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Abstract 

Background: The role of image-derived biomarkers in recurrent oligometastatic Prostate Cancer (PCa) is unexplored. 
This paper aimed to evaluate  [18F]FMCH PET/CT radiomic analysis in patients with recurrent PCa after primary radical 
therapy. Specifically, we tested intra-patient lesions similarity in oligometastatic and plurimetastatic PCa, comparing 
the two most used definitions of oligometastatic disease.

Methods: PCa patients eligible for  [18F]FMCH PET/CT presenting biochemical failure after first-line curative treat-
ments were invited to participate in this prospective observational trial. PET/CT images of 92 patients were visually 
and quantitatively analyzed. Each patient was classified as oligometastatic or plurimetastatic according to the total 
number of detected lesions (up to 3 and up to 5 or > 3 and > 5, respectively). Univariate and intra-patient lesions’ 
similarity analysis were performed.

Results: [18F]FMCH PET/CT identified 370 lesions, anatomically classified as regional lymph nodes and distant 
metastases. Thirty-eight and 54 patients were designed oligometastatic and plurimetastatic, respectively, using a 
3-lesion threshold. The number of oligometastic scaled up to 60 patients (thus 32 plurimetastatic patients) with a 
5-lesion threshold. Similarity analysis showed high lesions’ heterogeneity. Grouping patients according to the number 
of metastases, patients with oligometastatic PCa defined with a 5-lesion threshold presented lesions heterogene-
ity comparable to plurimetastic patients. Lesions within patients having a limited tumor burden as defined by three 
lesions were characterized by less heterogeneity.

Conclusions: We found a comparable heterogeneity between patients with up to five lesions and plurimetastic 
patients, while patients with up to three lesions were less heterogeneous than plurimetastatic patients, featuring dif-
ferent cells phenotypes in the two groups. Our results supported the use of a 3-lesion threshold to define oligometa-
static PCa.
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Silhouette index, Similarity analysis, Biomarkers
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Introduction
18F-fluoro-methyl-choline  ([18F]FMCH) or 11C-choline 
positron emission tomography/computed tomogra-
phy (PET/CT) is a well-established imaging modality to 
detect recurrence in Prostate Cancer (PCa) patients with 
biochemical failure after definitive treatment. About 30% 
of patients radically treated will recur [1], and the early 
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diagnosis of disease relapse is pivotal to guide treatment 
decision [2–4]. The extensive use of functional imag-
ing resulted in the identification of a new clinical disease 
entity namely oligometastatic disease (i.e., limited tumor 
burden) [5, 6].The theory of oligometastatic disease dates 
back to 1995 [7]. The interest in oligometastatic disease 
relies on biological features and clinical evidences result-
ing in better outcomes compared to plurimetastatic dis-
ease [8]. Consequently, the paradigm of metastatic PCa 
has evolved and, nowadays, tumor burden is an indicator 
for treatment allocation [5, 9–13]. The concept of oligo-
metastatic disease is evolving by moving from a definition 
purely based on the number of lesions and/or involved 
organs to the identification of key features capable to bio-
logically describe oligometastatic (and multimetastatic) 
phenotype to assign a patient to local or systemic treat-
ment [14]. Quantitative imaging analysis can provide a 
number of biomarkers to be used in this setting. Indeed, 
advances in quantitative methods for data analysis have 
widened the scope of what imaging as a technology can 
enable in terms of scientific discovery. During the latest 
years, imaging data analysis have progressively shifted 
from a qualitative-semantic descriptors to quantitative 
measurements extracted by high-throughput methods 
able to make medical data mineable, namely radiomics. 
Accordingly, analysis of surface or volume, tradition-
ally described by texture, has evolved in a discipline (in 
between image analysis and statistical modeling) aim-
ing at describing tumor lesion heterogeneity through a 
multitude of quantitative indices (i.e., radiomic features). 
Hence, it’s possible to capture information about the rela-
tions between pixels or voxels of a region or a volume of 
interest, by applying post-processing formulas to medi-
cal images acquired within the routinely clinical work-
flow of patients. Radiomic features can be extracted from 
any type of images from pictures, to pathology images, to 
cross-sectional images, to molecular imaging, to hybrid 
imaging [15, 16]. Although molecular imaging is largely 
used to define tumor burden and successfully select oli-
gometastatic patients eligible for local treatment [17, 18], 
the role of image-derived biomarkers in oligometastatic 
PCa remains to be determined.

The present work aimed to evaluate the feasibility of 
radiomic analysis of  [18F]FMCH PET/CT in patients with 
recurrent PCa after primary radical therapy. The goal of 
this research is two-fold. First, we investigated radiomic 
features extracted from  [18F]FMCH PET/CT images 
according to the site of recurrence and tumor burden. 
Second, we explored intra-patient lesions similarity to 
provide biologically insights into oligometastatic (and 
plurimetastatic) recurrent PCa. Eventually, this approach 
provides an integrated multidimensional definition of oli-
gometastatic recurrent PCa comprising image-derived 

features, going beyond the mere concept of the tumor 
burden.

Materials and methods
Study design and patient selection
All PCa patients eligible for  [18F]FMCH PET/CT present-
ing with biochemical failure after first-line curative treat-
ments were invited to participate in this observational 
trial. Biochemical relapse was defined according to clini-
cal guidelines [19]. This preliminary analysis consisted of 
92 patients (mean age 72 ± 7 years, median age 72 years, 
range 55–85) with a positive  [18F]FMCH PET/CT pro-
spectively enrolled between January 2011 and February 
2018 in the above-mentioned trial. Demographic and 
clinical data including age, Gleason score (GS) at diag-
nosis, prostate specific antigen (PSA) level at the time 
of  [18F]FMCH PET/CT, primary treatment, and andro-
gen deprivation therapy (ADT; if yes, ongoing or discon-
tinued) were collected for all patients. Patients baseline 
characteristics are summarized in Table 1.

PET/CT image acquisition and analysis
[18F]FMCH PET/CT were acquired at Regional Center of 
Nuclear Medicine of the Azienda Ospedaliero-Universi-
taria Pisana with an integrated PET/CT system General 
Electric Discovery 710 (General Electric Healthcare, 
Waukesha, WI, USA). Image acquisition was performed 
according to version 1.0 [20] and version 2.0 [21] of the 
European Association of Nuclear Medicine (EANM) 
guidelines until and from February 2015, respectively. 
Image acquisition protocol is detailed in Additional file.

PET/CT images were visually interpreted by two expe-
rienced nuclear medicine physicians (PAE and AM), 
aware of the patient’s medical history. Lesions were 
anatomically designed as regional or distant metastases 
according to the TNM staging system [22]. Each patient 
was defined as oligometastatic or plurimetastatic based 
on  [18F]FMCH PET/CT findings. We arbitrary decided 
to use the two most frequently applied definitions of 
oligometastatic PCa, and classify patients twice based 
on the number of lesions. Accordingly, oligometastic 
disease was defined as PCa patients having with up to 
three [23] and up to five lesions [24]. Lesions were semi-
automatically segmented by the PET VCAR software (GE 
Healthcare, Waukesha, WI, USA) on a General Electric 
workstation. A volume of interest (VOI) was draw for 
each lesion and visualized on CT images to check the 
anatomical correspondence. Radiomic features (n = 42) 
were extracted from each VOI by using the LIFEx soft-
ware [25] (http:// www. lifex soft. org). Image processing 
and calculation of image-derived features are reported in 
Additional file 1: Table S1, according to the IBSI report-
ing guidelines [26].

http://www.lifexsoft.org
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Statistical analysis
Patient characteristics were summarized in frequency 
tables, and descriptive statistics was provided.

Univariate analysis was used to assess the discriminant 
power of radiomic features, according to pre-specified 
clinical categories belonging to patients (i.e., oligometa-
static versus plurimetastatic, GS ≤ 7 versus GS > 7)  and 
lesions description (regional lymph nodes versus distant 
lymph nodes, and regional or distant lymph nodes versus 
bone metastases). The Mann–Whitney test (two-tailed) 
was used to evaluate marginal significance of each radi-
omic variable in the considered population. To capture 
the potential impact of ongoing ADT on textural features, 
such analysis was performed considering i) all patients, ii) 
the subset of patients undergoing ADT therapy, and iii) 
the subset of patients not on ADT. Significance has been 
confirmed with p ≤ 0.01 for GS and p ≤ 0.001     for all the 
other clinical categories.

Furthermore, PSA was considered apart from radi-
omic variables. PSA distribution in different groups was 
compared slicing patients according to pre-specified 
clinical categories (i.e., oligometastatic versus plurimet-
astatic, GS ≤ 7 versus GS > 7).  Tests were performed on 
PSA values , and patients belonging to different groups 
were compared in terms of PSA distribution. The entire 

population of patients and the patients undergoing or 
not ADT were considered separately. PSA significance 
has been confirmed with p ≤  00.05, and results were 
discussed accordingly. Analyses were carried-out on 
SPSS version 25.

Additionally, a similarity analysis aimed at explored 
intra-patient lesions heterogeneity was performed as 
detailed in Additional file 1. Intra-patient lesions’ simi-
larity was assessed using the silhouette index (i.e., simi-
larity index) [27]. The silhouette index ranges from -1 to 
1. A value close to 1 entails a high intra-patient lesions’ 
similarity. Conversely, a negative silhouette index indi-
cates a low intra-patient lesions’ similarity, with prox-
imity or even overlap of lesions belonging to different 
patients in the latent space. For all those patients with 
just one lesion, the silhouette is set to zero and taken 
apart from any analysis. Similarity analysis included 
patient-based analysis, anatomy-based analysis, and 
metabolism-based analysis.

Kruskal test was used to compare intra-patient 
all-lesions’ similarity in different groups obtained 
splitting patients according to pre-specified clinical 
categories (i.e., oligometastatic/plurimetastatic, Glea-
son Score ≤ 7/ > 7,  median PSA in the population at the 
time of PET/CT > 1.93 ng/mL/ ≤ 1.93 ng/mL, and ongo-
ing ADT treatment yes/no).

Table 1 Baseline characteristics

Variable Mean (median) Range (std)

Age 72.09 (71.68) 54.88–85.24 (7.03)

Total volume (mL) 16.41 (3.16) 0.22–207.70 (34.72)

Gleason score 7.37 (7.0) 5.0–9.0 (1.027)

PSA 18.16 (2.66) 0.09–591.0 (70.96)

Variable Number (%)

Number of metastases

 Oligometastatic (< 3) 38 (41.30)

 Plurimetastatic (≥ 3) 54 (58.70)

 Oligometastatic (< 5) 60 (65.22)

 Plurimetastatic (≥ 5) 32 (34.78)

 Oligometastatic (3 ≤ n < 5) 22 (23.92)

Gleason category

 Gleason (≤ 7) 53 (63.10)

 Gleason (> 7) 31 (36.90)

Ongoing therapy

 YES 33 (35.87)

 NO 59 (64.13)

Initial therapy

 RP 23 (25.0)

 RP + RT 52 (56.52)

 RT 9 (9.78)
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Unsupervised clustering was used as final step to sup-
port intra-patient lesions’ similarity analysis interpre-
tation. Radiomic-based clusters characterization was 
explored in order to check if any prevalence of the cate-
gories previously described could be appreciated. Analy-
ses were carried-out on Python.

Results
[18F]FMCH PET/CT identified 370 lesions, anatomically 
classified as regional lymph nodes (n = 68) and distant 
metastases (n = 302). Distant metastases included distant 
lymph nodes (n = 81) and bone lesions (n = 221) (Addi-
tional file 1: Table S2). Using a cut-off of three lesions to 
define a limited tumor burden, 38 patients were oligo-
metastatic and 54 plurimetastatic (Fig. 1). The number of 

oligometastic scaled up to 60 patients (thus 32 plurimeta-
static patients) with a 5 lesions threshold (Fig. 1).

Exploratory analysis
A number of features emerged as significant at univari-
ate analysis (Additional file 1: Table S3) when considering 
tumor burden, GS, and distant or regional lymph nodes 
versus bone metastases. A significant trend toward a pro-
gressive reduction of the number of features was present 
moving form whole population, to the subset of patients 
under ADT to patients ADT-off.

Patients with plurimetastatic disease exhibited higher 
PSA values than patients with limited disease burden 
(Table  2), irrespectively of the criterion used for defin-
ing oligometastatic disease (up to 3 or 5 lesions), with 

Fig. 1 Schematic representation of the final classification in oligometastatic and plurimetastatic patients based on the number of lesions identified 
at  [18F]FMCH (up to 3/5 and > 3/5, respectively) PET/CT findings at analysed population (upper panel). At lower panel clinical examples from the 
series: schematic representation (A–C) and  [18F]FMCH PET/CT findings (a’–a’’, b’–b’’, c’–c’’, upper panel MIP images and lower panel top-down 
transaxial emission, CT and superimposed PET/CT at different levels) of oligorecurrent disease (A, a’, a’’), oligometastatic patients (B, b’, b’’) and 
multimetastatic patient (C, c’ and c’’)

Table 2 Values of PSA at the time of PET/CT based on tumor burden

PSA Oligometastatic ≤ 3 Multimetastatic > 3 p-value Oligometastatic ≤ 5 Multimetastatic > 5 p-value

Mean 3.6959574 38.162941 0.0015 3.524 59.99095  < .0001

Dev std 5.3415206 107.03347 4.939003 132.6206

Min 0.09 0.24 0.09 1.93

Max 32 591 32 591

Median 1.85 4.73 1.8 13.05
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a higher correlation using the 5 lesions threshold. PSA 
values also differed significantly between plurimetastatic 
disease with more than 5 lesions and patients with more 
than 3 and not more than 5 lesions (p-value = 0.001). In 
addition, PSA values were higher in patients with bone 
recurrence as compared to the ones with regional lymph 
nodes metastasis (p-value < 0.0001; Table  3). No differ-
ence in PSA levels were found in patients with a GS ≤ 7 or 
> 7 (p = 1) or in patients ADT-on or ATD-off (p = 0.07).

Similarity analysis
[18F]FMCH PET/CT identified multi-lesions disease in 
55 patients. Patient-based analysis results are shown in 
Fig. 2. The mean similarity index was −0.462, indicating 
that lesions were poorly matched to the ones belong-
ing to the same patient, and much more closed to other 
patients’ lesions. Anatomy-based analysis results are 
shown in Additional file  1: Fig. S1. The mean similar-
ity index was negative, regardless of the site of recur-
rence (−0.291 for regional lymph nodes, −0.343 for 
distant lymph nodes, and −0.429 for bone metastases). 
At the paired t-test, the mean anatomy-based similarity 
index was significantly different from the patient-based 

similarity index in all three cases (p < 0.01). Organ-spe-
cific lesions lead to a reduced intra-patient heterogene-
ity with respect to all the lesions. The mean similarity 
index of the metabolism-based analysis (Additional file 1: 
Fig. S2) was negative (−0.380 for the first tertile, −0.380 
for the second tertile, and −0.428 for the third tertile), 
although showing lower heterogeneity when consid-
ering only the maximum standardized uptake value 
 (SUVmax)-wise homogeneous lesions for computing 
patients’ silhouette. At the paired t-test significant dif-
ferences between mean similarity index were found (p 
< 0.01), suggesting quite a concordance between higher 
radiomic features and  SUVmax statistical parameter. 
Patients’ lesions result into a more homogeneous cluster-
ing when sliced per  SUVmax tertile while show higher het-
erogeneity when considered all together.

Grouping patients according to the number of metas-
tases, the 3-lesion threshold definition of oligometastatic 
exhibited lower heterogeneity than plurimetastic disease 
(Fig.  3a; p =  0.0003). The 5-lesions-threshold definition 
of oligometastatic disease showed a similar heterogeneity 
of plurimetastic disease (Fig. 3b; p = 1.337e−08). These 
findings were also confirmed in patients classified with 

Table 3 Values of PSA at the time of PET/CT based on site of recurrence

PSA Skeleton Regional Ln Distant Ln p-value S—R p-value S—D p-value R—D

Mean 67.076039 9.3731667 18.236806  < 0.001 0.2291 0.0265

Dev std 148.03796 23.508696 43.819157

Min 0.09 0.1 1.06

Max 591 128 211

Median 5.77 2.72 3.81

Fig. 2 Lesions’ similarity within each patient. Patients were included in the plot with no specific sorting criterium. Subjects were indeed randomly 
attributed a number from 1 to 92 as to be univocally identified. This number was used as agnostic coding factor. Colors are also randomly attributed 
to patients according to a palette of our choice, such that each subject could be associated to both a number and a color for visualization purposes
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Fig. 3 Intra-patient lesion’s similarity according to tumor burden in multi- (left) and oligo-metastatic (right) patients, respectively. Oligometastic 
disease was defined as up to three lesions (a) or up to five (b)
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the three lesions threshold as compared to patients with 
a lesion number between three and five and with more 
than five lesions (p = 7.223e−06). Patients with oligo-
metastatic disease with a maximum of three lesions were 
less heterogeneous than the other two groups. Intra-
patient lesion’s similarity was comparable when consid-
ering patients with a GS ≤ 7 and > 7  (Additional file  1: 
Fig. S3; p  =  0.4068), whereas low PSA patients exhib-
ited lower yet not statistically different heterogeneity 
than patients with high PSA (Additional file  1: Fig. S4; 
p =  0.2723). ADT weakly affected intra-patient lesion’s 
similarity (Additional file 1: Figure S5; p = 0.0057).

Unsupervised clustering identified two clusters as 
the best interpretable choice (Additional file  1: Figure 
S6). We found a higher prevalence of the  SUVmax range 
1 (i.e., first  SUVmax tertile with respect to second and 
third tertile) in the second cluster, a higher prevalence of 
plurimetastatic disease (i.e., > 5 lesions) in the first clus-
ter, and a higher prevalence of bone metastases disease 
with respect to nodal metastases in the first cluster.

Discussion
PCa recurrence represents a biological complex set-
ting including patients with oligorecurrence, oligometa-
static single-organ or multi-organ disease as well as 
multi-organ plurimetastatic disease, this latter present 
in about 60% of our patients in this series. The setting of 
metastatic disease is still rather unexplored for radiomic 
analysis, and few data are available in literature. Among 
the open issues, we identified the lack of consensus on 
the number of lesions to be included in the radiomic 
analysis as well as the biological significance of different 
recurrent disease phenotypes i.e., multiple single-organ 
metastasis versus synchronous multi-organ metastasis. 
While radiomics in the setting of oligorecurrent disease 
is rather intuitive taking advantage from the workflow 
developed for primary tumor lesion, the approach to 
oligo-/plurimetastatic disease with a per lesion analysis is 
a pure simplistic model. Indeed, the presence of multiple 
metastasis in the same organ or the spread within differ-
ent organs and/or parenchyma requires proper modeling 
in light of the biological complexity of each metastases. 
Consequently, an insightful patients’ data transformation 
from "long" to "wide" format accounting for the relation-
ship among all lesions is necessary. In this work, we per-
formed an intra-patient similarity analysis exploring the 
silhouette index to quantify and assess such relationship. 
By this approach, we demonstrated the ability of  [18F]
FMCH PET/CT radiomic analysis to differentiate disease 
recurrence site, predict the Gleason score, and tumor 
burden (oligometastatic versus plurimetastatic disease) 
in recurrent PCa patients. Specifically, our data showed 
the coexistence of multiple texture phenotypes within 

one single organ or in the same patient as demonstrated 
by the high lesions heterogeneity. Such heterogeneity sig-
nificantly decrease when considering only lesions within 
the same organ rather than all the lesions globally, and 
when focusing on metabolically similar lesions character-
ized by comparable  SUVmax values.

Additionally, our analysis suggested that oligometa-
static disease should be limited to patients with no more 
than five lesions, with further benefit of a more conserva-
tive criterion of a maximum of three lesion threshold. In 
our series, patients with plurimetastatic disease exhibited 
higher PSA values than patients with a limited tumor 
burden, with a higher correlation when the five lesions 
threshold was used. This evidence was further supported 
by the presence of statistically different PSA values in 
the groups of patients with more than five lesions and 
patients with more than three-five lesions. Moreover, 
intra-patient lesions’ similarity showed a relationship 
between PSA levels and intra-patient lesions’ hetero-
geneity (the lower the PSA, the lower the intra-patient 
lesions’ heterogeneity). In addition, the similarity analy-
sis showed that patients with oligometastatic PCa defined 
with a 5-lesion threshold presented lesions heterogeneity 
comparable to plurimetastic patients. Differently, lesions 
within patients having a limited tumor burden as defined 
by three lesions were characterized by less heterogene-
ity, thus featuring different cells phenotypes. Indeed, 
the key metabolic nodes associated with tumor het-
erogeneity are the biological prerequisite for a different 
 [18F]FMCH uptake, as result of enhanced entry of long-
chain fatty acids into the mitochondria or as precursors 
of eicosanoid metabolism, providing to oligometastatic 
and plurimetastatic disease (from low to high), either 
a highly proliferative phenotype or invasive epithelial-
mesenchymal-transition-like phenotypes, respectively, 
as shown by in  vitro experiments [28–31]. Therefore, 
the similarity index provides a tool for a better insight of 
oligometastatic PCa, going beyond  [18F]FMCH PET/CT 
visual image analysis numbering the lesions [8]. This is a 
fundamental step in the debate around the proper defi-
nition of oligometastatic PCa in the attempt of integrate 
image-derived phenotype information of the "biological 
oligometastatic concept".

We have to acknowledge some limitations. Firstly, the 
sample size was relatively small. However, all images 
were prospectively obtained and processed using a 
standardized acquisition protocol and the same radi-
omic workflow, making results consistent. Secondly, it 
should be bear in mind that the concept of oligometa-
static (and plurimetastatic) disease may be affected by 
the imaging modality (including the tracer) and its spa-
tial resolution as well as by the clinical setting (i.e., diag-
nosis, recurrence, or relapse), making any definition an 
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approximation. On the other hand, the use of the gold 
standard to properly classify oligometastatic patients is 
unfeasible in daily practice. Therefore, although each def-
inition—either based on clinical or imaging data—is bur-
dened by the inherent limitation(s) of the used method, 
its refinement trough new insights results in a patient 
management improvement toward precision medicine. 
Moreover, the innate limit of imaging is the detection 
of macroscopic disease, and despite the understandable 
advantage of microscopic disease detection (e.g., circulat-
ing tumor DNA), the role of imaging is still crucial. Oli-
gometastatic disease is almost a continuum of risk and 
could seem inappropriate to express a so complex biolog-
ical entity with a number. However, as above-mentioned 
the most used approaches to define oligometastatic PCa 
rely mainly on numbers. Our study, evaluating lesions 
heterogeneity, suggested an evidence-based threshold for 
oligometastatic/plurimetastatic PCa.

Thirdly, the evaluation of heterogeneity of relatively 
small lesions—as are typically those of biochemical 
recurrent PCa—may seems useless. However, we equally 
manage "oligometastatic" patients with one regional 
nodal recurrence and with bone/visceral metastases, 
even if they are probably affected by biologically different 
diseases. This analysis demonstrated that image-derived 
biomarkers effectively entail more information that those 
"captured" by visual analysis, and that they may be used 
to "in-vivo" study some biological behaviors of the dis-
ease. Fourthly, radiomic features were extracted from 
 [18F]FMCH which works quite well if PSA is greater than 
2 ng/mL, but which is known roughly half as sensitive as 
prostate-specific membrane antigen  (PSMA). Therefore, 
although imaging shows early disease that is expected to 
become widespread, it cannot be distinguished from the 
biological significance of oligometastases [8]. Accord-
ingly, we will expect that an even more restrictive thresh-
old should be used to numerically namely oligometastatic 
PCa when using PSMA-based imaging.

Lastly, we evaluated tumor heterogeneity and intra-
patients lesions’ similarity without any correlation with 
patients outcome. However, it was out of the scope of 
the present work. Indeed, we make use of the radiomic 
features with the aim of quantitively identifying differ-
ent PCa phenotypes within patients. We thus intend 
to provide a different perspective—and possibly a 
new vision—for imaging data exploitation for drawing 
insightful conclusion, under the "umbrella" of radiomics. 
Among the extensive, yet often inconclusive and meth-
odologically lacking, literature that is emerging around 
radiomics-based machine learning models (i.e., machine 
learning methods applied to radiomic features extracted 
from images as is), we propose a sound statistical method 
for characterizing within-patient tumor heterogeneity. 

Quality of methodology is an essential requirement for 
inclusion of new evidence emerged by from trials [32], 
especially in the developing field of advanced image anal-
ysis [33, 34]. Appropriateness of clinical definitions and 
strength of radiomic workflow (including data analysis) 
should be established before to assess any prognostic or 
predictive role of image-derived parameters, to be sure 
they will be meaningful.

Conclusions
[18F]FMCH PET/CT radiomic analyses provided invalua-
ble information about tumor heterogeneity of PCa recur-
rence, entailing discriminant ability in differentiating the 
disease according to the site of recurrence and the tumor 
burden. Based on our model, the definition of oligometa-
static PCa should include patients with no more than 
three lesions. Indeed, oligometastatic patients defined as 
having up to five lesions, exhibited a heterogeneity com-
parable to plurimetastic patients. Conversely, when the 
limited tumor burden was defined as more than three 
lesions, oligometastatic patients were less heterogene-
ous than plurimetastatic patients, featuring different cells 
phenotypes in the two groups. Such tumor heterogene-
ity has key metabolic nodes associated with high tumor 
 [18F]FMCH uptake, highlighting the benefit of potential 
subpopulation-specific targets with important therapeu-
tic implications by radiomics analysis.
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