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Abstract

Neurodegenerative diseases have a significant global impact affecting millions of individuals worldwide. Some
of them, known as proteinopathies, are characterized by the accumulation and propagation of toxic proteins,
known as prions. Alzheimer’s and Parkinson’s diseases are relevant of protheinopathies. Mathematical models
of prion dynamics play a crucial role in understanding disease progression and could be of help to potential
interventions. This article focuses on the heterodimer model: a system of two partial differential equations that
describe the evolution of healthy and misfolded proteins. In particular, we propose a space discretization based on
a Discontinuous Galerkin method on polygonal/polyhedral grids, which provides flexibility in handling meshes
of complex brain geometries. Concerning the semi-discrete formulation we prove stability and a-priori error
estimates. Next, we adopt a ¥-method scheme for time discretization. Some convergence tests are performed
to confirm the theoretical bounds and the ability of the method to approximate travelling wave solutions. The
proposed scheme is also tested to simulate the spread of a-synuclein in a realistic test case of Parkinson’s disease
in a two-dimensional sagittal brain section geometry reconstructed from medical images.

1 Introduction

Neurodegenerative diseases have a significant global impact affecting millions of people worldwide. Despite dif-
ferent manifestations and a wide spectrum of symptoms among neurodegenerative diseases, many of them can be
collectively categorized as proteinopathies due to compelling evidence indicating that their progression is closely
linked to the aggregation of specific toxic proteins, commonly referred to as prions [1]. Remarkable examples of
proteinopathies are Alzheimer’s and Parkinson’s diseases. Alterations in the protein’s structure result in the cor-
ruption of its characteristic and functional properties, rendering it unable to fulfil its intended role. Complications
arise when the misfolded structure exhibits age-related resistance to the clearance mechanism [2], impeding its
elimination and leading to the tendency to accumulate in agglomerates, which in the end cause the neurons’ death
[3].

Once present in the organism, a key aspect of prions is that they act as templates to induce the misfolding and
aggregation of otherwise healthy proteins, thereby propagating the disease [4]. A direct correlation can be estab-
lished between the microscopic phenomena involving prion-like proteins and the manifestation of certain observable
symptoms [5]. These phenomena typically span over decades, making on the one hand clinical observations very
complex and on the other hand the development of mathematical and computational models a key instrument to
asses patient-specific evolution scenarios.

In the particular case of Parkinson’s disease, a-synuclein evolution assumes a pivotal role: a-synuclein is a protein
predominantly localized within presynaptic nerve terminals, whose physiological functions are still not completely
understood. Nevertheless, there is evidence suggesting its potential involvement in neurons’ interconnections [6].
a-Synuclein monomers undergo polymerization, leading to the formation of extended filaments. During this phase
abnormal mutations may arise, resulting in the creation of insoluble filamentous inclusions, known as Lewy bodies
[7]. Lewy bodies are recognized as hallmark lesions found in the brains of individuals suffering from Parkinson’s
disease, marking the degeneration of neurons. Hence, therapeutic approaches aimed at mitigating the misfolding of
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these proteins constitute a topic of paramount significance within contemporary medical research [4], as well as the
construction of chemical ligands for positron emission tomography imaging (PET) which do not exist nowadays [8].
Moreover, elaborating a sophisticated mathematical representation of its evolution would provide valuable insights
into the disease progression [9], since the detection of such protein is only possible by histological examination of
postmortem brain tissue [8]. A comprehensive review of the mathematical models proposed to describe the prions
dynamics can be found in [10].

In this work, we focus on the numerical modelling of the heterodimer continuum model [11]. This model is
formulated as a system of two non-linear diffusive partial differential equations (PDEs). Its objective is to describe
the underlying microscopic mechanism of prion dynamics while capturing the broader macroscopic phenomenon of
prion propagation throughout the designated spatial domain. This approach embraces a complete consideration
of both the healthy and misfolded protein configurations, affording deep insights into the mechanistic aspects of
infections.

In this context, the typical model which is used, under the assumption of constant healthy prion concentration is
the Fisher-Kolmogorov (FK) equation [12]. The two models are related since, through mathematical considerations,
it is possible to reduce the coupled system of equations inherent to the heterodimer model into the FK equation,
which describes the evolution of the relative concentration of misfolded protein, in the simplest possible way [13].
Although it is more complex compared to the FK equation, the heterodimer model justifiably warrants the additional
computational effort. This is attributable to the possibility of analyzing a more informative solution, as it explicitly
accommodates the dynamic evolution of healthy proteins alongside the misfolded counterparts. Furthermore, the
explicit inclusion of terms representing distinct molecular kinetic processes—namely, production, destruction, and
conversion- affords the ability to simulate diverse scenarios [14]. Finally, the study and numerical simulation of the
heterodimer model serves as an intermediate step toward a more general comprehension of prions pathogenesis, fully
described by the more advanced Smoluchowski model [15], where the concentrations of polymers of different sizes
are followed independently. Therefore, the heterodimer model constitutes a natural balance between computational
complexity and physical insights into the prion dynamics.

Concerning the numerical approximation of the heterodimer model, in literature we find many different methods,
i.e. finite element methods [14] or reduced order network diffusion models [16]. In this work, we propose and analyze
a Discontinuous Galerkin formulation on polygonal/polyhedral grids (PolyDG) for the space discretization of the
heterodimer system, coupled with a Crank-Nicolson time discretization scheme, with semi-implicit treatment of the
nonlinear term. For this method, we derive also in this work stability and a-priori error estimate for the semidiscrete
formulation. To the best of our knowledge, these are the first results of this type for the semidiscrete form of the
heterodimer model.

The proposed approach enjoys distinguishing features compared to the available approaches in the literature.
For example, it supports high-order approximations able to correctly reproduce travelling-wave solutions. Lever-
aging the PolyDG method, we attain a substantial degree of flexibility in addressing the complexities of geometry,
thanks to the possibility of exploiting agglomeration techniques. PolyDG methods allow also local adjustment of
the discretization parameters, such as polynomial order (p-refinement) and element diameter (h-refinement) [17].
PolyDG’s adaptability becomes particularly advantageous in the accurate approximation of propagating wavefronts,
even within meshes not excessively refined. Within this context, PolyDG methodology further enhances the ver-
satility and generality of the approach, concerning arbitrarily shaped elements. This gives great flexibility also
in the construction of the mesh, thanks to the possibility of mesh agglomeration [18]. The procedure consists of
constructing a coarse mesh starting from an original highly refined triangulation, necessitated for the accurate
representation of the complex structure and details of the brain’s geometry. The agglomerated grid now comprises
generic polygons, maintaining the original boundary details without requiring curved elements. This restructuring
causes a noteworthy reduction in computational cost.

The paper is organized as follows. Section 2 presents the heterodimer model, then Section 3 is dedicated to
deriving the PolyDG formulation. In Section 4 we prove stability and a-priori error estimates and in Section 5 we
present the fully discrete formulation of the problem. In Section 6 theoretical convergence rates are verified via
numerical simulations with analytical solutions and the ability of the model to reproduce a travelling-wave solution
is demonstrated. In Section 7, we simulate the spreading of a-synuclein protein within a two-dimensional brain
section. Finally, in Section 8, we draw some conclusions and discuss future developments.
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(a) Monomeric seeding model. (b) Polymeric seeding model.

Figure 1: Schematic representation of monomeric and polymeric seeding models.

2 The mathematical model

The mathematical formulation employed to address the kinetics of prion pathogenesis incorporates the representa-
tion of both prion conversion dynamics and the spatial dissemination of these infectious agents within the reference
domain. By employing this formulation, a coherent link is established between the microscopic-level kinetic model
and the observable macroscopic manifestations of anisotropic diffusion pertaining to pathogenic microorganisms.
Proteinopathies involve a multitude of interconnected phenomena at various scales, all of which play significant roles
in the progression of the pathology, like biochemical reactions at a microscopic scale and accumulation of misfolded
proteins agglomerating over entire areas of the brain, causing neurons’ death and the consequent manifestations of
the disease characteristic symptoms.

Despite the fact that the prion conversion mechanism remains poorly understood, one of the simplest employed
approach to explain the interactions between prions and prionic proteins is the heterodimer model, initially proposed
by [19, 20]. According to this model, a prion molecule tends to interact with the healthy prion protein forming
a heterodimer molecule, then, due to biochemical mechanisms that have not been fully elucidated yet, the prion
protein is converted into its misfolded version, and the resulting polymer fragments into two singular prions that
will continue to act as infectious seed and spread (see Figure 1a).

An extension of the aforementioned heterodimer model is the nucleated polymerization model by Harper and
Lansbury [21], initially proposed to describe the seeding of S-amyloid in Alzheimer’s disease, but whose concepts
can be extended to general prion proteins like a-synuclein. According to their theory, misfolded proteins exhibit a
tendency to react within themselves [22]. Therefore, it is more likely to find them in the form of short polymer that
corrupts healthy proteins, fragments into several misfolded proteins, or aggregates to form amyloids (see Figure 1b).
In the present model, this conversion process is summarized in a single step characterized by rate constant, denoted
in the following by ki2, and proportional to the concentration of both healthy and misfolded proteins [13].

The equations that govern the description of the spatial and temporal dynamics of the overall quantity of healthy
c(x,t) and misfolded g(x,t) proteins within an open bounded domain Q € R? (d = 2,3) with Lipschitz boundary,
over a time interval (0,7 is the following:

%=V-(DV0)—klc—klgcq+ko+fc inQ x (0,77,

d .

iZV-(DVq)—k1q+k12qc+fq in Q x (0,77,

c=c¢p, ¢=¢qp on 9Qp x (0,7, (1)
(D-V¢)-n=0, (D-Vg) - n=0 on 9On x (0,77,

c(0,x) =co, q(0,2)=qo in Q.

The model takes the form of a time-dependent system of PDEs coupled through a non-linear reaction term. Healthy
proteins are assumed to be naturally produced by the organism at a rate ky > 0, their concentration is affected by
a biological destruction process at a rate k1 > 0, whereas they are converted into prions as previously described
at rate k12 > 0. In contrast, misfolded proteins undergo a clearance mechanism characterized by a rate k; > 0.



However, due to their distinct structural conformation, these proteins exhibit insolubility and enhanced resistance
to the biological elimination process that typically occurs when generic proteins misfold. The forcing terms f.(x,t)
and f,(x,t) correspond to a generic external introduction of mass into the system, which is often neglected in the
applications. Suitable initial and boundary conditions complete the model. The boundary of the domain 0X is
partitioned into two disjoint subsets, namely 9Qp and 9Qy. On 9Qp, we impose fixed concentration values, while
on J€n, we enforce zero flux conditions, with n denoting the normal vector pointing outward from the domain. The
initial conditions go(x) and co(x) correspond to infectious and healthy proteins initial concentrations, respectively.
From a macroscopic perspective, the propagation of proteins throughout the domain is captured by the diffusion
term in Equation (1). The spreading of proteins within the brain occurs via two main mechanisms, extracellular
diffusion and axonal transport, and can be mathematically characterized by employing the diffusion tensor defined

as follows [13]:
D(x) = dextI + duxna(x) ® a(x), (2)

where the second term models the anisotropic diffusion of substances along the axonal directions, denoted by the
vector a(x), which is proportional to dax, > 0. It is commonly assumed that the axonal transport is faster than
the isotropic extracellular diffusion, therefore dyzp > deze > 0 [13].

Assumption 1. For the subsequent analysis of the problem we require a certain regularity for the data, forcing
terms and boundary conditions:

o D e L®°(Q,R™) qnd Idy > 0: do|€> < € 'DE Ve € RY;
o ko, ki, ki, ki € L2(Q);

o fo(m,t), fy(x,t) € L2((0,T; L2(Q));

e ¢, gp € L*((0, T], H/?(09p)).

By analyzing the steady-state solutions of (1), it can be proved that the model exhibits two distinct equilibria.
The first is an unstable equilibrium at ¢ = ko/k; and ¢ = 0, representing a healthy condition where no misfolded
proteins are present. The second equilibrium ¢ = k1 /k12 and ¢ = ko/ kl — k1 /ky2 is stable and corresponds to a
situation where both protein species coexist. This implies that even a small non-zero quantity of misfolded proteins,
whether due to the spontaneous conversion of healthy proteins (which is rather unlikely, as noted in [23]) or the
presence of external infectious agents in the form of initial condition ¢g, can initiate an irreversible chain reaction
of conversion and spread. Furthermore, for the observation of a travelling-wave solution, transitioning the system
towards a pathological state, it is crucial for the coefficients of Equations (1) to adhere to a specific relationship
[16]: )

kokia — k1k1 > 0. (3)

Failure to satisfy this condition would result in having a stable equilibrium point in the healthy state implying that
the model is not well suited for describing the diffusion of pathogenic prions. If Equation (3) holds and assuming
isotropic diffusion, the wave speed for concentrations of unhealthy prions can be computed analytically [11]:

ko k
v = dextk12 <k(1) - ]f112> . (4)

3 Polytopal discontinuous Galerkin semi-discrete formulation

In this section, we aim to present the spatial discretization of Equation (1) using the PolyDG method [17, 24, 25, 26].
To ease the exposition of the discrete framework, we initially introduce preliminary definitions, mesh assumptions,
and relevant estimates. Moreover, we introduce the symbol z < y to mean that 3C > 0 : x < Cy, where C may
depend on model parameters and the degree of polynomial approximation denoted as p, but it is independent of
the mesh-size h.

3.1 Discrete setting: polytopal meshes and functional spaces

We introduce a partition 7, over the domain €, consisting of non-empty, disjoint polygonal or polyhedral elements.
Each mesh element K € .7, is associated with its measure denoted as |K|, and its diameter denoted as hg, defined



as the upper bound of the distances between any pair of points within K. Consequently, the mesh size parameter
is defined as h = max {hx}.
KeI,

Additionally, we consider a partition .%j, of the mesh skeleton, which consists of disjoint (d — 1)-dimensional
subsets of ) known as mesh faces F. These faces are defined in such a way that each face is either an interface
between two distinct elements Ty,Ts € 7, (where F' C Ty N T5), or a boundary face (where F C Ty N 0N2). This
general definition implies that mesh interfaces do not necessarily coincide with the faces of polytopic elements in
the partition .7}, allowing for the handling of non-conforming partitions that involve hanging nodes. Moreover, it
accommodates partitions where the faces may not be planar or even connected, thereby providing greater flexibility
for the method’s applicability [27].

In the two-dimensional setting (d = 2), mesh faces correspond to line segments. In three-dimensional domains,
mesh faces consist of general polygonal surfaces that are further assumed to be subdivided into triangles. Henceforth,
Z 1, will denote the collective set of mesh faces or all open triangles belonging to a sub-triangulation of the mesh faces
in three-dimensional domains. Consequently, %}, is consistently defined as a set of (d — 1)-dimensional simplexes.
The set %}, can be subdivided into two distinct subsets: ﬁ,ll, that comprises all interior interfaces, and f’f}? , that
consists of all boundary faces. The boundary faces can be further partitioned based on the type of boundary
conditions specified in Equation (1). Specifically, we denote by % ,? as the portion of the boundary where Dirichlet
conditions are imposed and by .ZY as the portion where Neumann conditions are set. Additionally, we assume
that the triangulation 9, is constructed in such a way that any face F' € %}, is entirely contained within either the
Dirichlet boundary region, denoted as 0€)p, or the Neumann boundary region, denoted as 0{ly.

We make the assumption that the partition .}, satisfies the shape regularity conditions outlined in [24, 25].
These conditions ensure the fulfilment of crucial inequalities such as the trace inequality, the inverse inequality, and
the approximation property of the L2-projection on general polygonal/polyhedral meshes. Furthermore, we impose
additional regularity assumptions as detailed in [28, 29] to extend the Gagliardo-Nirenberg inequality into a discrete
setting.

Assumption 2. We assume that the sequences of meshes { T, }n satisfies the following conditions:
o (Shape regularity) for every K € 9, and each h € (0,1] it holds:

hic S K| S hic:

e (Contact regularity) for every F € F#y, with F C K for some K € 9}, and h € (0,1] it holds h‘;{l < |F|, where
|F'| denotes the Hausdorff measure of F';

o (Submesh condition) For each h € (0,1], there exists a shape-regular, conforming, matching simplicial submesh
[27] T, such that

1. For each K € % there exists K € 9}, such that K CK,
2. The family {?h}h satisfies shape and contact reqularity assumptions,

3. for anyl? € §h and any K € T, with KC K, it holds that hxr < h.

We proceed by defining the functional spaces relevant to our analysis. Considering the time-dependent parabolic
problem posed by the continuous formulation in Equation (1), we assume that the solutions belong to the functional
space H'([0,T], H}_(€2)). Moreover, we define the Broken Sobolev space W, = H9(Q, 7,) = {v € L*(Q) :  v|x €
HY(K)VK € Z,}. We will seek discrete solutions to the problem within the following discontinuous finite element
space:

WP ={we L*(Q): wlg € P,(K) VK € F},

where P, (K) is the space of polynomials of total degree p > 1 defined over the mesh element K.

In conclusion, we recall some notation consistently followed throughout the remainder of the exposition. For
vector-valued and tensor-valued functions previous definitions are to be intended as extended componentwise. From
now on, all integrals over the domain {2 should be intended as the sum of the contributions over each element K of

1/2
the partition 7, in particular, || - || = (ZKG% II - ||%2(K)) . Analogously, the L2-norm on a set of faces .%;, will

be indicated as || - .7, = ez, |- ||2L2(F))1/2.

We introduce the following trace-related operators [30]. Each interface F' € .} is shared by two mesh elements
denoted by K*, we denote by n* the unit normal vector on face F' directed outward with respect to K+, respectively.
For any sufficiently regular scalar-valued function v and vector-valued function w we set:



e the jump operator [-] on F € Z} as [v] =vTnt +v ™ n~ and [w] = w™ - nT +w™ -n",
e the average operator {-} on F € #} as {v} = 3(v" +v7) and {w} = F(wF +w),

where v+ and w* denote the traces on F of the function defined over K, respectively. Analogously, we define the
jump and average operators on the faces F' € Z2, associate with the boundary mesh element K with outward unit
normal vector n as:

e the jump operator [-] on F' € ZP with Dirichlet condition g and g: [v] = (v — g)n and [w] = (w — g) - n;
e the average operator {-} on F € #P: {v} =v and {w} = w.

3.2 PolyDG semi-discrete formulation

In order to derive the semi-discrete formulation of the problem, we introduce the discontinuity penalization function

VF:
P2
—— onF¢e.Z},
_ ) {htm 5
=1, (5)
%, on F e .FP,

where 79 is a constant parameter that should be chosen sufficiently large to ensure the stability of the discrete
formulation. We define for any up, wp, vy € W,]?G the following bilinear and trilinear forms:

M(uh, Uh) Z/Q (Dthh) . V}ﬂ)h + Z /F(’YF[[U}L]] . [[Uh]] — {{Dvhuh} . [[Uh]] — [[uh]] . {{Dvh’l}h}), (6&)

FeZ L uFp
N (Un, Wk, Uk) =/ k12 up wh vp, (6b)
Q
rz(un, vp) =/ k1 up vp, (6¢c)
Q
7z (un, vp) =/ ko up, on, (6d)
Q
F.(vp) =/ feon + Z / (yreph vy — DVpop - cppm), (6e)
Q FegFpP F
Fy(vp) =/ fqon + Z / (YFgon v — DVyon - gpam) , (6f)
@ FeZFP £

where we denote with cpp and qpj, suitable approximations of cp and ¢gp in W,?G’, respectively. Moreover, we are
using the elementwise gradient V- [31]. Finally, the semi-discrete formulation of the problem reads:

Given suitable discrete approximations cop, go, € WP of the initial conditions of Equation (1), Find (¢ (), gn(t)) €
W,PG X W}?G for each ¢t > 0 such that:

oc
(8th’wh> + o (chywn) + 7L(chy wn) + 1 (chy gnywi) = Fo(wy) Yy, € WPC,
Q

0 -
(;th,vh) + A (qn, vn) + 7r(qn, vn) — 7N (qn, chyvn) = Fy(vp) Yoy, € WPC.
Q

4 Analysis of the semi-discrete PolyDG formulation

This section is dedicated to a detailed analysis of the underlying mathematical properties and conditions that
guarantee the problem’s well-posedness and will help derive stability and error estimates. Before delving into the
main analyses, we present a set of preliminary definitions and recall technical results that are instrumental for the
forthcoming analysis. We define the following DG-norms:

lellba = |[VDVae| + IVAFIdll sgozp Ve W (82)
_ —1/2
llellbe =lelloc + [z {DVael|, Ve < 7. (b)

h



We recall that the previous norms are equivalent in the space of discontinuous functions W,? G under Assumption 2
thanks to the following trace-inverse inequality [24]:

2
p
lellzoom) S -l Ve € By(), VK € Fh. o)
We define also the energy norms:
2 2 ! 2
le@IZ = lle@)]| +/0 le(s)Ipads, (10a)
t
lle@Z = lle@) +A lle(s)llfds. (10b)

Thus, it can be proven [17] that the bilinear form &7(-,-) is continuous and coercive, namely:
Proposition 1. Let Assumption 2 be satisfied, then the bilinear form <7(-,-) is such that:

o | (up,vp)] S Mllun|pcllvnllpe Yun,vn € WPS;

o |/ (u,n)| S Mlullpclloallve Yu € Wa, v, € WPS;

o o (up,un) 2 pllunlpe  Yun € WPG;

where M, M and w are independent of h. The third bound holds provided that the penalty parameter vy defined in
Equation (5) is large enough.

We present two relevant inequalities that play a crucial role in deriving the stability estimate of the discrete
solution.

Proposition 2. (Discrete Gagliardo-Nirenberg inequality) Under Assumption 2, for any up, € W,?G, there exists a
constant Cg,, eventually depending on p but independent on h, such that:

lunll o) < Cagllunllbe llunll =

(L Ly, 1=s
¢ “\274 9

The discrete Gagliardo-Nirenberg inequality can be found with complete proof in [29]. For brevity, we present
the Petrov inequality without including the proof, which can be found in [32]:

with s € (0,1] and q satisfying:

Proposition 3. Let a,b,c be three positive constants and let u € LL(0,1) = {u € L>=(0,%) : u(t) >0 a.e. in (0,)}
such that:

¢ ¢
u(t) < a+ b/ u(s)ds + c/ u"(s)ds, for almost any t € (0, ), (11)
0 0
where t is such that:
b(n—1)t
e <l (12)
Then for almost any t € (0,1) we have:
bt
u(t) < ac . (13)

(1—antcb=1 (ebr—Dt — 1))77%1

4.1 Stability analysis of the semidiscrete formulation

We can now proceed to derive a stability estimate for the discrete formulation (7).



Theorem 1. Assume that consider Assumptions 1 and 2 are satisfied, let (cp(t),qn(t)) € WP x WPE be the
solution of Problem (7) with cp = qp =0 for any t € (0,t], with t < T introduced in Proposition 3. If the stability
parameter o defined in Equation (5) has been chosen sufficiently large, then:

<|C0h”2 + llqon|® +/0 (I£e()IZ + (1o (5)11%) dS) et

llenllZ + llanllZ < T (14)
d—1 a—1

T
it - <||c0h|2 Hllanl?+ [ (1)1 + IIfq(s)||2)> (700 1)

where:
. ct, K%,
2d-2, (2 max {Kl7 I~(1} + 1)

= min{l, u} B:%(Qmax{l(l,f(l}—l—l)

having defined K13 = ||k1a|ze, K1 = ||k1]|ze, K1 = ||k1||p, and Cg, from Proposition 2.

Proof. We sum the two equations in (7) and we introduce the notation 4 = % for each u € WPS:

(éha wh)Q + (q.ha Uh)Q + JZ{(Cha wh) + JZ{(Qha Uh) =

. 15
—rr(ch, wn) — TL(qn, vn) — TN (Ch, @hs Wh) + TN (Ghs Ch, VR) + Fo(wp) + Fy(vn). (15)

By choosing as trial functions wy, = ¢ (t) and vy, = i (t), we integrate in time Equation (15) and exploit Proposi-
tion 1 to get:

1 1 ¢ 1 1 i
Slen @ = Slleonl?+ [ llen (@) ds + 5 lan@P = Fllaonl + [ sllan(s) s ds <
0 0

—rr(en(t),en(t)) = Tolan(t), qn(t)) — ra(en(t), an(t), en(t)) + rn(gn(t), cn(t), an(t)) + Fe(en(t)) + Fy(qn(t))-

On the other hand, thanks to coefficients regularity (1) and Hélder’s and Young’s inequalities, we obtain:
1 2 1 2 ! 2 1 2 1 2 ! 2
3 len @17 =5 lleonlI” + ; pllen($)lpe ds + 5llan N = 5 llaonll” + ; mllan(s)[[pe ds <
142K, [! 142K, [t 1t 1t
A [ enlPas + 275 [ anlPas + 5 [R5 [ 1fe)Rds
0 0 0 0
t
[ Iren(s)an(s).en () + ravan(s) enls) ans) s,
0

where K = ||k1]| (o) and Ky = ||k | L= (0). Concerning the non-linear terms we apply first the Holder’s inequality
to obtain:

/O v (en(5), 2n (), en(5) + v (@n(s), e (5), an(s))|ds < Kia / ( /Q |ci<s>qh<s>|+|qi<s>ch<s>)ds,

where K13 = [|k12|| 1~ (0). Then we employ Holder’s inequality with v = 3/2 and 7’ = 3 on each term and get:

) ) X 2/3 X 1/3 5 1/3 X 2/3 ) )
[ (il + lendh) < ( / ch) ( / qh) n ( / ch) ( / qh) < llenlZalgnllzs + llenllzslan 2.
Q Q Q Q Q

Subsequently we apply the Young’s inequality with exponents @ = 3/2 and § = 3 and then sum up the two
contributions:

/0 v (en(5), G (5),cn(5)) + v (@n(5), en(s). an(5))[ds < Koo / (lea(®)I12s + lan()]%5) ds.

In order to exploit the Gagliardo-Nirenberg inequality in Proposition 2, we distinguish 2 cases:



e d =2, then s = 1/3 and the Young’s inequality can be applied with exponents a = 8 = 2 and with an € > 0:

3 C?éd 2 1 4
llenllzs < = | ellenllpg + Zllenll™ ) 5

e d =3, then s = 1/2 and Young’s inequality can be applied with exponents @ = 4/3, 8 = 4 and with an € > 0:

3 C?éd 2 1 6
lenl3s < =52 (ellenlide + - llel®)

Then by choosing € = 2u/(dK12C3, ), we obtain:

t T
llen (1 +llan (B)II* + M/O (len(s)llbe + llan(s)1Ba) ds < llconl|* + llgonI* +/O (Ife()IZ + 1o ()]%) ds

dK?,CY,

. ) (16)
+ <2max{K1,f?1} + 1) /0 (||Ch(8)||2 + H‘Ih(8)||2) ds + W/o (HCh(S)HQd + ||Qh(S)H2d) ds.

Finally, we can define a positive constant 7 = min{1l, u} and by applying Perov’s inequality in Proposition 3, we
deduce the thesis. O

Remark 1. Under the assumptions of Theorem 1, if fo = f, =0, estimate (14) reduces to:

llcon||* + llgon||*) e
llenlZ + llgnll? < ( ) — =Cs (17)

(2= = & Uleonll? + llgonl|2)*~* (ea-1r — 1)) ™

4.2 Error analysis of the semidiscrete formulation

Theorem 2. Let problem (1) with f. = f, = 0 and cp = gp = 0. Let the couple of functions (c(t),q(t)) be the
solution of Problem (1) for any t € (0,T] and let them satisfy the additional regularity requirements:

c,q € CY([0,T], H"(R)), withn > 2.

Under Assumptions 1 and 2, let (cp(t),qn(t)) be the solution of (7), for a sufficiently large penalty parameter .
Then, the following estimate holds:

2 min 1,n)—2
lle(®) = en(®)IIZ + a®) = anOIZ S >° A7 (el iy + la®)En g
KeT,

t
[ 1) oy + 16060 oy + a6 oy + 19660 ey ) 05),
provided that the constants fulfil the following relations:

2 — (Klgcl + QI + 2K1) 01232 — 2K120501234 >0 2u — (K1201 + QI =+ 2[?1) C%Q — 2K120§C%4 > 0,

where p and M are defined as in Proposition 1, K13 = ||k12||L~, Cs is defined as in Equation (17) and Cg, is the
discrete Sobolev embedding constant for the L1(Q)-space [27].

Proof. Let us consider the weak solution of the heterodimer model (¢, ¢), then due to the consistency of the DG
formulation, it holds:

(¢, wn) g + (¢4, vh)q + & (c,wn) +  (q,vn) = —rr(c,wn) —T(q,vn) — TN (¢, ¢, wr) + 7N (g, ¢, V). (18)

We subtract Equations (15) and (18) and consider the interpolant of the exact solutions cr, g1 € WP [33], respec-
tively, then rewrite the errors as:

c—cp=(c—cr)+ (c1—cpn) = ef +ef, a—an=(q—q)+ (a1 —qn) = ef +e].



We test the obtained formulation with respect to wy = e, and v, = e} and integrate along the time interval [0,¢]:

=71 (€} (5), €, () — T (c(s), q(s), €5,(5)) + rn(en(s), an(s), €4(s)) + i (a(5), c(s), €5, (5)) — v (an(s), en(s), €,(s))

—(€(s), er.(s))a = (€] (5), €} (s))o — (€7 (s), €5, (s)) — (€] (5), €5, () — rL(ef(s), €5 (s)) — TL (€] (s), 62(8)))018.

/((éZ(S),ei(S))Q+(éZ(S)&Z(S))Q+~Qf(ei(8),e}i(8))+%(62(5)765€(5)))d8=/ (—TL(ei(S)vei(S))

We proceed by exploiting the coercivity and continuity of the bilinear form & in Proposition 1, and by means of
Holder’s and Young’s inequalities:

t

1 c 1 ! C C T
Sl O +31OF + [ (I lbe + et @)Ibe) ds <+ [ (il + Kl ()] ds

+K12/0 (I (c(s)a(s) = en(s)an(s), €5 (s))q | + | (c(s)als) — cn(s)an(s). €] (s))q |) ds

+ [ (e + Kallg @D i) + (11 + Ballefs)1) e o)1) s

0

+ [ (M)l e () + Wlef ()l e (3o ) ds.

Concerning the nonlinear term, we observe that:

cq — Ccpqn = ¢q — qcr + qcr — gncr + qnCr — qnch
=q(c—c1)+ec(q—qn) +qn (c1 —cn) .
er ef+e} ef
Therefore:
| (cq — chan,eh)q | = | (gefsen)q |+ (cref, eq)q [+ (cref, ef)g | + 1 (gneh, eh)q | -

M () (i) (Iv)

The terms on the right-hand side above can be treated separately as follows:

(I) Using that the exact solution ¢(t) € L>°(Q2) for any ¢t > 0, Holder’s and Young’s inequalities to obtain:
[ (qefs i) | < llallze(omne (o letllllenll =: Qe llle s

(IT) Using that the interpolant is bounded by construction ¢i(t) € L*(Q) for any ¢ > 0, Holder’s and Young’s
inequality leads to:
retseh)o | < llerllzeozyz @y llerlilienll =: Crllerlilien
| (crefsef)g | < llell let lles | =: Cullefllllesl;

(ITI) We exploit the interpolant boundedness, Holder’s, Young’s, and Sobolev-Poincare-Wirtinger discrete inequal-
ity [27] to achieve:

eter

2 (lehlb + leslba)

Cy
[(ereheh)ol < 5 (lleall® + llesl?) <
(IV) We exploit the stability estimate and Sobolev-Poincare-Wirtinger discrete inequality [27] that leads to:
| (an e, eh)q | < Cslleq1a(q) < CsOE, lleflbe:

Analogous considerations can be done to treat the second nonlinear term, by defining C' = ||¢|| oo ((0,7];2¢(2)) and
Q1 = [lq1ll Lo ((0,77;L(02))- Taking into account all previous bounds and by using Sobolev-Poincare-Wirtinger discrete
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inequality as in [27] we get:

1 1 t Cr+
S len 17 + S lleh O+ / (u(mz IQQIH@) c%szcsca) lef ()l ds

K Cr+ ~
N / (u_ <K o @ +K1> 2, —K12csc§4) le? (s)|Bads <
0

+ [ )+ (5 + K@i (o) + KaaCill e ()] e (5) s
+ [ (1O + R+ KOl (9]l + K@l ()]) e ()]s
+ [ (e @)l e (9o + Flef ()l e (3o ) ds.

Considering the relation between the DG-norms, we obtain that if 2 — (K12C1 + Q1 + 2K7) 01222 - 2K12056%4 >0
and 2u— (K 1201+ Q1 + 2K 1) C’%Q —2K 12050,254 > () we can ensure the positivity of the coefficients in the left-hand

side and adopt the notation < from now on, i.e.,

e, 12 + llef, B2 < /0 (lles () + et ()1l + llex ()1) ller, (s) | ds

+/ (Ilé?(S)II+HG?(S)II+||ef(8)||)||€i(8)lld8+/ (et ()lIpcller (s)Ipa + lller (s)llpe ller (s)llpe) ds-.
0 0

By application of Holder’s inequality and Gronwall’s lemma [31] we get:

t
llef, (D112 + les )2 < /0 (lef ()1 + llef ()1 + et ()b + e ()1 + llef ()11 + Nt (s) b ) ds-

We can bound each term with the interpolation error estimate [34]:
t
2 min(p+1,n)—2 . .
llefll2 + g2 S D= ppminertm / (el ) + e I 1) + lals) I ) + 101 i )-

Kegy, 0

Finally, by application of the triangular inequality:
lle = cnllZ + llg = anllZ < Nl lIZ + MefllZ + Nlef 12 + et I1Z,

and taking into account the interpolation error estimate, the thesis follows. O

Remark 2. If the grid is quasi-uniform and the exact solutions c(t),q(t) € HP(Q) for allt € (0,T] , where p is the
polynomial approzimation degree in any K € I, then Theorem 2 reduces to:

lle(t) = a2 + lg(t) — an ()2 ~ O(AP). (19)

5 Fully discrete formulation
In this section, we present the fully discrete formulation of Problem (7) in its algebraic form.

5.1 Algebraic formulation of the semidiscrete problem

We consider {¢; jy:ho a set of basis function for WP¢, being N}, its dimension. We can write the discrete solutions
expansion with respect to the chosen base, i.e. ¢cp(x,t) = Z;V:ho C;(t)¢;(x) and gp(z,t) = Zévzho Q,(t)g,(x). We
denote by C, Q € R, the corresponding expansion coefficients vectors. We also define the following matrices

11



M]i; = (¢, di)a Mass matrix

]
[Al;; = A (0;, ¢i) Stiffness matrix
R (®(t))]i; = rn(Pr(t), 05, 0:) Non — linear reaction matrix
[RL]i,j = TL(¢J'7 ¢i) Linear reaction matrix
[ﬁL]i,j =70(0;, di) Linear reaction matrix

with 4,5 = 1,..., N},. Moreover, we introduce the right-hand side vectors : [F.]; = F.(¢;) and [F,]; = Fy(¢;) with
it =1,..., N,. We then rewrite the problem (7) in algebraic form:

MC(t) + AC(t) + RLC(t) + Ry (C())Q(t) = Fo(t) t e (0,T]
MQ(t) + AQ(t) + RLQ(t) — Ry (Q(1))C(t) = Fy(t) t € (0,T] (20)
C(0) = Co, Q(0) = Qo.

5.2 Time discretization

We construct a partition 0 < t; < tg < ... <ty = T of the time interval [0, T] into Nt intervals of constant time
step At = tp41 — t,. We denote with C™ ~ C(¢,,). We assemble the fully discrete approximation of Problem (20)
by means of the ¥-method, depending upon the user-set parameter ¥ € [0, 1].
Given the initial conditions vectors C° = C(0) and Q° = Q(0), for n = 1,..., Ny find (C", Q") solution of the
following system of equations:
M n * n,n—1 n
E+19A+19RL C" +Ry(C"HQ™ =F_,
N (21)
(At + JA + 19RL> Q" —Ry(Q*)C™ ! = Fy,

where:

M
F? = ﬁFC(tn) + (1 - ﬁ)FC(tn—l) + ECnil - (1 - ﬁ)(A + RL)Cnila

F! = 9F(tn) + (1 — 0)Fg(tn_1) + %Q"‘l —(1-9)(A+R)Q" "

We denoted with C* and Q* the approximation of C™ and Q", chosen to linearize the system (21). In practive we
will consider the following options:

e Implicit Euler method (¥ = 1):
RN(Q*)Cn,n—l — Qn—l Cn;

e Crank-Nicolson method (¥ = 1/2):

%(C" +Cm .

* n,n—1 __ § nfl_l n—2
Ry(@)c" = Q- jar?)

6 Numerical results: verification

In this section, we provide a comprehensive exposition of the results derived from the numerical test performed in
order to assess the accuracy of the method, validate the error estimate introduced in Section 2, and analyze the
traveling-wave solution behavior. The numerical simulations are based on the Lymph library [35], implementing
the PolyDG method. Moreover, for all the subsequent tests, we set the penalty parameter vy = 10.

12



Parameter Value Parameter Value
dext 1.00 [mm?/years] daxn 0.00 [mm?/years]
ko 0.00 [1/years] k12 1.00 [1/years]
k1 1.00 [1/years] Ky 1.00 [1/years]

Table 1: Physical parameter values used in Test 1 and Test 2.
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Figure 2: Test case 1: computed errors and computed convergence rates versus h for different choices of the
polynomial degree p =1,2,3,4 and for the solutions ¢;, (left) and g (right).
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(a) Test case 1: computed errors with respect to p. (b) Test case 1: computed errors with respect to At.

Figure 3: Test case 1: computed errors and convergence rates with respect to p (left) and At (right). The results on
the left panel have been obtained with the Crank-Nicolson (CN) time integration scheme; the results on the right
panel have been obtained with both Backward Euler (BE) and CN schemes.

6.1 Test 1: convergence analysis

We consider the domain 2 = (0,1)? discretized into a polygonal mesh generated by PolyMesher [36]. In the current
phase of the study, we are focused on examining isotropic diffusion and for the model parameters we adopt the
values summarized in Table 1. We establish a predefined exact solution as:

c(z,y,t) = (cos(mx) + cos(my)) cos(t),
q(z,y,t) = (cos(4mx) cos(4my) + 2)e "

The forcing terms denoted as f. and f;, and the Dirichlet boundary conditions represented as cp and gp are chosen
accordingly.

In Figure 2 we report the numerical results of the convergence test performed with respect to the mesh size
parameter h. We use a time discretization step At = 107° and fix a final time instant 7 = 1072. We collect
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Figure 4: Test case 2: computed errors and computed convergence rates versus h for different choices of the
polynomial degree p =1,2,3,4 and for the solutions ¢;, (left) and g (right).

Method p=1 p=
h DOFs T1 =5 T2 =10 DOFs T1 =35 T2 =10
0.736 90 4.62 x 1072 4.62 x 1072 180 2.74 x 1072 2.67 x 1072
0.415 300 2.83 x 1072 2.74 x 1072 600 8.79 x 1073 9.38 x 10~3
0.230 900 1.55 x 102 1.76 x 102 1800 2.33x 1073 2.78 x 1073
0.129 3000 6.24 x 1073 5.65 x 1073 6000 4.63 x 1074 4.39 x 104
Method p=3 p=4
h DOFs T, =5 Ty =10 DOFs T, =5 T, = 10
0.736 300 8.09 x 1073 9.07 x 1073 450 819 x 1073 7.78 x 1073
0.415 1000 3.22 x 1073 2.77 x 1073 1500 1.21 x 1073 1.19 x 1073
0.230 3000 5.29 x 104 5.31 x 1074 4500 1.29 x 10~4 2.05 x 1074
0.129 10000 4.99 x 107° 477 x 107° 15000 5.71 x 10~© 5.29 x 1076

Table 2: Computed errors with L2-norm of the error of ||¢(T) — gn(T)| at different final time instants (errors for
¢p, are analogous).

the energy norm of the error as defined in Equation (10a) for each solution and repeat the test keeping fixed the
polynomial degree of approximation p = 1,2, 3,4, while progressively refining the mesh (N,; = 30, 100, 300, 1000,
where N.; denotes the number of polygons of the domain partition). We can observe that the optimal rate of
convergence is always achieved as expected from theory.

In Figure 3a we report the energy norm of the error with respect the polynomial degree p. We repeat the
numerical tests keeping fixed the polygonal mesh characterized by N = 30 and the time discretization At = 10~°
while considering an increasing polynomial order p = 1,...,8. Even if the dependency of the energy norm of the
error from p has not been covered by the theoretical analysis performed in Section 4 we numerically demonstrated
that exponential convergence is obtained.

Finally, a convergence test with respect to the time discretization step At has been reported in Figure 3b. The
test set the most refined polygonal mesh with Ng; = 1000 and p = 6, and we registered the error in energy norm
obtained for different time steps At = 0.2,0.1,0.05,0.025. We compare the Backward Euler and Crank-Nicolson
methods. We can observe that the Backward Euler method (characterized by setting @ = 1) exhibits theoretical
linear convergence with respect to At, whereas the error decays with a second-order rate for Crank-Nicolson method
(0 =0.5).

6.2 Test 2: simulation of a travelling wave

The objective of this test is to evaluate the method’s ability to accurately replicate the dynamics of a travelling-
wave solution as it drives the system towards the unstable equilibrium state. To accomplish this we consider a
rectangular domain Q = (0,5) x (0, 1) partitioned via Polymesher [36]. We impose as the exact solution a couple of
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Figure 5: Test case 2: wavefront propagation approximated with p = 2.

travelling-wave functions characterized by a velocity of propagation v = 0.1:

arctan(3w(z — vt — 1 1 arctan(—3w(x — vt — 1 1
C(Z‘,y,t) = ( (7'(' )) + 57 q(.l?,y,t) = ( ’ET )) + 5,

and we derive forcing terms and Dirichlet conditions accordingly. We adopt the parametrical values in Table 1.

A convergence analysis has been performed as in the previous section, in particular, we collect in Figure 4 the
L?norm and the DG-norm of the error with respect to the mesh size parameter h. As expected we can observe
that the DG-norm of the error decreases as h?, while the L?-norm decreases as h?t!.

We repeat the test for two possible final time instants 77 = 5 and 75 = 10. These results aimed at assessing
the impact of mesh refinement on the accuracy of the solution where the error is measured in the L?-norm for
various polynomial orders, specifically p = 1,2,3,4. The results of our investigations are reported in Table 2.
Notably, the L?-norms of errors at different final time instants are comparable, which supports the fact that the
computed solution is stable and correctly approximated. Moreover, with this test, we can highlight the capability
of the higher-order methods to accurately replicate the wave behaviour of the solution even with coarser mesh
configurations [37]. To illustrate this point, consider the error obtained with N, = 1000 and p = 1 compared to
that with Ng; = 300 and p = 3. Even if both setups have the same number of degrees of freedom (3000), the solution
approximated with p = 3 exhibited an error of 5.29 x 10~%, which is approximately one order of magnitude smaller
than the error in the case p = 1 (6.24 x 10~3). This discrepancy becomes even more evident when comparing the
accuracy of the solution achieved with p = 4 and N, = 100 to that obtained with p = 2 and N, = 300. Despite
having fewer degrees of freedom, the solution computed with p = 4 on a coarser mesh is more accurate than the
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(b) Polygonal agglomerated mesh
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Figure 6: Test case 3: Initial (a) and agglomerated (b) meshes of a two-dimensional brain section reconstructed
from MRI image.

Parameter Value Parameter Value
dext 107¢  [mm?/years] daxn 0.00 [mm?/years]
ko 0.75 [1/years] k12 1.00 [1/years]
kq 1.00 [1/years] k1 0.60 [1/years]

Table 3: Physical parameter values used in Test 3 [16].

one obtained with p = 2.

Finally, in Figure 5, we visualize the evolution of the wavefront for the case of p = 2 at the two chosen final times,
for different levels of mesh refinement. We stress the fact that a sufficiently refined grid is essential to capture the
rapid variations characterizing the wave. However, even with p = 2, we can confidently conclude that the method
produces a numerical solution that accurately reproduces the wave, together with its propagation velocity.

6.3 Test case 3: diffusion processes on agglomerated brain meshes

In this section, we consider a detailed mesh of the brain obtained by segmentation of a structural MRI dataset
sourced from the OASIS-3 database [38], as described in [12]. Subsequently, the initial fine triangulated structure,
comprising 43402 triangles (of Figure 6a), is agglomerated into a polygonal mesh consisting of 534 elements, of
Figure 6b. This transformation gives us the possibility to take full advantage of the versatility of the PolyDG
method reducing computational overhead during the simulation.

The goal of this test is to test the capability of the method to correctly reproduce the an isotropic diffusion

phenomena on a polygonal agglomerated grid of a brain section. The initial conditions we impose are the following:
co(x,y) =0.75 qo(z,y) = 0.25¢~50(x—0.02)* =50y

The values of the model parameters are reported in Table 3. Analysing the model we expect to observe the system
to evolve towards the pathological stable equilibrum point presented in Section 2:

ki ko ki
Ca, =|—,=—— ] =1(0.6,0.25).
(c2, ¢2) <k12 k1 km) ( )

Moreover, it is possible to compute analytically the minimum speed of the travelling wave solution transitioning
the system from the initial solutions towards the pathological state:

k ~
b= 2\/dm (k12—0 - k1> ~ 6 x 107°.
k1
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Figure 7: Test case 3: Numerical solution obtained by using p = 2 (top) and p = 3 (bottom).

The problem is coupled with homogeneous Neumann boundary conditions.

In Figure 7, we report screenshots of the approximated solution starting from the initial solution up to final time
T =20, At = 1072 and p = 2,3. Considering the case p = 2, we detect an unstable approximated solution, even
when employing a reduced time step. Our observations reveal that the employed method lacks positive preservation
characteristics. As a consequence, when the approximated solution manifests negative values, the computational
scheme converges towards an oscillatory solution with no physical significance. This behavior underscores the need
for improved positivity-preserving algorithms in order to maintain the integrity of the numerical solutions in the
presence of negative values as in the case of FK model [39].

Nevertheless, stability can be reinstated through the computation of the approximation at a higher order,
specifically with p = 3, as illustrated in Figures 7. In a reaction-dominated regime, higher-order methods can
effectively capture the traveling wave solution, resulting in the recovery of a stable solution transitioning the system
towards the stable equilibrium. This behaviour is coherent with the recent results in wave-front simulations studies
[37]. This numerical test confirms the capacity of the proposed method of representing the wavefronts in complex
geometries, like in brain sections, where the mesh are constructed as agglomeration of detailed triangular meshes, if
using sufficiently high order polynomial degree in the approximation. This is a fundamental property to guarantee
the quality of the solution in the medical applications.
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Parameter Value Parameter Value
oxt 8.00 [mm?/years] axn 80.00 [mm?/years]
ko 0.60 [1/years] k12 1.00 [1/years]
Ky 0.50 [1/years] Ky 0.30 [1/years]

Table 4: Physical parameter values used in Test 4 [16].

o e

t=15 t=20 t=25
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Figure 8: The initial configuration corresponds to the unstable healthy state, with a protein concentration of 1.2,
uniformily distributed all over the brain. The presence of misfolded proteins trigger the system causing the decay
of the concentration.

t=10

cr(xt) [-]

7 Simulation of a-synuclein spreading in a two dimensional brain sec-
tion

This Section is devoted to address the problem of simulating the spread of a-synuclein protein into a two dimen-
sional section of the human brain, associated to the Parkinson’s disease [7]. Coherently to the modelling of this
phenomenon, we impose null flux across the boundary, setting 02 = 0Qx.

In order to model the diffusion of a-synuclein protein within the previously delineated brain region, we need to
establish appropriate parameter configurations. Measuring such mean rate of production, destruction and conversion
to provide best-fit coefficients to deterministic model constitutes a developing field in current research [40, 9, 41, 42].

In [12], an exploration of the phenomenon under investigation in this section was conducted through the im-
plementation of the FK model. This model, derived from the heterodimer equations, as elucidated in a prior
study [13], offers a simplified representation, focusing on the temporal evolution of the relative concentration of
misfolded protein only. The fundamental parameter of interest in this context is the reaction coefficient denoted as
«. This parameter holds a phenomenological significance and exhibits a direct connection with the coefficients of
the heterodimer model, as established by the following relationship:

o = k12% — kl.
Specifically, a significant value for this parameter, one that facilitates the faithful replication of the spreading pattern
and propagation velocity of a-synuclein in the brain, may be established at @ = 0.9/year [13]. Consequently, an
appropriate parameter configuration, one that adheres to the relationship delineated in Equation (7) and aligns
with the considerations in Section 2. These values are reported in Table 4.
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Figure 9: Misfolded protein gy, initially concentrate into the dorsal motor nucleus, spreads through the entire brain
section.

Another important aspect of the model is the construction of the anisotropic part of the diffusion tensor in
Equation (2). To fulfill this purpose, the axonal directions a(x) are derived from Diffusion Weighted Imaging
(DWI) [12]. Moreover we impose an axonal diffusion velocity ten times faster then the isotropic one, as shown in
Table 4. We trigger the system with an initial seeding of misfolded version of a-synuclein protein concentrated in
the dorsal motor nucleus [43], while we set an initial condition for the healthy protein concentration uniformily equal
to the unstable equilibrium point 1.2. We fix the polynomial order p = 4 in every element of the discretization,
Crank-Nicolson method for the time discretization with time step At = 0.01 and simulate up to 7" = 25 years. We
have opted for a second-order numerical method in order to ensure the accurate approximation of the wavefront
over an extended temporal simulation interval. This selection is motivated by the need to maintain precision and
stability in modeling the wave’s behavior over a protracted time span.

In this framework we expect the system to develop from the initial state towards the stable equilibrium point
(¢h,qn) = (0.3,1.5). In Figures 8 and 9, we report the approximated solution at different time instants of the
simulation. The solutions have effectively developed toward a stable pathological state. We compare the misfolded
evolution in Figure 9 with the solution obtained in other works in literature [12, 39]. The preceding investigation
applied the FK equation and despite minor discrepancies arising from the distinct diffusion tensor employed, our
analysis reveals a prevailing alignment in the propagation directions of the misfolded protein. Starting from the
motor nucleus the misfolded protein spread towards the lower brain stem, subsequently ascending to involve the
cerebral cortex in the advanced stages of the pathological process. This observed activation pattern within distinct
brain regions aligns with the theoretical tenets elucidated in the Braak staging theory [44].

8 Conclusions

In this article, we have introduced a Polygonal Discontinuous Galerkin method as a computational approach for
simulating the heterodimer model, applied to the description of the dynamics of a-synuclein proteins in Parkinson’s
disease, considering both the evolution of healthy and misfolded toxic states. Our work includes demonstrating
the stability of the numerical solution and establishing an error estimate for the semi-discrete solution. We have
validated the theoretical convergence rate through a convergence analysis with respect to mesh refinements. Fur-
thermore, we have conducted a numerical examination to confirm the exponential convergence of the error with
respect to the order of approximation p, even though this aspect was not explicitly addressed in our theoretical
analysis. Finally, we have numerically verified the theoretical convergence rate with respect to time discretization
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methods, specifically Backward Euler and Crank-Nicolson, for addressing the temporal aspects of the problem.
Then, we have accessed the ability of the method to accurately reproduce a traveling-wave solution. Our findings
have affirmed the method’s ability to accurately reconstruct the propagation front of the solution, particularly when
higher-order methods are employed, even on coarser grids.

We have applied the analyzed model to reproduce the diffusion processes in a two-dimensional brain section. In
the isotropic diffusions test it has become more evident the necessity of employing high-order numerical methods
to achieve a stable solution that faithfully replicated the propagation of the traveling wave transitioning the system
towards the pathological state. In the end, we have conducted simulations to replicate the anisotropic spreading
of a-synuclein across the brain section, in Parkinson’s disease. Our results have been validated by comparing
them with simulations based on the Fisher-Kolmogorov equation and clinical data from the literature regarding the
evolution of this protein in Parkinson’s disease. In conclusion, the heterodimer model has demonstrated its utility
as a valuable tool for advancing research in the mathematical modeling of neurodegenerative diseases.

A logical progression of our research involves extending its application to a three-dimensional representation of
the brain, aimed at offering a comprehensive understanding of the intricate dynamics of protein interactions and
their spread within a more realistic brain environment. Furthermore, an additional prospective direction involves
conducting a comprehensive quantitative analysis of the influence exerted by all the parameters within the system
on the solution. In this way the numerical method may serve as a useful tool, supporting the medical research
efforts aimed at investigating potential therapeutic treatments for neurodegenerative diseases by targeting the
molecular reactions that prions undergo. The heterodimer model can also find application in the study of other
prion-like proteins, such as S-amyloid and tau proteins, which are pivotal in Alzheimer’s disease. The extension
of its applicability enriches our comprehension of neurodegenerative conditions and contributes to the progression
toward more precise and less invasive patient-specific healthcare approaches.
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