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Abstract. Diffuse interface models have gained a growing interest in cancer research for their ability
to investigate the mechano-biological features during tumour progression and to provide simulation
tools for personalised anti-cancer strategies at an affordable computational cost. Here we propose
a diffuse interface model for tumour evolution which accounts for an interfacial structure mimick-
ing a finite elastic confinement at the tumour boundary, possibly due either to a localised elastic
stress induced by host tissue displacements, or collagen remodelling in the peritumoral area. This
model consists of a partial differential equation of the Cahn–Hilliard type, with degenerate mobility,
single-well potential, and an elastic nonlocal term acting as the effect of a membrane confinement
in the chemical potential. Using mixture theory, we derive the corresponding governing equations
from thermodynamic principles based on realistic physical and biological assumptions. First, we
introduce a suitable regularized problem in order to deal with the degeneracy set of the mobility
and the singularity of the potential. For this problem we find a weak solution and provide a reg-
ularity result. Then we establish suitable a priori estimates which are uniform with respect to the
regularization parameters. Passing to the limit in the regularized problem, we prove existence res-
ults for different classes of weak solutions to the original problem. Finally, we propose a continuous
Galerkin Finite-Element discretization of the problem, where the positivity of the discrete solution
is enforced through a variational inequality. Numerical simulations in a two-dimensional domain are
also discussed in three test cases for illustrative purposes.

1. Introduction

Cancer is a multi-factorial disease displaying not only with a wide genotypic and pheno-
typic variability but also a marked ability to sense and to respond to chemo-mechanical
cues during all its progression stages [54]. In the last few decades, mathematical mod-
elling has emerged as a useful tool to aid medical researchers shedding light on the key
mechano-biological features underlying solid tumour dynamics [25,60]. In particular, dif-
fuse interface approaches have attracted a growing interest for their ability to provide
multi-physic models that are robust, thermodynamically consistent and allow to deliver
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in-silico numerical simulations at an affordable computational cost [53]. Such models are
based on the so-called Cahn–Hilliard equation, which was first proposed in 1958 by J.W.
Cahn and J.E. Hilliard [15, 17] as a phenomenological model for phase separation in bin-
ary solutions due to an interplay between the entropy mixing and demixing effects due to
aggregation, also observed in cell biology [28,41]) and in several other contexts (see, e.g.,
[12, 29]).

Here, we propose a novel solid tumour model in which the cancerous mass behaves as a
saturated mixture of a cancerous phase, made by cellular aggregates behaving as an elastic
fluid, and a healthy phase consisting of healthy cells, extracellular matrix (ECM) and
water. We assume that the interface separating the two phases is diffuse: each volumetric
element of tissue picked up in the separating layer hosts a volumetric fraction of both the
solid and the liquid phase, simultaneously. The mass balance equation for each component
of the mixture can be written as a continuity equation with a flux J, namely

mi

mC
+ ∇ · J = 0 (1.1a)

J = −1(i)∇� ′(i), (1.1b)

where i = i(x, C) ∈ [0,1] represents the concentration (volume fraction) of one component
in the binary solution. Typically, the spatial variable x takes value in a bounded domain
Ω with a sufficiently smooth boundary, while C ranges in a given bounded time interval
0 < C < ) < ∞. In equation (1.1b), 1(i) is a mobility coefficient that can be constant but
in general is a tensor-valued function of i. Moreover, � (i) is the Landau grand potential
defined for instance by

� (i) = �
ˆ
Ω

[
W2

2
|∇i|2 + k(i)

]
3x, (1.2)

where � is the elastic modulus of the cancerous phase (units Pa), W2 is a positive material
parameter related to the interface thickness separating the two phases (units m2), and k(i)
is a homogeneous free energy density (per unit volume), representing the intermixing and
adhesion forces between the tumour and the host tissue. Following [1, 14] we will adopt a
single-well Lennard-Jones type potential of the form

k(i) = −(1 − i∗) ln(1 − i) − i
3

3
− (1 − i∗) i

2

2
− (1 − i∗)i. (1.3)

We refer to Section 2.1, for a complete description of this potential. In particular, see
Remark 2.1 for the definition of i∗. The main novelty of the present work is accounting
for the presence of an interfacial elastic confinement, mimicking the presence of an elastic
membrane encapsulating the tumour boundary. The presence of such a finite elastic effect
have been observed experimentally both ex-vivo and in-vivo, either due to stress generation
induced by host tissue displaced during growth or due to collagen remodelling in the ECM
at the tumour periphery [65].
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For this purpose, we complement the expression of the Landau grand potential (1.2)
with a quadratic term accounting for such an elastic contribution. Under suitable physical
hypotheses that will be discussed in the following section, the Landau grand potential
takes the form

� (i) = �
ˆ
Ω

(
k(i) + W

2

2
|∇i|2

)
3x

+ :

W2

(ˆ
Ω

|∇ī |23x
)−2 [ˆ

Ω

[�_ (i) − �_ (ī)] 3x
]2
, (1.4)

where : (units N/m) is the elastic constant of the cell membranes, and �_ is a Heaviside-
type function. The additional term accounts for the displacement of the host tissue with
respect to a threshold value _ ∈ (0, 1). Indeed, �_ (i) − �_ (ī) is the signed characteristic
function of the domain subset involved in the displacement, taking value 1 where the
cellular tissue is expanded with respect to the initial configuration ī, and value −1 where
it is contracted. The term W

´
Ω
|∇ī|2 3x is the surface area of the cell distribution in the

reference configuration. Hence, the quantity

1
W

(ˆ
Ω

|∇ī |2 3x
)−1 ˆ

Ω

[�_ (i) − �_ (ī)] 3x

represents the total normal displacement around the interface.

1.1. Contribution beyond the state-of-the-art

Aside from the original application to binary alloys introduced in [3, 5], diffuse interface
approaches have been extended, among the others, to ternary mixtures in [58], multi-
component polymeric systems in [55], mixtures with different heat conductivities in [57],
and phase separation in solder alloys in [26]: Later applications concern lithium-ion bat-
teries [66], modelling nano-porosity during de-alloying [32], inpainting of binary images
[9, 10], and even the formation of Saturn’s rings in [64].

Due to its Eulerian standpoint, the mixture approach is particularly suited to deal with
binary flows [39, 52], and multi-phase fluid flows, where a multiphasic Cahn–Hilliard
equation is coupled with a Navier-Stokes system [11, 44–46]. Moreover, regarding fluid
flows, recent studies considered computational methods for the Cahn–Hilliard equation
applied to a Taylor flow in micro/macro-channels [33] and to two-layer flow in channels
with sharp topographical features, as in [67]. However, the diffuse interface approach has
been remarkably extended to include solid phases behaving as deformable elastic con-
tinua [38], and to describe pattern formation in biological and ecological systems, as in
[43, 51]. Notable contributions are [35], where the Cahn–Hilliard equation is coupled to
the system of linear elasticity, and [2, 34], where it is coupled with viscoelastic systems
with large deformations for describing phase separation in presence of elastic interac-
tions between their constituents. An alternative approach along this direction is the diffuse
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domain approach, introduced in [20, 21] to describe the dynamics of the elastic mem-
brane in tumour growth models avoiding the need to introduce the vector displacement
and deformation tensor variables in the system dynamics. In this latter approach, linear
elasticity effects are described by the evolution of auxiliary scalar phase field variables
associated to the indicator function of the membrane that satisfy the Cahn–Hilliard equa-
tion. We point out that the approach introduced in [20, 21] provides an elastic energy that
is not translation invariant and a coupled system of local Cahn–Hilliard equations. In par-
ticular, a term of the form

´
Ω
(�" (x, C) − �" (x, C0))2 3x, where �" (x, C) is the auxiliary

variable associated to the indicator function of the membrane, is introduced in the free
energy of the system. Given a translation of the membrane from time C0 to time C, the latter
term is not equal to zero, as depicted in Figure 1. Our framework follows the main ideas of
the diffuse domain approach to describe linear elasticity through the evolution of proper
phase field variables: in particular, the function �_ (i) in (1.4) is associated to the auxili-
ary variable �" (x, C) in the diffuse domain approach. Since �_ (i) depends on the phase
field variable i itself, we don’t need to introduce auxiliary variables to the system dynam-
ics to describe elastic effects in the mixture. Moreover, the energy contribution associated
to the elastic displacement in (1.4) is invariant under translations, as depicted in Figure 1.
Indeed, for an overall translation (with mass conservation) of the tumor configuration, the
term �_ (i) − �_ (ī) gives a null contribution when integrated over Ω. We also note that

A B

x

x

x

x

Figure 1. Representation of a translation with mass conservation for the tumor configuration. Panel
A (left column): indicator function �" (x, C0) of the tumor at time C0 (bottom) and its translation
�" (x, C) at time C (top). Panel B (right column): difference of the indicator functions at time C0 and
C (top), and difference of the same functions squared (bottom).

in our approach, differently from the diffuse domain approach, the free energy (1.4) leads
to a non-local Cahn–Hilliard equation.

From a purely mathematical point of view, it is worth citing some pioneering contri-
butions that have provided seminal results that we will adapt for the mathematical analysis
of our model. Theoretical aspects of equation (1.1), in the case where the mobility is a
positive constant and k is a smooth double-well potential, have been investigated in [31],
while for the logarithmic potential we refer to [22]. If the mobility vanishes at the pure
phases and k is of logarithmic type, existence of a weak solution (in a suitable sense), to
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a boundary value problem including the Cahn–Hilliard equation, has been established in
[30], with the interpretation of the sharp interface limit given in [16]. For further details
and other contributions, the interested reader is referred to the comprehensive review [56].

1.2. Outline

This article is structured as follows. The model is derived in section 2 illustrating and
justifying the related assumptions and simplifications, after introducing the proper func-
tional and the numerical frameworks. Section 3 is devoted to the existence and regularity
of a weak solution to a suitably defined initial value boundary value problem for the
derived nonlocal equation of the Cahn-Hilliard type. In section 4 we propose a continuous
Galerkin Finite–Element discretization of the above problem and we discuss the results
of numerical simulations of three different test case to illustrate the effect of the elastic
confinement on tumour progression and pattern formation.

2. Preliminaries

In this section we describe the model derivation, providing the biological and physical
assumptions which allow to derive a nonlocal variant of (1.1) through the application of
mixture theory. Moreover, we present the functional and the numerical frameworks of our
analysis.

2.1. Model derivation and assumptions on the mobility and on the potential

We first discuss a multi-phase diffuse-interface mechanical framework which will be the
constitutive background of the tumour growth model. The main idea is that tumour cell
aggregates can be modelled as ensembles of deformable balloons in contact with each
other, the extracellular space being filled by the organic liquid and by the ECM, as in [14].

The general structure of the mixture theory underlying our model can be found for
instance in [4, 40]. We consider a binary, saturated, closed, and incompressible mixture,
composed by a tumour phase i2 of proliferating cancerous cells and a healthy phase i; of
host cells, water and ECM. The saturation constraint reads i2 + i; = 1. In the following,
the equations will be written in terms of the tumour phase i = i2 , and thus i; = 1 − i.
Moreover, the mixture is closed, meaning that the mass transfer rates between the phases
are matched. In the end, the incompressibility constraint can be written requiring the aver-
age velocity field to to be divergence-free

∇ · (i2v2 + i;v;) = ∇ · [iv2 + (1 − i)v;] = 0. (2.1)

The resulting governing differential equation is a continuity equation that needs to be
closed providing a constitutive law for the phase velocities. The derivation can be car-
ried out following [19], but with modified parameters in accordance with the following
assumptions:
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(1) Mass flux due to chemotactic movements is neglected and the cells motility is
assumed to be isotropic.

(2) The main source of energy dissipation in the system is the viscous drag interac-
tion due to relative motion between the two phases. Such a friction parameter is
indicated with � and it is measured in Pa · s ·m−2.

(3) The diffusion-reaction equation for the nutrient uptake is not incorporated.
(4) The mixture velocity v, that is the average phase velocity weighted by the corres-

ponding volumetric fractions, is considered equal to 0, since we investigate the
very viscous regime, where the centre of mass of the mixture does not move.

(5) The Landau grand potential functional � includes a nonlocal term modelling the
elastic contribution due to tissue movements (see [62] for details on thermody-
namic potentials).

For thermodynamic compatibility, we use Onsager’s variational principle [27] to enforce
the principle of maximum dissipation rate of the free energy. Thus, we compute the sta-
tionary points of the Rayleighian functional R, defined as :

R = , + 3�
3C
,

with respect to the phase velocities, where, is the energy dissipation and � is the Landau
grand potential of the system. Thanks to assumption (2), the energy dissipation functional
is given by

, =
1
2

ˆ
Ω

�i(v2 − v;) · (v2 − v;)3x, (2.2)

meaning that the dissipation is originated only by the relative velocity of the phases,
and the friction coefficient � represents a Stokes viscosity coefficient per unit surface.
Moreover, from hypothesis (4) we write the Landau grand potential functional as in (1.4).
By standard manipulations, we end up with a Darcy’s law for the velocity of the cellular
phase [13]:

v2 = −
(1 − i)2
�

∇`, (2.3)

where

` = � ′(i) = k ′(i) − W2Δi + 2:
W2

(ˆ
Ω

|∇ī|23x
)−2

� ′_ (i)
ˆ
Ω

[�_ (i) − �_ (ī)] 3x. (2.4)

The resulting continuity equation for our model reads
mi

mC
− ∇ · [1(i)∇`] = 0

` = k ′(i) − W2Δi + 2:
W2

(ˆ
Ω

|∇ī|23x
)−2

� ′_ (i)
ˆ
Ω

[�_ (i) − �_ (ī)]3x,
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where
1(i) = i(1 − i)2

�
(2.5)

is the degenerate cell mobility. This expression of the mobility is consistent with the
choice (2.2) of the energy dissipation functional , and the derivation of the law for the
phase velocity (2.3). For physical consistency and because of cell adhesion mediated by
inter-cellular proteins, cell-cell interactions should be attractive at a moderate cell volume
fraction and repulsive at higher densities. Hence, there exists a threshold value i∗ corres-
ponding to a homeostatic state, as the volumetric fraction at which the local intercellular
forces vanish. This condition is modelled by assuming

k ′(i∗) = 0.

For i < i∗, cells are attracted to each other and k ′(i) ≤ 0, while for i > i∗ forces are
repulsive and k ′(i) > 0. Above this threshold, repulsive forces tends to infinity as i→ 1,
when the cancerous cells fill the entire volume (see [14] for further details). In order to
account for this physical and biological constraints, we use a phenomenological form of
k ′(i) based on biological observation as in [4, 14, 18, 19]:

k ′(i) = � i
2 (i − i∗)

1 − i i > 0. (2.6)

More precisely, setting � = 1 without loss of generality, we take a Lennard-Jones type
potential (see [19, 23, 47])

k(i) = k1 (i) + k2 (i), (2.7)

where

k1 (i) = −(1 − i∗) ln(1 − i) (2.8)

k2 (i) = −
i3

3
− (1 − i∗) i

2

2
− (1 − i∗)i. (2.9)

Remark 2.1. Let � be the Young modulus of the cancerous phase, then:

� = −�min
1 − ĩ

ĩ2 (i∗ − ĩ)
,

where (ĩ, �min) are the coordinates of the minimum of k ′(i), with i∗ and ĩ connected
by the following relation [14]:

(1 − ĩ) (3ĩ − 2i∗)
ĩ(i∗ − ĩ) = 1.
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In summary, the resulting model consists of a fourth-order nonlocal Cahn–Hilliard type
equation of the form

mi

mC
+ ∇ · J = 0

J = −1(i)∇`

` =
X�

Xi
= k ′(i) − W2Δi + 2:

W2

(ˆ
Ω

|∇ī |23x
)−2

� ′_ (i)
ˆ
Ω

[�_ (i) − �_ (ī)]3x,

(2.10)
where
• i ∈ [0, 1] is the volume fraction of cancerous cells in the mixture;
• 1(i) is the cellular mobility, given by (2.5);
• k(i) is the single-well potential chosen to model cell-cell attractive and repulsive

forces;
• the elastic nonlocal effects are incorporated into the Landau grand potential functional

(1.4) as a global contribution driven by the boundary displacements of the tumour
cells. For �_ we choose the following �∞-regularization of the step function:

�_ (i) =


0 i ≤ 0
2 tanh2 i

tanh2 _
− tanh4 i

tanh4 _
0 < i ≤ _

1 i > _.

(2.11)

Consider now (2.10), and set

^ =
2:
W2

(ˆ
Ω

|∇ī |23x
)−2

(2.12)

�_ (i) =
ˆ
Ω

[�_ (i) − �_ (ī)] 3x (2.13)

for the sake of simplicity, and endow it with initial and no-flux boundary conditions. Thus,
the total mass is conserved. The resulting initial and boundary value problem is

mi

mC
= ∇ · [1(i)∇`] in Ω) := Ω × (0, ))

` = k ′(i) − W2Δi + ^�_ (i)� ′
_
(i) in Ω)

i(x, 0) = i0 (x) in Ω
∇i · . = 1(i)∇` · . = 0 on mΩ × (0, )),

(2.14)

where Ω ⊂ R3 , 3 = 1, 2, 3 is a given bounded domain with Lipschitz boundary mΩ, . is
the unit normal vector pointing outward mΩ and i0 is a given initial concentration. With
a slight abuse of notation for the sake of compactness, we have indicated with � ′

_
(i) the

functional derivative of �_ (i) with respect to i. Observe that the equation degenerates on
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the set {i = 0, i = 1} but the (potential) singularity is concentrated on the set {i = 1} only.
This is a non-trivial difference with respect to the well-known Cahn–Hilliard equation
studied in literature (see for details [30,61]). This was also pointed out in [1] where (2.14)
without the nonlocal term was analysed. More recently, a sort of relaxation of this problem
has been considered in [59]. In the following, the existence of a weak solution will be
proven as well as the convergence to a solution to the original problem studied in [1]. In
addition, the long-term convergence of a subsequence of solutions to a stationary state will
be also established.

2.2. Functional spaces and notation

For a given bounded domain Ω ⊂ R3 , 3 = 1, 2, 3, we denote with ! ? (Ω), ,<,? (Ω),
�< (Ω) = ,<,2 (Ω) and ! ? (0, ) ;+) the usual Lebesgue, Sobolev and Bochner spaces,
with ? ∈ [1,∞], < ∈ N and + being a suitable (separable) real Hilbert space. Given a time
interval [0, )], ) > 0, we set Ω) = Ω × (0, )).

Denoting with +∗ the topological dual of a given Banach (or Hilbert) space + , the
inner product in + and the duality pairing between + and +∗ will be indicated with the
symbols (·, ·)+ and 〈·, ·〉+×+ ∗ , respectively. If + = �1 (Ω) then the duality pairing will be
denoted by 〈·, ·〉∗ for the ease of notation.

Symbols �= (Ω) and �= (�1, �2), = ≥ 0, indicate the spaces of �=-functions from Ω to
R and from intervals �1 ⊂ R to �2 ⊂ R, respectively. Moreover, if 3 = 1, then we denote by
�B1 ,B2 (Ω) ) the space of Hölder continuous functions from Ω) to R with exponents B1 and
B2 with respect to G and C, respectively. Also, we make use of the following notation

{0 < D < 1} = {(x, C) ∈ Ω) : 0 < D(x, C) < 1}

for a given measurable function D : Ω) → R.
We shall use the standard notation when dealing with Bochner spaces. Thereby, a

function D = D(x, C) depending on space and time is considered as a function of time alone
with values to a Hilbert (or Sobolev) space + , that is

D : [0, )] → +. (2.15)

With this convention, D(C) and ¤D(C) will be used instead of D(x, C) and DC (x, C). Through-
out the discussion, �, �1, . . . �= denote generic positive constant and when possible the
numeration will help to keep track of the changes. Eventual dependencies of the constants
on geometrical or physical parameters will be explicitly indicated.

2.3. Numerical setting

Let ℎ > 0 be a discretization parameter and Tℎ a quasi-uniform conforming decompos-
ition of the domain Ω ⊂ R3 , 3 = 1, 2, 3, into 3-simplices  , with ℎ = diam( ) and
ℎ = max ∈Tℎ ℎ . We introduce the following finite-element spaces:

(ℎ := {{ℎ ∈ �0 (Ω̄) : {ℎ | ∈ P1 ( ),∀ ∈ Tℎ} ⊂ �1 (Ω),
(+ℎ := {{ℎ ∈ (ℎ : {ℎ ≥ 0 in Ω},



10 A. Agosti, R. Bardin, P. Ciarletta and M. Grasselli

where P1 ( ) stands for the space of polynomials of total order 1 in  . Let � be the set
of nodes of Tℎ , {x 9 } 9∈� the set of their coordinates, and {q 9 } 9∈� the Lagrangian basis
functions associated with each node 9 ∈ � and such that

q 9 (x8) = X8 9 .

Denoting by Πℎ : �0 (Ω̄) → (ℎ the standard Lagrangian interpolation operator such that

ΠℎD(x 9 ) = D(x 9 ) ∀ 9 ∈ �,

we define the lumped scalar product (or discrete semi-inner product) as

(D, {)ℎ =
ˆ
Ω

Πℎ [D(x){(x)]3x ≡
∑
9∈�
(1, q 9 )!2 (Ω)D(x 9 ){(x 9 ), (2.16)

for all D, { ∈ �0 (Ω̄). We also introduce the !2-projection operator %ℎ : !2 (Ω) → (ℎ and
its lumped version %̂ℎ : !2 (Ω) → (ℎ defined by

(%ℎD, {ℎ)!2 (Ω) = (D, {ℎ)!2 (Ω) ∀{ℎ ∈ (ℎ , (2.17)
(%̂ℎD, {ℎ)ℎ = (D, {ℎ)!2 (Ω) ∀{ℎ ∈ (ℎ . (2.18)

3. Existence of a weak solution

In this section we prove the existence of a weak solution to the problem (2.14). First, we
introduce a suitable regularized problem in order to deal with the degeneracy set of the
mobility and the singularity of the potential. For this problem we find a weak solution and
provide a regularity result. Then we establish suitable a priori estimates which are uniform
with respect to the regularization parameters. Such estimates are eventually used to pass
to the limit and establish the existence of a weak solution to problem (2.14). Moreover, we
will see that some additional regularity properties can be proven in the one-dimensional
case.

3.1. The regularized problem

The approach extends the strategy presented in [1] (see also [30]) to account for the
presence of the elastic nonlocal term. We refer to the quoted works for a complete charac-
terization of the properties of the regularized functions. Given Y, X ∈ (0, 1), we introduce
a regularized mobility by setting

1 X,Y (A) =


1(X) A ≤ X
1(A) X < A < 1 − Y
1(1 − Y) A ≥ 1 − Y

∀A ∈ R. (3.1)
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On the other hand, to account for the singularity of the potential in i = 1, we exploit the
Lennard-Jones splitting (2.7) and define two extensions of the functions k1 and k2, such
that

k ′′1, Y (A) =
{
k ′′1 (1 − A) A ≥ 1 − Y
k ′′1 (A) A < 1 − Y

∀A ∈ R, (3.2)

and

k̄2 (A) =

k2 (1) + k ′2 (1) (A − 1) + 1

2
k ′′2 (1) (A − 1)2 A ≥ 1

k2 (A) A ≤ 1.
(3.3)

The regularized potential is thus defined as follows

kY (A) = k1, Y (A) + k̄2 (A). (3.4)

Summing up, on account of (3.1), (3.4) and (2.11), we introduce the following regularized
version of problem (2.14):

miX,Y

mC
= ∇ ·

[
1 X,Y (iX,Y)∇`X,Y

]
in Ω)

`X,Y = k
′
Y (iX,Y) − W2ΔiX,Y + ^� ′_ (iX,Y)�_X,Y (iX,Y) in Ω)

iX,Y (x, 0) = i0 (x) in Ω
∇iX,Y · . = 1 X,Y (iX,Y)∇`X,Y · . = 0 on mΩ × (0, )),

(3.5)

where �_
X,Y
(iX,Y) stands for

�_X,Y (iX,Y) =
ˆ
Ω

[
�_ (iX,Y) − �_ (ī)

]
3x.

Problem (3.5) admits a weak solution in the following sense:

Theorem 3.1. Let Ω be a subset of R3 with mΩ at least of class �1, and suppose that
i0 ∈ �1 (Ω). Then, for every ) ∈ (0,∞) there exists a pair (iX,Y , `X,Y) such that

iX,Y ∈ !∞ (0, ) ;�1 (Ω)) (3.6a)
¤iX,Y ∈ !2 (0, ) ; (�1 (Ω))∗) (3.6b)
`X,Y ∈ !2 (0, ) ;�1 (Ω)) (3.6c)
iX,Y (0) = i0 (3.6d)

and satisfying the following mixed weak formulation

ˆ )

0
〈 ¤iX,Y (C), b (C)〉∗3C +

ˆ )

0

ˆ
Ω

1 X,Y (iX,Y (C))∇`X,Y · ∇b (C)3x3C = 0
ˆ
Ω

`X,Yq3x =
ˆ
Ω

k ′Y (iX,Y)q3x + W2
ˆ
Ω

∇iX,Y · ∇q3x

+ ^�_X,Y (iX,Y)
ˆ
Ω

� ′_ (iX,Y)q3x a.e. in [0, )]

(3.7)

for every b ∈ !2 (0, ) ;�1 (Ω)) and q ∈ �1 (Ω).
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Proof. The proof is based on a Faedo-Galerkin approach and can be carried out follow-
ing [30]. It is worth noting at this stage that the bounds of the Faedo-Galerkin sequence
{i<} easily follow from the boundedness properties of (2.11). Therefore, since standard
compactness arguments entail that i< → iX,Y in �0 ( [0, )]; !2 (Ω)) and a.e. in Ω) , and,
moreover, �_ ∈ �∞ (R) ∩,1,∞ (R), we have that

�_< (i<)
ˆ
Ω

� ′_ (i<)q 93x→ �_X,Y (iX,Y)
ˆ
Ω

� ′_ (iX,Y)q 93x, (3.8)

as < →∞, where
�_< (i<) =

ˆ
Ω

[�_ (i<) − �_ (ī)] 3x. (3.9)

Thanks to this observation we pass to the limit in the elastic contribution. Thus we can
prove that the limit point actually satisfies the weak formulation (3.7).

Remark 3.1. In the definition of the weak solution of the regularized problem it is essential
to underline that the total mass is conserved, allowing the use of Poincaré-type inequality.
More precisely, we have  

Ω

iX,Y (C) =
 
Ω

i0,

for all C ∈ [0, )].
Remark 3.2. Using standard elliptic regularity theory, on account of [1, Lemma 2], we can
show that a weak solution to the problem (3.5), in the sense of (3.1), belongs to the space
!2 (0, ) ; �3 (Ω)). This additional regularity entails that the solution to the regularized
problem satisfies the primal weak formulation
ˆ )

0
〈 ¤iX,Y , b〉∗ 3C+

+
ˆ )

0

ˆ
Ω

1 X,Y (iX,Y)∇
[
k ′Y (iX,Y) − W2ΔiX,Y + ^�_X,Y (iX,Y)� ′_ (iX,Y)

]
· ∇b 3x3C = 0

(3.10)

for every b ∈ !2 (0, ) ;�1 (Ω)), with iX,Y (0) = q0, where the equations for iX,Y and `X,Y
are not decoupled.

3.2. A priori energy and entropy estimates

Here we prove suitable a priori bounds on a solution to the approximate problem which
are uniform with respect to X and Y. Such bounds will be essential to establish the existence
of a weak solution to the original problem. Following similar arguments as in [1, 30], the
following lemma can be proved:
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Lemma 3.1. Given i0 ∈ �1 (Ω), 0 ≤ i0 < 1, there exists Y0 < 1 such that for all 0 < Y ≤ Y0
and X ∈ (0, 1) the following estimate holds

ess sup[0,) ]
{ˆ

Ω

[
W2

2
|∇iX,Y |2 + kY (iX,Y)

]
3x + ^

2
[
�_X,Y (iX,Y)

]2
}

+
ˆ )

0

ˆ
Ω

1 X,Y (iX,Y) |∇`X,Y |23x3C ≤ �,
(3.11)

with a constant � independent of X and Y.

A further basic a priori bound is concerned with the entropy function ΦX,Y defined by

ΦX,Y (A) =
ˆ A

'

ΨX,Y (B)3B, (3.12)

where
ΨX,Y (A) =

ˆ A

'

3B

1 X,Y (B)
(3.13)

and ΦX,Y (') = ΨX,Y (') = 0 with 0 < ' < 1. Observe that

Φ′′X,Y (A) = Ψ′X,Y (A) =
1

1 X,Y (A)
(3.14)

and

ΨX,Y (A) ≤ 0 for A < ' (3.15a)
ΦX,Y (A) ≥ 0 ∀A ∈ R. (3.15b)

Moreover, we set

Φ(A) = lim
X→0, Y→0

ΦX,Y (A), Ψ(A) = lim
X→0, Y→0

ΨX,Y (A)

and we observe that
ΦX,Y (A) ≤ Φ(A) 0 ≤ A ≤ 1. (3.16)

A straightforward computation (see (2.5)) gives

Ψ(A) = 1
1 − A − ln(1 − A) + ln A − �1 (3.17)

Φ(A) = A ln A − A ln(1 − A) − �1A + �2, (3.18)

being �1, �2 positive constants.
On account of the above considerations, the following entropy estimate can be proved:

Lemma 3.2. If 0 ≤ i0 < 1, there exists Y0 > 0 such that, for all 0 < Y ≤ Y0 and X > 0, the
following estimate holds with a constant � independent of X and Y:ˆ

Ω

ΦX,Y (iX,Y) 3x +
ˆ )

0

ˆ
Ω

k ′′1, Y (iX,Y) |∇iX,Y |
2 3x3C + W2

ˆ )

0

ˆ
Ω

|ΔiX,Y |2 3x3C ≤ �,

(3.19)

for almost all C ∈ [0, )].
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This estimate can be formally obtained noticing that ΨX,Y (iX,Y) is an admissible test
function for the primal weak formulation (3.10). Treating the temporal derivative as in the
proof of (3.11) [1, 30], integrating by parts the term containing the Laplacian, and using
(3.16)-(3.18), together with the terms estimated by (3.11), we obtain the desired result. As
in [1], in order to control the term with k ′′2 , we employ a Sobolev inequality. Moreover,
uniform boundedness of (�_� ′

_
) ′ comes into play.

In the next subsections we will use (3.11) and (3.19) to pass to the limit as X, Y→ 0 in
problem (3.5) and prove existence of a weak solution to problem (2.14). The case 3 = 1 is
treated separately from 3 = 2, 3, since in the latter cases we cannot establish the uniform
convergence of the regularized solutions. Moreover, if 3 = 1 then we can show that the
weak solution possesses further regularity properties.

3.3. Passage to the limit in the case d = 1

The proof follows [1] and [8], with suitable modifications due to the presence of the non-
local term and the use of a dual weak formulation for the original problem. As in the
regularized problem, the weak solution defined in the following Theorem 3.2 (and The-
orem 3.3 for the case 3 = 2, 3) fulfills the mass conservation (see Remark 3.1).

Theorem 3.2. Let 3 = 1 and i0 ∈ �1 (Ω) with 0 ≤ i0 < 1. Then, there exist a subsequence
of (iX,Y , `X,Y) and functions

i ∈ !∞ (0, ) ;�1 (Ω)) ∩ � 1
2 ,

1
8 (Ω̄) )

¤i ∈ !2 (0, ) ; (�1 (Ω))∗)
` ∈ !2

;>2 ({0 < i < 1})
m`

mG
∈ !2

;>2 ({0 < i < 1}),

such that, as X, Y → 0 along a suitable subsequence,

iX,Y
∗
⇀ i in !∞ (0, ) ;�1 (Ω)) (3.20a)

iX,Y → i uniformly on Ω̄) (3.20b)
`X,Y ⇀ ` in !2

;>2 ({0 < i < 1}) (3.20c)
m`X,Y

mG
⇀

m`

mG
in !2

;>2 ({0 < i < 1}). (3.20d)

Moreover, 0 ≤ i < 1 almost everywhere in Ω̄) and the limit point (i, `) satisfies the weak
formulation of problem (2.14) in the following sense:

ˆ )

0
〈 ¤i, b〉∗3C +

ˆ
{0<i<1}

1(i) m`
mG

mb

mG
3G3C = 0

ˆ
{0<i<1}

`q 3G3C =

ˆ
{0<i<1}

k ′(i)q 3G3C + W2
ˆ
{0<i<1}

mi

mG

mq

mG
3G3C

+ ^
ˆ
{0<i<1}

�_ (i)� ′_ (i)q 3G3C

(3.21)
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for all b, q ∈ !2 (0, ) ;�1 (Ω)), with i(0) = i0.

Proof. The proof consists of four steps.
(1) Proof of (3.20a) and (3.20b)

Weak-∗ convergence of iX,Y with respect to the !∞ (0, ) ; �1 (Ω))-norm follows
directly from energy estimate (3.11), which entails a bound for ‖∇iX,Y (C)‖!2 (Ω) .
Then, on account of the mass conservation, we get the desired convergence. If
3 = 1 then we can use the embedding of �1 (Ω) in !∞ (Ω), together with the
Poincaré-Wirtinger inequality and (3.11) to obtain a uniform bound in Ω̄:

‖iX,Y (C)‖2!∞ (Ω) ≤ �
∗‖iX,Y (C)‖2� 1 (Ω)

≤ �∗ (1 + �2
%)‖∇iX,Y (C)‖2!2 (Ω) ≤ ��

∗ (1 + �2
%).

Therefore, we have
|iX,Y (G, C) | ≤

√
��∗ (1 + �2

%
),

where all constants are independent of X and Y, showing that {iX,Y} is uniformly
bounded on Ω̄) . Following [8, Lemma 2.1] we can also prove that there exists an
upper bound of {iX,Y} in the �

1
2 ,

1
8 (Ω̄) )-norm, meaning that

|iX,Y (G2, C) − iX,Y (G1, C) | ≤  1 |G2 − G1 |
1
2

|iX,Y (G, C2) − iX,Y (G, C1) | ≤  1 |C2 − C1 |
1
8 ,

with  1,  2 > 0 uniform in the regularization parameters. First relation follows
actually from Morrey’s inequality

‖{‖�0,U (Ω̄) ≤ �" (Ω, 3, ?)‖{‖, 1, ? (Ω) for all { ∈ ,1, ? (Ω),

with 3 = 1, ? = 2 and therefore U = 1
2 . Thus, functions iX,Y are all Hölder continu-

ous with the same constants so that {iX,Y} is a equi-continuous bounded family
of functions. From the Ascoli-Arzelà theorem we obtain (3.20b).

(2) Proof of 0 ≤ i < 1
The proof can be taken verbatim from [1].

(3) Proof of (3.20c) and (3.20d)
This proof stems by the compactness result in Banach spaces. The difficult part is
to show the boundedness of `X,Y and m`X,Y

mG
in the space !2

;>2
({0 < i < 1}). For

this purpose, for any [ > 0 we set

�+[ = {(G, C) ∈ Ω̄) : [ < i(G, C) < 1}
�+[ (C) = {G ∈ Ω̄ : [ < i(G, C) < 1},

and we introduce a cutoff function \[ ∈ �∞0 (�
+
[

4
) such that \[ (·, C) ≡ 1 on �+[

2
(C)

and 0 ≤ \[ (·, C) ≤ 1. Observe that q = \2
[`X,Y ∈ �1 (Ω) is a valid test function to



16 A. Agosti, R. Bardin, P. Ciarletta and M. Grasselli

take in (3.7). Recalling that \[ is compactly supported on ( := �+[
4
, we get

ˆ )

0

ˆ
Ω

\2
[`

2
X,Y 3G =

ˆ
(

k ′Y (iX,Y)\2
[`X,Y 3G + W2

ˆ
(

miX,Y

mG

m

mG
(\2
[`X,Y) 3G

+ ^
ˆ
(

�_X,Y (iX,Y)� ′_ (iX,Y)\2
[`X,Y 3G.

Let us consider the three terms on the right hand side of the latter equation, separ-
ately. The first and the second integrals can be bounded using (3.11) as in [1, 30],
obtainingˆ

(

k ′Y (iX,Y)\2
[`X,Y 3G ≤ �1‖\[`X,Y ‖!2 (() (3.22)

ˆ
(

miX,Y

mG

m

mG
(\2
[`X,Y)3G ≤ 2�2�[

−2‖\[`X,Y ‖!2 (() + �2

m`X,YmG


!2 (()

.

(3.23)

For the third term we proceed once again as in [1], exploiting the fact that the
non–locality is here uniformly bounded:ˆ

(

�_X,Y (iX,Y)� ′_ (iX,Y)\2
[`X,Y3G ≤ �3‖\[`X,Y ‖!2 (() . (3.24)

Adding together (3.22)-(3.24), and renaming the constants to ease the notation, we
get ˆ )

0

ˆ
Ω

\2
[`

2
X,Y3G ≤ �

(
1 + [−2

)
‖\[`X,Y ‖!2 (() + �

m`X,YmG


!2 (()

. (3.25)

Following once again [1], we end up with

‖`X,Y ‖!2 (0,) ;� 1 (�+[
4
(C))) ≤ � + �[−4, (3.26)

for every fixed [ > 0. This bound holds for any compact subset of the set �+0 ≡ {0 <
i < 1} and implies the boundedness of {`X,Y} in !2

loc ({0 < i < 1}). From stand-
ard compactness results, (3.20c)-(3.20d) follow. Moreover, from boundedness of
{iX,Y} on Ω) and (3.11) we get that

1(iX,Y)
m`X,Y

mG
∈ !2 (Ω) )

and this entails, by comparison in the first equation of (3.7), the weak convergence

¤iX,Y ⇀ ¤i in !2 (0, ) ; (�1 (Ω))∗). (3.27)

(4) The limit point satisfies the weak formulation and the initial condition
The above ingredients allow us to show the existence of a suitable subsequence
of the approximating pair (iX,Y , `X,Y) converging to a solution of (3.21), up to a
subsequence. Once again, the proof can be adapted from [1].
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3.4. Passage to the limit in the cases d = 2 and d = 3

In this case we are unable to prove uniform convergence of the regularized solution. There-
fore ∇`X,Y might not have a (weak) limit in !2 (Ω) ). However, (3.19) helps us to identify
a class of approximating weak solutions for which we can take the limit as X, Y → 0,
up to a suitable subsequence. This requires a convenient reformulation of the regularized
problem. Recalling (2.10), we introduce the regularized flux function JX,Y (see (3.1)), that
is,

JX,Y = −1 X,Y (iX,Y)∇`X,Y
= −1 X,Y (iX,Y)∇

[
k ′Y (iX,Y) − WΔiX,Y + ^�_X,Y (iX,Y)� ′_ (iX,Y)

]
(3.28)

and set

/ (i, C) =
X
[
�_ (i)� ′

_
(i)

]
Xi

.

The proof of the theorem essentially follows [30, Theorem 1] (see also [36, Theorem 1.2]
and [1, Theorem 3]), with all the necessary modifications.

Theorem 3.3. Let 3 = 2, 3 and i0 ∈ �1 (Ω) with 0 ≤ i0 < 1 almost everywhere in Ω.
Then, there exist a subsequence of (iX,Y , JX,Y) and functions

i ∈ !∞ (0, ) ;�1 (Ω)) ∩ !2 (0, ) ;�2 (Ω))
¤i ∈ !2 (0;) ; (�1 (Ω))∗)
J ∈ !2 (Ω) ,R3)

such that, as X, Y → 0 along a suitable subsequence,

iX,Y
∗
⇀ i in !∞ (0, ) ;�1 (Ω)) (3.29a)

¤iX,Y ⇀ ¤i in !2 (0, ) ; (�1 (Ω))∗) (3.29b)
ΔiX,Y ⇀ Δi in !2 (Ω) ) (3.29c)

JX,Y ⇀ J in !2 (Ω) ). (3.29d)

Moreover, 0 ≤ i < 1 almost everywhere in Ω̄) and the limit point (i, J) satisfies the
following weak formulation of problem (2.14):

ˆ )

0
〈 ¤i, b〉∗3C =

ˆ )

0

ˆ
Ω

J · ∇b3x3C
ˆ )

0

ˆ
Ω

J · (3x3C = −
ˆ )

0

ˆ
Ω

W2Δi∇ · [1(i)(] 3x3C

−
ˆ )

0

ˆ
Ω

1(i)k ′′(i)∇i · (3x3C

−
ˆ )

0

ˆ
Ω

^1(i)/ (i)∇i · (3x3C

(3.30)
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for every b ∈ !2 (0, ) ; �1 (Ω)), ( ∈ !2 (0, ) ; �1 (Ω, R3)) ∩ !∞ (Ω) , R3) with ( · . = 0
almost everywhere on mΩ × (0, )), i(0) = i0 almost everywhere in Ω, and ∇i · . = 0
almost everywhere on mΩ.

Proof. The proof consists of several steps.
(1) Proof of (3.29a)-(3.29d)

First of all we notice that (3.29c) follows from (3.19). Standard elliptic regularity
theory yields iX,Y ∈ !2 (0,) ;�2 (Ω)). Moreover, on account of (3.1), we have that
(3.11) entails (3.29d). This also implies (3.29b) thanks to weak formulation (3.7).
Eventually, since

!∞ (0, ) ;�1 (Ω)) ∩ �1 (0, ) ; (�1 (Ω))∗) ∩ !2 (0, ) ;�2 (Ω))

is compactly embedded in

�0 ( [0, )]; !6 (Ω)) ∩ !2 (0, ) ;�1 (Ω)) ∩ !2 (0, ) ;�0 (Ω̄) )), (3.31)

we have (3.29a). In particular, the last space in (3.31) follows from the Rellich-
Kondrachov theorem, thanks to the �2-regularity, and interpolation in Bochner
spaces (see [63]). Moreover, this convergence also ensures that i(0) = i0 almost
everywhere, since i0 ∈ �1 (Ω).

(2) Proof of 0 ≤ i < 1
The proof can be taken from [1].

(3) The limit point satisfies the weak formulation
We now prove that the limit point (i, J) satisfies (3.30). The first equation can be
easily identified passing to the limit as X, Y → 0 in the first equation of (3.7) and
exploiting weak convergences (3.29b) and (3.29d).We also have iX,Y ∈ !2 (0,) ;�3 (Ω)).
Hence we can multiply JX,Y by a function ( ∈ !2 (0,) ;�1 (Ω,R3)) ∩ !∞ (Ω) ,R3)
satisfying ( · . = 0 almost everywhere on mΩ × (0, )) and integrate over Ω) . This
gives
ˆ )

0

ˆ
Ω

JX,Y · (3x3C =

−
ˆ 0

)

ˆ
Ω

1 X,Y (iX,Y)∇
[
k ′Y (iX,Y) − WΔiX,Y + ^�_X,Y (iX,Y)� ′_ (iX,Y)

]
· (3x3C,

and integrating by parts on the right hand side, we obtain
ˆ )

0

ˆ
Ω

JX,Y · (3x3C = −
ˆ )

0

ˆ
Ω

W2ΔiX,Y∇ ·
[
1 X,Y (iX,Y)(

]
3x3C

−
ˆ )

0

ˆ
Ω

1 X,Y (iX,Y)k ′′Y (iX,Y)∇iX,Y · (3x3C

−
ˆ )

0

ˆ
Ω

^1 X,Y (iX,Y)/X,Y (iX,Y)∇iX,Y · (3x3C, (3.32)
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where /X,Y (iX,Y) is given by

/X,Y (iX,Y) =
X

[
�_
X,Y
(iX,Y)� ′_ (iX,Y)

]
XiX,Y

. (3.33)

The left-hand side of (3.32) converges to the first term in the second equation of
(3.30) thanks to weak convergence (3.29d). The first and the second integral on
the right-hand side can be proved to converge to the corresponding terms in (3.30)
using already established results in [1, 30]. As for the third term in the right-hand
side, we know that 1 X,Y (iX,Y) → 1(i) almost everywhere in Ω) , but since 1(i)
is uniformly bounded thanks to (3.31), we also have convergence in !2. Observe
now that calculating the functional derivative (see (3.33))

/X,Y (iX,Y) = (�_X,Y) ′(iX,Y)� ′_ (iX,Y) + �_X,Y (iX,Y)� ′′_ (iX,Y)

and recalling the regularity and boundedness properties of �_, we can apply the
dominated convergence theorem and obtain

/X,Y (iX,Y)1 X,Y (iX,Y) → / (i)1(i) in !2 (Ω) ). (3.34)

Using (3.29a) once again, together with (3.34) and the fact that ( belongs to the
space !∞ (Ω) ,R3), we can pass to the limit as X, Y → 0 in the third term on the
right hand side of (3.32). This concludes the proof, having shown that the limit
point is a solution to (3.30).

4. Continuous Galerkin-Finite Element approximation and
numerical simulations

We study now the finite element and time discretization of problem (2.14). The entropy
estimate (3.19), which guarantees the positivity of the solution, is not straightforwardly
available at the discrete level, thereby it will be imposed as a constraint through a vari-
ational inequality [1, 7].

4.1. Discrete problem with explicit treatment of the nonlocal term

At the continuum level, the weak solution i of problem (2.14) satisfies the positivity
property i ∈ [0, 1) almost everywhere in Ω) , where i ≥ 0 follows from entropy estimate
(3.19), and i < 1 follows from energy estimate (3.11). At the discrete level this is no longer
true: given {ℎ ∈ (ℎ we have

∇[%ℎ (Ψ({ℎ))] ≠
1

1({ℎ)
∇{ℎ ,
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because of the definition of function Ψ given in (3.17) and the presence of the logarithmic
term (the logarithm of a P1 function is not a P1 function). In [37], a suitable approximation
of the mobility 1̄ has been introduced such that 1̄({ℎ)∇[%ℎ (Ψ({ℎ))] = ∇{ℎ , which consists
of an harmonic average of the mobility on a structured mesh [1]. Due to the constraint
of working with structured meshes, the aforementioned approximation is not feasible in
applications. The positivity property is here imposed as a constraint through a variational
inequality. In order to show the potential of the model, we present here a simple numerical
scheme which relies on the convex splitting (2.7) of the potential k. For what concerns the
nonlinearity associated to the nonlocal term, which we rename as

N(i) := ^
[
�_ (i)

]2
,

where ^ and �_ (i) are defined in (2.12) and (2.13). We remark that it is difficult to impose
explicitly its convex splitting, which would depend on the a priori unknown sign of �_ (i).
Therefore, for the sake of simplicity, we prefer to treat explicitly the nonlocal term, post-
poning the design of a more refined numerical method to a later work.

Denoting the time step with 4C = )/# , for a # ∈ N, and C= = =4C, = = 1, . . . , # , we
consider the following fully discretized semi-implicit approximation scheme with explicit
treatment of the nonlocal term: for = = 1, . . . , # , given i=−1

ℎ
∈ (+

ℎ
, find (i=

ℎ
, `=
ℎ
) ∈ (+

ℎ
× (ℎ

such that, for all (b, q) ∈ (ℎ × (+ℎ ,

(
i=
ℎ
− i=−1

ℎ

4C , b

)
ℎ

+
(
1(i=−1

ℎ )∇`
=
ℎ ,∇b

)
!2 (Ω)

= 0

W2 (
∇i=ℎ ,∇(q − i

=
ℎ)

)
!2 (Ω) +

(
k ′1 (i

=
ℎ), q − i

=
ℎ

)
ℎ

≥
(
`=ℎ − k

′
2 (i

=−1
ℎ ) − N

′(i=−1
ℎ ), q − i

=
ℎ

)
ℎ
.

(4.1)

starting from a datum i0 ∈ �1 (Ω) and i0
ℎ
= Πℎi0 (if 3 = 1), i0

ℎ
= %̂ℎi0 (if 3 = 2, 3), with

0 ≤ i0
ℎ
< 1. Defining the discrete energy functional �ℎ : (ℎ → R+ as

�ℎ [i=ℎ] =
ˆ
Ω

[
W2

2
|∇i=ℎ |

2 + k1 (i=ℎ) + jR+ (i
=
ℎ)

]
3x, (4.2)

where jR+ (·) is the characteristic function of the closed and convex set R+, and endowing
(ℎ with the lumped scalar product (2.16), the variational inequality can be written in the
following way:(

`=ℎ − k
′
2 (i

=−1
ℎ ) − N

′(i=−1
ℎ ), q − i

=
ℎ

)
ℎ
+ �ℎ [i=ℎ] ≤ �ℎ [q] ∀q ∈ (+ℎ , (4.3)

which is equivalent to

`=ℎ − k
′
2 (i

=−1
ℎ ) − N

′(i=−1
ℎ ) ∈ m�ℎ [i

=
ℎ], (4.4)

where m�ℎ (i=ℎ) is the subdifferential of the convex and lower-semicontinuous function
�ℎ . This formulation represents the generalized discrete analogous of the subdifferential
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approach to the standard Cahn–Hilliard equation with constraints introduced in [42]. The
lack of uniqueness of the solution of the continuous problem may lead to nonphysical
discrete solutions with fixed support, but can be addressed thanks to the introduction of
the discrete semi-inner product (2.16) and a careful subdivision of the nodes of partition
Tℎ [7]. In particular, Tℎ is subdivided into elements on which i=−1

ℎ
= 0 and elements on

which i=−1
ℎ

≠ 0. Given Aℎ ∈ (+ℎ with
ffl
Ω
Aℎ ∈ (0, 1), we define the set of passive nodes

�0 (Aℎ) ⊂ � by
9 ∈ �0 (Aℎ) ⇔ %̂ℎAℎ (x 9 ) = 0⇔ (Aℎ , q 9 )!2 (Ω) = 0. (4.5)

The nodes in the set
�+ (Aℎ) = � \ �0 (Aℎ)

are called active nodes and they can be partitioned into mutually disjoint and maximally
connected subsets �< (Aℎ) such that

�+ (Aℎ) =
"⋃
<=1

�< (Aℎ),

for " ≥ 1. See [7] for further details. Defining

Σ< (Aℎ) =
∑

9∈�< (Aℎ)
q 9 ,

we note that Σ< (Aℎ) ≡ 1 on each element on which Aℎ ≠ 0, since all the vertices of this
element belong to the same �< (Aℎ). Observe that there are also elements on which Aℎ ≡ 0
but still Σ< (Aℎ) ≡ 1. Hence, on each element  ∈ Tℎ , we have that Aℎ ≡ 0 or Σ< (Aℎ) ≡ 1
for some <, except for those elements on which both Aℎ ≡ 0 and Σ< (Aℎ) ≡ 1. Moreover
we define the sets

Ω< (Aℎ) =
{ ⋃
 ∈Tℎ

 ̄ : Σ< (Aℎ) (x) = 1,∀x ∈  
}

that are the union of the maximally connected elements on which Aℎ ≠ 0, or Aℎ ≡ 0 and
the indexes of the vertices of the elements belong to �< (Aℎ) for a given <. These assump-
tions, together with the ideas introduced in [1], allow to prove existence in (+

ℎ
× (ℎ of the

solution of a regularized version of (4.1). Moreover, the regularized concentration i=
ℎ,Y

is
unique without restrictions on (+

ℎ
, while `=

ℎ,Y
is unique onΩ< (i=−1

ℎ
) for< = 1, . . . , " and

= = 1 . . . , # . The proof can be adapted from [1, Theorem 4], treating k2 + N explicitly.
Accordingly, it is also possible to produce stability bounds for the regularized solution,
which lead to convergence in (+

ℎ
of i=

ℎ,Y
, as Y→ 0, to the solution i=

ℎ
of (4.1). As for `=

ℎ,Y
,

denoting withΩ<,∗ (i=−1
ℎ
) the set of those elements ofΩ< (i=−1

ℎ
) on which i=−1

ℎ
≠ 0, con-

vergence to the solution `=
ℎ
of (4.1) on the set Ω<,∗ (i=−1

ℎ
) can be also proved. The well

posedness of (4.1) follows.
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4.2. Numerical algorithm

We now consider a procedure for solving the variational inequality at each time step in the
problem (4.1). This is based on the general splitting algorithm proposed by Barrett et al.
in [7] (see also [6, 24, 50] for further applications with different kinds of mobility). For =
fixed, we first multiply the variational inequality in (4.1) by a relaxation parameter d > 0
and we add the term (

i=ℎ , q − i
=
ℎ

)
ℎ

to both sides, obtaining(
i=ℎ , q − i

=
ℎ

)
ℎ
+ dW2 (

∇i=ℎ ,∇(q − i
=
ℎ)

)
!2 (Ω) + d

(
k ′1 (i

=
ℎ), q − i

=
ℎ

)
ℎ

≥
(
i=ℎ , q − i

=
ℎ

)
ℎ
+ d

(
`=ℎ − k

′
2 (i

=−1
ℎ ) − N

′(i=−1
ℎ ), q − i

=
ℎ

)
ℎ
. (4.6)

Defining the function /=
ℎ
in such a way that(

/=ℎ , q
)
ℎ
=

(
i=ℎ , q

)
ℎ
+ d

(
`=ℎ − k

′
2 (i

=−1
ℎ ) − N

′(i=−1
ℎ ), q

)
ℎ
− dW2 (

∇i=ℎ ,∇q
)
!2 (Ω) , (4.7)

inequality (4.6) becomes(
i=ℎ , q − i

=
ℎ

)
ℎ
+ d

(
k ′1 (i

=
ℎ), q − i

=
ℎ

)
ℎ
≥

(
/=ℎ , q − i

=
ℎ

)
ℎ
. (4.8)

Due to the presence of the lumped scalar product, and the fact that the elliptic terms are
contained in the vector /=

ℎ
, inequality (4.8) is scalar and must be satisfied on each node

separately. Moreover, from definition (4.7) it follows that(
2i=ℎ − /

=
ℎ , q

)
ℎ
=

(
i=ℎ , q

)
ℎ
− d

(
`=ℎ − k

′
2 (i

=−1
ℎ ) − N

′(i=−1
ℎ ), q

)
ℎ
+ dW2 (

∇i=ℎ ,∇q
)
!2 (Ω)
(4.9)

We now adopt an iterative procedure, in the index : , using (4.7)-(4.9) and providing an
analogue of the active nodes set �+ (i=−1

ℎ
) of the computational mesh, where i=−1

ℎ
> 10−6

is meant for i=−1
ℎ

> 0. Starting from

i
=,0
ℎ
= i=−1

ℎ

`
=,0
ℎ
= `=−1

ℎ ,

the algorithm consists of the following steps:
(1) Find /=,:

ℎ
∈ (ℎ using (4.7), such that ∀q ∈ (+ℎ(
/
=,:

ℎ
, q

)
ℎ
=

(
i
=,:

ℎ
, q

)
ℎ
+ d

(
`
=,:

ℎ
− k ′2 (i

=−1
ℎ ) − N

′(i=−1
ℎ ), q

)
ℎ

− dW2
(
∇i=,:

ℎ
,∇q

)
!2 (Ω)

.



A diffuse interface model of tumour evolution under a finite elastic confinement 23

(2) As intermediate step, find i=,:+
1
2

ℎ
∈ (+

ℎ
such that

i
=,:+ 1

2
ℎ

(x 9 ) = i=−1
ℎ (x 9 ) 9 ∈ �0 (i=−1

ℎ ) (4.10a)(
i
=,:+ 1

2
ℎ

+ dk ′1
(
i
=,:+ 1

2
ℎ

)
− /=,:

ℎ
, q − i=,:+

1
2

ℎ

)
ℎ

≥ 0, (4.10b)

where the inequality, which is actually (4.8), is valid ∀q ∈ (+
ℎ
and must be solved

on the set of active nodes �+ (i=−1
ℎ
). This scalar inequality is thereby a projection

problem on each active node and it can be solved through the Projected Gradient
Descent Method (PGD), introducing a fixed point iteration of index ;, another
relaxation parameter l > 0 and starting from i

=,:+ 1
2 ,0

ℎ
= i

=,:

ℎ
. The parameter l is

determined as follows

i
=,:+ 1

2 ,;+1
ℎ

(x 9 ) =

= %R+

[
i
=,:+ 1

2 ,;

ℎ
(x 9 ) − l

(
i
=,:+ 1

2 ,;

ℎ
(x 9 ) + dk ′1

(
i
=,:+ 1

2 ,;

ℎ
(x 9 )

)
− /=,:

ℎ

)]
= max

{
0, i=,:+

1
2 ,;

ℎ
(x 9 ) − l

(
i
=,:+ 1

2 ,;

ℎ
(x 9 ) + dk ′1

(
i
=,:+ 1

2 ,;

ℎ
(x 9 )

)
− /=,:

ℎ

)}
.

so that the iterations converge using the Polyak Method [49].
Observe that the application of the PGDMethod is possible since the first operand
in the lumped scalar product of (4.10b) is monotone, given the convexity of the
functions involved. If the errori=,:+ 1

2 ,;+1
ℎ

− i=,:+
1
2 ,;

ℎ


ℓ2

is below a certain tolerance, we stop the cycle and set

i
=,:+ 1

2
ℎ

= i
=,:+ 1

2 ,;+1
ℎ

.

(3) Find (i=,:+1
ℎ

, `
=,:+1
ℎ
) ∈ (+

ℎ
× (ℎ by solving the following system:

1
4C

(
i
=,:+1
ℎ

, b

)
ℎ
+

(
∇`=,:+1

ℎ
,∇b

)
!2 (Ω)

=
1
4C

(
i=−1
ℎ , b

)
ℎ

+
(
[1 − 1(i=−1

ℎ )]∇`
=,:

ℎ
,∇b

)
!2 (Ω)(

i
=,:+1
ℎ

, q

)
ℎ
+ dW2

(
∇i=,:+1

ℎ
,∇q

)
!2 (Ω)

− d
(
`
=,:+1
ℎ

, q

)
ℎ

=

(
2i=,:+

1
2

ℎ
− /=,:

ℎ
− dk ′2 (i

=−1
ℎ ) − dN

′(i=−1
ℎ ), q

)
ℎ

(4.11)

for all (b, q) ∈ (ℎ × (+ℎ . The splitting

1(i=−1
ℎ )∇`

=,:+1
ℎ

= [1 − (1 − 1(i=−1
ℎ ))]∇`

=,:+1
ℎ

is not strictly necessary but enhances the convergence of the numerical method.
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(4) Finally, if the error i=,:+1
ℎ

− i=,:
ℎ


!∞ (Ω)

is below a given threshold, we set

i=ℎ = i
=,:+1
ℎ

`=ℎ = `
=,:+1
ℎ

,

otherwise the :-iteration must restart.

4.3. Numerical results

In the following, we discuss the numerical results of three test cases in a two-dimensional
domain.
In the first test case, we study the effects of elasticity on the spinodal decomposition and
coarsening dynamics adding a random perturbation on a uniform initial concentration of
tumour cells in the metastable regime.
In the second test case, we will consider the merging of isolated circular tumour sub-
domains immersed in a healthy tissue.
In the third test case, we consider the evolution of a circular tumor sub-domain, with initial
concentration i0 = 0.55, immersed in a healthy tissue. For this case we assume that the
tumour cells can proliferate following a logistic growth law, to illustrate the effects of the
elastic nonlinear term on the tumour expansion.
In all the test cases, We will show the numerical results obtained by setting : = 0 and : =
0.1, and the dimensionless domain is Ω = (−3, 3) × (−3, 3). The mesh is created choosing
an uniform partition of 64 sub-intervals on each edge. The values of the parameters kept
fixed during the simulations are reported in Table 1 and they originate from biological
data settled in literature. We use the expression (2.11) for �_. To check the validity of
the model, we make use of a FreeFem++ code adapted from the one exploited in [1]. In
particular, we added the handle functions to deal with the non-locality and, following the
numerical algorithm presented in Section 4.2, we implemented an additional integral term
in the definition of function /=,:

ℎ
. Moreover, an adaptive time step is implemented in order

to avoid numerical errors due to an excessively long temporal pace. Since the support of
the discrete solution can move at most of a length ℎ at each time step, we want to guarantee
that the solution in the passive nodes does not block the spreading of the non-zero discrete
solutions in the active nodes, meaning that

4C < ℎmin
{max

,

where ℎmin is the smallest edge length among the elements of the mesh, and {max is the
maximum on Ω of the tumour expansion velocity, calculated from a Darcy-like law of the
form

v = −1(i)
i
∇`
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Parameter description Value

W Thickness of the diffuse interface 0.025 mm
a Tumour cells proliferation rate 2.5 day−1

� Friction coefficient 20 Pa · day ·mm−2

� Young modulus of the cancerous phase 1 Pa
_ Threshold for the presence of the elastic contribution 0.1
i∗ Concentration value for mutual equilibrium of the cells 0.6
4C Temporal discretization parameter 0.000 625 day
d Relaxation parameter for the first step 0.046875
l Relaxation parameter for the second step 0.0646
tol Tolerance for the fixed point iterations 5 · 10−5

Table 1. Numerical model parameters and their values. The time step is chosen to be 4C = 0.5W2,
while between the two relaxation parameters the following relation holds: l = 0.2/(3 + 2d).

where i ≠ 0, and set to zero where i = 0. In particular, we set

{max = max
x 9

(
|{G (x 9 ) | + |{H (x 9 ) |

)
and we impose

4C = min
(
W2

2
,
ℎmin

2{max

)
.

For the last test case, we introduce a source term of the form

ai=−1
ℎ (1 − i

=−1
ℎ )

on the right hand side of equation (4.11) in order to illustrate the effects of the elastic
nonlinear effects on the tumour expansion. The parameter a represents the tumour cells
proliferation rate.

4.3.1. Test Case 1: Coarsening dynamics. In Figure 2 we report the initial condition
q0 = 0.05 ± 0.025X, where X is a random perturbation uniformly distributed in the interval
[0, 1]. We also report the value of the mass of the solution,

< :=
1
|Ω| (i

=
ℎ , 1)ℎ .

In Figure 3 we show the plots of q=
ℎ
at different time points during the phase separation

dynamics and the coarsening dynamics of the separated domain sub-regions. We compare
side by side the case setting : = 0, with no elasticity of the tumor tissue, and the case
setting : = 0.1, accounting for nonlocal elastic effects. In Figure 3, we remark that the
mass of the solution is conserved both for the cases with : = 0 and : = 0.1. As expected
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t = 0, m = 0.05

Figure 2. Initial condition q0 = 0.05 ± 0.025X for Test Case 1.

(see e.g. [1]), the phase separation dynamics in the case : = 0 consists in the formation
of circular clusters with i ∼ i∗ immersed in a bath with q ≡ 0. In the case : = 0.1, we
observe that the phase separation dynamics is slower and that the interface regions between
separated phases are wider than in the case without elasticity. Also, the nonlocal elastic
term increase the average length of the cluster domains and enforces a resistance against
relaxation to the background value i ≡ 0 during the whole phase separation.

4.3.2. Test Case 2:Merging dynamics. The initial condition is given by i0 = 0.55(j�1 +
j�2), where j�1 and j�2 are the characteristic functions of two circular regions placed
symmetrically along the G direction. In Figure 4 we show the plots of i=

ℎ
at different time

points throughout the merging dynamics, comparing the results obtained setting : = 0
and : = 0.1. We observe from Figure 4 that, the initial circular clusters for : = 0 evolve
with interacting tips initially oriented along the bisecting directions of the plane, finally
merging into the equilibrium shape of an ellipse with the major axis oriented along the G
axis. This merging dynamics is consistent with a minimization of the tumour boundaries
driven by nonlocal short-range intercellular potential only. In the case : = 0.1, the circular
clusters interact only weakly to the further elastic confinement, not merging during the
observed time interval considered. The numerical results for the case with tissue elasticity
share a similar physical interpretation with the numerical results reported in [48] for inter-
acting hard precipitates in a linear isotropic non-homogeneous elastic medium, where the
elastic modulus associated to the phase i ≡ 1 is higher than the elastic modulus associated
to the phase i ≡ 0. Indeed, the aforementioned numerical results in [48] show a repulsion
between the precipitates, with lack of mutual interaction.

4.3.3. Test Case 3: Elastic effects on tumour expansion. The initial condition i0 = 0.55
is located on a circular shape of radius A = 0.4 centred in the square domain Ω. Outside
of the circle, we initially set i0 = 0 uniformly. In Figure 5, we compare the numerical
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k = 0 k = 0.1
t = 1.25, m = 0.05 t = 1.25, m = 0.05

t = 16, m = 0.0499 t = 13, m = 0.05

t = 30, m = 0.0499 t = 52, m = 0.0504

t = 88, m = 0.0508 t = 180, m = 0.0505

Figure 3. Plot of q=
ℎ
at different time points for Test Case 1, in the cases : = 0 (first column) and

: = 0.1 (second column).

solutions at three different time instants to show the differences in the moving boundary
and the fact that the tumour mass < continues to increase due to growth for the cases : = 0
and : = 0.1.

Setting : = 0, only the logistic proliferation rate, the cell-cell adhesion forces, and
the intermixing boundary forces between the tumour and the healthy tissue, compete for
driving the expansion of the tumour boundary. Setting : = 0.1, we find that the support of
the solution is still expanding, but the added elastic contribution, causes a inhibition of the
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k = 0 k = 0.1
t = 0.2, m = 0.0648

t = 0.6, m = 0.065

t = 4.8, m = 0.0649

t = 30, m = 0.0647

t = 0.2, m = 0.0648

t = 0.6, m = 0.0647

t = 4.8, m = 0.0643

t = 30, m = 0.0604

Figure 4. Plot of i=
ℎ
at different time points for Test Case 2, setting : = 0 (first column) and : = 0.1

(second column).

domain expansion where i > i∗ (the core). This also results into an increase of the tumour
volume fraction in the core. From the legends, we observe that the maximum concentration
of cancerous cells is higher in the case : = 0.1 for any sampled time. For instance, in
the last row of Figure 5, the maximum concentration with elasticity is imax = 0.784202
against the value imax = 0.688042 of the case without elasticity. Thus, as the nonlocal
elastic contribution is added, the motion of the support is hindered. Finally, we plot in
Figure 6 the evolution of the concentration over time with respect to the radial coordinate,
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: = 0 : = 0.1

C = 0
(a) <=0.00812198 (b) <=0.00812198

C = 0.625
(c) <=0.0103099 (d) <=0.0121665

C = 1.562
(e) <=0.0128692 (f) <=0.0121704

Figure 5. Test cases: comparison of the evolution of the tumor mass sampled at times C = 0, 0.625
and 1.250 for increasing values of : = 0 and : = 10−1.
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comparing once again the cases : = 0 and : = 0.1, but adding also the two intermediate
values : = 0.001 and : = 0.01 for comparison. We take into consideration only the four
more advanced time instants of the simulation, namely C = 0.625, C = 0.937, C = 1.250 and
C = 1.562. It is worth noting that the trend of the concentration is smoother when : = 0,
whilst the elastic contribution causes the concentration to increase sharply close to the
boundary of the cancerous phase. Observing the tails of the plots in the second row of
Figure 6, corresponding to C = 1.250 and C = 1.562, we confirm that increasing the elastic
constant causes the concentration to be higher in the transition area between the cancerous
phase and the healthy phase.

5. Conclusion and future works

In this work we have considered a Cahn–Hilliard equation with degenerate mobility and
single-well potential, adding a membrane-like elastic effect due to tissue displacement
caused by the expansion of the tumour boundary. This phenomenon has been modelled
by introducing a nonlocal term, extended to the whole domain Ω, in the expression of the
Landau grand potential. We used a standard mixture theory approach to derive a complete
model consisting of a continuity equation whose flux, multiplied by a mobility term, is the
gradient of a chemical potential accounting for the different kinds of energies involved. In
particular, we introduced a diffuse interface, instead of treating the boundary as a sharp
surface, so as to avoid the interface tracking in the numerical analysis. Completing the
model with initial and boundary conditions, we then proceeded to establish the existence
of weak solutions to the corresponding initial and boundary value problem. Starting from
the existence and �3-regularity of a weak solution of a regularized problem, to handle
the sets of mobility degeneracy and potential singularity, we then proved two a priori
estimates uniform with respect to the regularization parameters. The entropy estimate
guaranteed the preservation of the positivity of the initial datum, while the energy estim-
ate ensured that the saturation level for the cells concentration is reached. Thanks to both
the estimates, we have been able to pass to the limit, for regularization parameters going
to zero, in the regularized problem and obtain the existence of a weak solution to the ori-
ginal problem. This step has been quite delicate: in the bi- and three-dimensional cases,
we could not prove the Hölder continuity of the regularized solution and thus the uniform
convergence of the regularized solution to a solution of the original problem could not be
guaranteed. For this reason, we introduced a different type of weak solution and proved
the boundedness of the entire flux function (see [30] for more details on this strategy).
As for the numerical part, we had to overcome some difficulties in the discretization of
the problem. First of all, the positivity property that the continuous solution inherits from
the initial datum, guaranteed by the entropy estimate, is not preserved at the discrete level,
forcing the introduction of a variational inequality to impose the positivity as a constraint.
Furthermore, the non-uniqueness of the continuous solution may lead to nonphysical dis-
crete solution with fixed support: to circumvent this problem, we introduced the discrete
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Concentration along the radial coordinate in four different time instants

(a) C = 0.625 (b) C = 0.937

(c) C = 1.250 (d) C = 1.562

Figure 6. The value of the concentration is plotted with respect to the radial coordinate, comparing
the cases : = 0, : = 10−3, : = 10−2 and : = 10−1 in four different time steps: C = 0.625, C = 0.937,
C = 1.250 and C = 0.1562.
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inner product and performed a partition of the nodes of the mesh into passive and active
nodes. We described a numerical algorithm to solve the variational inequality at each time
step, explicitly treating the non-locality. Finally, we have performed various numerical
simulations on a simplified square geometry to test the validity of the algorithm, setting
physically meaningful values for the model parameters from the literature. In particular,
we showed the effects of elasticity on the spinodal decomposition, on the merging of isol-
ated subdomains of cancerous phase, and on the evolution of a circular region of tumour
under the effect of a logistic proliferation rate of the cancer cells. The results are prom-
ising, but they suffer some limitations. First of all, the explicit treatment of the nonlocal
elastic term forces the time step of the numerical scheme to be very small, resulting in
long and heavy computations: the convergence of the fixed-point iterations is in this case
very difficult to achieve. Moreover, to get more accurate information about the influence of
the elasticity on the moving support of the cancerous phase, the concentration in the trans-
ition area and the maximum concentration on the core of the tumour, we should examine
the behaviour on a longer time scale. For future developments, an implicit treatment of
the nonlocal term could be proposed to reduce the numerical complexity, relaxing also
the requirements on the time step. Moreover, since it is always possible to decompose a
function into its convex and concave parts, future studies will investigate the optimality
of such a splitting. From the modelling viewpoint, more refined elastic models may be
sought to describe other boundary elastic effects, for instance depending on the mean or
Gaussian curvature of the boundary of the cancerous phase, and/or introducing a penaliz-
ation on the first (or the second) fundamental form of the surface of the tumour. Finally,
a further development will concern the coupling of the nonlocal Cahn–Hilliard equation
studied in this work with other biologically relevant features of tumour growth, such as
the diffusion/uptake of a nutrient and/or the response to anti-cancer therapies.
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