MODELLISTICA E CALCOLO SCIENTIFICO

MODELING AND SCIENTIFIC COMPUTING

MOX-Report No. 81/2020

Stability analysis of polytopic Discontinuous Galerkin
approximations of the Stokes problem with applications
to fluid-structureinteraction problems

Antonietti, P. F.; Mascotto, L.; Verani, M.; Zonca, S.

MOX, Dipartimento di Matematica
Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

mox-dmat@polimi.it http://mox.polimi.it



Stability analysis of polytopic Discontinuous Galerkin
approximations of the Stokes problem with applications to
fluid-structure interaction problems

Paola F. Antonietti? and Lorenzo Mascotto’ and Marco Verani? and Stefano Zoncal

December 2, 2020

¥ MOX — Modelling and Scientific Computing
Dipartimento di Matematica, Politecnico di Milano
Piazza Leonardo da Vinci, 20133 Milano, Italy
paola.antonietti@polimi.it
marco.verani@polimi.it
stefano.zonca@polimi.it

® Fakultiit fiir Mathematik, Universitit Wien, Austria
lorenzo.mascotto@univie.ac.at

Keywords: discontinuous Galerkin; polytopic meshes; fluid-structure interaction.

Abstract

We present a stability analysis of the Discontinuous Galerkin method on polygonal
and polyhedral meshes (PolyDG) for the Stokes problem. In particular, we analyze the
discrete inf-sup condition for different choices of the polynomial approximation order of
the velocity and pressure approximation spaces. To this aim, we employ a generalized
inf-sup condition with a pressure stabilization term. We also prove a priori hp-version
error estimates in suitable norms. We numerically check the behaviour of the inf-
sup constant and the order of convergence with respect to the mesh configuration, the
mesh-size, and the polynomial degree. Finally, as a relevant application of our analysis,
we consider the PolyDG approximation for a fluid-structure interaction problem and
we numerically explore the stability properties of the method.



1 Introduction

It is well known that a crucial aspect involving the stability of the numerical scheme
associated with the Stokes problem is the inf-sup condition that establishes a constraint
in the choice of the velocity and pressure discrete spaces; see, e.g, [19, 13]. This aspect,
in the context of polygonal methods, is still under investigation and only few results are
present in the literature; see, e.g., [26, 29, 12, 28].

The Discontinuous Galerkin (DG) method handles meshes with elements of general
shape and has proved to be suited for the approximation of fluid and structure models,
possibly involving moving domains, see, e.g. [32, 54]. The discrete inf-sup condition for
DG methods has been analyzed in the following works. In [26], the Local DG method
for the Stokes problem is formulated in a conservative way, by introducing the stress as
unknown. Here, meshes with hanging nodes and elements of different shape are considered,
provided that they are affinely-equivalent to an element of a fixed set of reference elements.
Moreover, an inf-sup condition and optimal order estimates are proven, when the pair of
polynomials of degree k and k — 1 is chosen for the velocity and pressure spaces. However,
the formulation requires a stability term for both the velocity and the pressure. In [49],
the inf-sup condition is proven for a pressure stabilized formulation on hexahedral meshes
allowing hanging nodes, when the pair Qi — Q is chosen. In [29, 30], the authors show the
inf-sup condition for equal-order approximation Py for both the velocity and pressure in the
case of a pressure stabilized formulation on meshes consisting of elements of various shape,
provided that each element is affinely-equivalent to one in a fixed set of reference elements,
and admitting hanging nodes. In [48], the authors propose a mixed DG formulation
without pressure stabilization for the Stokes problem and show a priori error estimates.
The inf-sup condition is proven for the pair of spaces Qi —Qr_1 on tensor product meshes,
possibly with hanging nodes. In [58], the inf-sup condition is proven for the pairs of
spaces Qr — Qr_1 and Qi — Qr_o without any pressure stabilization on quadrilateral and
hexahedral meshes with hanging nodes; see also [52, 47, 59]. Numerical tests showing the
dependence of the inf-sup constants are performed for the pairs of spaces Qr — Qpr, with
K =k, k—1,k— 2. In [41], the inf-sup condition is proven on triangular and tetrahedral
meshes without any pressure stabilization term for the pair of spaces P —Pr_1 employing
the Brezzi-Douglas-Marini spaces. In [37], the pair of spaces Py, — Py with the Crouzeix-
Raviart elements is used to prove the inf-sup condition on triangular meshes.

In this work, we consider the Discontinuous Galerkin method on polygonal and poly-
hedral grids (PolyDG) that extends the standard DG method to polytopic meshes; see,
e.g., [10, 5, 60, 25, 3, 23, 6, 4]. In this framework, we study the discrete stability and
well-posedness for the Stokes problem, by presenting an analysis that covers at once the
two- and three- dimensional cases. Under suitable assumptions, we prove that the inf-sup
constant is independent of the mesh size. Notwithstanding, it is not robust with respect
to the polynomial degree and this restriction propagates to the convergence analysis, with
a deterioration of the convergence in terms of the polynomial degree. However, we pro-
vide numerical evidence that the discrete inf-sup constant has a much milder dependence



on the polynomial degree in practice. Moreover, the mesh assumptions seem to be too
restrictive and, in fact, the method results to be inf-sup stable also for pathological config-
urations. In the two-dimensional case, we numerically assess the robustness of the inf-sup
constant with respect to the mesh size and the polynomial degree for different types of
mesh elements, including elements with degenerating edges, and we numerically estimate
the order of convergence to the mesh size and the polynomial degree.

Besides, with the aim of further exploring the relevance of our stability analysis, we
consider a fluid-structure interaction (FSI) problem where both the Stokes and the elas-
todynamics equations are solved based on employing the PolyDG method. In fact, it is
well known that the study of FSI problems is of paramount importance in many engi-
neering and biomedical applications; see, e.g., [43, 17, 61, 56, 36, 46], where a fluid, for
instance modeled via the Stokes equations, interacts with a structure, modeled via the
elastodynamics equations. In particular, a special class of FSI applications that requires
a lot of effort from the numerical viewpoint arises under the large deformations condition
occurring in time-dependent processes. Indeed, to correctly model such problems, ad-hoc
techniques are mandatory to deal with the movement of the structures. A classical strat-
egy to overcome this issue is the employment of the Arbitrary Lagrangian Eulerian (ALE)
approach. It consists in deforming the fluid grid according to the structure displacement,
yet maintaining a “honouring” mesh at the fluid-structure interface and generating an ar-
bitrary deformation of the elements in the interior of the fluid mesh; see, e.g., [31, 42, 55].
Another way that preserves the alignment of the fluid and structure grids at the inter-
face is to use approaches based on remeshing and mesh-adaptation techniques; see, e.g.,
[57, 16]. A different category of approaches are based on employing unfitted meshes that
allow to keep the fluid grid fixed in time, while the structure mesh is free to move; see,
e.g., [38, 45, 62, 35, 39, 15, 44, 27, 2, 14, 34, 1, 20]. Often, this requires the handling
of polygonal and polyhedral elements appearing in the fluid mesh, e.g., due to the inter-
section between the fluid and structure elements, and in the solid mesh, e.g., due to the
presence of hanging nodes; see, e.g., [7, 11]. For this kind of approaches, it is mandatory
that the underlining discretization methods can robustly and efficiently support meshes
made of arbitrarily shaped elements. In this respect, a deep understanding of the stabil-
ity properties of the numerical scheme with respect to possibly pathological meshes is of
crucial importance.

The paper is organized as follows. Section 2 introduces the transient Stokes prob-
lem and its PolyDG approximation. In Section 3, we prove the well-posedness of the
PolyDG approximation of the (stationary) Stokes problem, with a particular emphasis to
the discrete inf-sup condition. In particular, in Section 4 we estimate the discrete inf-
sup constant and numerically evaluate it for different choices of the discrete velocity and
pressure spaces and for different grids. Section 5 is devoted to the proof of a priori error
estimates of the Stokes problem. In Section 6, we introduce a fluid-structure interaction
problem and we present its fully-discrete PolyDG approximation. In Section 7 we show
some numerical results for the Stokes and FSI problems. Finally, in Section 8, we draw
some conclusions.



In the sequel, the notation < and 2 means that the inequalities are valid up to mul-
tiplicative constants that are independent of the discretization parameters, but might
depend on the physical parameters of the underlying problem.

2 The transient Stokes problem

Having in mind the PolyDG discretization of FSI problems as a reference application, in
this section we consider the transient Stokes problem which reads as follows: given a final
time T' > 0 and f a (regular) forcing term, find the velocity w = w(t) and the pressure
p = p(t) such that, for all ¢ € (0,7,

pou — pAu+ Vp = f in , (1a)
Vou=0 in Q, (1b)
u=0 on 0f. (1c)
Problem (1) is supplemented with sufficiently regular initial conditions u(z,0) = u%(x)

in Q. To guarantee the well-posedness of the problem, we prescribe that p € L3(Q),
where L3(Q) is the space of L?(Q) functions with zero average over 2.
We introduce the functional spaces

V ={v e [H'(Q)]% d = 2,3, such that v|so = 0}
and Q = L%(Q) and endow them with the norms

1
[ollv == [[p2 Vol 2 and lgllq = llgllL2(0)-

The weak formulation of problem (1) reads as follows: find (u,p) € V' x @, such that, for
all ¢t € (0,77,

(patuvv)ﬂ + a(uvv) + b(pvv) - b(qvu) = (fav)Q \V/(’U,Q) eV x Qa (2)
where
a:VxV =R, a(u,v)—/,uVu:Vv,
Q

b:Q xV =R, b(p,v):—/pV~'v,
Q

and (-,-)q denotes the L2-inner product over the domain €.

It is well-known that the bilinear form b(-,-) satisfies a continuous inf-sup condition;
see, e.g., [13]. More precisely, there exists a universal positive constant depending only
on  such that, to all ¢ € L3(Q), we associate a function vy € V satisfying V- v, = ¢ and

Bllvgllv < ligllz2e)- (3)
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2.1 PolyDG semi-discrete approximation of the transient Stokes prob-
lem

First, we introduce the necessary notation and key analytical results required for the
definition and analysis of PolyDG semi-discrete approximation of the transient Stokes
problem.

We introduce a mesh 7} composed of polytopic elements K of arbitrary shape. We
indicate with hg the diameter of the element K. We define an interface to be either the
intersection of the (d—1)-dimensional facets of two neighboring elements or the intersection
of the (d — 1)-dimensional facets of an element with the boundary of 2. When d = 2,
interfaces coincide with faces and consist of line segments; when d = 3, we assume that
each interface consists of a general planar polygon that we assume that can be further
decomposed into a set of co-planar triangles, denoted as faces.

With this notation, we collect all the (d — 1)-dimensional faces in the set Fp, i.e., any
face F € Fj, is always defined as a set of (d — 1)-dimensional simplices (line segments
or triangles); cf. [25, 24]. We also decompose the faces Fj, into Fj, = Fi U Fy, where
]-'ﬁ denotes the set of interior faces and ]-';z denotes the set of boundary faces. To avoid
technicalities, in the following we assume that p and p are piecewise constant over the
mesh.

For given integers ¢,m > 1, we introduce the DG finite element spaces
Vi ={v e [L*Q)¢: v|x € [PHK)]? VK € Tp},
w=1{e¢€ L§(Q) : qdlx € P"(K) VK € Tn},

where P¥(K), k > 1, denotes the space of polynomials defined over the element K € T,
of total degree at most k. In practice, the shape functions and the degrees of freedom are
directly generated on the physical element K € T, with the “bounding box” technique;
see, e.g., [25].

On any interior face F € ]-',?L and for sufficiently regular scalar, vector-valued and
symmetric tensor-valued functions ¢, v and T, respectively, we define the average and
Jump operators as

1 _ -
{o} =5 (" +v7), [ =¢*n* +q™n7,
1
{T}:§(T++T_), [v]=v ont +v  on",

where ¢, v* and T* denote the traces of ¢, v and T on F taken within the interior
of K* and where v ® n = (vn”? + nv’)/2. The jump [v] is a symmetric tensor-valued
function. On a boundary face F' € }"g, we set analogously

{v}=w, [q] = gn,
{T} =T, [v] =v o n.



We also introduce the L2-inner products over a domain Z C R?% d = 1,2, 3, and a face
F € F}, with the shorthand notation (-, )z and (-, -)r, respectively.

Given s > 1/2, associated with any mesh 7}, we introduce the broken Sobolev space
H*(Tp) = {v e L*(Q) | v|g € H*(K) for all K € Tp,} .

The standard Dirichlet trace operator is well defined on the skeleton of the mesh for
functions in H*(7y,).
Define the stabilization functions o, € L*(F},) and o, € L*(F}) as follows.

Definition 2.1 We define the functions o, : Fj, = R and o), : ]-",i — R as

2
Yy Max {M} FG]:,’;,

- ‘ hy ,
oulr = @;’K e oplr =y min. {m } FeF,
Vo— F e F?, ’
hi

where v, and 7y, are two universal positive constants.

Next, we introduce three bilinear forms that are instrumental for the construction of
the DG method. More precisely, we consider aj : [H'(T3)]¢ x [HY(Tp)] — R, by :
H2T(Q) x [HY(T)]? = R, and s), : H2T(Q) x H2T(Q) — R, for all € > 0, defined as

on(u.0) = [ §¥i: Vi po} [ 1V : o] (4a)

> [ nlul s (i) + > [ oot s ol (4b)
i) == [ oVh-v+ > [ o1y bl (40)
s (0, 4) = FZ; [ obl- . (4d)

where V}, is the piecewise broken gradient operator.
Given f € [L%(€2)]%, the semi-discrete PolyDG approximation of (2) reads as follows:
for any t € (0,71, find (up,pn) € VfL x Q7" such that

(POsun, vh)q + an (W, vy) + by (Ph,vR) — bp (g, un) + Su (Prsan) = (frvn)a (5)

for all (vp,qn) € Vf; X Q.



3 Well-posedness of the stationary Stokes problem

In this section, we prove the well-posedness of problem (5) in the stationary case making
use of the Banach-Necas-Babuska theorem.
To this aim, we first introduce

Bh((uvp)v (Ua Q)) = ah(u’v) + bh(pvv) - bh(Qv u) + sh(pv Q)’ F((’U, Q)) = (f,’U)Q, (6)

and re-write the stationary discrete Stokes problem as follows: find (up,pp) € V§ x Q7
such that

Bi((wn,pn), (vnsan)) = F(vn,an))  V(on,an) € Vi, x QF. (7)

On the product space VfL X Qp', we define the norm

(on, an)lls = lonllve + llanllay — V(on,an) € Vi x QR (8)
where ) )
2 4
||’Uh||v£ = Z ||N1/2vhvh“L2(K) + ”05/2 [['Uhﬂ”p(]:h) Yoy € Vi,
KeTy (9)
lanligr = llanl7z) + lanl3  lanls = snansan)  Van € Qi

Before presenting the theoretical analysis, we introduce some mesh assumptions and tech-
nical results that will be needed in the forthcoming analysis.

3.1 Mesh assumptions and preliminary results

Following [25, 21, 4], we introduce the notion of a family of polytopic-regular meshes Tj,.
To this end, we write 7, to denote a d-dimensional simplex contained in K € 7Tj, which
shares a specific face F' C 0K, F € Fy,.

Definition 3.1 A family of polytopic meshes {Ty},, is said to be polytopic-regular if, for
any h and K € Ty, there exists a set of non-overlapping (not necessarily shape-regular)
d-dimensional simplices {7k, }rcox contained in K, such that, for all faces FF C 0K,

1T
hy < el
|F|

The hidden constant is independent of the discretization parameters, the number of faces
of the element, and the face measure.

This definition is very general as it does not require any restriction on either the number
of faces per element or their relative measure. In particular, it allows the size of a face
F C OK to be arbitrarily small compared to the diameter of the element hg it belongs to,
provided that the height of the corresponding simplex 7y, is comparable to hg; cf. [24]
for more details.



In order to state suitable approximation results, cf. Lemmata 3.2 and 3.3 below
and [25], we introduce a shape-regular covering 771# = {Tk} of Tp defined as a set of
shape-regular d-dimensional simplices Tk, such that, for each K € Ty, there exists a
Tk € 771# such that K C Tk.

We introduce the following assumption on the mesh Tp; cf. [25, 24].

Assumption 3.1 Given {74}, h > 0, we assume that the following properties are uni-
formly satisfied:

A.1 Ty is uniformly polytopic-regular in the sense of Definition 3.1;

A.2 we assume that there exists a shape-regular covering ’7;L# of Tn, such that, for each
pair K € Ty, K € 7;L# with K C IC, the following properties are fulfilled: 1) hx < hi
and ii) maxgeT;, card{K’ € T, : K' NK #0,K € T# KcKk}<1;

A.3 for any pair of elements K, K' € T, sharing a face F € Fy, we have: hxg < hg
and hgr < hg, where the hidden constants are independent of the discretization
parameters as well as the number of faces of the two elements.

The local bounded variation hypothesis A.3 has been introduced so as to avoid technical-
ities.

The following trace-inverse inequality is valid; see, e.g., [24, Lemma 11].
Lemma 3.1 (Polynomial trace inverse inequality) Let Assumption A.1 be valid.

For each K € T, the following trace-inverse inequality is valid:

2
r T

HUH%Q(aK) S T HUH%?(K) Yoe P (K), r=>1,
K

where the hidden constant is independent of r, hx, and the number of faces of the element.

Let £ : H*(Q) — H*(R?), s > 0, be the Stein extension operator for Sobolev spaces
on Lipschitz domains introduced in [51, Chapter 3]. The operator £ satisfies the following
property: given a domain 2 with Lipschitz boundary, for all ¢ € H*(Q),

£(@le =g, 1€l s may S llall s (- (10)

For vector-valued functions, the Stein extension operator is defined component-wise. We
recall the following approximation result; see, e.g., [25, 21, 24] for a detailed proof, which
generalizes the standard arguments for standard geometries [8, 9].

Lemma 3.2 (Best polynomial approximation in Sobolev norms)
Let Assumption A.2 be valid. Given the Stein extension operator £ in (10), let v € L? ()



be such that (Ev) |k € H"(K), for somer > 0. Then, there exists a sequence of polynomial
approzimations Mv € Py(K) of v, K € T, and £ € N of v satisfying

min {¢{+1,r}—q
¢
o =gl ragrey S KET—,QHEUHHT(IC)v O0<g=rm,

where KC € ’771# is the d-simplex of 7;1# such that K C K. Moreover, if v € H* () is such
that (Ev) |k € H"(K), for some r > 1, then we have
hmin{ﬁ-{-l,r}—l/?

lv = o[l 205y S Kgr_—l/gHSUHHT(IC)a r>1

The hidden constants are independent of the discretization parameters as well as the num-
ber of faces of the element.

Based on employing the above result, we define the global polynomial approximation

operator ITfv as
(HZU”K = Hﬁ((vh{) VK € Tp.
For vector-valued functions, the operators H% and IT¢ are defined component-wise and are

still denoted by Hﬁ( and IT¢, respectively.
We have the following approximation bound in the energy norm (9).

Lemma 3.3 (Best polynomial approximation in the DG norm)
Let Assumption 3.1 be valid. Let v € [L? (Q)]? be such that, for some r > 1, (Ev) |k €
[H"(K)]? for all K € 72#7 r > 1. Then, we have

hZ(min {l+1,r}-1)

2,112 K 2
H’U —1I ’UHVfL S Z EQ(T’—I)—I HgvHH’”(K:)
KeTh

The hidden constants are independent of the discretization parameters as well as the num-
ber of faces of each element.

The suboptimality in terms of the polynomial degree in the estimates of Lemma 3.3 is due
to the presence of the stabilization term and the suboptimality of the polynomial trace
inverse estimate of Lemma 3.1.

Finally, we recall the following continuity and coercivity bounds for the bilinear form
ap(+,-). The proof is based upon employing the trace-inverse estimate in Lemma 3.1 and
standard arguments for DG methods; see, e.g., [24].

Lemma 3.4 (Coercivity and continuity of a;(-,-)) Let Assumption 3.1 be valid.
Then, we have
an(vn,vn) 2 ||’vh||%,£ Yoy, € V§,



and
Jan (un, vn)| S llunllye lvnllve — Yun,vn € Vi

The coercivity bounds are achieved provided that the penalty parameter ~, in Definition 2.1
of the penalty function o, is chosen sufficiently large. The hidden constants are indepen-
dent of the discretization parameters, the number of faces per element, and the relative
size of a face compared to the diameter of the element it belongs to.

3.2 Generalized inf-sup condition

In this section, we prove a generalized inf-sup condition for the discrete bilinear form by, (-, -)
defined in (4c). First, we need some preliminary results.

Lemma 3.5 (Boundedness of I’ in the energy norm (9)) Let Assumption 3.1
be valid. Then, we have

IMllye <00l Vo e V.

The hidden constants are independent of the discretization parameters as well as the num-
ber of faces of the element.

Proof. Given v € V, using the definition (9) of the energy norm and the fact that [v] = 0
on F' € Fy, we immediately have

2 2 2 2 2
M vllye < [T —vllye + vl S T = vllye + [0l q)-

Using Lemma 3.3 with » = 1, Assumption A.2, and the continuity of the Stein operator £ in (10),
we get

2 2 2 2
||H€U||V£ S Z EHSUHHl(IC) + ||U||H1(Q) S +€)H”|‘H1(Q)'
KE,Y-}L

Next, we introduce the L? projector onto the space Vfl:
I : [L2(Q)]¢ — Vi, (wh,v - ng)m(g) =0 VYawy, €V},
and state the following result, which is based on a further assumption and a technical
result; see Assumption 3.2 and Lemma 3.6 below, respectively.

Assumption 3.2 Given {Tp},, h > 0, each element K € Tj, admits a decomposition into
shape-regqular simplices having size comparable to that of K.

The following inverse estimate on shape-regular polygons can be found, e.g., in [24,
Lemma 14]. It generalizes a similar result for standard geometries; see, e.g., [50, Theo-
rem 4.76].

10



Lemma 3.6 (H'! — L? polynomial inverse estimate) Let Assumption 3.2 be valid.
For each K € T, the following polynomial inverse inequality is valid:

£4
||VUH%2(K) S hTH,UH%Q(K) Yo e PHK), £>1.
K

The hidden constant is independent of £, hi, and the number of faces of the element.
Based on employing the above result, we prove the following bound.

Lemma 3.7 (Stability properties of orthogonal projections) Let Assumptions 3.1
and 3.2 be valid. Then, we have

¢ I nt4 <
[Mp(v = ITv)[lye S llvlly Yo e V.
The hidden constant is independent of the discretization parameters as well as the number
of faces of the element.

Proof. From the definition of the energy norm (9), the inverse estimate in Lemma 3.6, the sta-
bility of the projector Hg in the L? norm, the polynomial approximation properties of Lemma 3.2,
and the continuity of the Stein operator £ in (10), we have

4 2
> M —T0) 50 < Y hTHHé(v —110)|| 2 )

KeTn KeTn

< Z IIv H%HLW S Cloll3-
KeTh

Next, using the definition of o, in Definition 2.1, the discrete trace-inverse inequality in Lemma 3.1,
the continuity of the L2-projector, the approximation results in Lemma 3.2, and the continuity of
the Stein operator £ in (10), and Assumption A.2, we have

2
”011;/2 [[Hf)( H/ ]]”Lz (Fn) f\/ Z ||H£ HZU)”LQ(BK)

¢ 2
S Z ||Hz HZU)”L?(K) < Z h7||U*HEU||L2(K)

KeTh KeT, K
€4 h? 2
N Z KII5UIIH1 ) S Clolly-
KETh
The assertion follows summing up the two bounds. ([

Remark 3.1 Assumption 3.2 is required in the proof of the polynomial inverse estimate
of Lemma 3.6. On the other hand, the suboptimality in terms of the polynomial degree
in the stability properties detailed in Lemma 5.7 is now due to both the inverse estimates
of Lemmata 3.1 and 3.6. This propagates further in the proof of the discrete inf-sup
condition, see Proposition 3.1 below, and consequently to the abstract and convergence
analysis detailed in Section 5 below.

11



Remark 3.2 Following the recent approach of [22], it is possible to prove the inverse
estimates in Lemmata 3.1 and 3.6 using assumptions milder than Assumptions 3.1 and 3.2.
Notably, the theory therein presented covers very general geometries, including C'-curved
faces and possibly the presence of arbitrary number of faces.

Next, we show that a generalized inf-sup condition is valid, provided that the polyno-
mial degrees ¢ and m of the discrete velocity and pressure spaces satisfy m — £ < 1. This
condition guarantees in fact that VQj* C Vfl.

Proposition 3.1 (Generalized inf-sup condition for b,(-,-))
Let Assumptions 3.1 and 3.2 be valid and assume that the polynomial degrees £ and m of
the discrete velocity and pressure spaces satisfy m — £ < 1. Then, the following bound is

valid:

br(qn, v
sup PR s gl Van € @O

0#£v,EVYE HUhHVfL

where the discrete inf-sup constant behaves as

— B
a=0 (max{€1/2(1+€1/2),m1/2+1}) : (11)

Proof. Upon employing element-wise integration by parts, the bilinear form by(-,) defined as

br(qn, vn) = —/ aVnvn+ Y /{QhI} (o] Van € QR vn € Vi,
@ Fer, ' F

can be equivalently rewritten as

br(qn,vn) = / Vi vn— Y / lan] - {vn}  Van € Q' vn € Vi,
Q F

FeFf

Recall the continuous inf-sup condition (3): there exists B > 0 such that, to each g, € Q7" C L3(),
we associate vy, € V with

Vewvg, =an,  Bllvg,lly < llanlle o) (12)

Then, applying element-wise integration by parts, using that [v,, ] = 0 for any F' € Fj,, and

12



observing that V,qp € Vfl if £ > m — 1, we obtain

2
lan 22y = /Qqhvvqh:— /ﬂvhqh-vqh+ 3 /F lgn] - {vg,}

FeFy

_/ vth : HZUQh +/ vhqh : (Hévq;l - Uq;z) + Z / [[Qh]] '{'UQh}
Q Q F

FeFy,

/ qnV - Hz’vqh -l-/ Vran - (Hevqh — Uqh,)
Q Q

(13)
_ Z /{th} : [[Hquh]] —+ Z / [[qhﬂ . {/Uqh _ Hf,vqh}
FeF, ' F Fer, '
= by, (Qhaﬂevqh) +/ Vran - (Hzfuqh — v, )+ Z / lan] - {vg, — HZU%}'
@ FeFy F

@ S

We bound the three terms on the right-hand side of (13) separately. As for the term @, thanks
to the boundedness of II¢ in the energy norm, see Lemma 3.5, and the continuous inf-sup condi-
tion (12), we get

|bh (qh7 szqh,) |

@ = _bh (qhvnevqh) <

0
110, 1y,

[0y, Ty
copbil ) e )]
~ Mo, v WAHNQ) =5 |, vt L2(9)
1/2 b (qn, vn)

< —llanll L2 sup  —-
B LA v, €VE\{0} thnvfl

As for the term @, using the Cauchy-Schwarz inequality, the definition of the penalty function o,

in Definition 2.1, Assumption A.3, the second bound in Lemma 3.2 with r = 1, and m — ¢ < 1,
we obtain

1/2
m 2
@ S |qh‘J Z 7““(1;1, - HzUQh,”L2 OK
hi (0K)

KeTn

1/2 1/2
m hg 2 2
S lanls < Z ;U(€||quh|H1(;c)> < lanly < Z g'vqh,”Hl(;c)) ‘

KeT KeTh

Finally, using the continuity of the Stein extension operator £ in (10), Assumption A.3, and the
continuous inf-sup condition (12), we get

1
© % lanly I0anllin o) < 5 lanlyllanl 2 (15)

As for the term 7 using the definition of L? projector, the fact that V,q, € Vfl (m—10<1),
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and an integration by parts, we write
_ ¢ ¢ Y _ Y Y
- /thqh . (H Vg — HOleh + HOUQh - UQh,) - /thqh : (H Vg, — HO”qn)
= / Vhan - (Hgnevq;b - Hé”qn) = / N Hé(He,UQh - v%)
Q Q

= bl Ty, 0y ))+ 30 [ [anl - (0511w, —v,,))).
D FeF} F
@

We bound the two terms on the right-hand side separately. As for the term (), we proceed as
above, namely we use the continuity of the Stein extension operator £ in (10), Assumption A.2,
and the continuous inf-sup condition (12):

(16)

|bh (Qha H(ZJ(HLU%, - leh,))|
”HS(HZU% - vqn)”vﬁ

D<

I (11, — v, s

b (qn,vn)
< swp TNy, )y an
v, €VE\{0} ||vh||vﬂ h

b qp, v 14 b qh,V
5g< sup M) g, Iy < 3 < sup h(hh)> lgnll 2(c-

v, €VE\{0} ||”h||v£ v, €VEN{0} thva

As for the term @, we make use of the trace-inverse inequality of Lemma 3.1, the stability in L2
of the projector Hé, the interpolation bounds of Lemma 3.2, the continuity of the Stein extension
operator &£ in (10) together with Assumption A.2, and the continuous inf-sup condition (12) to
obtain

1/2
m 2
@ < lanly < Z EHHS(H%% - 'Uqh)||L2(aK)>

KeTy,

1/2

m 02 2

< lanly < Z Tf||ng(nzvqh _"’qh)”m(K))
KeTy KK

1/2
m 02 hQK 2
N |Qh|J < E 2 ||(€vq71HH1 )
. hig hg ¢

(18)

1/2

m
<2 ol o sy < "l .

Inserting the two bounds (17) and (18) into (16), we obtain
1/2

¢ bh (Qha ’Uh) m /
5 B ( Sup TP T ||q}LHL2(Q) + T |qh|_j ||qh||L2(Q)' (19)

v, €VE\{0} ||Uh||vg
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Collecting (14), (15), and (19) into (13), we arrive at

0240 by, (qn,vn) m'/? 41
ol < () s o) ( )
L2 B wnevirioy |lvnllve B ’

1
< fmax{ﬁl/z(l%-flm),ml/z—k1} sup M+|Qh|J :
B v €VE\{0} H”h”vﬁ

The assertion follows with the discrete generalized inf-sup constant having the behaviour in (11).
O

Remark 3.3 The constant of the generalized inf-sup condition stated in Proposition 3.1
is uniform with respect to the mesh size but depends on the polynomial approximation
degrees € and m; see (11). This implies that B, \, 0 as £, m / +oo.

In Section 4, we will present some computations to assess numerically the sharpness
of the inf-sup constant By, for different mesh configurations and polynomial orders. We
will find out that Assumption 3.2 does not seem necessary in the proof of Proposition 5.1.
The analysis with milder assumptions is under investigation.

3.3 Well-posedness of the discret Stokes problem via the Banach-Necas-
Babuska theorem.

To prove that the discrete problem (7) is well-posed, we first recall the following abstract
result; see, e.g, [33].

Theorem 3.1 (Banach-Necas-Babuska) Let W be a Banach space and V a reflexive
Banach space. Let B € LOW x V;R) and f € V', where V' is the dual space of V. Then,

the problem
findu €W  such that B(u,v) = f(v) YveV

is well-posed if and only if

doa>0 inf sup _Blw,v) > o [BNB(i)]
weW ve [[wlly |[v]ly,
YVoeV (NMweW B(w,v)=0) = (v=0). [BNB(ii)]

In the following, we set By, : Vf; X Qp — sz X Qp' defined as
(Br(vns qn), (wh, 21)) L2(0) = Br((va, qn); (wh, 21))
Y(vn, qn), (wh, 2) € Vi x Q7. Under the hypotheses of Proposition 3.1, we show

that [BNB(i)] and [BNB(ii)] are valid for the choice B = By, W =V = V| x Q" endowed
with the energy norm |[|(-,)||y. This implies that problem (7) is well-posed.
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To this aim, we notice that

B ((wn,pn); (wh,pn)) = an(wn, un) + by (ph, un) — ba(ph, wn) + sn(ph, on)
2 HuhH%/ﬁ + [pal] Y (un,pr) € Vi, x Q7

(20)

provided that Assumption 3.1 is valid and the stabilization constant +, appearing in

Definition 2.1 is chosen sufficiently large.
Proof. [Proof of [BNB(i)]] Given (un,pn) € Vi x Q, we have

Bi((wn,pr); (un, pr)) < Ml[(un, pr)llg, (21)

where ||-|| is defined as in (8) and

B ((wh,pn); (v, qn))

M = sup

(vn,qn)EVE X QT I (vn, an)llg
(vh,qn)#(0,0)
Using (20) and (21), we get
lanllRrg + Pl S Ba((wns pa): (2n, pn)) < Ml (uns o) - (22)

Thanks to Proposition 3.1 and to the fact that

b (o, vn) = Br((un, pn), (vn,0)) — an(un,vy) Yo, € Vi,

we have
bi (ph, vn
Bullpnll gz < sup Mﬂphb
o Tonlyg
B ((wh, pn), (vn,0)) — ap(up, vy
o Bl (00.0) — o)
0#£v,EVE ||”thfL
B ((un,pr), (v, 0 ap(up,v
< sup |Bi((wn, pn), (vn ))|Jr |an(un h)|+|ph|J
0#£v,eVE ”('UhaO)HE 0#v,eVE ”'Uhnvfl
Bh Up, Ph ), ’Uh,o
< sup Bellun P lon O oy,
0£v,EVE (v, 0)llg "

=M+ ||Uh||vf1 + |pnl; -
Using (22), we deduce
2 2 2
B2 pn ey S M2+ unlyg + pnl? < M2 + M) (2 ) -

From the definition of ||(-, )||, using again (22), the above bound, and the Young’s inequality with
a positive parameter v, we have

2 2 2 2
Bill(wn, pr)ls = Bi(lunlvvs + lpallzs () + paly)
2
< BiM|(wn, pi) | + Billpnllz2) S BrMll (wn, pa) g + M2 + M| (un, pi) g
_ 2 2 2 (1 +ﬁl%)2 2
= (14 B)M|(un, po)llg + M™ < Al (n, p) g + ( 14 === | M
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Thus, we write
1+ 63)?
CERICAlE (R I

Choosing 7 to be equal to 87 /2C, being C' the hidden constant in the above inequality, we finally
arrive at

memﬁs(l 0+m>) !

Lo LA Y e ¢ e,

h B Bi

e, [[(un,pr)llg S aM with a = O(5). The assertion follows from the definition of M. O
Next, we show that [BNB(ii)] is valid, provided that the stabilization constant -,

appearing in Definition 2.1 is chosen sufficiently large.
Proof. [Proof of [BNB(ii)]] Let (wun,ps) € Vi x Q" be such that

Br((vn, qn); (wn,pr)) =0 Y(vp, qn) € Vi, x Q.

By taking (vp, qn) = (upn, pr) and using (20), the couple (up, pp) satisfies

0 = ap(upn, up) + on(pn, un) — bn(Pr, un) + sn(Ph, Pr)-

Provided that the stabilization constant -, in Definition 2.1 is chosen sufficiently large, this implies
2
lunllve + sn(pnspn) <0,

whence u;, = 0 follows.
Next, we prove that p, = 0. Thanks to the continuous inf-sup condition (12), we have

Ipnll72(0) = —b(Ph: vp,) = Bu((p,,0); (0,pn)) =0,

whence the assertion follows. O
Summarizing the above computations, we eventually state the main result of the sec-
tion, namely the well-posedness of problem (7).

Theorem 3.2 Under the hypotheses of Proposition 3.1, [BNB(i)] and [BNB(ii)] are valid.
Notably, the constant o in ([BNB(i)]) satisfies « = O(By), where By, is defined as in
Proposition 3.1. Therefore, thanks to Theorem 3.1, the discrete problem (7) is well-posed.

The constant « in ([BNB(i)]) deteriorates as the polynomial degree grows. This is
due to the use of the polynomial inverse estimates, which yield a discrete inf-sup constant
depending on the polynomial degree.

4 Numerical evaluation of the generalized inf-sup constant

Np

Denote the shape functions of V;* and QT by {goz}f\; “ and {17,

number of degrees of freedom by N, and N,, respectively. We write u;, = Z;V:“l ujp; and

and the corresponding

17



Figure 1: From top to bottom: triangular meshes with N¢; = 16, 68,124 (from left
to right); regular polygonal meshes with Ng; = 5,20, 60 (from left to right); distorted
polygonal meshes with Ne; = 5,20,60 (from left to right); agglomerated polygonal
meshes with Ne; = 8,32,512 (from left to right).
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Ph = Z;V:pl pjvi. The algebraic form of the stationary Stokes problem corresponding to
the problem in (5) reads

B, —Sh P 0

where U € RV« and P € R™» are the vectors collecting the expansion coefficients {u;};
and {p;};, respectively, whereas Ay, By, Sp, and fp, denote the matrix representations of
the discrete bilinear forms in (4b)—(4d) and right-hand side in (5).

We recall that the discrete inf-sup condition given in Proposition 3.1 is given by

b
S (gn,vn)

+0lanly = Bullanli2) Van € Q'
0#£v,EVY ”’UthfL

Here, we have added a parameter n = {0, 1}, so as to address numerically the case where
no pressure stabilization is added in the discrete formulation. Introduce the generalized
eigenvalue problem

th = )\Thm, (23)

with Gy, = BhAng;; + nSp, Tp, = M, where M is the mass matrix. We distinguish two
cases:

e If n =1 (pressure stabilization), the discrete inf-sup constant satisfies

Br(Mq,q)"* < (ByA,'Blq,9)"* + (Snq,@)'/* Vg e R q#1.
2
By noting that a + b < <\/E + \/5) < 2a + 2b, we have

B3 (Mgq,q) < (BrA;,'Bl'q,q) + (Sha,q)
= ((ByA,'BL + Sh) a,q)  VgeRYM™ q#1

and hence _—
BRLA "B S ,
52— min (Bndy By +5n)a.q) _ . (Ghad,a)
geRNp <MQaQ> geRNp <Thq, Q>
q#1 q#1
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e If 7 = 0 (no pressure stabilization), the discrete inf-sup constant satisfies

By, = min max Kq’ Bhv>|
qeRVp veRNu (AR, U>1/2<Mq7 q>1/2

q#1 w70
~1/2
. ! (@, Bady )|
= min ————— ma
ack (Mg @) werde — (w,w)!/?
q#1 'w:A,llmvyéO
—1/2
‘ ! (4,"*Bl g, w)|
= min ————— max
qerNe (Mq, q)1/2 werNu {(w, w)t/2
q#1 w#0
y noting that the maximum is realized for w = A, q, we have
By noting that the maximum is realized f A VPBT g, we h
~1/2 —1/2 _
g i A CBle 4, PBla) L (BuA Bla.q)
" gerN (Mg, q) gce™ (Mg, q)
q#1 q#1
_ . <thaq>
= min ~——=F,
qck™ (Thq,q)
g#1

By solving the discrete eigenvalue problem in equation (23), we have that
By, &~ min 1/ \;.
Ai>0

To estimate numerically 3;, we consider the Stokes problem on the unit square domain
Q = (0,1)%2. We computed 3}, on several sequences of meshes, namely triangular, regular,
distorted, and agglomerated polygonal meshes; see Figure 1 for an illustrative example of
the considered grids. The regular polygonal meshes have been generated via PolyMesher
[53], while the distorted polygonal ones are generated starting from a regular grid and
randomly adding grid nodes on the edges to obtain elements with a large number of pos-
sibly degenerating edges. The resulting elements may be non-convex. The sequence of
agglomerated polygonal meshes are generated by agglomerating elements starting from an
initial Voronoi tessellation; see the last row of Figure 1. To solve the generalized eigenvalue
problem (23), we employ the eigs command of Matlab.

We first investigate the behavior of 3}, for fixed polynomial approximation orders for
the velocity and the pressure and varying the mesh size. In Figures 2 and 3, we report the
computed values of 8, as a function of the mesh size h for different mesh configurations and
different choices of the discrete velocity and pressure spaces P+ —P™ | =0,1,2,3,4. In
the stabilized cases = 1, the constant F; is uniformly bounded from 0 independently of
the mesh size. This is in agreement with the result shown in Proposition 3.1. Furthermore,
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as predicted in Proposition 3.1, 85, depends on m for all the considered mesh configurations,
at least when m = /. From the numerical computations obtained in the no pressure
stabilization cases n = 0 with £ = 1,2,3,4, we draw the following conclusions: (i) (5,
is independent of A for all the considered mesh configurations except for agglomerated
meshes, where we can detect a mild dependence; (7i) the dependence of 35, on the velocity
and pressure polynomial approximation degrees is stronger than in the stabilized case.

Next, we investigate the behavior of 3, by varying the polynomial approximation orders
for the velocity and the pressure spaces, and fixing the computational mesh. In Figure 4, we
report the computed value of §;, as a function of the polynomial approximation degree m
for different choices of the velocity and pressure spaces P+ — P™ Lk =0,1,2,3,4. We
set the parameter n =1 for k =0,1,2, and n = 0 for k = 1,2, 3,4. When n = 1, we obtain
the following results. For & = 0, i.e., £ = m, the dependence of (5, is in agreement with
Proposition 3.1: the constant (§;, deteriorates as m grows. Nevertheless, the estimate in
Proposition 3.1 is slightly suboptimal by a factor of m~1/2, as our numerical computations
suggest that gy = O(m_l/ 2) for all the considered mesh configurations. For k = 1,2, on
triangular and regular polygonal meshes, 85, looks independent of m, while mildly depends
on m on irregular and agglomerated polygonal meshes. From the numerical computations
obtained in the no pressure stabilization cases n = 0, we draw the following conclusions:
(i) on regular polygonal meshes, /3, is independent of m for all the considered velocity-
pressure pairs P™tF — P™ Lk = 1,2,3,4; (ii) on irregular and agglomerated polygonal
meshes, the behavior of f§j is less clear and we detect a mild dependence on m. By
comparing the cases Pk — P™ k= 1,2 with and without pressure stabilization, at
least for the agglomerated polygonal meshes, the dependence of 5, on m is milder for the
case 1) = 1.

Moreover, we study the behaviour of £y in the case of degenerate edges, i.e., when the
number of the edges of a polygon with fixed size increases and the size of the edges tends
to zero. In particular, we consider an initial triangular mesh with a uniform mesh size;
see Figure 5 (left). Starting from this grid, we generate a sequence of meshes by halving
recursively the edges of the element at the center of the mesh, leading to a polygon with
an increasing number of edges; see Figure 5 (middle and right). We indicate the number of
the edges of the polygon with #edges. In Figure 6, we report the values of 5, as a function
of #edges for different choices of the discrete velocity and pressure spaces P™TF — P
k= 0,1,2, with (n = 1) and without (n = 0) pressure stabilization. The computed
numerical inf-sup constant [ seems to be independent of the size of the edges for any
choice of k and the pressure stabilization term. This indicates that Assumption 3.2 in
Proposition 3.1 may be relaxed; see Remark 3.3.

Finally, we consider a sequence of grids that mimics fluid meshes typically appearing in
fluid-structure interaction applications; see Section 7 below. These grids are generated as
follows: first, consider a uniform regular triangular mesh of a square domain; next, carve
the domain out and get a hole inside it. For example, this hole may represent a structure
domain immersed in a fluid one. In the proximity of the hole, the resulting mesh presents
polygonal elements that may be non-convex, of arbitrary size and of anisotropic shape.
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(d) Agglomerated polygonal meshes

Figure 2: Values of (), as function of the mesh size h for different choices of the
polynomial degree for the discrete velocity and pressure spaces P™ % —P™  computed
solving the generalized eigenvalue problem (23). From left to right: P™—P™, P™+!
P™, P™F2 — P™. The parameter n = 1 for k = 0,1,2 (blue lines), and = 0 for
k =1,2 (red lines).

22



pmt3 _ pm pmti _ pm
10° 10°
=] =
Q hal
——m =1 ——m =1 stab ——m =1 ——m =1 stab
—%-m =2 -»-m = 2 stab —%-m =2-»-m = 2 stab
avm =3 a-m =3 stab aom =3 -a-m =3 stab
-e-m =4 --e-m = 4 stab —e-m =4 --e-m = 4 stab
107! 107
0504 03 0.2 0.1 0.07 0.05 0504 03 0.2 0.1 0.07 0.05
h h
(a) Triangular grids
pmt3 _ pm pmtt _ pm
10° 10°
M—i—x M
=107 ==10"
——m =1 -——m =1 stab ——m =1-——m =1 stab
—%-m =2 -+-m =2 stab —%-m =2-%-m =2 stab
a-m = 3 --6-m = 3 stab bem = 3 s m = 3 stab
-e-m = 4 --e--m = 4 stab -e-m = 4 --e-m = 4 stab
1072 02
0504 03 0.2 0.1 0.07 0.05 0504 03 0.2 0.1 0.07 0.05
h h
(b) Regular polygonal meshes
pmt3 _ pm pmti _ pm
10° 10°
i —————— S e VP 8 0 G
FORIREIERE
&z
=107 =107
——m =1 ——m =1 stab ——m = 1-——m =1 stab
—%-m =2 -%-m =2 stab —%-m =2 -+-m =2 stab
a-m = 3 --a-m = 3 stab a-m = 3 --a-m = 3 stab
-e-m = 4 --e--m = 4 stab -e-m = 4 --e-m = 4 stab
1072 1072
0504 03 0.2 0.1 0.07 0.05 0504 03 0.2 0.1 0.07 0.05
h h
(c) Distorted polygonal meshes
pmt3 _ pm pmtd _ pm
10° 10°
s S
R
e
=107 == 107
——m =1 ——m =1 stab ——m =1 ——m =1 stab
—#*-m =2 -+-m = 2 stab —%«-m =2-+-m =2 stab
a-m = 3 --a-m = 3 stab bem = 3 --a-m = 3 stab
-e-m =4 --e--m = 4 stab —e-m = 4 —e--m = 4 stab
102 102
0.7 04 0.2 0.1 0.05 07 04 0.2 0.1 0.05
h h
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Figure 3: Values of 5 as function of the mesh size h for different choices of the
polynomial degree for the discrete velocity and pressure spaces P™ % —P™ computed
solving the generalized eigenvalue problem (23). From left to right: P™2 — P™,
P™F4 _P™. The parameter 7 = 1 (blue lines) and 1 = 0 (red lines).
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(c) Distorted polygonal meshes (N, = 5)
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(d) Agglomerated polygonal meshes (N, = 8)

Figure 4: Values of 5 as function of the polynomial degree for different choices of
the velocity and pressure spaces P™F — P™ k= 0,1,2,3,4 computed solving the
generalized eigenvalue problem (23). The parameter n = 1 if k = 0, 1,2 (blue lines),
and n=01if k = 1,2, 3,4 (red lines).
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Figure 5: Meshes obtained with a recursive splitting of the edges of the element at
the center. From left to right: initial triangular meshes with #edges = 3; mesh at
the first iteration with #edges = 6; mesh at the fourth iteration with #edges = 48.
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Figure 6: Values of §) as function of the number of edges #edges for different choices
of the polynomial degree for the discrete velocity and pressure spaces P™% — pm,
computed solving the generalized eigenvalue problem (23). From left to right: P™ —
pm, prtl _pm pmt2 _pm The parameter = 1 for k = 0, 1,2 (blue lines), and
n =0 for k =1,2 (red lines).
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We consider a slender rectangular hole placed in the center of the square domain that
rotates around its center of mass, see Figure 7, and we study the behaviour of the discrete
inf-sup constant By by varying the angle of rotation 6 of the hole. In Figure 8, we plot
the value of the discrete inf-sup constant as a function of the angle 6 for different choices
of the discrete velocity and pressure spaces P™tF — P™ | =0,1,2, m = 1,2, with and
without the pressure stabilization term. The presence of small or anisotropic elements
only slightly deteriorates the constant [, for the nonstabilized case (n = 0), while they
seem irrelevant for the stabilized case (n = 1).

0 = 0° 10 = 95° |0 =136°

53

Figure 7: Polygonal meshes obtained by rotating the hole placed in the center of the
initial triangular mesh. Small or anisotropic elements appear. From left to right:
polygonal mesh obtained for # = 0°; polygonal mesh obtained for § = 95°; polygonal
mesh obtained for § = 136°.
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Figure 8: Values of 85, as function of the angle of rotation 6 for different choices
of the polynomial degree for the discrete velocity and pressure spaces P™HF — pm,
computed solving the generalized eigenvalue problem (23). From left to right: P™ —
pm, pmtl . pm pmt2 _ pm_ The parameter n = 1 (blue lines) and n = 0 (red
lines).

5 A priori error estimates for the stationary Stokes problem

Introduce the spaces X = V4§ N [H2(Q)]? and M = QT N HY(Q) for the velocity and
pressure, respectively. For all (u,p),(v,q) € X x M, we consider the discrete bilinear
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form B}, introduced in equation (6).
Define ||(+,-)|[xx ¢ as the energy norm defined on the pair of spaces X x M. In
particular, we fix

2 2 2
1(ons @)% x = llonllve + llanligy-

We now state the main result of the section.

Theorem 5.1 (Abstract error estimate) Let (u,p) € X x M and (up,pp) € V4 x
Qp be the solutions to (2) and (7), respectively, and Assumptions 3.1 and 3.2 be valid.
Recalling that the bilinear form Bp(-,-) is stable and bounded with constants C* and C\,
the following error estimate is valid:

Ci .
U — Up, P — Ph §<1+> inf U — Uy, P — qn . 24
I M < (14 ) e Maas: 24)
Proof. For all (vj,qs) € Vi x Q7*, we apply the triangle inequality and get

||(u — Up,p _ph)HXXM < ||(u — Uh,P — Qh)”XxM + H(vh — Up, gh _ph)HXXM- (25)

We have the following Galerkin orthogonality property. Given (u,p) and (wp,pp) the solutions to
the continuous and discrete Stokes problem, respectively, we can write

Bi((w — un,p — pn), (Wn, 1)) =0 V(wy, ) € Vi x Q. (26)

The main tool used in proving (26) is the extra smoothness required on the continuous pressure p,
whence the jump terms involving it disappear.

Using the coercivity, the Galerkin orthogonality (26), and the continuity of the form By, we
can show an upper bound on the second term of the previous inequality as follows:

B ((vn — wn,qn — pn), (wh, 1))

1
[(vn — wn, gn — Pr)ll v xq < A7 sup
¢ (wh,

r)EVE X QI [[(wn, )| 25 a4
_ 1 sup Bp((vh — u,qn — p), (wn, 1))
cx (wh,rn)EVEXQM H(wh’rh)HXxM (27)
1 B —up,p—
+ = sup n((w—wun,p—pn); (Wn, 1))
C (wh,rn)EVEXQM ||("~Uha7“h)||2(xM

C
< ol = onp— @)

Inserting the inequality (27) into (25), the assertion follows. O
Finally, by employing the approximation results reported in Section 3 with Theo-

rem 5.1, we show the hp-version a priori error estimate for the discrete Stokes problem
in (7).

Corollary 5.1 (Convergence rate in the energy norm) Let T}, be a polytopic mesh

and ’7;L# be the corresponding covering satisfying Definition 3.1. Moreover, let Assump-
tions 3.1 and 5.2, and the hypotheses of Theorem 5.1 be valid. Finally assume that £ >
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m — 1. If, for any K € Ty, (u,p)|x € H'(K) x HY(K), with r > 1+ d/2, such that for
any K € 771#, K CK, (Eu,&p)|x € H'(K) x H'"Y(K), then
hs 1

lw == )llaeem S D 7575 (1€large) + 1€P 1))
KeTy,

where s = min{{ + 1,m + 2,r} and the hidden positive constant is independent of the
discretization parameters.
Proof. By considering equation (24), we set

I= inf U —Vh,p—Gn :
(Vn,qn)EVE X Qi I ) M

Recall that II¢ denotes the best polynomial approximant introduced in Lemma 3.2. With an abuse
of notation, we shall use the same symbol for scalar, vector, and tensor approximants. We have

. 2 2
IQ = inf H(u_vhap_q}L)HXxM < ||(U—Hlu,p—Hmp)||XXM7
(Vh,qn)EVEXQT

2 2
< D0 eV (u =T ) [ gy + Y Moy fu = 1] [
KeTy, FeFy,

®

m, (12 m 2
+ D e = T"plle ey + Y Ny Ip =T pD o oy -
KeTh FeFy,

By using Lemmata 3.2 and 3.1, Assumption A.3, and ¢ > m—1, we can prove the following bounds

on the terms @ and :

2(%—1) 2(su,—1/2) ,
W5 D ey 1ulli g + Y (max o) Sy 1€l
KeTy, KeTh
Su*l hz(suq/z)
< 3 oy IEula g + D h ey €l )
KeTh KeTh
h2(§u—1)
S Z 12(r=3/2) ”5U’HHT(IC
KeTh,
and
hyr 2sp-1/2)
®s Z m2(r—1) Pl 1) T Z }TCI%’}(UP)WMPHHPI(K)
KeTh KeTh
hic h p2er=1/2)
S Z 2(r 1) ||gp||H” 1) T Z z(r 3/2)ng||Hr 1(K)
KeTn KET
2sp
< Y e lEnl,
KE7—}L

28



where s, = min{¢ + 1,7} and s, = min{m + 1,r — 1}.
Finally, we obtain, s = min{¢ + 1,m + 2,7},

VA Z 720—3/2) (HSUHHT()C) + ”gp”HT*l()C)) ‘
KeTh

By inserting the bound on Z into (24), the assertion follows. a

Remark 5.1 The estimate of Corollary 5.1 is suboptimal in terms of half a polynomial
order also due to the presence of the coercivity constant C* = C*(By), where By, is the
discrete generalized inf-sup constant introduced in Proposition 3.1.

Remark 5.2 By assuming h ~ hg, for any K € Ty, and uniform reqularity of the solu-
tion, the estimate in Corollary 5.1 becomes:

hsfl
I = wnsp = p)llaean S gz (1wl ueer )+ €811 0 ey )

where s = min{l + 1,m + 2,r} and the hidden positive constant is independent of the
discretization parameters.

Remark 5.3 We can also prove a priori error estimates by setting minimal regularity
X = VfL N H} Q) and M = Q7 for the velocity and pressure, respectively. This requires
to introduce a nonconsistent formulation, modify the bilinear form in equation (6), and
consider the residual term of the Strang’s lemma in Theorem 5.1.

6 An application: PolyDG for FSI problems

In this section, we introduce a continuos FSI problem and its PolyDG discretization, with
the aim of further exploring the stability properties of the PolyDG discretization of the
Stokes problem and their impact on the approximation of related differential problems;
see Section 7 below.

Let Q ¢ R% and Q, c RY, d = 2,3, be two polygonal /polyhedral domains. In €,
we consider an incompressible Newtonian fluid with density p and dynamic viscosity u,
where u and p are the fluid velocity and pressure, while in €2; we consider a linear elastic
material with density ps, Young’s modulus E, and Poisson’s ratio v, where d is the solid
displacement.

In what follows, we denote by ¥ the fluid-structure interface and by n its normal vector
pointing outwards of 5. We indicate with 0{2 and 0§25 the outer boundary of the fluid
and solid domain, respectively. The domains may change in time.

The fluid-structure interaction problem reads as follows: for any ¢ € (0, 7], with T' > 0,
find the fluid velocity w = w(t), the fluid pressure p = p(t), and the solid displacement
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d = d(t), such that

pOou —V - Ty(u,p) = f in Q(t),
V-u=0 in Q(t),
u=0 on 012,
u = 0id on X(t),
Ti(u,p)n = Ts(d)n on X(t),
psatt(;l\_ V- fs(d) = fs in ﬁs,
d=0 on 8?25,

where Ty (u,p) = 2uD(u) — pI is the fluid Cauchy stress tensor and fs(d) = 2,u8D(ci) +
AsV - dI is the solid first Piola-Kirchhoff stress tensor, with D(w) = 1/2 (Vw + V7 w)

_ Ev — B
and)\s—m’/‘s—m

The structure problem is written in the reference configuration ﬁs = Q,(t = 0), and
all the related quantities are indicated with the = notation.

are the Lamé parameters.

Given the time discretization parameter At > 0, we indicate with t" = nAt, n > 0,
the n-th time step and indicate the approximation of the unknown u at time ¢ by u".
We introduce the fluid and solid meshes 7}”h and ’7';’,1, respectively, of the fluid and solid
domains (¢") and Q4(t"), respectively. We denote the (d — 1)-dimensional faces at time
t" of the fluid and solid meshes by .7-"]7}7,1 and fgh, respectively, except the set of faces
composing the fluid-structure interface ¥ at time ¢, which are denoted by F$ e Finally,

th ™ and QZM are the fluid velocity and pressure spaces evaluated at time t", defined as
V" = {v e [LAQE™))! : vlk € [PUK) VK € TF, ),
Q" ={qg € L§(Qt")) : qlx € P™(K) VK € Tf4,}.
The solid displacement space W,f evaluated in the reference configuration is defined as
Wi = {w € [L*(Q)]? : wlk € [PUE)? VK € T, ).

We have assumed that the spatial polynomial order £ is the same for both the fluid velocity
and the solid displacement.

Given r € N, we apply a Backward Difference Formula (BDF) scheme [40] of order r
both for the fluid and the solid subproblems. We indicate the coefficients appearing in the

approximation of the first and second order time derivatives with & and (;, ¢ = 0,...,r,
respectively.
Define
n n n, 60 n n n T n 7 n
A%y, (whs phs OR, qn) = p At | tag (up,vn) + by (ph,vn) — bp (gn, up) (28)
Qﬂ/

+ sp (P, qn)
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n T CO ~ N
As,h ( h?wh) <At2 h?wh + Qs h (dh7 wh) ; (29)
Qs
Az (Wh, Py dh; Ok, any wh) = = (0T (g, ph)ne + (1 = 0)Ts(dy)n, v — W) gy |

n 5 mn
_ (uh — Kotdh’ 0T (vh, —qn)n + (1 — 6)T8('wh)n>

Fin (30)
n 60 n
+ <og(uh Atd h), Up — W, ;
FSn
F . u Cz Th—i o~
Uhawh =p ZAt h ,’Uh + ps Atgdh » Wh
Qn i=1 Qs
gz n z

-
§i i o~
_ (o’g Z Kztdz oy — wy + (f, ’Uh)Qn + (fs, 'wh) 8.
=1 7,

The fully-discrete PolyDG approximation reads as follows: given § € [0, 1], o, € L*( }ih),
op € L®(F},), G5 € L¥(Fop), 0w € L(FL,), f € [L2(QD)]? and £, € [L2(Q,)]?, for
n > 0, find (uZ,pﬁ,g’ﬁ) € V,f’n x Q" x W, such that

A?,h (U'vaza Uh, Qh) + A;h ( Za ﬁh) + Agﬁ(ugap;zlv dza Vh, Qh,wh) = F}?(vhv wh)a

for all (vp, g, wp) € V,f’" x Q)" x W,
In (28), the pressure stabilization term s : L3 x L3 — R is that given in Section 2.1
evaluated on ]:}1,_1 In (29), we have introduced the bilinear forms a%, : [H I f’?h)]d X

[HY (TR — R, b 2 L3 x [HYTP))? = R and agp @ [HY(To0)] x [HY(Ton)) — R,
which are defined as

al (uf on) = / 2Dy (uf) : Vio, — 3 / 2 { D(up)} : [on]

Fery,

Z /Q,M[[uh]] {Dp(vpn)} + Z /Uv [wn] : [vn],

FE.F" FG]—'"

R AT R S KU A

Fery,

31



as’h(ciﬁ,'@h) = /A QMSDh(C/l\Z) : Vywy, + ﬁ AsVp, - C/Z\Z V- wy,

s Qs
- szj [ 20 D@} < @] - F%: [ @iy
_ Fezfsyh/FQ,us [{c?ﬁﬂ : {Dy(wp)} — Fezﬁs’h/F)\s [{JZH V- wpI}
AL CIR]

where Dy (w) = 1/2(Vj,w + Viw).
The functions o, and o, are given in Definition 2.1 on f?,h’ while o, : ]:g,h — R and
oy : fg,h — R are defined as

62651( 7,1
Ys max { . } FEFS,}“

os|lp = IgLK_ K
L Cs,K F ]_-n,b
e € Fis

2 = n
sl =5 g { o (Gu+ (1-00Cu) | F e R

with 7s,vs positive constants, Cs x = |Cs| K];2 and Cy i the linear elasticity fourth order
tensor.

The fluid domain Q" and the interface £" in (28), (30), and (31) are unknown. Thus,
they are approximated with extrapolations of order r of the domains at the previous time
steps.

Remark 6.1 For the numerical stability of the FSI problem, theoretical results show that
the parameter 0 appearing in the interface terms of equation (30) and (31) has to be set
equal to 1; see [7].

7 Numerical results

In this section, we present some numerical experiments for the steady Stokes problem and
the time-dependent FSI problem. In Section 7.1, we assess the order of accuracy of the
method for the steady Stokes problem as the spatial discretization parameter tends to zero
and the spatial polynomial degree increases. In Section 7.2, we consider a FSI problem
and we numerically compare the pressure field for different choices of the velocity and
pressure spaces, with and without the pressure stabilization term. Finally, in Section 7.3,
we show that the proposed PolyDG method is able to reproduce the expected dynamics
of a time-dependent FSI problem.
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For all the proposed examples, the resulting linear system corresponding to the Stokes
and the FSI problems is solved in Matlab by means of a direct method.

7.1 The steady Stokes problem: convergence results

Here, we numerically estimate the order of convergence of the steady Stokes problem with
respect to the spatial parameter A when it tends to zero and the spatial polynomial degree
increases.

We consider a square unit domain € = [0, 1] and the exact solution

—cos(2mx)sin(2my)
Uey = ) Pex =1 —€"

sin(2mx)cos(2my)

2(z—1)(z-0.5)*—y(y—1)(y—0.5)*

The forcing term f and the Dirichlet boundary conditions are computed accordingly. We
picked ., so that V- ue, = 0. Weset p =1, v, =10, v, = 10 and m = £ = 4. In
Figure 9 (left), we plot the error in the L? and DG-norms of the velocity, in the L2-

norm of the pressure and in the pressure semi-norm |-, versus h\/%. The expected
el

order of convergence are found. In Figure 9 (right), we show the errors with respect
to the polynomial degree m, with an underlying uniform and regular polygonal mesh,
generated via PolyMesher [53], consisting of N, = 160 elements. We observe exponential
convergence in terms of the polynomial degree.

2 ‘ 2 ‘ ‘ ‘ ‘ ‘

10 J vy 10 5

100 ——E% || 10°ﬁ e, I
-e-FEY,

107 o By 107

2 10 ‘ | £ 10"
L : g L
6 o ] 6 -
10 o, 10 | 4
1078 T 1078 e
10710 b “ : ‘ 10710 : : : : DR
03 02 0.1 0.07 004  0.02 1 2 3 4 5 6 7
h m

Figure 9: Numerical estimates of the order of convergence with respect to the mesh
size h (left) and the polynomial degree m (right).

Remark 7.1 Within the theoretical setting of the paper, we cannot prove the exponential
convergence of the p-version of the method. Notwithstanding, it is the expected behaviour
in the standard Galerkin setting with simplicial and tensor product element meshes for
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analytic solutions; see, e.g., [50] and the references therein. The reason of this resides
in the continuity property of the Stein extension operator (10), which is valid modulo a
hidden constant depending on the involved Sobolev regularity s. In particular, when trying
to recover exponential convergence, a term growing more than exponentially with respect
to s appears.

A possible way to overcome this issue would be to resort to a different approach, where
we assume that the solution is analytic over a slightly larger domain than Q. In particular,
we should substitute the approrimation result in Lemma 5.2 with some approximation
properties by means of tensor product Legendre polynomials on tensor product element and
Koornwinder polynomials on simplicial elements; see, e.g., [50] and [18] for more details,
respectively. We avoid further details on this point, for it might render the understanding
of the paper more cumbersome.

The suboptimality in terms of the polynomial degree due to the nonrobustness of the
inf-sup condition, see Remark 5.1, is eaten up by the expected exponential convergence for
analytic solutions.

7.2 The fluid-structure interaction problem: numerical comparison of
the pressure fields

In this first numerical test we compare the pressure field for different choices of the spatial
polynomial degree of the discrete velocity and pressure spaces for a FSI problem. The fluid
domain {2 represents a viscous fluid with density p = 1g/ cm? and viscosity u = 0.03g/s,
while the structure domain {25 is a linear elastic barrier that horizontally divides the
fluid domain in two compartments; see Figure 10. For the structure we set the density
ps = 1.2 g/cmz7 the Young’s modulus E = 2-10* dyne/cm, and the Poisson’s ratio v = 0.49.

u=20
Win () = KE T/n=0
d:O::::::::::::::::::::::t:::::::::::::d:0
Tin=0 b) T/n=0
u=20

Figure 10: Setting of the boundary conditions on the fluid (white) and structure
(grey) domains. The moving fluid-structure interface is depicted by dashed lines.

At the upper and lower boundaries of the fluid domain, we impose zero velocity, i.e.,

u = 0, and the barrier is fixed on the left and right sides, i.e., d = 0. To the system,
initially at rest, is prescribed an inlet velocity win(t) = (win(t),0)cm/s to the upper
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compartment from the left boundary, where

" 10t t<0.1,
Uin,x =
’ 0 otherwise,

while we prescribe a homogeneous Neumann condition to the other three ends of the two
compartments. The fluid-structure interface ¥, namely the upper and lower boundaries
of the barrier, is free to move; see Figure 10.

In the discrete setting, we set At = 1073s, T = 0.25s, 75, = 7, = 10 and § = 1; see Re-
mark 6.1. The fluid and structure meshes initially consist of uniform and regular triangles
consisting of 1100 elements (h = 0.025cm) and 400 elements (h = 0.01 cm), respectively.
Due to their intersection, polygonal elements appear. We employ the Backward Difference
Formula (BDF) scheme of order 3 for the temporal discretization.

We pick the pairs of velocity and pressure spaces P¢ — P™, with ¢ = 3 and m = 1,2, 3,
both with and without the pressure stabilization term (4d). The spatial polynomial order
of discrete displacement field is set equal to £ = 3.

In Figure 11, we plot the pressure field at time ¢ = 0.1s for all the considered con-
figurations. As expected, for a fixed pair of spaces P2 — P™, m = 1,2,3, the stabilized
pair yields a stable and more regular pressure field compared to the not stabilized one.
The not stabilized P3 — P3 pair, Figure 11b, leads to an oscillating pressure field near the
inlet boundary and all along the fluid-structure interface, where elements of general shape
appear. This instabilities become less evident as the pressure polynomial order decreases;
see Figure 11d and Figure 11f. On the other hand, the stabilized P3 —P3 pair, Figure 11a,
shows some oscillations only at the corners of the inlet boundary, where we expect a lower
regularity in the solution, a pressure peak and strong pressure gradients. For the stabilized
P3 — P? and P3 — P! cases, see Figure 11c and Figure 1le, the pressure field does not
present any noticeable oscillation. Moreover, there is no significant difference in the fluid
velocity and structure displacement fields.

7.3 The fluid-structure interaction problem: an elastic membrane in a
pipe
Here, we consider a second fluid-structure interaction problem aiming at showing that
the proposed PolyDG discretization method is able to reproduce the expected dynamics
of the system with a stable pressure field. More precisely, we consider a pipe filled by
a viscous fluid with an immersed linear elastic membrane that blocks the flow. The
pipe is represented by a fluid domain 2 of size 0.4cm x 0.2 cm, while the solid domain
Qs represents the elastic membrane of size 0.01cm X 0.2cm centred in the pipe; see
Figure 12. At initial time, the system is at rest. The membrane is clamped at the pipe,
i.e., d = 0 on the upper and lower sides of ). At the top and bottom boundaries of the
fluid domain, w = 0, while on the left and right sides we prescribe a jump in the stress,
namely, osn = (—10,0) dyne/cm and oyn = 0, respectively. This induces oscillations in
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Pressure (dyne/cm) Pressure (dyne/cm)

(a) P3 — P3, stabilized (b) P3 —P3

Pressure (cyne/cm) Pressure (cyne/cm)

(c) P3 — P?, stabilized (d) P3 —P?

Pressure (dyne/cm) Pressure (dyne/cm)

(e) P3 — P!, stabilized (f) P? —P1

Figure 11: Pressure field at time t = 0.1s for different choices of the pressure space
P™, m = 1,2,3, with pressure stabilization (left) and without stabilization (right).
The velocity space is fixed to P3.



the structure, which are subsequently dumped by the viscous fluid until a steady state is
reached. At the steady state, we expect a uniform pressure inside each chamber of the
pipe. The fluid and structure have the following material properties: p = ps = 1g/ cm2,
p=0.1g/s, E=10*dyne/cm and v = 0.45.

For the numerical simulation, we consider a fluid mesh consisting of 1400 elements
(h = 0.0125 cm) and a solid mesh consisting of 400 elements (h = 0.004 cm); see Figure 12.
Although the meshes are initially made of regular triangles, their intersection generates
elements of general shape. We consider the following discrete parameters: At = 0.002s,
Yo =Y = 10, § = 1, see Remark 6.1, and ¢ = 3, m = 2 with pressure stabilization. For
the time discretization, we employ the 3-rd order BDF scheme.

Figure 12: “Pipe” test case. Fluid (red) and structure (black) meshes.

In Figure 13 (left), we show the configuration at the steady state, t = 1s. As expected,
each of the two chambers of the pipe reach a uniform value of the pressure. In Figure 13
(right), we plot the x-displacement of the structure at its center of mass.

Pressure (dyne/cm)

o
o
5]

0 2.5 7.5 10

H‘J N H5::L | | ﬁ

o
o
=

o
o
@

x-displacement [cm]
o o
o o
- N

0

0 02 04 06 08 1
t[s]

Figure 13: “Pipe” test case. Left: pressure field and position of the structure at the
steady state (¢t = 1s). Right: evolution in time of the z-displacement of the structure
at the center of mass.
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8 Conclusions

In this work, we showed the well-posedness of the discrete Stokes problem obtained via a
Discontinuous Galerkin approximation for polygonal and polyhedral grids. In particular,
we proved a generalized inf-sup condition that is valid for m — ¢ < 1, with £ and m
the spatial polynomial degrees for the velocity and pressure spaces, respectively. Under
suitable mesh assumptions, we proved that the discrete inf-sup constant is uniform with
respect to the mesh size and presents a mild dependence with respect to the spatial
polynomial degree. Moreover, from the numerical tests, the discrete inf-sup constant
seems to be independent of the size of the edges in much more general configurations
than those addressed theoretically, indicating that the method is robust with respect
to degenerating edges. We also proved a priori error estimate in the energy norm for
the Stokes problem that is suboptimal with respect to the polynomial degree, since it
inherits the suboptimality of the discrete inf-sup constant. Finally, we presented numerical
examples by considering a time-dependent fluid-structure interaction problem in the case
of large displacement regime showing that the proposed PolyDG method is able to produce
stable solutions.
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