015: A review of feature selection and feature extraction methods applied on microarray
data. Advances in bioinformatics, 2015.

[25] Jung, L. C., H. Wang, X. Li, and C. Wu, 2020: A machine learning method for selection of genetic variants to increase
prediction accuracy of type 2 diabetes mellitus using sequencing data. Statistical Analysis and Data Mining: The ASA Data
Science Journal, 13, no. 3, 261–281.

[26] Kerns, S. L., L. Dorling, L. Fachal, S. Bentzen, P. D. Pharoah, D. R. Barnes, A. Gómez-Caamaño, A. M. Carballo, D. P.
Dearnaley, P. Peleteiro, et al., 2016: Meta-analysis of genome wide association studies identifies genetic markers of late
toxicity following radiotherapy for prostate cancer. EBioMedicine, 10, 150–163.

[27] Kieu, T., B. Yang, C. Guo, and C. S. Jensen, 2019: Outlier detection for time series with recurrent autoencoder ensembles.
IJCAI, 2725–2732.

[28] Lal, T. N., O. Chapelle, J. Weston, and A. Elisseeff, 2006: Embedded methods. Feature extraction, Springer, 137–165.
[29] LeCun, Y., C. Cortes, and C. J. Burges, 2010: Mnist handwritten digit database. Http://yann.lecun.com/exdb/mnist.
[30] Liang, Z. and T. Zhao, 2006: Feature selection for linear support vector machines. 18th International Conference on Pattern

Recognition (ICPR’06), IEEE, volume 2, 606–609.
[31] Liu, H. and H. Motoda, 2007: Computational methods of feature selection. CRC Press.
[32] Liu, M., C. Xu, Y. Luo, C. Xu, Y. Wen, and D. Tao, 2017: Cost-sensitive feature selection by optimizing f-measures. IEEE

Transactions on Image Processing, 27, no. 3, 1323–1335.
[33] Liu, Y., Y. Wang, X. Ren, H. Zhou, and X. Diao, 2019: A classification method based on feature selection for imbalanced

data. IEEE Access, 7, 81794–81807.
[34] Ma, Y., P. Zhang, Y. Cao, and L. Guo, 2013: Parallel auto-encoder for efficient outlier detection. 2013 IEEE International

Conference on Big Data, IEEE, 15–17.
[35] Maldonado, S., R. Weber, and F. Famili, 2014: Feature selection for high-dimensional class-imbalanced data sets using

support vector machines. Information Sciences, 286, 228–246.
[36] Massi,M. C., F. Gasperoni, F. Ieva, A.M. Paganoni, P. Zunino, A.Manzoni, N. R. Franco, L. Veldeman, P. Ost, V. Fonteyne,

et al., 2020: A deep learning approach validates genetic risk factors for late toxicity after prostate cancer radiotherapy in a
requite multi-national cohort. Frontiers in oncology, 10.

[37] Mazurowski, M. A., P. A. Habas, J. M. Zurada, J. Y. Lo, J. A. Baker, and G. D. Tourassi, 2008: Training neural network
classifiers for medical decision making: The effects of imbalanced datasets on classification performance.Neural networks,
21, no. 2-3, 427–436.

https://onlinelibrary.wiley.com/doi/abs/10.1002/sam.10091


Massi M.C. ET AL 27

[38] Nie, F., H. Huang, X. Cai, and C. H. Ding, 2010: Efficient and robust feature selection via joint l2, 1-norms minimization.
Advances in neural information processing systems, 1813–1821.

[39] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, 2011: Scikit-learn:
Machine Learning in Python . Journal of Machine Learning Research, 12, 2825–2830.

[40] Protopapadakis, E., A. Voulodimos, A. Doulamis, N. Doulamis, D. Dres, and M. Bimpas, 2017: Stacked autoencoders for
outlier detection in over-the-horizon radar signals. Computational intelligence and neuroscience, 2017.

[41] Sánchez-Maroño, N., A. Alonso-Betanzos, and M. Tombilla-Sanromán, 2007: Filter methods for feature selection–a
comparative study. International Conference on Intelligent Data Engineering and Automated Learning, Springer, 178–187.

[42] Sarvari, H., C. Domeniconi, B. Prenkaj, and G. Stilo, 2019: Unsupervised boosting-based autoencoder ensembles for
outlier detection. arXiv preprint arXiv:1910.09754.

[43] Thabtah, F., S. Hammoud, F. Kamalov, and A. Gonsalves, 2020: Data imbalance in classification: Experimental evaluation.
Information Sciences, 513, 429–441.

[44] Vallender, S., 1974: Calculation of the wasserstein distance between probability distributions on the line. Theory of
Probability & Its Applications, 18, no. 4, 784–786.

[45] Wasikowski, M. and X.-w. Chen, 2009: Combating the small sample class imbalance problem using feature selection.
IEEE Transactions on knowledge and data engineering, 22, no. 10, 1388–1400.

[46] Wei, W., J. Li, L. Cao, Y. Ou, and J. Chen, 2013: Effective detection of sophisticated online banking fraud on extremely
imbalanced data. World Wide Web, 16, no. 4, 449–475.

[47] Xiao, H., K. Rasul, and R. Vollgraf, 2017: Fashion-mnist: a novel image dataset for benchmarking machine learning
algorithms. Https://research.zalando.com/welcome/mission/research-projects/fashion-mnist/.

[48] Yin, L., Y. Ge, K. Xiao, X. Wang, and X. Quan, 2013: Feature selection for high-dimensional imbalanced data.
Neurocomputing, 105, 3–11.

[49] Yousefi-Azar, M., V. Varadharajan, L. Hamey, and U. Tupakula, 2017: Autoencoder-based feature learning for cyber
security applications. 2017 International joint conference on neural networks (IJCNN), IEEE, 3854–3861.

[50] Yu, L., Z. Zhang, X. Xie, H. Chen, and J. Wang, 2019: Unsupervised feature selection using rbf autoencoder. International
Symposium on Neural Networks, Springer, 48–57.

[51] Zhang, C., G. Wang, Y. Zhou, L. Yao, Z. L. Jiang, Q. Liao, and X. Wang, 2017: Feature selection for high dimensional
imbalanced class data based on f-measure optimization. 2017 International Conference on Security, Pattern Analysis, and
Cybernetics (SPAC), IEEE, 278–283.

[52] Zhang, H., 2005: Exploring conditions for the optimality of naive bayes. International Journal of Pattern Recognition and
Artificial Intelligence, 19, no. 02, 183–198.

[53] Zheng, Z., X. Wu, and R. Srihari, 2004: Feature selection for text categorization on imbalanced data. ACM Sigkdd
Explorations Newsletter, 6, no. 1, 80–89.

[54] Zhu, Z.-B. and Z.-H. Song, 2010: Fault diagnosis based on imbalance modified kernel fisher discriminant analysis.
Chemical Engineering Research and Design, 88, no. 8, 936–951.



MOX Technical Reports, last issues
Dipartimento di Matematica

Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

80/2021 Sollini, M., Bartoli, F., Cavinato, L., Ieva, F., Ragni, A., Marciano, A., Zanca, R., Galli, L., Paiar, F., Pasqualetti , F. and Erba P. A.
[18F]FMCH PET/CT biomarkers and similarity analysis to refine the
definition of oligometastatic prostate cancer

78/2021 Bucelli, M.; Dede', L.; Quarteroni, A.; Vergara, C.
Partitioned and monolithic algorithms for the numerical solution of cardiac
fluid-structure interaction

79/2021 Ferraccioli, F.; Sangalli, L.M.; Finos, L. 
Some first inferential tools for spatial regression with differential
regularization

76/2021 Ponti, L.; Perotto, S.; Sangalli, L.M.
A PDE-regularized smoothing  method for space-time data over manifolds
with application to medical data

77/2021 Guo, M.; Manzoni, A.; Amendt, M.; Conti, P.; Hesthaven, J.S.
Multi-fidelity regression using artificial neural networks: efficient
approximation of parameter-dependent output quantities

73/2021 Marcinno, F.; Zingaro, A.; Fumagalli, I.; Dede', L.; Vergara, C.
A computational study of blood flow dynamics in the pulmonary arteries

75/2021 Cicci, L.; Fresca, S.; Pagani, S.; Manzoni, A.; Quarteroni, A.
Projection-based reduced order models for parameterized nonlinear
time-dependent problems arising in cardiac mechanics

74/2021 Orlando,G.; Barbante, P. F.; Bonaventura, L.
An efficient IMEX-DG solver for the compressible Navier-Stokes equations
with a general equation of state

71/2021 Franco, N.; Manzoni, A.; Zunino, P.
A Deep Learning approach to Reduced Order Modelling of parameter
dependent Partial Differential Equations

72/2021 Fresca, S.; Manzoni, A.
POD-DL-ROM: enhancing deep learning-based reduced order models for
nonlinear parametrized PDEs by proper orthogonal decomposition


	qmox81-copertina
	mox-2021112975523
	Feature Selection for Imbalanced Data with Deep Sparse Autoencoders Ensemble
	Abstract
	Introduction
	Related Works
	Feature Selection for Imbalanced Data
	AutoEncoder-based Feature Selection

	DSAE Ensemble (DSAEE) For Minority Class Feature Selection
	Problem Statement
	Background: AutoEncoders and Deep Sparse AutoEncoders
	The Ensemble Algorithm
	Computational Complexity

	Simulation Study
	Experimental Setting
	Distribution of bold0mu mumu dotted elements and Relevant Feature Selection
	On Sparsity of the Hidden Layer
	On Robustness to Class Separability and Class Imbalance

	Experiments with Benchmark and Real Data
	Datasets and Performance Measures
	Classification Performance of Selected Feature Subsets
	Feature Selection Benchmarking Experiment
	Interpretability
	Case Study application in Radiogenomics

	Discussion and Conclusions
	Acknowledgments
	Appendix
	SIMULATION STUDY SUPPLEMENTARY MATERIAL
	Simulated Data 
	Implementation and Architectural Details
	Further Results

	DSAEE Architectural and Implementation Details for Real Data Experiments 
	References


	qmox81-terza_di_copertina

