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Abstract

Recent advancements in scientific machine learning offer a promising framework to
integrate data within epidemiological models, offering new opportunities for the imple-
mentation of tailored preventive measures and the mitigation of the risks associated with
epidemic outbreaks. Among the many parameters to be calibrated and extrapolated
in an epidemiological model, a special role is played by the transmission rate, whose
inaccurate extrapolation can significantly impair the quality of the resulting forecasts.
In this work, we aim to formalize a novel scientific machine learning framework to re-
construct the hidden dynamics of the transmission rate, by incorporating the influence
of exogenous variables (such as environmental conditions and strain-specific characteris-
tics). We propose an hybrid model that blends a data-driven layer with a physics-based
one. The data-driven layer is based on a neural ordinary differential equation that
learns the dynamics of the transmission rate, conditioned on the meteorological data
and wave-specific latent parameters. The physics-based layer, instead, consists of a
standard SEIR compartmental model, wherein the transmission rate represents an in-
put. The learning strategy follows an end-to-end approach: the loss function quantifies
the mismatch between the actual numbers of infections and its numerical prediction
obtained from the SEIR model incorporating as an input the transmission rate pre-
dicted by the neural ordinary differential equation. We validate this novel approach
using both a synthetic test case and a realistic test case based on meteorological data
(temperature and humidity) and influenza data from Italy between 2010 and 2020. In
both scenarios, we achieve low generalization error on the test set and observe strong
alignment between the reconstructed model and established findings on the influence of
meteorological factors on epidemic spread. Finally, we implement a data assimilation
strategy to adapt the neural equation to the specific characteristics of an epidemic wave
under investigation, and we conduct sensitivity tests on the network’s hyperparameters.

Keywords: scientific machine learning; model learning; data assimilation; epidemi-
ology; forecasts; neural differential equations; hidden dynamics.
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1 Introduction

Mathematical models have been extensively employed in epidemiology in order to answer to
the most common questions arising from both policy-makers and the scientific community.
As the recent SARS-CoV-2 pandemic has highlighted, key-problems in this sense are the
allocation of pharmaceutical [1, 2, 3] and non-pharmaceutical control interventions [4, 5,
6] and, especially, the forecasting of infection trends [7, 8]. Long-term scenario analyses
are valuable for making strategic decisions regarding, e.g., treatment facilities placement,
non-pharmaceutical interventions allocation, and the social and economical burden. On the
other hand, short-term forecasts, ranging from days to weeks, help in predicting the imme-
diate need for resources such as protective gear, ventilators, hospital beds and vaccinations.
However, these forecasts pose significant challenges due to the many uncertainties that arise
over extended time horizons.

Over the years, different modelling strategies have been proposed to tackle the prob-
lem of epidemic forecasting. For instance, compartmental models are a popular choice
and can be tailored for taking into account complex dynamics, e.g. transmission mecha-
nisms [9], concurring variants and illness-specific peculiarities [10], or geographic dependen-
cies of infections’ diffusion [11]. An alternative paradigm which does not involve adopt-
ing equation-based models is represented by Agent-Based Models [12, 13]. ABMs follow
a bottom-up approach for evaluating various interventions [14], like home-schooling [15],
mobility-restrictions and so forth. Recently, machine-learning-based methods have become
widespread and reliable tools for making predictions and scenario analyses based on avail-
able data [16, 17]. In some cases, the demand for accurate epidemic surrogate models has
led to the development of innovative architectures, such as Asymptotic Preserving Neural
Networks (APINN) [18]. These networks are designed to address the challenges posed by
multiscale hyperbolic PDE problems by incorporating heterogeneities, such as geographic
features, into the model. Additionally, drawing inspiration from fields like meteorology,
forecasts generated by various techniques have recently been aggregated into forecasting
hubs [19, 20]. By combining different models using standardized formats, these ensemble
predictions have shown greater accuracy than most individual models.

In general, the reliability of epidemic forecasts is intertwined with the choice of the
model, the calibration strategy, and the method used to extrapolate the estimated param-
eters beyond the calibration interval. A common approach for extrapolation is to keep
parameters constant over time. This strategy turns out to be effective when applied to pa-
rameters that can be determined through specific clinical trials and cohort studies, as they
are related to the virological characteristics of the disease, such as the average recovery
rate or incubation period. Alternatively, linear, polynomial or exponential extrapolations
are commonly used techniques, but suffer when the parameters exhibit a complex time-
dependent behaviour. Among the many parameters to be calibrated and extrapolated in
an epidemiological model, a special role is played by the transmission rate, which is a time
dependent parameter crucially influencing the overall transmission mechanism. A poor ex-
trapolation strategy of the transmission rate can seriously harm the quality of the overall
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forecasting process [19].
In recent years, different approaches have been proposed to extract from available data

the time evolution behavior of the transmission rate. For instance, in [21] the authors
propose a new approach for training PINNs tracking temporal changes in epidemiolog-
ical data and reconstructing the transmission rate. Instead, a new architecture called
Transmission-Dynamics-Informed Neural Network (TDINN) has been formalized for simu-
lating the COVID19 epidemic in five Chinese cities, combining scattered data and SIR-like
models in a physics-informed neural network (PINN) fashion [22]. A more straightforward
approach, adopted in [23], consists in prescribing a time dependent law for the transmission
rate based on exponential decay models [24], which need to be fitted by available data on
infections.

Actually, the time-dependent law derived from the aforementioned approaches does not
fully account for the fact that the transmission rate depends on varying external factors.
By definition, the transmission rate represents the number of infected individuals per unit
of time per susceptible individual necessary to spread the disease. Thus, its value is influ-
enced by both the intrinsic transmissibility, which remains constant over short time horizons
without the emergence of new variants, and by external, or exogenous, factors such as envi-
ronmental conditions (e.g., climate) [25], social dynamics shaped by mobility patterns [26],
the enforcement of non-pharmaceutical interventions and the distribution of vaccine doses
across different age groups. Consequently, incorporating these factors into the dynamic
evolution of the transmission rate is crucial to improve the reliability of the forecasts.

It is worth mentioning that calibrating time-dependent coefficients influenced by ex-
ogenous variables presents a significant technical challenge across many scientific and engi-
neering fields, ranging from epidemiology [27, 28], to cardiac applications [29, 30], climate
modeling [31], and control systems [32].

Original contributions

In this work, we propose an innovative neural network architecture, in a model learning
fashion (see, e.g., [33]), designed to learn the evolution of the transmission rate associated
to a prescribed compartmental model. A schematic overview of the architecture is provided
in Figure 1. The proposed architecture is hybrid in nature, as it consists of a data-driven
layer (learning the transmission rate dynamics) coupled with a physics-based layer (pre-
dicting the epidemic scenario). The data-driven differential model for the transmission rate
is governed by a neural network that takes also exogenous variables as input. The output
is then integrated using a standard numerical integration scheme to generate the full time
series of the transmission rate. This time series is subsequently inserted into a physics-based
epidemiological ODE model to predict disease incidence. For the ease of presentation, we
employ the classical SEIR compartmental model, commonly used for epidemic diseases with
an incubation period, but the framework is general enough to be employed with other differ-
ent compartmental (or not compartmental) models. All training variables are calibrated, in
an end-to-end training, by minimizing an error metric based on infection data, specifically
by reducing the mean squared error between the observed number of new cases (weekly in-
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Fig 1. Schematic representation of the method.

cidence) and the corresponding values reconstructed by the hybrid model. Additionally, we
introduce a data assimilation strategy to recover, during both training and testing phases,
a latent parameter that affects the transmission rate. This parameter is interpreted as a
measure of the intrinsic transmissibility of the illness, influenced by various factors such
as disease strains, the immunisation profile and individuals’ behavior in response to the
outbreak, and it characterizes each wave of the same illness independently.

The proposed approach enables learning and exploration of the hidden dynamics of the
transmission rate in relation to external factors, while providing reliable forecasts through
the SEIR model without depending on common, often inaccurate, extrapolation techniques.

Outline

This paper is structured as follows. In Section 2, we introduce our strategy, focusing specif-
ically on how we addressed the training and testing stages, as well as the notation that will
be used throughout the work. In Section 3, we carry out an extensive numerical testing
campaign to evaluate the sensitivity of the architecture to the neural network’s topology
hyperparameters in a synthetic test case (see Section 3.1), where the differential law of the
transmission rate is prescribed a priori, and temperature is treated as an exogenous vari-
able. We also discuss the validity of this approach in a real-world scenario using data from
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influenza epidemics in Italy between 2010 and 2020 (see Section 3.2), investigating the role
of meteorological factors such as temperature and relative humidity on the differential law
governing the transmission rate (the impact of both factors on the transmission mechanism
has been largely studied in epidemiology). Finally, in Section 4, we summarize the main
contributions of this work and highlight potential future directions and extensions.

2 Methods

In this section, we introduce the notation used in this work and illustrate our proposed
method for making reliable forecasts by analyzing the evolving dynamics of the transmission
rate. We define the vector of exogenous variables as,

x(t) =


x1(t)
x2(t)
...

xn(t)

 : [t0, T ] ⊂ R+ → Rn. (1)

Each xi(t), ∀i = 1, 2, . . . , n represents a different exogenous quantity on which we assume
the transmission rate depends. The choice of xi variables depends on the conditions that
modellers want to embody in the analysis and on the disease at stake. In the following, we
will consider the case of infectious respiratory diseases as influenza, that shows a marked
wintertime seasonality [34]. In this respect, some of the factors driving seasonality depen-
dence are: variations in the host’s ability to withstand immune system stress caused by
extremes in temperature, as measured by melatonin and vitamin D levels; environmental
factors, such as temperature itself, humidity, UV irradiation, and the direction of ambient
air movement, which influence spread of the disease and seasonal variations in the host’s
behavior. Another key quantity which impacts on the transmission rate is the relative
transmissibility of the influenza virus itself, depending on the major lineages and on the
virological composition of the spreading disease (cf. e.g., [35]). More precisely, in Test case
1 (cf. Section 3.1) we choose x1(t) as Tp : [t0, T ] → R i.e. the temperature measured in
Celsius degree, taken as a suitable index for seasonality, whilst a scalar δ can be thought
as an unknown parameter taking into account for unmodelled quantities, including lineages
variability. Furthermore, in Test case 2 (cf. Section 3.2) we consider an additional exoge-
nous variable x2(t) as U : [t0, T ] → R, which is the average relative humidity value. We
postpone to Section 3.2 the discussion on the motivations behind our choices. Additionally,
in both test cases we assume that transmission rate depends on a latent parameter δ ∈ R,
which is a possible unknown exogenous variable (to be learned).

Hence, our goal is to learn the function f governing the unknown dynamics of the
transmission rate: {

β̇(t) = f(β(t);x(t), δ) ∀ t ∈ (t0, T ]

β(t0) = β0.
(2)

The identification of f is further complicated by the lack of direct measures of β, with
the only available data being the effect on the epidemic (like, e.g., the number of weekly
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new infected patients). This problem can be reformulated as a statistical learning problem
based on the accessible and observable data by properly choosing the functional space F
containing f .

Problem 1. Let {x̃(s), ỹ(s)}s≤N the sequence of pairs of observable data, where x̃(s) ∈ Xd =
{x : [t0, T ] → Rn} represents an input exogenous quantity and ỹ(s) ∈ Yd = {y : [t0, T ] → R}
is the associated output functions. Given x̃(s), we define β(s) as the corresponding solution
of (2) for a certain f ∈ F . Each β(s) is uniquely determined once the couple of associated

initial value and latent parameter {β(s)0 , δ(s)} is picked. Furthermore, we assume that an
epidemic model, mapping the transmission rate to the output quantity y(s)(t) = y(β(s))(t),
is prescribed. Our learning problem reads as follows:

f∗, {β(s),∗0 }Ns=1, {δ(s),∗}Ns=1 = argmin
f∈F , {β(s)

0 }Ns=1∈R, {δ(s)}Ns=1∈R
L(y(s), ỹ(s)), (3)

where L : Yd × Yd → R is a properly defined discrepancy measure or error metric to be
minimized (see equations (7) and (8) for precise definitions in our context).

Inspired by the recently introduced Latent Dynamics Neural Networks (LDNets) [36],
we choose F equal to the space of neural network functions and we assume that the map
from the transmission rate to the output is given by a classical compartmental model. A
schematic representation of our methodology is depicted in Figure 1. Additionally, we
propose a computational strategy to estimate online the δ variable for both training and
testing stages. Specifically, we set

F =

{
fnn : R× Rn+1 → R s.t. fnn(β,x, δ; θd) =WLz

L + bL,

where zl = σ(Wl−1z
l−1 + bl−1) for l = 1, 2, . . . , L, z0 =

βx
δ

}, (4)

i.e. the set of neural network functions with L layers and Nl neurons per layer. We denote
by the generic θd the set of all trainable network parameters, namely the matrices Wl and
vectors bl for l = 0, . . . , L.

We frame Problem 1 in the specific context of this work. We define a map from the input
[x1, x2, . . . , xn]

T ∈ X ⊂ [L∞([t0, T ])]
n to the vector y = [S, E, I, R]T ∈ Y ⊂ [C0([t0, T ])]

4

by solving the following system of ODEs:
β̇(t) = fnn(β(t),x(t), δ; θd) ∀t ∈ (t0, T ]

β(t0) = β0

ẏ(t) = SEIR(y(t), β(t)) ∀t ∈ (t0, T ]

y(t0) = y0,

(5)
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where the SEIR epidemic model [37, 38, 39, 40] reads as:

Ṡ(t) = −β(t)S(t)I(t), ∀t ∈ (t0, T ],

Ė(t) = βS(t)I(t)− αE(t), ∀t ∈ (t0, T ],

İ(t) = αE(t)− γI(t), ∀t ∈ (t0, T ],

Ṙ(t) = γI(t), ∀t ∈ (t0, T ],

[S(t0), E(t0), I(t0), R(t0)]
T = [S0, E0, I0, R0]

T .

(6)

The states S,E, I,R : [t0, T ] → R+ represent the relative amount of susceptible, exposed,
infected and recovered individuals with respect to the illness under investigation. In this
work we assume that a suitable calibration stage for initial conditions [S0, E0, I0, R0]

T has
been already undertaken before the simulated scenarios. The parameter α = 1

TI
> 0 is the

inverse of the average incubation time. Instead, γ = 1
TR

> 0 is the recovery rate, where
TR represents the recovery time, i.e. the mean time infected individuals remain infected
and infectious. Both parameters can be estimated starting from contact tracing studies
during the epidemic waves, through cohort studies following groups of people exposed to
the disease, or through statistical and Bayesian inference, e.g. exploiting Kaplan-Meier
estimation as in [41].

Before addressing the solution of Problem 1, let us mention that for integrating (5) we
employ the Forward Euler method with a constant time step, ∆t, selecting the step size
to ensure both stability and accurate representation of the system’s dynamics. For this
purpose, it may be necessary to integrate the differential equations on a finer grid than the
observation grid. In our case we perform a suitable resampling of each x(s)(t) exploiting
piecewise linear interpolation.

We are now ready to describe the computational strategy for addressing Problem 1. In
doing this we provide details about the training and test phases. During the training stage
we look for the optimal values of the network trainable variables (i.e. weights and biases),
the initial conditions for the transmission rate and the corresponding latent parameter for
each training trajectory. To achieve this goal, we employ a two-step optimization routine.
The two steps differ in the choice of the cost functional to be minimized: the output of the
first step will employed as initial guess for the second step. The testing stage on unseen
inputs is, in turn, subdivided in two steps, as it is schematically synthesized in Figure
2: (a) estimation stage, combined with data-assimilation techniques, for retrieving initial
transmission rate and latent parameter of each testing trajectory; (b) prediction stage to
guess the trend of the epidemic model for each input by numerically solving the transmission
and epidemic ODEs using the corresponding estimated parameters. In the following, we
detail the numerical procedure of each stage:

1. Training: The optimization training routine is constituted by two different optimiza-
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tion problems: we first optimize Ltrain,E1 and then Ltrain,E2 , where

Ltrain,E1(θd; {β
(i)
0 }Ni=1, {δ(i)}Ni=1) =

∑
i=1,...,N

∑
ω∈W

E1({y(i)(τ)}τ∈(ω,ω+1],∆I
(i)
(ω)) + αregR(θd)

+ B(θd; {β(i)0 }Ni=1, {δ(i)}Ni=1) +D(θd; {β(i)0 }Ni=1, {δ(i)}Ni=1)

+ I(θd; {β(i)0 }Ni=1, {δ(i)}Ni=1) +A({δ(i)}Ni=1),

(7)

and

Ltrain,E2(θd; {β
(i)
0 }Ni=1, {δ(i)}Ni=1) =

∑
i=1,...,N

∑
ω∈W

E2({y(i)(τ)}τ∈(ω,ω+1],∆I
(i)
(ω)) + αregR(θd)

+ B(θd; {β(i)0 }Ni=1, {δ(i)}Ni=1) +D(θd; {β(i)0 }Ni=1, {δ(i)}Ni=1)

+ I(θd; {β(i)0 }Ni=1, {δ(i)}Ni=1) +A({δ(i)}Ni=1),

(8)

with W representing the set of weeks considered in each scenario. Each term has
its own specific weight factor to be tuned (α∗). The numerical values corresponding
to each test case will be provided in their respective sections. All the optimization
problems are solved numerically through two iterative schemes applied in sequence:
the first order Adam and the second order BFGS (for additional information see,
e.g., [36]). To ensure BFGS convergence, we perform a sufficient number of Adam
iterations, following manual selection when the cost functional reaches a plateau. In
contrast, BFGS terminates based on an early stopping criterion.

The two loss functions differ for the discrepancy metrics (E∗) employed. Indeed, for
the first Nep,1 iterations, we minimize Ltrain,E1 with E1:

E1({y(i)(τ)}τ∈(ω,ω+1],∆I
(i)
(ω), δ(i)) = αE,1

(∆I(i)(ω)−∆I
(i)
(ω))2

∆I
(i)
(ω)2

. (9)

This metric measures the relative discrepancies among weekly new cases, the com-

puted (∆I(i)(ω)) and the target (∆I
(i)
(ω))) ones. The choice of considering the weekly

datum is guided by the way available data about infected individuals are commonly
delivered for epidemic outbreaks (e.g. influenza’s new infections are collected weekly
in a public repository as it is described in Section 3.2).

Afterwards, we focus on the second optimization process, which is crucial for accu-
rately determining peaks, a primary objective in epidemiology. Indeed, in the first
optimization process, we prioritized learning the start and end times of epidemic wave
phases by minimizing relative discrepancies (E1). As a result, at the end of the first
stage, we often obtain inaccurate trajectories in terms of peak values. Therefore, af-
ter completing Nep,1 iterations, we initiate the second optimization process, using the

8



current values of the trainable variables, and aiming to minimize Ltrain,E2 over the
remaining Nep,2 iterations. The metric E2 is defined as:

E2({y(i)(τ)}τ∈(ω,ω+1],∆I
(i)
(ω), δ(i)) = αE,2

(
∆I(i)(ω)−∆I

(i)
(ω)
)2
. (10)

Thus, the training optimization routine reads as follows:

Routine. Initialize (θd; {β(i)0 }Ni=1, {δ(i)}Ni=1). Then, solve

(θ∗d,1, {βi,∗0,1}Ni=1, {δi,∗1 }Ni=1) = argmin
θd,{β

(i)
0 }Ni=1,{δ(i)}Ni=1

Ltrain,E1(θd; {β
(i)
0 }Ni=1, {δ(i)}Ni=1). (11)

Starting from (θ∗d,1, {β
i,∗
0,1}Ni=1, {δi,∗1 }Ni=1), we solve

(θ∗d, {βi,∗0 }Ni=1, {δi,∗}Ni=1) = argmin
θd,{β

(i)
0 }Ni=1,{δ(i)}Ni=1

Ltrain,E2(θd; {β
(i)
0 }Ni=1, {δ(i)}Ni=1). (12)

In each loss function, we also consider other terms in order to help the training process.

• The term αregR(θd) represent the Tikhonov regularization term on the trainable
variables (both weights and biases);

• A (Tikhonov-like) regularization enforcing {δ(i)} centered in 1:

A({δ(i)}Ni=1) = αA
∑

i=1,...,N

(δ(i) − 1)2. (13)

This approach can help us in interpreting the unknown parameters as positive
factors among different epidemic waves. This choice is arbitrary: indeed, a dif-
ferent type of prior could be used without affecting the algorithm’s performance;

• A regularization term penalizing whether transmission rates exceed a given thresh-
old:

B(θd; {β(i)0 }, {δ(i)}Ni=1) = αB
∑

i=1,...,N

max((β(i)(t)− βth)
q, 0). (14)

Indeed, βth is an informed threshold, and q ∈ N is an odd number to be tuned
(in our case q = 5). This term is fundamental for obtaining physical results when
dealing with realistic data, whilst it is unnecessary in our considered synthetic
scenario;

• A term that looks for parsimonious reconstructions of the dynamics, penalizing
unexpected unphysical oscillations in the transmission rate:

D(θd; {β(i)0 }Ni=1, {δ(i)}Ni=1) = αD |β|2H1(t0,T ), (15)

where

|f |2H1(t0,T ) =

∫ T

t0

f ′(t) d t. (16)

We opt to approximate f ′ in (16) using forward finite differences;
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• A regularization loss addendum in order to maintain a final level of retrieved
susceptible ({S∞,i}i) over a given threshold:

I(θd; {β(i)0 }Ni=1, {δ(i)}Ni=1) = αI
∑

i=1,...,N

max((Sth − S∞,i)
q, 0). (17)

This helps in avoiding excessive starting spikes in the transmission rate which
could lead to the unfeasible emptying of the Susceptible compartment.

We remark that

∆I(i)(ω) = S(i)(ω)− S(i)(ω + 1) + E(i)(ω)− E(i)(ω + 1), (18)

exploiting the fundamental theorem of calculus in the continuous SEIR model. Hence,
the amount of new infections can be determined as the difference in the extrema of a
given week of those individuals which are still susceptible to the illness, i.e individuals
in S and in E. Therefore, the discrepancy metrics can be rewritten in a much com-
putationally efficient form from the point of view of gradients to be computed during
optimization.

2. Estimation: A schematic representation of both estimation and prediction steps can
be found in Figure 2. Once a testing sample is drawn, its associated δ(p) needs to

be estimated, together with the initial value for the transmission rate β
(p)
0 . For this

purpose, we rely on the approach proposed in [42] which is based on data-assimilation
techniques.

Starting from given initial guesses (βp,∗0,init, δ
p,∗
init), we solve another optimization problem

for determining the unknown couple of coefficients (β
(p)
0 , δp), while keeping frozen

the parameters of the trained model. In the interval [0, Tobs], where Tobs ≤ T is a
prescribed observation time, we minimize the following estimation loss:

Lestim(β
(p)
0 , δ(p)) =

∑
ω∈W, ω≤Tobs

E2({y(p)(τ)}τ∈(ω,ω+1],∆I
(p)

(ω))

+ αA
(δ(p) − δ̄)2

Cδ
+ αβ0

(β(p) − β̄0)
2

Cβ
,

(19)

where (αA, αβ0) are the weights of the a priori regularization. In Lestim we have
prescribed an empirical gaussian-like prior distribution for the (disjoint) pair (δ, β0)

based on the observed values {δ(i), β(i)0 }Ni=1 after the training stage. In this case
(δ̄, β̄0) are the sample mean values of the reconstructed parameters after training
{δ(i), β(i)}Ni=1 and (Cδ, Cβ) the sample covariances.

We remark that the model for the transmission rate has already been determined,
i.e. weights and biases of the network do not belong to the set of trainable variables.
Hence, the estimation problem reads as

(βp,∗0 , δp,∗) = argmin
β
(p)
0 ,δ(p)

Lestim(β
(p)
0 , δ(p)). (20)
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Fig 2. Schematic representation of the estimation phase. The dashed red line represents
the target trajectories of the transmission rate (left pictures) and infected individuals (right
pictures). The green line indicate the reconstructed transmission rate, while the pink lines
depict the reconstructed infected individuals. The green shaded area corresponds the ob-
servation window [t0, Tobs].

3. Prediction: Once the trainable variables have been optimized and the sample-
dependent couple of parameters has been estimated, we solve the forward system
(5) to predict the new sample evolution in the whole interval [t0, T ].

Without loss of generality, in the following section we keep t0 = 0.

3 Results

In this section we present some numerical results in order to validate our novel approach.
In particular, in Section 3.1 we test our approach in an artificial scenario in which we aim
at recovering the prescribed differential dynamics of the transmission rate which depends
on an exogenous variable (temperature). In this context we also show the ability of the
architecture to reconstruct hidden dynamics of the transmission rate in presence of data
affected by noise. Additionally, we perform an extensive campaign of numerical simulations
in order to assess the sensitivity and robustness of our learning procedure with respect
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0 ǫβ

ǫβ0

T (t) > Tm

T (t) < Tm

Fig 3. Phase line of the imposed model for synthetic transmission rate.

to some network hyperparameters, to the width of the observation window during the
estimation stage and to the increase in the amount of training samples. We assess the
performance of our approach by comparing different cases based on the test error, measured
on a fixed batch of previously unseen samples.

In Section 3.2 we consider a realistic scenario investigating on the differential model
relating meteorological quantities, i.e. temperature and relative humidity, to the recovered
transmission rate for the case of influenza spreading in Italy during 2010-2020, with waves
of average length of 28 weeks. Moreover, we propose to study the equilibrium points of the
reconstructed dynamical system associated with the transmission rate, considering different
values of the input exogenous variables.

3.1 Test case 1: Artificial scenario

3.1.1 Data generation

We generate a training dataset of temperatures taking seasonal variations into account. In
particular, we consider each input time history belonging to the following family:

T (i)(t) = Tm +A(i) sin(2π f t+ ϕ(i)), (21)

where Tm represents a medium value of temperature, A(i) is the amplitude of the seasonal
effect, f is the seasonal wave frequency and ϕ(i) its phase. The i-th superscript indicates
that the quantities are associated with the i-th sample. Moreover, we assume that the
transmission rate satisfies a logistic equation with fluctuations driven by temperature:

˙β(i)(t) =

(
T (i)(t)

Tm
− 1

)(
β(i)(t)2

ϵ(i)βr
− β(i)(t)

)
, (22)

where βr is a scaling factor for the transmission rate, and ϵ(i) > 0 represents a suitable scaling
factor embodying the specific infectivity of different epidemic waves. The differential law
(22) has been retrieved starting from the modelling choices of [43] as explained in A. The

12



equilibrium points of (22) are

T (i)(t) ̸= Tm, β
i,eq = {0, ϵ(i)β(i)};

T (i)(t) = Tm, β
i,eq = R+.

(23)

In case T (i)(t) ̸= Tm, the stability of the two equilibrium points depends on the sign of
T (i)(t)− Tm quantity. Indeed,

T (i)(t) > Tm ⇒ βi,eq = 0 asymptotically stable, βi,eq = ϵ(i)β(i) unstable,

T (i)(t) < Tm ⇒ βi,eq = 0 unstable, βi,eq = ϵ(i)β(i) asymptotically stable,
(24)

as it is represented in Figure 3. We remark that the regime where T (t) > Tm with β(i)(t) >
ϵ(i)βr would lead the transmission rate to diverge, which is clearly an unphysical behavior.
In the following, we only consider transmission rates with initial condition in the physical
regime. We remark that during both training and testing phases we will estimate the latent
parameter δ for each sample, that we expect to be linked to the lineage parameter ϵ – the
only other factor driving our prescribed synthetic dynamics.

In order to retrieve the target values corresponding to each couple {(T (i)(t), ϵ(i))}i we
solve the SEIR model (6), by keeping fixed the parameters:

[S0, E0, I0, R0]
T = [0.97, 0.01, 0.02, 0]T , α = 1/10, and γ = 1/20.

We simulate each phase until the final time T = 364, i.e. considering a time window of length
one year. Unless otherwise specified, we deal with training datasets of size 50 and with a
fixed test dataset of size 50. Both datasets are generated by randomly sampling the input
parameters following the probability distributions in Table 1. Instead, the reference value
for the transmission rate has been computed through the following algebraic expression:

βr = γ

log

(
S0
S∞

)
1− S∞

, (25)

which is derived from a standard SEIR model with constant coefficients by imposing a final
size of Susceptible S∞. In our case we keep S∞ = 0.80, therefore βr ≈ 0.061.

3.1.2 Hyperparameters setup

The network’s architecture in terms of width and layers has been selected following the
sensitivity analysis that will be presented in Section 3.1.4, considering the hyperbolic tangent
as activation function. For each Adam optimization stage we fix the learning rates as
ηtrain,E1 = 5 · 10−4, ηtrain,E2 = 10−5 and ηtestg = 10−3. Those values have been set up
following a trial-and-error approach. The number of maximum epochs of both Adam and
BFGS optimizations and weights for each cost functional addendum for each stage are set
as in Table 2. Initial values of neural network’s weights and biases are randomly initialized
(standard deviation equal to 0.001). The observation window for the test set has been fixed
to 11 weeks, according to the sensitivity analysis.
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Parameter Distribution Interval Unit of measurement

Tm Uniform [10, 15] ◦C

A Uniform [5, 10] ◦C

f Constant 1
365

[ 1
days

]

ϕ Uniform [ 1
6

π
365

, 3π
365

] [−]

δ Uniform [0.1, 3] [−]

β0 Uniform [0, 0.1] [ 1
days

]

Table 1: Table of the parameters for generating synthetic data (Test case 1).

Epochs αA αB αD αE,1 αE,2 αI αreg αβ

Training (E1/E2) Adam 200/200 5.0 · 10−3 0 5.0 · 10−2 1.1 1.1 · 102 10−6 10−6 0

Training BFGS (E1/E2) 200/500 / / / / / / / /

Estimation Adam 500 6.2 5 · 10−1 0 7.0 0 0 0 5.0 · 10−2

Estimation BFGS 500 / / / / / / / /

Table 2: Table of the hyperparameters of each minimization stage (Test case 1).

3.1.3 Results: Impact of uncertain data

In this section we provide numerical results dealing with noisy data, to test robustness of
the proposed approach. This analysis has a crucial impact in scenarios embodying real
infectious data, whose quality is typically affected by under-reporting or reporting delays,
potentially causing misinformation to public health authorities [44]. Moreover, infections
are difficult to be isolated during epidemic waves, and the proxies that we use, such as cases
and deaths, often provide noisy approximations of the unknown real amount of infections.

To this aim, we train the model adding artificial noise in a multiplicative way to the
target amount of new cases:

∆I
(i)
(ω) =

˜
∆I

(i)
(ω)(1 + uκ), (26)

where u > 0 is the absolute entity of uncertainty,
˜
∆I

(i)
(ω) is the detected amount of new

cases and κ ∼ N (0, 1) is a standard Gaussian error. In this synthetic case, we retrieve

each
˜
∆I

(i)
(ω) by numerically solving the SEIR model coupled with (22). According to

(26), we assume higher probability of detection errors in the neighbourhood of peak values,
since, due to limited detection resources, it is often more difficult to detect the correct
amount of infected when the illness has already largely spread. In Figure 4, the evolution
of the reconstructed compartments of infected and exposed and the amount of cases is
presented for one simulation obtained with a random initializations of weights and biases
(cf. Subsection 3.1.2). The reconstructed transmission rate, as a function of temperature as
in Equation (21), has been recovered with a mean relative error in the whole reconstruction
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Fig 4. Uncertain data: Transmission Rate (a), Weekly cases (b), Exposed (c) and Infected
(d) of a given training sample.

er ≈ 1.3%, even if the amount of cases are affected by uncertainty of module u = 0.1. With
the reconstructed transmission rate, infected and exposed compartments overlap with the
denoised original data.

We then consider various levels of uncertainty

u ∈ {0, 0.001, 0.005, 0.01, 0.05, 0.1}, (27)

and, after the training process, we evaluate the prediction error (10) in the test dataset
specified in Section 3.1.1. The original denoised test set is altered in each case with the
same level of uncertainty error of the training set: for obtaining each test dataset for a given
level of uncertainty u, we start from the denoised 50 trajectories of the neat test dataset
described in Subsection 3.1.1 and we apply (26) corresponding to the respective u.

In Figure 5a we considered 20 different runs with varying initializations of the trainable
variables, presenting test errors in boxplot form for the difference between the reconstructed
new infection cases and the denoised ground truth values. The IQR of the boxplots widens
across the five cases as uncertainty increases, and the median error value gets higher. How-
ever, in Figure 5b we observe that the median test error (Q05), when scaled by the average
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magnitude of uncertainty (u), decreases as uncertainty grows. Additionally, the median
training error remains constant despite uncertainty rises.

In Figure 5c, we examine the latent parameter distribution on the test set (δ(p)). The
x-axis represents the values of the lineage parameter ϵ used to generate the dataset through
(22), while the y-axis shows the mean value of the reconstructed latent parameter across
simulations with different initializations of the trainable variables. As noted in [42], the
reconstruction value of the latent parameter through the data-assimilation technique intro-
duced above is not unique, but for different target values the reconstructions should lie on a

parametric curve. Thus, for similar values of β
(p)
0 , the initial value for the transmission rate

dynamics of each testing sample, a clear trend is expected. The network should increasingly
recognize these trends as more training data becomes available and noise decreases, as it
happens, e.g. for the black and brown latent parameters in the first row of Figure 5c. How-

ever, in some cases the parameter reconstructions for similar β
(p)
0 values present a cloudy

shape, e.g. the green latent parameters in Figure 5c. Actually, these values correspond
to declining epidemics with low initial transmission rates: our model performs weakest in
approximating these epidemic trajectories, since, starting from a low transmission initial
value, the epidemic wave does not outbreak, and it evolves independently on the trans-
mission rate dynamics, making the parameter δ hardly identifiable. We also observe that
increasing uncertainty in the target data impacts the latent parameters, causing their re-
constructions to become more diffuse with respect to the lineage parameter as uncertainty
increases within the same range of initial transmission rates.

In Figure 6 we reported six samples, one per row, of transmission rates and the re-
spective weekly amount of cases belonging to the test dataset for three different levels of
uncertainty. The dot points correspond to noised observed data, whilst the dashed line is
the unknown original (denoised) target trajectory. The uncertainty bands correspond to
the 0.1-0.9 quantiles of the trajectories considering 20 different models trained starting with
different random initializations of weights and biases. We note that the learned evolutive
model for the transmission rate is able to capture the frequency and phase of the harmonic
signal inferred by temperature. We observe that the transmission rate is coherent with the
ground truth, even if, as one can expect, noisy measurements influence the reconstructed
dynamics. After the epidemic peak is reached, the reconstructed transmission rates tend to
be less accurate and to be more stationary than the target curve. This behavior is explained
by the fact that, with the compartment of infected individuals nearly depleted, constant
non-zero transmission rates have little effect on the epidemic, which is already in decline.
As a result, the trained model tends to be more accurate during the early stages of the
epidemic wave, less in the long-time horizons.
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Fig 5. Analysis of uncertainty.
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Fig 6. Testing transmission rates (blue) and cases (red) with data with different uncertain-
ties. Each row shows the same sample with growing uncertainty: u ∈ {0, 0.001, 0.01, 0.1}.
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3.1.4 Results: Sensitivity analysis
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Fig 7. Sensitivity analysis on hyperparameters. Blue boxplots correspond to the test error,
orange ones to the training error.

We perform a sensitivity analysis with synthetic data in order to motivate our practical
choices for the involved hyperparameters. For this purpose we consider the following hyper-
parameters and evaluate their impact in terms of testing and training error over 20 different
runs with random initializations of weights: (i) number of neurons of the neural network;
(ii) number of layers of the neural network; (iii) number of training samples; (iv) observation
window width (only on test error).

In Figure 7a we gathered the results in terms of amount of neurons with a two-layers
neural network. Following the Occam’s razor principle, reducing the number of neurons,
for example to 4, leads to higher median accuracy by preventing overfitting of the training
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the transmission rate dynamics according with the colorbar.

trajectories. Similarly, increasing the model’s nonlinearity by adding more layers does not
contribute to a reduction in test error. Indeed, in Figure 7b the median error of the two-
layers neural network with 4 neurons is lower with respect to the other considered cases.

Furthermore, increasing the training size enhances the possibilities of achieving higher
test accuracy, since the neural network has more samples to learn from. This behavior is
evident from the median trends of test errors in Figure 7c, although the training process
becomes more time consuming (see Table 3).

At last, we consider the impact of the width of the observation window for estimating
the couples of parameters when a new trajectory has to be simulated. From Figure 7d we
deduce that prediction accuracy suffers when windows which are not large enough. On the
other hand, after almost 11 weeks, corresponding to of one-fourth of the total simulation
time, the prediction error tends to saturate, thus motivating our choice for the synthetic
scenario. Similar conclusions can be drawn from Figure 8, where we can note that the learnt
latent parameters, corresponding to similar values of initial transmission rates, identify one-
dimensional curves starting from an observation time Tobs = 77 days. This behavior is not
observed with shorter time windows.
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Size Median training time [s] Q01 training time [s] Q09 training time [s]

25 629.7 579.8 724.3

50 780.7 536.4 802.8

75 887.5 820.6 900.6

100 957.3 946.2 973.3

150 1229 1179 1235

Table 3: Median over 20 runs of the computational times for training the architecture with
different training sizes on a 8-core machine Intel i7.

3.2 Test case 2: Realistic scenario dealing with influenza waves

3.2.1 Data generation

Seasonal influenza is a contagious, infectious disease of the respiratory tract, which is es-
timated to cause tens of millions of infections and linked respiratory illnesses every year,
as well as nearly 250.000-500.000 deaths worldwide [45]. Early detection and reliable pre-
dictions of disease evolution, when followed by a rapid response, can drastically reduce
consequences of both seasonal and pandemic influenza, and encourage prevention measures
such as vaccinations. We exploit the data reported by the Italian epidemiological and viro-
logical influenza surveillance system from 2010-2011 to 2019-2020, available in the influnet
open access Github repository1. These data have been collected in the following way: using
standardized forms, general practitioners and pediatricians are asked to report weekly in-
fluenza like illness cases occurring from week 42 to week 17 of successive years. These data
are delivered divided in four age groups (0-4, 5-14, 15-64, >64 years), together with age-
specific data about influenza vaccine status. Moreover, in order to surveil the circulating
influenza virus strains, random swabs of the first influenza-like-illness (ILI) individuals have
been analyzed by the regional Reference Laboratories in 15 different Italian regions. Every
season almost 2000 samples have been collected, with a proportion of positive specimens of
around 34%. In [46] it was estimated the surveillance system average detects from 18.4%
to 29.3% of actually infected by influenza. Therefore, we divided total new cases by a mean
factor uinf = 0.23, in order to be coherent with a SEIR mathematical model which does not
take into account for undetected infected. Additionally, it was estimated that the average
duration of the incubation period for influenza is 1.5 days ( 1α) [47] and the infectious period
1.2 days ( 1γ ) , in order to have a total generation time of 2.7 days, in accordance with existing
literature [48]. Concerning the initial conditions for the SEIR model, we assume as in [46]
to prescribe a small seed corresponding to 10−6 initial percentage of infected individuals,
and

E0 =
∆I(1)

7α
, (28)

1https://github.com/fbranda/influnet
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Fig 9. Repartition of Italy in 15 areas in order to retrieve weighted average national
temperature and relative humidity. Indeed, only meteorological data from the largest cities
were available. Different colors are associated with different areas in the averaged data by
population.

i.e. considering a plausible value of initial exposed individuals in order to approximately
generate in 7 days the initial amount of new cases.

The Influnet dataset provides extensive information on influenza epidemics, including
seroepidemiological data that assess the population’s immunity levels following the 2009
pandemic wave of the A/H1N1pdm09 strain, divided by age groups. However, for the
purposes of this study, we will disregard age-dependent factors and adopt the standard
homogeneous SEIR model in (6), using only meteorological data as exogenous variables.
In particular, we took into account temperature and relative humidity as meteorological
information, following the analysis of [49, 50], which studied the coupled interplay between
relative humidity and temperature in the spreading of infectious diseases. These data are
available only for some cities in different administrative regions. Therefore, in order to
obtain the national data, they have been averaged after their extraction from a popular
Italian meteorological website2 as detailed below.

We dispose of meteorological data coming from 15 different cities belonging to different
administrative Italian regions. The remaining 5 regions (Abruzzo, Basilicata, Molise, Valle
d’Aosta, Umbria), where meteorological data were not available for more than four of the
ten considered years, have been paired with neighboring regions of similar latitude (cf.
Figure 9). Then, the national averages for temperature and humidity were then calculated
using a weighted mean, where each area’s weight was determined by its relative population
size.

2https://www.ilmeteo.it/portale/archivio-meteo
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Fig 10. Aggregated national data of temperature.
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Fig 11. Aggregated national data of relative humidity.

Furthermore, the average data are quite noisy, as illustrated in Figures 10 and 11. In
order to filter out higher frequencies, we apply to both temperature and relative humidity
time series a Savitzky-Golay filter of order 2 [51]. In this way we retrieve in each point a
smoother least square approximation of these data which is more prone for training and
testing the proposed approach (see Figure 12).

Unlike other pandemic events over the past five centuries that occurred unexpectedly,
influenza exhibits a certain cyclicality attributed to various genetic mechanisms responsible
for triggering new outbreak waves. The causative agent of influenza is not seen as a single,
stable strain persisting over the years, but rather as a heterogeneous collection of viral evo-
lutionary events that, while highly similar, are not identical [52]. This justifies the need to
estimate the parameter δ during training and testing stages. Differences in transmissibility,
mortality rates, and severity can be identified for previous influenza waves, largely due to
genetic heterogeneity, which has been extensively studied [53]. Influenza circulating in Italy
during the last decade is mainly constituted by three strains: influenza A/H1N1pdm09,
influenza B and influenza A/H3N2. The reproduction number for A/H1N1pdm09 is similar
to that of seasonal influenza, even though this virus is highly transmissible, leading to a
global pandemic in 2009. Its spread has been largely boosted by lacking in pre-existing im-
munity in the population. The A/H3N2 subtype often dominates during epidemic seasons,
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Fig 12. Input time series of national temperature and relative humidity after applying the
Savitzky-Golay filter.

Epochs αA αB αD αE,1 αE,2 αI αreg αβ

Training (E1/E2) Adam 500/1000 5 · 10−3 10−7 10−7 1.1 1.1 · 102 10−6 10−7 0

Training BFGS (E1/E2) 5000/3000 / / / / / / / /

Estimation Adam 8000 6.2 10−7 0 8.0 0 0 0 5 · 10−1

Estimation BFGS 1000 / / / / / / / /

Table 4: Table of the hyperparameters of each minimization stage (Test case 2).

causing more frequent and intense outbreaks, in particular in older adults. It has undergone
significant antigenic drifts over the years, leading to more severe symptoms with respect
to those of seasonal flu. Instead, influenza B is generally less transmissible with respect to
A wildtypes, affecting predominantly children and young adults. However, it can lead to
severe outcomes in older adults, especially in presence of comorbidities.

We aim at catching differences across waves of different seasons with the use of the
latent parameter δ, which will be confronted with the average transmissibility of the virus’
lineages circulating across the years as studied by [46]. From this study inferring on effective
reproduction numbers of the different strains in each season, estimated from the serological
analyses of ILI cases in Lombardy during each year for determining strain-compositions, we
derive a mean effective reproduction number that we compare with the reconstructed δ (see
Figure 13).

We explicitly incorporate temperature and humidity into the model for the transmission
rate, while other exogenous factors are implicitly included in factor δ.

3.2.2 Hyperparameters setup

Following the results of the sensitivity analysis in Test case 1, we adopted the same 4-
neurons two-layers neural network architecture. We fix the learning rates at ηtrain,E1 =
10−3, ηtrain,E2 = 10−7 and ηtestg = 10−3. Table 4 summarizes all the values of the other
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(a) Case 1.
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(c) Case 3.

Fig 13. Reconstructed latent parameters (δ) versus the reproductive effective number of
influenza waves weighted by lineage composition retrieved starting from [46]. Star-shaped
point correspond to the testing sample. The blue line corresponds to the linear regression
of training median values. Each gray bar corresponds to 0.1-0.9 percentile values of the
respective reconstructed parameter (considering various random initializations).

hyperparameters involved. The observation window lasts 49 days, corresponding to 7 weeks,
which is almost one-fourth of the total simulation time of 28 weeks or 196 days. The choice
of this width is also based on the sensitivity analysis performed on the synthetic test case.
Also the choice of the width is based on the sensitivity analysis performed in Test case 1.

3.2.3 Results

Among the 10 available influenza waves, we randomly select 9 samples for the training set
and 1 for the testing set (leave-one-out approach); then, we run 20 different simulations
with the same network topology described in Subsection 3.2.2, with different initializa-
tions of weights and biases. We present three representative cases of different scenarios by
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considering varying training and testing data:

• Case 1: testing wave corresponds to 2018-2019;

• Case 2: testing wave corresponds to 2017-2018;

• Case 3: testing wave corresponds to 2014-2015.

In Figure 13 we collect the mean retrieved values for the median latent parameter δ for each
influenza wave in the three cases, together with 0.1-0.9 percentile bands. Those quantities
have been plotted against the weighted effective reproduction number for the different in-
fluenza waves, which depends on the dominant variants’ composition as obtained in [46].
In all three cases, the linear correlation coefficients are, in absolute value, less than 0.5,
indicating that the recovered unknown latent parameter cannot be linked to the weighted
effective reproduction number through a linear transformation. We conclude that the evo-
lution of transmission rate cannot be solely attributed to the intrinsic reproducibility of the
current strain; rather, other exogenous factors (whose effects are embedded in the latent
parameters) significantly influence each single wave. However, since the median values of δ
for the same wave remain similar across the three different cases, training is robust when
using the leave-one-out approach. The clustering of δ values near 1 is also associated with
a relatively high weight of the corresponding regularization term in the training and testing
loss.

Figures 14-16 represent the new cases, transmission rate and reproducing number for
both training and testing samples in the three cases respectively. The number of new
cases obtained on the training samples is always caught in terms of absolute values and,
furthermore, the time at which the peak happens coincide with the ground truth. In
Case 1 the absolute value of the peak for the testing wave is retrieved, even though the
peak is reached almost three weeks in advance. In this case increasing the time-frame of
observability (green region in the figure) for the estimation phase would help in making
predictions more adherent with the amount of cases actually counted in 2018-2019 (see
Figure 17). Besides, in Case 2 the time at which the peak occurs is accurately predicted,
although the median amount of cases is underestimated with respect of the ground truth.
Indeed, the attained values at the peak for this epidemic wave are higher with respect to the
other training waves. Peak values this high have not been learnt by the model and, hence,
they seem to be hardly predictable. Finally, the median trajectory of new cases in Case
3 successfully catches the behavior of real data for the epidemic wave of 2014-2015. The
difficulties of the proposed architecture during the estimation and, consequently, during the
testing phase can be ascribed to the limited amount of data coming from these epidemic
waves, combined with high variability and similarities of input data as one can deduce from
Figure 12. The latter impact on the prior used for determining the new δ parameter during
the estimation phase.

From the transmission rate reconstructions, for which we do not dispose of a ground
truth to compare our results with, we can infer some qualitative dependencies on the input

26



variables: in accordance with literature [49, 50] we observe an inverse growth of the trans-
mission rate with respect to relative humidity (see, e.g. [25] where it emerges that drier
environments enhance transmission spread, similarly to air pollution [54]). On the other
hand, the transmission rate on temperature is not obvious in our case, since temperature’s
time series correspond to the same seasonal periods in different waves, and therefore the
input functions can hardly be distinguished. It is worth remarking that in our results peaks
always happen during the colder months of wintertime. Finally, the reconstructed trans-
mission rate continues to grow in the long-term horizon, even the outbreak is declining.
This growing trend in the transmission rate was also observed in Test case 1 (cf. Figure 6).
Note that no explicit relationship between the behavior (whether increasing or decreasing)
of the transmission rate and the behavior of the infected population is imposed in the loss
function. However, we could explicitly enforce a long-term decline in the transmission rate
within the loss function when the epidemic wave reaches its tail to prevent any unexpected
upward trends.

The estimated reproduction number Rt always lies in the confidence interval estimated
by [46] for each influenza epidemic. After the amount of new cases has reached its peak, the
reproduction number always registers a sudden drop under the bifurcation value Rt = 1,
indicating that the epidemic is proceeding to the equilibrium depleting infectious. Larger
uncertainty bands characterize long-time behavior for both transmission rate and, conse-
quently, reproduction number.

To gain more insight about the interpratability of our learned model, we analyze the
phase-plane of the reconstructed transmission rate model. Specifically, we focus on the
median model of Case 3, and we analyse the value of the surrogate right-hand side (fnn, cf.
(5)) at different values of the transmission rate. In this case, we keep two of the three input
parameters (T , U , δ) cyclically fixed, while the third varies generating a different curve in
the phase plane (β, fnn), cf. (24). In this way we explore how the unstable equilibrium
point behaves in relation to different constant values of this latter parameter (see Figure
18). Hence, as humidity decreases, the unstable equilibrium shifts to higher values, and a
similar effect is observed when temperature increases (cf Subsection 3.2.1). This behavior
aligns with the literature (cf. [49, 50]), as the range of values where the transmission
rate has negative derivative expands with rising temperatures and decreasing humidity. In
contrast, the latent parameter, which differentiates between waves, shifts the equilibrium
point further as its value decreases.
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Fig 14. Case 1. Reconstructions of cases, transmission rate, reproduction number exploit-
ing influenza data. The training set is constituted by all epidemic waves from 2010-2011
to 2019-2020 except for 2018-2019, which belongs to the test set. The green window cor-
responds to the 49 days of observability in which we estimate the latent parameter for the
testing sample.
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Fig 15. Case 2. Reconstructions of cases, transmission rate, reproduction number exploit-
ing influenza data. The training set is constituted by all epidemic waves from 2010-2011
to 2019-2020 except for 2017-2018, which belongs to the test set. The green window cor-
responds to the 49 days of observability in which we estimate the latent parameter for the
testing sample.
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Fig 16. Case 3. Reconstructions of cases, transmission rate, reproduction number exploit-
ing influenza data. The training set is constituted by all epidemic waves from 2010-2011
to 2019-2020 except for 2014-2015, which belongs to the test set. The green window cor-
responds to the 49 days of observability in which we estimate the latent parameter for the
testing sample.
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Fig 17. Case 1. Reconstruction of new cases of the wave corresponding to 2018-2019 (test
set) with two width of the observation window (green area), respectively (a) Tobs = 49 days
and (b) Tobs = 98 days.

(a) T̄ = 12◦, δ̄ = 1. (b) Ū = 72.5%, δ̄ = 1.

(c) T̄ = 12◦, Ū = 72.5%.

Fig 18. Analysis of the reconstructed model for the transmission rate: plot of the right
hand side of the transmission rate (fnn) in terms of β where two input exogenous parameters
are cyclically kept fixed, while the third varies. Each curve corresponds to different values
of this latter varying parameter: relative humidity in (a), temperature in (b) and the
reconstructed latent parameter in (c). 31



4 Conclusions

In this work, we propose an innovative scientific machine learning method to infer the
unknown differential evolution governing the transmission rate during epidemics, depending
on exogenous parameters, which are known to influence transmission mechanisms. By
learning a neural dynamical model of the transmission rate, we aim to address the critical
issue of extrapolating this parameter’s values in order to make reliable forecasts beyond the
observation interval. Our framework incorporates a data assimilation approach to estimate,
online, a latent parameter that distinguishes different waves of the same disease. This
latent parameter embodies the averaged effects of external factors that are not considered
explicitly in the chosen set of exogenous factors, but still influence the transmission rate.

We present an extensive overview of numerical results for two distinct test cases. In a
synthetic scenario, we assess performance in terms of test error and the ability to recover
the prescribed hidden dynamics. The results prove that the proposed architecture achieves
good accuracy, even when handling noisy data. Additionally, we investigate the recovered
model for transmission rates influenced by temperature and relative humidity, using real
data from influenza waves in Italy between 2010 and 2020. Despite data scarcity, the
leave-one-out results indicate accurate peak predictions. Furthermore, the results show
that this tool is effective especially for short-term forecasts and, in some cases, successfully
captures the entire yearly dynamics of new cases. We explore the interpretability of the
reconstructed model and confirm that it aligns with literature findings on the influence of
increasing temperature and relative humidity on transmission rates. However, as with many
other computational frameworks, we remark that long-term predictions are less reliable and
can sometimes be inaccurate. Notably, it is impossible to obtain direct observations of the
transmission rate’s evolution, and the epidemic data used for calibration are generally less
affected by monitoring uncertainties near the infection peak compared to later stages of
the outbreak. Moreover, in our context this limitation arises from the few data available
for training and the modest set of exogenous variables considered. Extending this work to
include additional time series is straightforward and will be the focus of future studies.

Possible future developments of this work include expanding the model to incorporate a
broader set of key exogenous variables, such as non-pharmaceutical interventions, vaccina-
tions, and immunity profiles. Additionally, the data assimilation approach can be enhanced
by using real-time moving windows to better estimate the latent parameter as more data
becomes available. Finally, the initial conditions of the epidemic, which were artificially
fixed in both cases, could be learned online using the same approach. This latter extension
necessitates further investigation from a numerical standpoint.

We emphasize that this approach is general and can be extended to other models aimed
at discovering the hidden dynamics of key parameters, even beyond the field of epidemiology.
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33. Regazzoni F, Dedè L, and Quarteroni A. Machine learning for fast and reliable solu-
tion of time-dependent differential equations. Journal of Computational physics 2019;
397:108852

34. Lowen AC and Steel J. Roles of humidity and temperature in shaping influenza sea-
sonality. Journal of virology 2014; 88:7692–5

35. Martcheva M. An introduction to mathematical epidemiology. Vol. 61. Springer, 2015
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A Transmission rate: derivation of the synthetic model

In [43] the authors assume that the scaling factor for the transmission rate ψ(T (t)) evolves
following a logistic temperature dependency for modelling the dependency of temperature
of COVID19 epidemic spread:

ψ(T (t)) =
a

1 + becT (t)
+ d. (29)

The four parameters have been estimated through 500 maximum likelihood parameter esti-
mators for establishing informed prior intervals for the approximate Bayesian approximation
algorithm. Hereafter, we show how the transmission rate equation (22) has been derived.
Thus, the latter model assumes that the transmission factor depends on the instantaneous
value of temperature, whilst we assume that the whole history of temperature up to a given
time influences the transmission factor at the prescribed time, i.e. we assume that the
transmission rate depends on temperature as:

β(t) =
a

be
−

∫ t
t0

(
T (ζ)
Tm

−1
)
d ζ

+ c

+ d. (30)

Solving equation (22), which is a Bernoulli nonlinear differential ODE with non-constant
coefficients [55], we obtain the following solution

β(t) =
βr

β0

βr−β0

β0

βr−β0
− e

−
∫ t
t0

(
T (ζ)
Tm

−1
)
d ζ
, (31)

where βr is a reference value for the transmission rate, β0 the initial value, Tm a mean tem-
perature value. By solving the nonlinear Bernoulli equation (22), we find that it corresponds
to (31). This solution is in the requested form (30).
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Fig 19. Total infected (left), learnt neural network model (center) corresponding to forward
evaluations of harmonic temperature strategies varying amplitude (right). We consider as
relative humidity time series the one corresponding to influenza wave of 2014/2015.

B Additional results on Test case 2

In this Appendix, we present numerical results to analyze the reconstructed model using
different input time series. Specifically, Figures 19-22 focus on the trained model from Case
3 (Section 3.2) and test it forwardly, varying one parameterized input (either temperature
or humidity) while keeping the other fixed at the original Savitzky-Golay filtered time series.
The latent parameter δ is held constant, as determined from testing Case 3 with both the
actual temperature and humidity time series.

In order to have a parametrized family of input functions, we fit a sinusoidal least squares
model with the temperature data referring to 2014-2015 wave. Then, we consider different
input functions belonging to this family varying the amplitude of the sinusoidal signal (Fig-
ure 19, right), its phase (Figure 20, right), or the mean value (Figure 21, right). Each figure
illustrates the behavior of detected infectious individuals for each considered temperature
input (left), the neural network’s trend (center), and the corresponding parameterized input
trajectory (right).

We note that the oscillating temperature pattern positively affects the infectious peaks,
which decrease as amplitude increases (cf. Figure 19, left). However, if the same data are
shifted forward, i.e. assuming new cases occur later in the winter season, higher peak values
are observed (cf. Figure 20, left). At last, reducing the mean temperature value influences
the model by increasing and advancing the peak (cf. Figure 21, left).

Additionally, we assess the impact of relative humidity by fitting a linear least squares
model to real data from 2014-2015, while maintaining the real temperature time series.
Then, we consider different relative humidity signals belonging to this parametrized family
as in Figure 22 (right), and considering as temperature signal the one referring to 2014-2015
wave. Consistently with findings from [49, 50], drier conditions tend to reduce peak values
and delay the epidemic’s progression of the surrogate model.
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Fig 20. Total infected (left), learnt neural network model (center) corresponding to for-
ward evaluations of harmonic temperature strategies varying phase (right). We consider as
relative humidity time series the one corresponding to influenza wave of 2014/2015.
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Fig 21. Total infected (left), learnt neural network model (center) corresponding to forward
evaluations of harmonic temperature strategies varying mean value (right). We consider as
relative humidity time series the one corresponding to influenza wave of 2014/2015.

0 50 100 150 200

days

0.000

0.005

0.010

0.015

0.020

0.025

0.030

D
et

ec
te

d
in

fe
ct

ed

0 50 100 150 200

days

0.00

0.01

0.02

0.03

0.04

0.05

0.06

R
h

s
M

o
d

el

0 50 100 150 200

days

60

70

80

90

R
el

at
iv

e
U

m
id

it
y

[%
]

50 60

0.025

0.030

Fig 22. Total infected (left), learnt neural network model (center) corresponding to forward
evaluations of linear humidity strategies (right). We consider as relative temperature time
series the one corresponding to influenza wave of 2014/2015.
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