
MOX-Report No. 79/2020

A cardiac electromechanics model coupled with a
lumped parameters model for closed-loop blood

circulation. Part I: model derivation

Regazzoni, F.; Salvador, M.; Africa, P.c.; Fedele, M.; Dede', L.;

Quarteroni, A.

MOX, Dipartimento di Matematica 
Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

mox-dmat@polimi.it http://mox.polimi.it



A cardiac electromechanics model coupled with a lumped

parameters model for closed-loop blood circulation.

Part I: model derivation

Francesco Regazzoni1,∗, Matteo Salvador1,∗, Pasquale Claudio Africa1, Marco Fedele1,
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Abstract

We propose an integrated electromechanical model of the human heart, with focus on the left
ventricle, wherein biophysically detailed models describe the different physical phenomena con-
curring to the cardiac function. We model the subcellular generation of active force by means of
an Artificial Neural Network, which is trained by a suitable Machine Learning algorithm from a
collection of pre-computed numerical simulations of a biophysically detailed, yet computational
demanding, high-fidelity model. To provide physiologically meaningful results, we couple the
3D electromechanical model with a closed-loop 0D (lumped parameters) model describing the
blood circulation in the whole cardiovascular network. We prove that the 3D-0D coupling of the
two models is compliant with the principle of energy conservation, which is achieved in virtue of
energy-consistent boundary conditions that account for the interaction among cardiac chambers
within the computational domain, pericardium and surrounding tissue. We thus derive an over-
all balance of mechanical energy for the 3D-0D model. This provides a quantitative insight into
the energy utilization, dissipation and transfer among the different compartments of the cardio-
vascular network and during different stages of the heartbeat. In virtue of this new model and
the energy balance, we propose a new validation tool of heart energy usage against relationships
used in the daily clinical practice. Finally, we provide a mathematical formulation of an inverse
problem aimed at recovering the reference configuration of one or multiple cardiac chambers,
starting from the stressed configuration acquired from medical imaging. This is fundamental
to correctly initialize electromechanical simulations. Numerical methods and simulations of the
3D-0D model will be detailed in Part II.

Keywords Mathematical modeling, Cardiac electromechanics, Multiscale models, Multiphysics
model, Energy balance

1 Introduction

In this two-part series of papers, we present novel mathematical and numerical models of cardiac
electromechanics [1, 2, 7, 18, 28, 32, 34, 56]. Part I is devoted to present and analyze the mathemat-
ical models; Part II [45] deals with the numerical methods and simulations. Specifically, we present
a fully coupled model of the cardiac function, which results from the concerted action of several
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physical phenomena – electrophysiology, biochemistry, mechanics, fluid dynamics – interacting at
different spatial and temporal scales [10, 15, 54, 55]; these range from nanometers to centimeters and
from nanoseconds to seconds, respectively [5, 26]. We describe all of these phenomena in terms of
biophysically detailed models, written as systems of PDEs (partial differential equations) and ODEs
(ordinary differential equations), which realize the coupling of elecrophysiology, ionic and gating
models, active force generation at the cellular and tissue levels, passive mechanics of the muscle and
blood flow in the chambers and in the circulatory system. Among the original contributions of this
paper, we present a 0D (zero-dimensional) hemodynamics model of the whole cardiovascular system,
which is coupled with our 3D electromechanical model of specific cardiac chambers to form a closed-
loop 3D-0D circulation model. Such coupling is an essential step to provide physically meaningful
numerical simulations, which are performed considering a 3D electromechanical description of the
left ventricle only.

Among the different physical phenomena concurring to the heart function, the intrinsic com-
plexity of the subcellular mechanisms underlying active force generation typically dictates the use
of phenomenological models [29, 33, 46] or Monte Carlo approximations of physics-based models
[23, 59, 60], which are however characterized by large computational costs. In our electromechanical
model, instead, we rely on a physics-based model of force generation, with explicit representation
of the cooperative interactions among the subcellular units [41]. As this model features more than
2000 internal variables, we surrogate it thanks to the Machine Learning algorithm that we proposed
in [44]. Specifically, we train – in an offline phase – a reduced model, based on Artificial Neural
Networks (ANNs), that approximates within a prescribed accuracy the results of the original one.
By using this ANN-based model (featuring only two internal variables) instead of the high-fidelity
one in the multiscale electromechanical simulation, we reduce the number of variables from more
than 2000 to only 2, with an overall relative error of the order of 10−3 [44].

We prove that our closed-loop circulation model satisfies a balance of mechanical energy. Through
the calculation of the different terms of this balance during an heart beat, we provide a quantitative
insight in the cardiac energy distribution, highlighting the features of different compartments and
the different stages of the heartbeat, i.e. when energy is injected, dissipated or transformed. Thanks
to our model we can also assess the validity of simplified relationships commonly used in the clinical
practice to estimate the main indicators of heart energy distribution [25].

We prove that the coupling between the 3D electromechanical model and the 0D circulation model
is consistent with the principles of energy conservation. Indeed, we impose a boundary condition
at the base of the left ventricle that we purposely denote as energy-consistent boundary condition
[40, 44]. Moreover, we apply a boundary condition at the epicardium that keeps into account the
interaction between the left ventricle and the pericardial sac [19, 54].

Looking towards the patient-specific customization of our model, we note that cardiac geometries
are always acquired in vivo through imaging techniques, for which the left ventricle is loaded, mainly
by the pressure acting on the endocardium. Therefore, the stress-free configuration, to which the
equations for cardiac electromechanics must refer, is not known a priori. As this is necessary to
set the reference configuration for the mechanical model, we formulate an inverse problem aimed at
recovering such stress-free reference configuration starting from the geometry acquired from medical
imaging, whose solution will be performed in Part II [45].

1.1 Paper outline

This paper is organized as follows. In Sec. 2 we describe a mathematical model for cardiac elec-
tromechanics endowed with our biophysically detailed ANN-based active stress model, and a lumped
parameters model for the circulation system. Then, in Sec. 3 we address the problem of initializing
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Figure 1: Representation of boundaries Γepi
0 , Γbase

0 and Γendo
0 of the domain Ω0, given by the Zygote

Solid 3D left ventricle [24].

the simulation on a physically sound basis, by formulating an inverse problem aimed at recovering
the stress-free configuration from a stressed one. In Sec. 4 we derive a balance of the mechanical
energy for both the 0D blood circulation model and the 3D-0D electromechanical-circulation coupled
model and we provide a quantitative analysis of the different terms involved in the balance. Finally,
in Sec. 5, we draw our conclusions.

2 Mathematical models

We consider a computational domain Ω0 ⊂ R3, representing the 3D region occupied by the left
ventricle (Fig. 1). We split the boundary of Ω0 into endocardium (Γendo

0 ), epicardium (Γepi
0 ) and

ventricular base (Γbase
0 ), namely the artificial boundary located where the left ventricle geometry is

cut.
In this paper, we consider a multiphysics and multiscale model of cardiac electromechanics made

of five different blocks (henceforth denoted as core models) plus a coupling condition. The core
models are associated with the different physical phenomena concurring – at different spatial and
temporal scales – at the heart function. They correspond to the propagation of the electrical potential
(E ) [12, 13, 39, 53], ion dynamics (I ) [8, 31, 57], active contraction of cardiomyocytes (A ) [42,
44, 49–51], tissue mechanics (M ) [21, 36] and blood circulation (C ) [6, 22]. Finally, the volume
conservation condition (V ) enables to consistently couple (M ) and (C ) core models. In Fig. 2 we
depict the electric analog circuit corresponding to our 0D circulation model, along with the coupling
with a 3D electromechanical description of the left ventricle.

The model features the following unknowns:

u : Ω0 × (0, T )→ R, w : Ω0 × (0, T )→ Rnw , z : Ω0 × (0, T )→ Rnz ,

s : Ω0 × (0, T )→ Rns , d : Ω0 × (0, T )→ R3, c1 : (0, T )→ Rnc ,

pLV : (0, T )→ R
(1)
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Figure 2: 3D-0D coupling between the left ventricle 3D electromechanical model and the 0D model.
The state variables corresponding to pressures and fluxes are depicted in orange and blue, respec-
tively.

where u denotes the transmembrane potential, w and z the ionic variables, s the states variables
of the force generation model, d the mechanical displacement of the tissue, c1 is the state vector of
the circulation models (pressures, volumes and fluxes in the different compartments of the vascular
network) and pLV is the left ventricle pressure. The model reads as follows:
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(E )


χm

[
Cm

∂u

∂t
+ Iion(u,w, z)

]
−∇ · (JF−1DMF−T∇u)

= Iapp(t),(
JF−1DMF−T∇u

)
·N = 0,

(2a)

in Ω0 × (0, T ), with u = u0 in Ω0 at time t = 0.

(I )


∂w

∂t
−H(u,w) = 0,

∂z

∂t
−G(u,w, z) = 0,

(2b)

in Ω0 × (0, T ), with w = w0 and z = z0 in Ω0 at time t = 0.

(A )
∂s

∂t
= K(s, [Ca2+]i, SL), (2c)

in Ω0 × (0, T ), with s(0) = s0 in Ω0 at time t = 0.

(M )



ρs
∂2d

∂t2
−∇ ·P(d, Ta(s)) = 0,

P(d, Ta(s))N + Kepid + Cepi ∂d

∂t
= 0 on Γepi

0 × (0, T ),

P(d, Ta(s))N = pLV(t) |JF−TN|vbase(t) on Γbase
0 × (0, T ),

P(d, Ta(s))N = −pLV(t) JF−TN on Γendo
0 × (0, T ),

(2d)

in Ω0 × (0, T ), with d = d0 and
∂d

∂t
= ḋ0 in Ω0 at time t = 0.

(C )
dc1(t)

dt
= D̃(t, c1(t), pLV(t)), (2e)

for t ∈ (0, T ), with c1(0) = c1,0.

(V ) V 0D
LV (c1(t)) = V 3D

LV (d(t)), (2f)

for t ∈ (0, T ).

Hereafter we will denote the pair (E )–(I ) as cardiac electrophysiology. In the following sections,
we will detail the different core models, along with the meaning of all the variables, and their
coupling.

2.1 Electrophysiology (E )–(I )

We model the propagation of transmembrane potential u with the monodomain equation (E ), a
diffusion-reaction PDE describing the electric activity of cardiac muscle cells [12, 13, 39, 53]. We
couple the monodomain equation with the ten Tusscher-Panfilov ionic model, that we denote by
TTP06, due to our focus on the physiological ventricular activity [57]. This model enables to
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describe the dynamics of ionic fluxes across the cell membrane in an accurate and detailed manner,
which is essential for electromechanical coupling [14].

In the electrophysiological model (E )–(I ), Cm is the total membrane capacitance and χm is
the area of cell membrane per tissue volume. The vector w = {w1, w2, ..., wnw} expresses nw
recovery (or gating) variables, which play the role of density functions and model the fraction of
open ionic channels across the membrane of a single cell. The vector z = {z1, z2, ..., znz} defines nz
concentration variables of specific ionic species (among which intracellular calcium ions concentration
[Ca2+]i, which plays a crucial role in the mechanical activation). H and G are suitably defined
vector-valued functions, depending on the specific ionic model at hand.

The transmission of the electrical potential u through the so–called gap junctions is described
in (E ) by means of the diffusion term ∇ · (JF−1DMF−T∇u). In this term, DM is the diffusion
tensor in the deformed configuration (material coordinates). To account for the dependence of the
electrical properties on the tissue on its stretch (mechano-electrical feedback, see e.g. [12, 13]), we
introduce the deformation gradient tensor F = I + ∇d, where d denotes the displacement of the
myocardium, and the deformation Jacobian J = det(F), and we compute the pull-back of DM in
the reference configuration.

The applied current Iapp(t) mimics the effect of the Purkinje network [30, 47, 58], which we do
not model in this context, by triggering the action potential at specific locations of the myocardium.
The ionic current Iion(u,w, z) models the multiscale effects from the cellular level up to the tissue
one and strictly depends on the selected ionic model. A no-flux (Neumann) boundary condition
represents an electrically isolated domain.

To reduce the number of parameters, we rescale the first equation in (E ) by C−1
m χ−1

m , yielding:

∂u

∂t
+ Ĩion(u,w, z) = ∇ · (JF−1D̃MF−T∇u) + Ĩapp(t), (3)

where Ĩion := C−1
m Iion, D̃M = C−1

m χ−1
m DM and Ĩapp := C−1

m χ−1
m Iapp. Then, we set D̃M = σtI +

(σl−σt)f0⊗ f0 +(σn−σt)n0⊗n0 as the diffusion tensor, with f0 the vector field expressing the fibers
direction, n0 the vector field that indicates the crossfibers direction, and σl, σt, σn ∈ R+ longitudinal,
transversal and normal conductivities, respectively [12, 52]. f0, s0 (i.e. the sheets normal direction)
and n0 account for the anisotropic properties of the cardiac tissue. This local orthonormal coordinate
system defined at each point of the computational domain Ω0 can be generated using rule-based
algorithms [4, 17, 38] and has a significant role in the electromechanical framework [3].

2.2 Active force generation (A )

Heart contraction is the result of mechano-chemical interactions among the contractile proteins
actin and myosin, taking place at the scale of the sarcomeres, the fundamental contractile unit
of the cardiac muscle [5, 9, 26, 40, 42]. To model such complex mechanisms, we consider the
model that we proposed in [41], henceforth denoted as RDQ18 model. This model is based on
a biophysically detailed description of the sarcomeric proteins with an explicit representation of
the cooperative nearest-neighboring interactions, responsible for the high sensitivity of the cardiac
contractile apparatus to changes in calcium concentration, which is one of the ionic species modelled
by the TTP06 ionic model. Thanks to the spatially-explicit representation of the sarcomere filaments,
the RDQ18 model also incorporates the feedback of the sarcomere shortening, resulting from the
muscle contraction, on the force generation mechanism itself. This is of outmost importance since
the regulation due to the sarcomere length (SL) constitutes the microscopical basis of the well-
known Frank-Starling mechanism at the macroscale level; in practice, higher end-diastolic volumes
translate into higher stroke volumes [26].
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The RDQ18 model is a system of ODEs in the form of (A ), where the vector s collects the
variables of the RDQ18 model and where K is a suitable function defined in [41] (we remark that K
does not involve derivatives of s with respect to the spatial variable). Within a multiscale framework,
the RDQ18 model is ideally set at every point of the computational domain Ω0. The input variable
[Ca2+]i is provided by the TTP06 ionic model in each point of the domain, while SL is provided by
the solution of the mechanical model, as we will explain later in Sec. 2.3.

The output of the RDQ18 model is the permissivity P ∈ [0, 1], obtained as a function of the
states s (i.e. P = G(s), where G is a linear function defined in [41]). The permissivity represents the
fraction of contractile units being in the force-generating state. Hence, the effective active tension
is given by Ta = Tmax

a P , where Tmax
a denotes the tension generated when all the contractile units

are generating force (i.e. for P = 1).
The RDQ18 model accurately describes the microscopic force generation mechanisms. This

accuracy results in a higher computational cost compared to phenomenological models typically
used for multiscale simulations (see e.g. [29, 33]). To overcome this issue, in the multiscale model
of electromechanics we take advantage of the model based on Artificial Neural Networks (ANNs)
presented in [44]. This model is a fast surrogate of the RDQ18 model (high-fidelity model), learned
from a collection of pre-computed simulations obtained with the RDQ18 model itself, thanks to
the Machine Learning algorithm that we proposed in [43]. Such reduced model is written in the
same form of (A ). However, the state vector s of ANN-based model only contains two variables,
instead of the more than 2000 variables of the high fidelity model. This significantly reduces the
computational costs associated with its numerical approximation (both in terms of CPU time and
memory storage), at the price of only a small approximation, as the overall relative error between
the results of the high-fidelity and of the reduced models is of the order of 10−3 [44]. In this way we
obtain an excellent trade-off between computational cost and biophysical accuracy of the results.

2.3 Active and passive mechanics (M )

We describe the dynamics of the tissue displacement d by the momentum conservation equation
(M ) (see e.g. [36]). The Piola-Kirchhoff stress tensor P = P(d, Ta) incorporates both passive
and active mechanics of the tissue. Under the hyperelasticity assumption, once the strain energy
density function W : Lin+ → R is introduced, the passive part of the Piola-Kirchhoff stress tensor
is obtained as ∂

∂FW(F). In conclusion, the full Piola-Kirchhoff tensor reads:

P(d, Ta) =
∂W(F)

∂F
+ Ta

Ff0 ⊗ f0√
I4f

, (4)

where the first term stands as the passive part, while the latter as the active one of the tensor P, and
where Ta denotes the active tension, provided the force generation model of Sec. 2.2. I4f = Ff0 ·Ff0
is a measure of the tissue stretch along the fibers direction.

Several models have been proposed in literature to describe the anisotropic nature of the cardiac
muscle tissue. In this paper, we consider the Guccione strain energy density function [20, 21], that
reads W(F) = C

2

(
eQ − 1

)
, with

Q = bffE
2
ff + bssE

2
ss + bnnE

2
nn + bfs

(
E2

fs + E2
sf

)
+ bfn

(
E2

fn + E2
nf

)
+ bsn

(
E2

sn + E2
ns

)
, (5)

where Eab = Ea0 · b0 for a, b ∈ {f, s, n} are the entries of E = 1
2 (C− I), i.e the Green-Lagrange

strain energy tensor, being C = FTF the right Cauchy-Green deformation tensor. We consider
a further term, defined as Wvol(J) = B

2 (J − 1) log(J), convex in J and such that J = 1 is the
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global minimum, which penalizes large variations of volume, thus realizing a (weakly) incompressible
constraint [11, 16, 61]; B ∈ R+ represents the bulk modulus.

To model the interaction of the left ventricle with the pericardium [19, 37, 56], we impose at the

epicardial boundary Γepi
0 the generalized Robin boundary condition PN + Kepid + Cepi ∂d

∂t = 0, by
defining the following tensors

Kepi = Kepi
⊥ (N⊗N) +Kepi

‖ (I−N⊗N),

Cepi = Cepi
⊥ (N⊗N) + Cepi

‖ (I−N⊗N),

where the constants Kepi
⊥ , Kepi

‖ , Cepi
⊥ , Cepi

‖ ∈ R+ are local values of stiffness and viscosity of the

epicardial tissue in the normal or tangential directions, respectively. At the base Γbase
0 , we set the

energy-consistent boundary condition PN = pLV(t) |JF−TN|vbase(t), originally proposed in [44],
that provides an explicit expression for the stresses located at the artificial boundary Γbase

0 , where
we have defined the vector

vbase(t) =

∫
Γendo
0

JF−TNdΓ0∫
Γbase
0
|JF−TN|dΓ0

.

As we later show (Sec. 4.2), this formulation allows to straightforwardly couple the 3D mechanical
model with a 0D model of the whole circulation in an energetically consistent manner. Finally, at
the endocardium Γendo

0 , the boundary condition PN = −pLV(t) JF−TN accounts for the pressure
pLV(t) exerted by the blood contained in the ventricular chamber, modeled through 0D closed-loop
circulation model.

As anticipated, the mechanical model (M ) has a feedback on the force generation model of (A ),
as d determines the local sarcomere length SL. More precisely, since sarcomeres are aligned with
the muscle fibers f0, the local sarcomere length SL is given as SL = SL0

√
I4f , where SL0 denotes

the sarcomere length at rest. To recover the SL field, we consider the following differential problem:{
−δ2

SL∆SL+ SL = SL0

√
I4f in Ω0 × (0, T ),

δ2
SL∇SL ·N = 0 on ∂Ω0 × (0, T ),

(6)

where δSL is the regularization parameter, whose aim is that of making smoother the field SL across
a computational domain, preventing sharp spatial variations across scales smaller than δSL. This
will be particularly useful in view of its FEM approximation in Part II [45].

2.4 Blood circulation (C )

To model the hemodynamics of the whole circulatory network, we propose a lumped parameters
closed-loop model, inspired by previous models available in literature [6, 22]. Systemic and pul-
monary circulations are modeled with resistance-inductance-capacitance (RLC) circuits, one for the
arterial part and the other one for the venous part. The four chambers are modeled by time-varying
elastance elements, whereas the four valves are represented as non-ideal diodes. Our 0D closed-loop
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circulation model reads:

dVLA(t)

dt
= QPUL

VEN(t)−QMV(t),
dVLV(t)

dt
= QMV(t)−QAV(t),

dVRA(t)

dt
= QSYS

VEN(t)−QTV(t),
dVRV(t)

dt
= QTV(t)−QPV(t),

CSYS
AR

dpSYS
AR (t)

dt
= QAV(t)−QSYS

AR (t), CSYS
VEN

dpSYS
VEN(t)

dt
= QSYS

AR (t)−QSYS
VEN(t),

CPUL
AR

dpPUL
AR (t)

dt
= QPV(t)−QPUL

AR (t), CPUL
VEN

dpPUL
VEN(t)

dt
= QPUL

AR (t)−QPUL
VEN(t),

LSYS
AR

RSYS
AR

dQSYS
AR (t)

dt
= −QSYS

AR (t)− pSYS
VEN(t)− pSYS

AR (t)

RSYS
AR

,

LSYS
VEN

RSYS
VEN

dQSYS
VEN(t)

dt
= −QSYS

VEN(t)− pRA(t)− pSYS
VEN(t)

RSYS
VEN

,

LPUL
AR

RPUL
AR

dQPUL
AR (t)

dt
= −QPUL

AR (t)− pPUL
VEN(t)− pPUL

AR (t)

RPUL
AR

,

LPUL
VEN

RPUL
VEN

dQPUL
VEN(t)

dt
= −QPUL

VEN(t)− pLA(t)− pPUL
VEN(t)

RPUL
VEN

,

(7a)

(7b)

(7c)

(7d)

(7e)

(7f)

(7g)

(7h)

with t ∈ (0, T ), where:

pLV(t) = pEX(t) + ELV(t) (VLV(t)− V0,LV) , (8a)

pLA(t) = pEX(t) + ELA(t) (VLA(t)− V0,LA) , (8b)

pRV(t) = pEX(t) + ERV(t) (VRV(t)− V0,RV) , (8c)

pRA(t) = pEX(t) + ERA(t) (VRA(t)− V0,RA) , (8d)

QMV(t) =
pLA(t)− pLV(t)

RMV(pLA(t), pLV(t))
, QAV(t) =

pLV(t)− pSYS
AR (t)

RAV(pLV(t), pSYS
AR (t))

, (8e)

QTV(t) =
pRA(t)− pRV(t)

RTV(pRA(t), pRV(t))
, QPV(t) =

pRV(t)− pPUL
AR (t)

RPV(pRV(t), pPUL
AR (t))

, (8f)

with t ∈ (0, T ). In this model, pLA(t), pRA(t), pLV(t), pRV(t), VLA(t), VRA(t), VLV(t) and VRV(t) refer
to pressures and volumes in left atrium, right atrium, left ventricle and right ventricle, respectively.
The variables QMV(t), QAV(t), QTV(t) and QPV(t) indicate the flow rates through mitral, aortic,
tricuspid and pulmonary valves, respectively. Moreover, pSYS

AR (t), QSYS
AR (t), pSYS

VEN(t) and QSYS
VEN(t)

express pressures and flow rates of the systemic circulation (arterial and venous). Similarly, pPUL
AR (t),

QPUL
AR (t), pPUL

VEN(t) and QPUL
VEN(t) define pressures and flow rates of the pulmonary circulation (arterial

and venous). pEX(t) represents the pressure exerted outside the heart by the surrounding organs and
respiration. Time varying ELA(t), ELV(t), ERA(t), ERV(t) are the analytically prescribed elastances
of the four cardiac chambers calibrated on a physiological basis, with values ranging from Epass

LA ,

Epass
LV , Epass

RA , Epass
RV – when the chambers are at rest – to (Epass

LA + Eact,max
LA ), (Epass

LV + Eact,max
LV ),

(Epass
RA +Eact,max

RA ), (Epass
RV +Eact,max

RV ) – when the chambers are fully contracted. Finally, RMV(p1, p2),
RAV(p1, p2), RTV(p1, p2) and RPV(p1, p2) define the behavior of valves as diodes, according to the
following relationship:

Ri(p1, p2) =

{
Rmin, p1 < p2

Rmax, p1 ≥ p2

for i ∈ {MV,AV,TV,PV},

9



where p1 and p2 denote the pressures ahead and behind the valve leaflets with respect to the flow
direction, whereas Rmin and Rmax are the minimum and maximum resistance of the valves. For
an idealized valve, one would have Rmin = 0 and Rmax = +∞ instead. By setting Rmin > 0, one
has dissipation of mechanical energy taking place when the blood flows through the opened valve
(see Sec. 4); we set Rmax < +∞ sufficiently large so that blood leakage when the valve is closed is
negligible.

Hereafter, for the sake of brevity, Eqs. (7)–(8) will be expressed in the following form:
dc1(t)

dt
= D(t, c1(t), c2(t)) t ∈ (0, T ],

c2(t) = W (t, c1(t)) t ∈ [0, T ],

c1(0) = c1,0,

(9)

where:

c1(t) = (VLA(t), VLV(t), VRA(t), VRV(t), pSYS
AR (t), pSYS

VEN(t), pPUL
AR (t), pPUL

VEN(t),

QSYS
AR (t), QSYS

VEN(t), QPUL
AR (t), QPUL

VEN(t))T ,

c2(t) = (pLV(t), pLA(t), pRV(t), pRA(t), QMV(t), QAV(t), QTV(t), QPV(t))T ;

D(t, c1(t), c2(t)) collects the whole r.h.s. of Eq. (7), while c2(t) = W (t, c1(t)) stands as a compact
notation for Eq. (8), rewritten in explicit form with respect to the variable c2.

2.5 3D-0D coupling (V )

In Eq. (9) each cardiac chamber is modeled as a time-varying elastance element, that is a 0D
simplified model. In this paper, we employ this 0D circulation model in conjunction with the 3D
left ventricular model given by (E )–(I )–(A )–(M ). With this goal, we remove from the circulation
model the time-varying elastance element associated with the left ventricle, and we replace it with
the 3D electromechanical model. Hence, the pressure-volume relationship between pLV and VLV is no
longer prescribed by Eq. (8a), but by the resolution of the 3D electromechanical model. The resulting
3D–0D coupled model (depicted in Fig. 2) must satisfy at each time t ∈ (0, T ) the volume-consistency
coupling condition V 0D

LV (c1(t)) = V 3D
LV (d(t)), that we denote by (V ), where V 0D

LV (c1(t)) = VLV(t)
represents the left ventricle volume in the 0D circulation model. V 3D

LV (d(t)) represents the left
ventricle volume in the 3D model and it is computed as:

V 3D
LV (d(t)) =

∫
Γendo
0

J(t) ((h⊗ h) (x + d(t)− b)) · F−T (t)N dΓ0,

where h is a vector orthogonal to the left ventricle centerline (i.e. lying on the left ventricle base)
[48]. Subtracting to the space coordinate x + d(t) that of a point b, lying inside the left ventricle,
improves the accuracy of the formula when the ventricular base changes its orientation.

Having introduced an additional scalar equation, i.e. (V ), we expect an additional unknown: it
is in fact pLV, which is not determined by Eq. (8a) anymore. Rather, it acts as a Lagrange multiplier
enforcing the constraint (V ).

Hence, we define the “reduced” vector c̃2 such that cT2 = (pLV, c̃
T
2 ), so that we can rewrite

Eqs. (8a)–(8f) as c̃2(t) = W̃ (t, c1(t), pLV(t)). This allows to write the “reduced” version of Eq. (9)
as (C ) where we have defined

D̃(t, c1, pLV) := D

(
t, c1,

(
pLV

W̃ (t, c1, pLV)

))
.

10



1. Recover the reference
configuration

2. Find the initial
displacement

Figure 3: Sketch of the strategy used to initialize the simulation. The grey line represents the so–
called Klotz curve [27], that is the pressure-volume relationship of the relaxed ventricle. The black
line represents the pressure-volume loop of the left ventricle.

In conclusion, we obtain the coupled 3D-0D model reported in Eq. (2). We remark that the number of
equations balances with the number of unknowns defined in (1): we have 1+nw+nz+ns+3 unknowns
(respectively, equations) defined in Ω0×(0, T ) and nc+1 unknowns (respectively, equations) defined
in (0, T ).

3 Reference configuration and initial displacement

In the mechanical model (M ), the stress-strain relationship (4) is referred to the natural stress-
free configuration Ω0. However, the geometry is never unloaded during the cardiac cycle. Take for
example the case of medical images to generate the left ventricle: this geometry, that we denote by
Ω̃, does not correspond to the stress-free configuration, since an internal pressure pLV 6= 0 occurs at
every stage of the heartbeat. Therefore, in the preprocessing stage, we need to recover the reference
configuration Ω0 from Ω̃.

Our strategy to initialize the numerical simulation in a physically sound manner is sketched in
Fig. 3. As a first step, starting from the geometry acquired from medical imaging Ω̃, we recover
the stress-free reference configuration Ω0, by virtually deflating the left ventricle, previously subject
to an internal pressure p̃. Then, as a second step, we inflate the left ventricle again, by applying
the end diastolic pressure pED at the endocardium. In the next sections we give the mathematical
details of these two steps.

11



3.1 Recovering the reference configuration

We assume that the configuration Ω̃ occurs during diastole, when the left ventricle is loaded by a
small value of the pressure pLV = p̃ and only a residual active tension Ta = T̃a > 0 acts. By adopting
a quasi-static assumption (motivated by the slow movement of the myocardium during the final part
of diastole), the tissue displacement is given by the solution of the following differential problem:

∇ ·P(d, Ta) = 0 in Ω0,

P(d, Ta)N + Kepid = 0 on Γepi
0 ,

P(d, Ta)N = pLV |JF−TN|vbase(t) on Γbase
0 ,

P(d, Ta)N = −pLV JF−TN on Γendo
0 ,

(10)

derived from (M ) by setting to zero the time-dependent terms. Thus, to recover the coordinate x0

of the configuration Ω0 we need to solve the following inverse problem: find the domain Ω0 such
that, if we displace x0 by the solution d of Eq. (10) obtained for pLV = p̃ and Ta = T̃a, we get the

coordinate x̃ of the domain Ω̃ (i.e. x̃ = x0 +d). In Part II of this paper [45] we present an algorithm
for its numerical solution.

3.2 Finding the initial displacement

After the recovery of the reference configuration Ω0, we set pLV equal to the end diastolic pressure
and we solve again Eq. (10). In this manner, we obtain the end-diastolic configuration of the left
ventricle. Hence, we employ the solution d as initial condition d0 for d in (M ).

4 On the balance of mechanical energy of the electromechan-
ical model

We derive a balance of the mechanical energy of the closed-loop circulation model (9) and we highlight
energy injection, dissipation and transfer in the different compartments and in the different stages
of the heartbeat. First, in Sec. 4.1, we consider the 0D circulation model introduced in Sec. 2.4.
Then, in Sec. 4.2 we consider the coupled 3D-0D model, showing that our formulation is compliant
with the above mentioned balance of the mechanical energy.

4.1 Energy balance for the 0D model

To define the terms associated with the work performed by the cardiac chambers, we write Ei(t) =
Epass

i +Eact
i (t) (for i ∈ {LA,LV,RA,RV}), where Epass

i is the passive elastance of the tissue (i.e. the
elastance when the tissue is not activated) and Eact

i is instead the active component of the elastance.

Definition 1. We define the total mechanical energy of the whole 0D circulation model as

M(t) = ELA(t) + ELV(t) + ERA(t) + ERV(t) + ESYS
AR (t) + ESYS

VEN(t) + EPUL
AR (t) + EPUL

VEN(t)

+KSYS
AR (t) +KSYS

VEN(t) +KPUL
AR (t) +KPUL

VEN(t),

where, for i ∈ {LA,LV,RA,RV}, j ∈ {AR,VEN} and k ∈ {SYS,PUL}:

• Ei(t) =
1

2
Epass

i (Vi(t)− V0,i)
2

is the elastic energy stored by a cardiac chamber;
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• Ekj (t) =
1

2
Ck

j

(
pkj (t)

)2
is the elastic energy stored in the vascular network, due to vessels com-

pliance;

• Kk
j (t) =

1

2
Lk
j

(
Qk

j (t)
)2

is the kinetic energy related to the blood flow inertia.

We provide now a deeper explanation of the definition of Ek
j . Let us consider, as an example, ESYS

AR .

First, we notice that QAV(t) − QSYS
AR (t) is the net blood flux passing through the arterial systemic

network. Hence, by denoting with V SYS
AR (t) the blood volume stored in the arterial systemic network,

we have:
dV SYS

AR (t)

dt
= QAV(t)−QSYS

AR (t).

By comparing the latter equation to the first equation of (7c) we get:

pSYS
AR (t) =

1

CSYS
AR

(
V SYS

AR (t)− V SYS
0,AR

)
,

where V SYS
0,AR is the blood volume stored within the arterial systemic network when the pressure is

null. In conclusion, we have ESYS
AR (t) = (2CSYS

AR )−1
(
V SYS

AR (t)− V SYS
0,AR

)2
, where 1/CSYS

AR is the arterial
systemic network elastance (the inverse of the compliance), coherently with the definition of ELA.

Definition 2. We define the power generated by active contraction, due to ATP consumption oc-
curring at the cellular level, as

Πact(t) = Πact
LA(t) + Πact

LV (t) + Πact
RA(t) + Πact

RV(t),

where Πact
i (t) = −Eact

i (t) (Vi(t)− V0,i)
dVi

dt (t) is the power exerted by the active contraction of a
cardiac chamber (for i ∈ {LA,LV,RA,RV}),

Definition 3. We define the power dissipated within the 0D circulation model by viscous forces as
the blood flows through the valves and the vascular network as

Πdiss(t) = ΠMV(t) + ΠAV(t) + ΠTV(t) + ΠPV(t) + ΠSYS
AR (t) + ΠSYS

VEN(t) + ΠPUL
AR (t) + ΠPUL

VEN(t).

where:

• the power dissipated by the blood flux through the cardiac valves:

ΠMV(t) = − (pLA(t)− pLV(t))
2

RMV(pLA(t), pLV(t))
, ΠAV(t) = −

(
pLV(t)− pSYS

AR (t)
)2

RAV(pLV(t), pSYS
AR (t))

,

ΠTV(t) = − (pRA(t)− pRV(t))
2

RTV(pRA(t), pRV(t))
, ΠPV(t) = −

(
pRV(t)− pPUL

AR (t)
)2

RPV(pRV(t), pPUL
AR (t))

;

(11)

• Πk
j (t) = −Rk

j

(
Qk

j (t)
)2

, that is the power dissipated by the arterial systemic network (for j ∈
{AR,VEN} and k ∈ {SYS,PUL}).

We remark that all the terms in Eq. (11) are nonpositive (i.e. dissipative).
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Definition 4. We define the power due to the action of the external pressure pEX on the myocardium
as

Πex(t) = Πex
LA(t) + Πex

LV(t) + Πex
RA(t) + Πex

RV(t),

where Πex
i (t) = −pEX(t)

dVi
dt

(t) is the power exerted by the external pressure pEX(t) acting on a

cardiac chamber (for i ∈ {LA,LV,RA,RV}).

We have the following result.

Proposition 1. The solution of Eq. (9) for the whole 0D circulation model satisfies the energy
balance

d

dt
M(t) = Πact(t) + Πdiss(t) + Πex(t), (12)

whose terms are defined in Defs. 1–4.

Proof. To derive Eq. (12) we consider, as illustrative examples, a representative cardiac chamber, a
cardiac valve and a vascular branch. In fact, similar calculations will apply to the other chambers,
valves and vascular compartments.
Energy balance of the cardiac chambers. Let us consider for now the left atrium (LA). By multiplying

Eq. (8b) by dVLA(t)
dt and thanks to Eq. (7a), we get:

pLA(t)(QPUL
VEN(t)−QMV(t)) =

d

dt
ELA(t)−Πact

LA(t)−Πex
LA(t). (13)

Energy balance of the cardiac valves. From (8e) we obtain

(pLA(t)− pLV(t))QMV(t) = −ΠMV(t). (14)

Similar considerations hold for the other valves.
Energy balance of the peripheral blood reservoirs. By multiplying the first equation of (7c) by pSYS

AR (t),
we get:

pSYS
AR (t)QAV(t)− pSYS

AR (t)QSYS
AR (t) =

d

dt
ESYS

AR (t) (15)

Energy balance of the peripheral blood conducting system. By multiplying (7e) by RSYS
AR QSYS

AR (t), we
get:

pSYS
AR (t)QSYS

AR (t)− pSYS
VEN(t)QSYS

AR (t) =
d

dt
KSYS

AR (t)−ΠSYS
AR (t). (16)

Total balance. By proceeding as above for the other cardiac chambers, valves and circulation systems,
and summing up the resulting equations, we obtain Eq. (12). This completes the proof.

Each of the four terms of Eq. (12) represents the result of the sum of different contributions,
associated with the four chambers, the four valves and the different compartments of the vascular
network (systemic and pulmonary, arterial and venous). The total work performed in a time interval
[0, T ] is obtained by integrating the corresponding power over time, according to the following
definition.

Definition 5. Let us consider a time horizon T > 0. The total work performed by active and
dissipative forces in the time interval [0, T ] are defined as

W act =
∫ T

0
Πact(t) dt, W diss =

∫ T

0
Πdiss(t) dt,

respectively.
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When the heart is in a periodic regime, it carries out its function alongside a cyclical path. In
this case, the work balance of the following proposition holds.

Proposition 2. Let us suppose that pEX(t) is constant in time. Then, periodic solutions of Eq. (9)
(i.e. with c1(0) = c1(T )) satisfy

W act +W diss = 0. (17)

Proof. We integrate the energy balance of Eq. (12) over a cardiac cycle [0, T ]. Thanks to the
periodicity assumption, the contribution of the mechanical energy term M is null. Moreover, it
is easy to show that the term Πex(t) is conservative and hence its contribution over [0, T ] is also
null.

Therefore, when the heart is in a periodic regime, the work performed by the contraction of the
four chambers balances the energy dissipated by the four valves and by the blood flux through the
systemic and pulmonary circulations.

4.2 Energy balance of the 3D-0D coupled model

Energy balance of the 3D LV model. By multiplying the first equation of (M ) by ∂d
∂t and

integrating over Ω0 we obtain:∫
Ω0

ρs
∂2d

∂t2
· ∂d

∂t
dx +

∫
Ω0

P(d, Ta) : ∇
(
∂d

∂t

)
dx =

∫
∂Ω0

P(d, Ta)N · ∂d

∂t
dΓ0. (18)

By substituting the boundary conditions of (M ) into (18), we obtain the following energy balance
for the 3D left ventricle model:

d

dt
KLV,3D(t) +

d

dt
ELV,3D(t) + Πact

LV,3D(t) + Πdiss
LV,3D(t) + Πpress

LV,3D(t) = 0. (19)

This relation reveals the mutual balance of:

• the kinetic energy associated with the motion of the LV:

KLV,3D(t) =
1

2

∫
Ω0

ρs

∣∣∣∣∂d

∂t

∣∣∣∣2 dx;

• the elastic energy internally stored by the LV muscle and by the elastic components of the
surrounding tissues:

ELV,3D(t) =

∫
Ω0

W(F)dx +
1

2

∫
Γepi
0

[
Kepi
⊥ |d ·N|

2
+Kepi

‖ |(I−N⊗N)d|2
]
dΓ0,

where the displacement at the epicardium is split into the normal |d ·N| and tangent |(I−N⊗N)d|
component;

• the power exerted by the active contraction of the LV:

Πact
LV,3D(t) = −

∫
Ω0

Ta
Ff0 ⊗ f0√
I4f

: ∇
(
∂d

∂t

)
dx,

15



• the power dissipated by the interaction with the pericardium:

Πdiss
LV,3D(t) = −

∫
Γepi
0

[
Cepi
⊥

∣∣∣∣∂d

∂t
·N
∣∣∣∣2 + Cepi

‖

∣∣∣∣(I−N⊗N)
∂d

∂t

∣∣∣∣2
]
dΓ0 ≤ 0,

∀t, which is a nonpositive term;

• the power exchanged with the blood contained in the LV cavity, by means of the action of
pressure pLV(t) on the endocardium:

Πpress
LV,3D(t) = pLV(t)

[∫
Γendo
0

JF−TN · ∂d

∂t
dΓ0 −

∫
Γbase
0

|JF−TN|∂d

∂t
dΓ0 · vbase(t)

]
.

As in [44], the term in square brackets corresponds to the time derivative of the LV volume,
that is Πpress

LV,3D(t) = pLV(t) d
dtV

3D
LV (d(t)). Then, in virtue of the coupling condition (V ) and by

Eq. (7a), we obtain Πpress
LV,3D(t) = pLV(t)(QMV(t)−QAV(t)).

Total energy balance. By setting pEX(t) ≡ 0, i.e. by neglecting the effect of the pressure exerted
by the surronding organs, and by replacing the energy balance of the 0D left ventricle model with
Eq. (19), we obtain again Eq. (12), where the total mechanical energy is now

M(t) = ELA(t) + ELV,3D(t) + ERA(t) + ERV(t) + ESYS
AR (t) + ESYS

VEN(t) + EPUL
AR (t) + EPUL

VEN(t)

+KSYS
AR (t) +KSYS

VEN(t) +KPUL
AR (t) +KPUL

VEN(t) +KLV,3D(t)
(20)

and the power of active contraction and the total dissipated power (Πdiss(t) ≥ 0) are

Πact(t) = Πact
LA(t) + Πact

LV,3D(t) + Πact
RA(t) + Πact

RV(t);

Πdiss(t) = ΠMV(t) + ΠAV(t) + ΠTV(t) + ΠPV(t)

+ ΠSYS
AR (t) + ΠSYS

VEN(t) + ΠPUL
AR (t) + ΠPUL

VEN(t) + Πdiss
LV,3D(t),

respectively; here Πex(t) ≡ 0. We remark that Prop. 2 applies also to this case. Finally, we
conclude that the 3D-0D coupling is compliant with the princicple of conservation of mechanical
energy. We remark that this result is achieved thanks to the energy-consistent boundary conditions
imposed at the left ventricle base; see (M ). As a matter of fact, if other boundary conditions
– such as homogeneous Neumann conditions – are imposed at the base instead, the relationship
Πpress

LV,3D(t) = pLV(t) d
dtV

3D
LV (d(t)) may not hold and the balance of Eq. (12) is not satisfied.

We notice that, compared to the fully 0D case, the 3D electromechanical model shows two
additional terms, namely KLV,3D(t) and Πdiss

LV,3D, respectively accounting for the kinetic energy of

the LV and for the dissipation associated with the interaction of Γepi
0 with surrounding tissues.

Indeed, both features are not included in the 0D circulation model, in which cardiac chambers are
modeled quasistatically.

4.3 Quantitative analysis of cardiac energetics

In Fig. 4 we report all the energy and power terms over a characteristic steady-state cardiac cycle
obtained with a numerical simulation of the 0D circulation model. For this simulation we employ
the parameters reported in Part II of this paper [45], with Eact,max

LV = 2.75 mmHg mL−1 and Epass
LV =

0.08 mmHg mL−1. Fig. 4 (top-left) displays the time evolution of the terms of Eq. (12). We notice
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Figure 4: Time evolution of both power and energy terms (M, E , K, Πact, Πdiss) of the 0D circulation
model. A single heartbeat in a periodic regime is considered.

that, while the energy input (Πact) occurs in a short time interval of nearly 100 ms (during systole),
energy dissipation (Πdiss) takes place throughout the entire duration of the heartbeat. As a matter
of fact, mechanical energy M plays a dominant role. Moreover, it is initially accumulated and then
it is gradually dissipated as the blood flows through systemic and pulmonary circulations.

Fig. 4 (top-right, bottom-left, bottom-right) illustrate the details of the three terms M, Πact

and Πdiss, showing how they are divided into the various subterms during the different phases of the
heartbeat. Specifically, we notice that the chamber that contributes the most to the work generation
is the LV, followed by the RV, while the atria only contribute – albeit to a small extent – around
t = 0.8 s, during the atrial systole. The large part of mechanical energy and of dissipated power are
associated with the systemic arterial circulation, as this branch of the circulatory network is located
downstream the LV, the chamber carrying out most of the mechanical work. We remark that a non
negligible dissipation of energy also takes place across the open valves, due to the high-speed blood
flow across the valvular orifices.

Our model allows to estimate the daily production of mechanical work of the heart. This is
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obtained by multiplying the number of seconds in a day times the average generated power, given
by:

Π
act

=
1

T

∫ T

0

Πact(t) dt.

Applying this formula to the results of the simulation considered in Fig. 4, we obtain a daily work
production of 182.5 kJ, of which 155.9 kJ attributable to the left ventricle, 24.8 kJ to the right
ventricle and only 1.8 kJ to the atria.

In the daily clinical practice, the work generated by the myocardium is instead estimated through
simple relationships [25, 35]. In this regard, our model offers a tool to estimate the validity of these
approaches. A commonly used formula [25] is

Π
act ' pSYS

AR

SV

Tbeat
, (21)

where pSYS
AR denotes the average systemic arterial pressure (corresponding to the wrist average blood

pressure), SV is the stroke volume (i.e. the difference between maximum and minimum VLV) and
Tbeat is the heartbeat period. By applying (21) to the results of the above simulation, we obtain a
daily work generation of 152.4 kJ. Hence (21) underestimates the mechanical work by 16%. As a
matter of fact, (21) only refers to the work done by the left ventricle (which is, instead, approximated
up to an error of only 2%). The large part of the error is thus attributable to the work performed
by the right ventricle, which is not accounted for in (21).

In common clinical practice, then, pSYS
AR is not directly measured, but it is estimated as 1/3 pmax+

2/3 pmin, where pmax and pmin are the maximum (systolic) and minimum (diastolic) arterial pressures
(see e.g. [35]). With this further approximation we obtain an estimated daily work of 138.8 kJ: this
underestimates the left ventricle work by 11% and the total work of the myocardium by 24%.

5 Conclusions

We presented a mathematical model of cardiac electromechanics, where the different physical phe-
nomena therein involved are described by means of biophysically detailed core models. To provide
a realistic and physically meaningful relationship between the blood flux through the left ventricle
and the pressure acting against the endocardial surface, we coupled the 3D electromechanical model
of the left ventricle with a closed-loop 0D model of the whole circulation. We proved that our
3D-0D closed-loop model of the whole circulation is compliant with the principles of conservation
of mechanical energy. Indeed, the power exerted by the cavity pressure in the 3D electromechanical
model balances the power exchanged with the 0D circulation model at the coupling interface. This
is to be ascribed to the energy-consistent boundary conditions, that we proposed in [44], adopted in
the 3D mechanical problem.

In our active stress model we replaced a biophysically detailed, but computationally demanding,
subcellular model of active force generation by a surrogate model, based on an ANN [40]. This
model, built by means of Machine Learning from a collection of pre-computed simulations, allows
to accurately reproduce the results of the high-fidelity model by reducing by a factor of 1000 the
number of internal variables [43, 44]. In this way we obtain in a very favorable trade-off between
the biophysical accuracy of the results and the computational cost of our numerical simulations.

We have formulated an inverse problem aimed at recovering the stress-free configuration from
a stressed geometry, which, in practical applications, corresponds to the geometry acquired from
medical imaging. After this reference configuration is obtained, we can inflate the left ventricle
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by applying the end-diastolic pressure at the endocardium, thus obtaining the initial displacement
needed to start the numerical simulation.

We analyzed the mechanical work associated with the different compartments of our circulation
model and we proved that a balance of mechanical energy is satisfied. This balance holds both when
we consider the 0D circulation model alone and when we consider the 3D-0D coupled model. We
showed that the circulation model considered in this paper can be exploited to provide quantita-
tive insight into the heart energy distribution. In particular we employed this model to validate
the reliability of relationships used in the daily clinical practice to estimate the mechanical work
performed by the heart. We highlighted that these relationship can be accurate when used to assess
the left ventricle function, but less accurate when the mechanical work of the whole myocardium is
addressed.
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