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Abstract
We review and compare different fluid-structure interaction (FSI) numerical methods in the

context of heart modeling, aiming at assessing their computational efficiency for cardiac numerical
simulations and selecting the most appropriate method for heart FSI. Blood dynamics within the
human heart is characterized by active muscular action, during both contraction and relaxation
phases of the heartbeat. The efficient solution of the FSI problem in this context is challenging,
due to the added-mass effect (caused by the comparable densities of fluid and solid, typical of
biomechanics) and to the complexity, nonlinearity and anisotropy of cardiac consitutive laws. In
this work, we review existing numerical coupling schemes for FSI in the two classes of strongly-
coupled partitioned and monolithic schemes. The schemes are compared on numerical tests that
mimic the flow regime characterizing the heartbeat in a human ventricle, during both systole and
diastole. Active mechanics is treated in both the active stress and active strain frameworks. Com-
putational costs suggest the use of a monolithic method. We employ it to simulate a full heartbeat
of a human ventricle, showing how it allows to efficiently obtain physiologically meaningful results.

1 Introduction

The aim of this paper is to provide for the first time a systematic review and comparison of different
fluid-structure interaction (FSI) numerical coupling schemes in the context of cardiac hemodynamics.
In particular, we consider partitioned fully-coupled and monolithic algorithms and we analyze their
effectiveness in both systolic and diastolic phases, and with both active stress and active strain modeling
frameworks for muscular contraction. We investigate the performance of the schemes during the
different phases of the heartbeat, in order to assess to which extent they depend on the specific
physical features of such phases, in particular the presence of active forces.

The human heart acts as a pump, driven by the electrical activation of its cells, whose purpose is to
force the blood into the circulatory system, allowing the delivery of oxygen and nutrients to the whole
body [57]. The feedback mechanism between blood and cardiac muscle is relevant in determining the
cardiac function and its response to pathological conditions [85, 86]. Numerical simulations offer a
valid tool for the investigation of this mechanism [77].

A large number of computational studies model the fluid-solid feedback in the heart only in terms of
a zero dimensional, lumped model for the blood flow [11, 19, 51, 58], mostly focusing on the electrome-
chanical processes [11, 38, 48, 82, 83, 86]. Alternatively, three dimensional models for the blood flow
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are one-way coupled to mechanical models, receiving as input results of mechanical simulations to pre-
scribe the boundary displacement of the fluid domain, but without feedback from the three dimensional
fluid model to the solid [56, 94, 103]. While FSI models for cardiac valves have been extensively studied
[10, 27, 32, 50, 53, 63, 92], three dimensional fluid dynamics models of blood in the cardiac cavities are
seldom two-ways coupled with mechanical models for the cardiac muscle [25, 65, 71, 87, 90, 98, 100],
due to the inherent complexity and computational cost of FSI simulations.

In the context of biomechanics, solving FSI problems poses significant challenges on the stability
and efficiency of the numerical solution, mainly because of the comparable densities of fluid and solid
(resulting in the added mass effect [24]) and the anisotropy and nonlinearity of the constitutive laws
[46, 52]. Appropriate schemes are required to enforce the fluid-solid coupling in a computationally
efficient way.

The FSI numerical coupling schemes that have been proposed in the literature (see e.g. [26] for a
review) can be roughly classified into partitioned loosely coupled (or explicit) schemes [16, 22, 23, 36,
45, 44, 47], partitioned fully coupled (or fixed-point, or implicit) schemes [13, 14, 24, 60, 61, 66, 68]
and monolithic (or Newton-based) schemes [40, 71, 101]. The schemes differ significantly in their
modularity and in the implementation effort that they require, and in terms of their performance
[59, 61].

The effectiveness of FSI schemes in the context of vascular hemodynamics has been widely studied,
e.g., in [13, 14, 59, 61]. However, the benchmarks and test cases under consideration were mostly
related to the flow of blood within large vessels, rather than to the flow within cardiac chambers. In
the heart, the flow is mostly driven by the interaction of the blood with the active muscular action
(either contraction or relaxation, changing over time according to the heartbeat phase), and possibly
with cardiac valves. The resulting flow is characterized by alternating systolic and diastolic phases.
The former is characterized by fast dynamics, driven by the contraction of the muscle, with the flow
featuring a transition regime towards turbulence [20, 96, 97, 102]. Diastole on the other hand is
characterized by slower dynamics, and the flow is determined by the interplay between the ventricle
relaxation and passive mechanical properties together with inflow conditions, resulting in a balloon-
type problem [14]. Moreover, the material models required to describe effectively the muscular tissue
are characterized by significant nonlinearity and anisotropy [46, 52]. All these aspects play a role in
the effectiveness and efficiency of the schemes used for the solution of the FSI problem.

After introducing the mathematical models used, we review several existing FSI coupling schemes.
We consider benchmark cases that mimic the characteristics of the human left ventricle, although in a
simplified setting from the geometric viewpoint. Different tests allow us to separately analyze the sys-
tolic ejection and diastolic filling phases of the heartbeat. Concerning in particular the systolic phase,
we employ both the active stress and active strain modeling frameworks for the active contraction of
the cardiac muscle, and for both we compare the effectiveness of the coupling schemes. The computa-
tional times for the different methods indicate that, for all phases and with both activation models, a
monolithic approach is more suited to the strong coupling of fluid and structure in the cardiac context.
Finally, we present a numerical example simulating a full heartbeat, including isovolumetric phases.

The rest of the paper is organized as follows: Section 2 introduces the mathematical models that
are used in the benchmark cases, and Section 3 briefly describes the temporal and spatial discretization
schemes employed. Section 4 reviews the different coupling schemes under consideration. Section 5
discusses the numerical tests, and Section 6 draws some conclusive remarks.

2 Mathematical models for cardiac fluid-structure interaction

We consider a mechanical system defined in an open, bounded, time dependent domain Ωt ⊂ R3 (where
t ∈ [0, T ) denotes the time variable). Such domain is decomposed into two subdomains Ωtf and Ωts, the
former occupied by a Newtonian, incompressible fluid, the latter occupied by a hyperelastic structure.
We denote by Σt = ∂Ωtf ∩ ∂Ωts the moving fluid structure interface, and by n the unit vector normal
to Σt, outward directed from the fluid domain, inward directed into the structure domain.
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Figure 1: Schematic representation of the solid and fluid domains, in their reference (left)
and current (right) configurations.

To track the motion over time of the subdomains, we introduce a fixed reference configuration,
denoted by a hat (see Figure 1 for a schematic representation): Ω̂, Ω̂f , Ω̂s, Σ̂ and n̂ represent the
reference configurations for the domain Ω, the fluid and solid domains, the fluid-solid interface and
the normal unit vector respectively. We introduce the following maps from the reference to the time-
dependent configurations:

Ls : Ω̂s × (0, T )→ Ωts Ωts = {x = Ls(x̂, t) , x̂ ∈ Ω̂s} ,

Lf : Ω̂f × (0, T )→ Ωtf Ωtf = {x = Lf(x̂, t) , x̂ ∈ Ω̂f} .

The evolution in time of the time-dependent domains is then expressed by the time-dependence of the
maps Ls and Lf . The precise definition of the maps is different for the fluid and the solid domains,
and is detailed later.

In the following, we will refer to the time-dependent domains as the current configuration. We will
denote by x ∈ Ωt spatial coordinates in the current configuration, and with x̂ ∈ Ω̂ spatial coordinates
in the reference configuration.

2.1 Structure problem
We model the structure as a hyperelastic material in the Lagrangian setting [72]. Let ρs be the density
of the structure, and d̂(x̂, t) be its displacement at point x̂ in the reference configuration and time t.
Then, the map Ls from the reference to the current configuration is given by

x(x̂, t) = Ls(x̂, t) = x̂ + d̂(x̂, t) x ∈ Ωs, x̂ ∈ Ω̂s, t ∈ (0, T ) .

We will denote by F = I + ∇̂d the deformation gradient tensor, and with J = detF its determinant.
The evolution of the structure displacement is described by the following partial differential equation
(PDE), expressing the balance of momentum in the reference configuration [72]:

ρs
∂2d̂

∂t2
− ∇̂ · Ps(d̂, t) = 0 in Ω̂s × (0, T ) , (1)

endowed with suitable initial conditions prescribing the displacement d̂ and its temporal derivative at
time t = 0 and boundary conditions on ∂Ω̂s\Σ̂ (while on Σ̂ the FSI interface conditions are imposed, as
described in Section 2.4). In (1), Ps(d̂, t) is the first Piola-Kirchhoff stress tensor, defined as a function
of the displacement d̂ by the constitutive relation of the material. Since our aim is the mathematical
modeling of cardiac mechanics, we incorporate active contraction in the stress tensor, either in the
active stress [5, 71, 81, 87] or active strain [4, 40, 41, 84] framework.

We remark that in principle active contraction in either framework is generated by coupling the
mechanical model with an electrophysiology model through an active force generation model, thus
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resulting in an electromechanical model [12, 41, 48, 78, 77, 81, 84, 87]. Since our focus is on the FSI
numerical schemes, we prescribe the evolution of active stress or strain using an analytical law (hence
the explicit dependence of Ps on the time t). In what follows, we address two models considered in the
literature for the active contraction, together with the passive model.

2.1.1 Active mechanics: active stress formulation

Within the active stress framework, the tensor Ps is decomposed as the sum of a passive and an active
part: Ps = Ppas +Pact. The passive part is defined as the derivative of a suitable strain energy function
W(F ):

Ppas =
∂W
∂F

,

wherein W characterizes the passive properties of the material.
Let us introduce at each point of Ω̂s a unit vector f that describes the local direction of the muscular

fibers along which active force is generated [74]. The active part of the stress tensor is defined as

Pact = Tact
F f ⊗ f√
I4f

,

where Tact is an active tension in the direction of fibers [5, 81, 87]. As stated before, Tact is not derived
by the coupling with an electrophysiology model, rather, it is analytically prescribed.

2.1.2 Active mechanics: active strain formulation

In the active strain framework, the deformation gradient is assumed to be decomposed multiplicatively
as F = FpasFact. Fact is the gradient of a deformation from the reference configuration to a virtual
intermediate configuration only determined by the active contraction, and Fpas is the gradient of a
deformation from this virtual configuration to the current configuration, due to the passive mechanical
behavior of the material [5]. The stress tensor is defined as the derivative of the strain energy function
with respect to the deformation gradient tensor. The strain energy function is expressed as function
of the passive deformation gradient only, i.e.

Ps =
∂W(Fpas)

∂F
.

The active deformation gradient is defined as

Fact = I + γf f ⊗ f ,

where γf is the strain in the direction of fibers [5, 41, 40, 84]. For γf , the same comments of above
regarding Tact hold true.

2.1.3 Passive mechanics: constitutive model

We consider the Guccione constitutive model [46, 82, 95], commonly used for cardiac tissue. We
introduce at each point of Ω̂s a reference system {f , s,n} describing the direction of fibers, sheetlets
and cross-fibers respectively [74]. Then, the strain energy function is given by:

W =
c

2

(
eQ(F ) − 1

)
+
k

2
(J − 1) log(J) , (2)

Q(F ) =
∑

i,j∈{f ,s,n}

ai,j(Ei · j) ,

E =
1

2

(
FTF − I

)
,
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where c and ai,j, i, j ∈ {f , s,n} are positive parameters and k is the bulk modulus.

We incorporate the quasi-incompressibility of the material by adding the term
k

2
(J − 1) log(J) in

the strain energy function that penalizes volume variations (i.e. penalizes values of J that are away
from 1) [80, 95].

For ventricular test cases, the reference system {f , s,n} is generated by means of the rule-based
method proposed by Rossi et al. [84].

2.2 Displacement of the fluid domain
We model the fluid dynamics in a moving domain in the ALE framework [55, 88]. The structure
displacement at the fluid-structure interface is extended to the fluid domain by solving the following
harmonic extension problem: for every t ∈ (0, T ),

−∆̂d̂f = 0 in Ω̂f ,

d̂f = 0 on Γ̂D
f ,

(∇̂d̂f)n̂ = 0 on Γ̂N
f ,

(3)

where Γ̂D
f and Γ̂N

f are subsets of ∂Ω̂f\Σ̂ on which Dirichlet and Neumann conditions, respectively, are
prescribed. On Σ̂, interface conditions are prescribed as detailed in Section 2.4. The map Lf from the
reference to the current configuration of the fluid domain is given by

x = x̂ + d̂f(x̂, t) x ∈ Ωf , x̂ ∈ Ω̂f , t ∈ (0, T ) .

We define the fluid domain velocity uf as the time derivative of the fluid domain displacement, i.e.

ûf =
∂d̂f

∂t
in Ω̂f .

Then, we map it onto the current configuration through Lf :

uf = ûf(L−1
f (x, t), t) .

We remark that the extension of the displacement from the interface to the fluid domain is arbitrary,
and other differential operators (other than the laplacian) can be considered. In particular, a linear
elasticity lifting operator can be employed to this aim [88].

2.3 Fluid dynamics problem
We model the blood as a Newtonian incompressible fluid. Denoting by ρf the fluid density and by u and
p its velocity and pressure, respectively, the balance of momentum and mass conservation equations
are expressed by the Navier-Stokes equations in ALE coordinates [76]:ρf

[
∂u

∂t
+ ((u− uf) ·∇)u

]
−∇ · σf(u, p) = 0 in Ωtf × (0, T ) ,

∇ · u = 0 in Ωtf × (0, T ) ,

endowed with initial conditions (u in Ω0
f ), and suitable boundary conditions on ∂Ωtf\Σt (while FSI

interface conditions are imposed on Σt, see Section 2.4). The Cauchy stress tensor σf(u, p) is defined
as

σf(u, p) = 2µ ε(u)− p I , ε(u) =
1

2

(
∇u +∇uT

)
,

wherein µ is the dynamic viscosity of the fluid.
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2.4 Fluid-structure coupling
A geometric coupling condition is imposed to enforce the continuity of displacements at the fluid-
structure interface: d̂f = d̂ on Σ̂. Besides, two other coupling conditions are needed. The velocity at

the fluid-structure interface must be continuous, i.e. u =
∂d

∂t
on Σ; this corresponds to prescribing a

no-slip condition on the fluid-structure interface, and is referred to as kinematic coupling. Moreover,
the traction at the fluid-structure interface must be continuous, i.e. σf(u, p)n = σs(d)n on Σt, where
σs(d) = J−1 F Ps(d)T is the Cauchy stress tensor for the structure; this condition expresses Newton’s
third law across the fluid-structure interface, and is referred to as dynamic coupling.

The fully coupled FSI problem reads: find d̂, d̂f ,u, p such that

ρs
∂2d̂

∂t2
− ∇̂·Ps(d̂, t) = 0 in Ω̂s × (0, T ) ,

−∆̂d̂f = 0 in Ω̂f × (0, T ) ,

d̂f = d̂ on Σ̂× (0, T ) ,

(∇̂d̂f)n̂ = 0 on ∂Ω̂f\Σ̂× (0, T ) ,

ρf

[
∂u

∂t
+ ((u− uf) ·∇)u

]
−∇ · σf(u, p) = 0 in Ωtf × (0, T ) ,

∇ · u = 0 in Ωtf × (0, T ) ,

u =
∂d

∂t
on Σ× (0, T ) ,

σf(u, p)n = σs(d)n on Σ× (0, T ) ,

(4)

endowed with suitable initial and boundary conditions for both the fluid and the solid.
To keep the notation light, we shall drop henceforth the hat over d̂ and d̂f . The context will make

clear whether we are considering quantities in reference or current configuration.

3 Time and space discretizations

We use finite differences for the time discretization of the FSI problem (4) [76]. Let us introduce a
partition of the time domain (0, T ) into Nt intervals of width ∆t of extremes t0 = 0, t1, . . . , tNt = T .
In the following, we will denote by a superscript on a solution variable (including the domain Ωf and the
interface Σ) the time-discrete approximation of that variable at that timestep (e.g. un ≈ u(t = tn)).
For the Navier-Stokes momentum equation, we use the implicit Euler scheme together with a semi-
implicit discretization of the advection term [76]. For the structure problem, we use a first order
backward finite difference scheme. For every n = 0, 1, . . . , Nt − 1, and assuming d−1 = d0, the
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time-discrete problem reads:

ρs
dn+1 − 2dn + dn−1

∆t2
− ∇̂·Ps(d

n+1) = 0 in Ω̂s, (5a)

−∆̂dn+1
f = 0 in Ω̂f , (5b)

dn+1
f = dn+1 on Σ̂, (5c)

dn+1
f = 0 on Γ̂D

f , (5d)

(∇̂dn+1
f )n̂ = 0 on Γ̂N

f , (5e)

un+1
f =

dn+1
f − dnf

∆t
in Ω̂f , (5f)

ρf

[
un+1 − un

∆t
+
((
un − un+1

f

)
·∇
)
un+1

]
−∇ · σf(u

n+1, pn+1) = 0 in Ωn+1
f , (5g)

∇ · un+1 = 0 in Ωn+1
f , (5h)

un+1 =
dn+1 − dn

∆t
on Σn+1, (5i)

σf(u
n+1, pn+1)n = σs(d

n+1)n on Σn+1. (5j)

Space discretization is obtained by means of the finite element method [54, 76], using hexahedral
elements for both the fluid and the structure subdomains. We choose conforming meshes at the fluid
and structure interface. We use SUPG-PSPG stabilization [28, 76, 93, 102] for the Navier-Stokes
equations, enabling the use of trilinear polynomials (Q1) for both fluid velocity and pressure, and
the stabilization of the advection dominated regime. We use Q1 polynomials also for the structure
displacement and for the fluid domain displacement.

After space and time discretization, the FSI problem is expressed as a system of nonlinear algebraic
equations: for each n = 0, 1, . . . , Nt − 1,

Gf(G
n+1) = 0 ,

Ss(D
n+1) = 0 ,

Ff(U
n+1,Gn+1) = 0 ,

Cg(Gn+1,Dn+1) = 0 ,

Ck(Un+1,Dn+1) = 0 ,

Cd(Dn+1,Un+1,Gn+1) = 0 .

(6)

In the former system, the vectors G, D and U denote the algebraic numerical representations of the
fluid domain displacement df , structure displacement d and fluid domain variables (i.e. degrees of
freedom associated to the velocity u and pressure p, collected in a single vector), respectively. The
operators Gf , Ss and Ff are the algebraic numerical representations of the differential operators defining
the fluid domain displacement problem (5b), the structure problem (5a) and the fluid problem (5g)
and (5h), each of them restricted to the degrees of freedom on the interior (not on the interface) of
the respective subdomains. To keep our notation light, the dependence of the operators on solution
variables at timesteps until tn is understood. The operators Cg, Ck and Cd, are the algebraic numerical
representations of the geometric (5c), kinematic (5i) and dynamic (5j) coupling conditions respectively.
The explicit definition of each operator is given in Appendix A.

We remark that Gf , Cg and Ck are affine, whereas the remaining operators are in general nonlinear.
In particular, we remark that the dependence of Ff on Gn+1 also accounts for the fact that the integrals
involved in the weak formulation of the fluid problem are calculated on the deformed configuration (at
time tn+1) of the fluid domain.
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4 Fluid-structure coupling schemes

The FSI problem is highly nonlinear, due to the nonlinearity of the fluid and structure problems
(especially the latter) taken individually, and to the inherently nonlinear dependency of the fluid
problem on the structure displacement through the fluid domain displacement. Suitable schemes need
to be implemented to deal with the three subproblems (geometry, fluid, structure) and their coupling
conditions.

In the context of biological tissues, the fluid and the structure have comparable densities, resulting
in the so-called added-mass effect [24]. This typically yields stability issues: in particular, loosely
coupled partitioned schemes (based on explicit time discretization of the whole FSI problem) may
generate blowing-up solutions due to an incorrect energy balance [24]. Although in recent years stable
loosely coupled partitioned schemes for hemodynamics were studied [16, 22, 23, 36, 45, 44, 47], here
we focus on the two most traditional families of schemes that guarantee stability in hemodynamics:

• the fully coupled partitioned schemes [13, 14, 24, 26, 60, 66, 68, 87], in which at every timestep
the fluid and structure subproblems are solved one independently of the other, applying suit-
able interface transmission conditions to each subproblem and iterating until fulfillment of the
interface conditions (in the spirit of fixed-point iteration algorithms); for the sake of brevity we
will refer to these schemes as partitioned, leaving it understood that we refer to fully coupled
partitioned schemes;

• the monolithic schemes [18, 26, 40, 62, 70, 71, 101], in which the nonlinear algebraic system
arising from the discretization of the FSI problem is solved as a whole by means of Newton or
inexact-Newton schemes.

In both the cases, the geometric coupling can be treated either implicitly or explicitly without hindering
the time stability of the numerical scheme [68]. The explicit treatment of the geometric coupling,
together with the explicit treatment of the advection term in Navier-Stokes equations, gives rise to
schemes referred to as geometric-convective explicit [15, 26, 34, 67, 69].

We remark that the classes above are not exhaustive: alternative approaches involve the use of
splitting schemes [34, 75] or the reduction of the FSI problem to an interface problem [29].

In the following sections, several schemes within the partitioned and monolithic families are de-
scribed. In each case we will consider the fully discrete problem (6), and use the notation introduced
in Section 3.

4.1 Partitioned (P) schemes
The appeal of partitioned schemes lies in their modularity, i.e. in the fact that they reduce to a
sequence of independent calls to fluid dynamics and mechanics solvers. Therefore, one can leverage
available solvers and advanced techniques for the individual subproblems, provided there exists a way
to communicate interface data between them. On the other hand, these are iterative schemes, whose
convergence properties are difficult to assess in the most general case, and depend heavily on the
material properties and geometry of the domain [13, 24, 39].

4.1.1 Partitioned schemes with explicit geometric coupling (PE)

A fixed-point, partitioned scheme with explicit geometric coupling can be outlined as follows: for each
time step n = 1, 2, . . . , Nt, given Gn, Dn and Un, to obtain Gn+1, Dn+1 and Un+1:

1. compute Gn+1 by solving the fluid domain displacement problem, using the structure displace-
ment at previous time step: {

Gf(G
n+1) = 0 ,

Cg(Gn+1,Dn) = 0 ,

and update the fluid domain according to the newly computed fluid domain displacement;
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(a) (b)

Figure 2: Partitioned schemes, with explicit geometric coupling (a) and implicit geomet-
ric coupling (b): advancement from one timestep to the following one is performed by
iterating over the subproblems until convergence.

2. set Dn+1
(0) = Dn and iterate for k = 0, 1, 2, . . . and until convergence:

(a) compute Un+1
(k+1) by solving the fluid problem, using the structure displacement and traction

at previous iteration to provide suitable boundary data at the interface:{
Ff(U

n+1
(k+1),G

n+1) = 0 ,

Cf(D
n+1
(k) ,U

n+1
(k+1),G

n+1) = 0 ;

(b) compute D̃n+1
(k+1) by solving the mechanics problem, using the just computed fluid domain

solution to provide suitable boundary data at the interface:Ss(D̃
n+1
(k+1)) = 0 ,

Cs(D̃
n+1
(k+1),U

n+1
(k+1),G

n+1) = 0 ;

(c) apply relaxation or acceleration to the structure displacement, by setting

Dn+1
(k+1) = R(k+1)(D̃

n+1
(k+1),D

n+1
(k) ,D

n+1
(k−1), . . . ) ,

where R(k+1) is a suitable relaxation or convergence acceleration operator, which can be
either a relaxation with constant coefficient, Aitken acceleration or Anderson acceleration;
more details are given in Appendix B.

Iterations are stopped when the norm of the residual associated to interface conditions falls below a
prescribed tolerance, as described in [13].
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The scheme is depicted in Figure 2a. The operators Cf and Cs represent suitable boundary condi-
tions at the interface for each problem. Different algorithms are obtained by different choices of such
operators. Two relevant options are the following:

• Dirichlet-Neumann (DN) scheme [13, 24]:

Cf(D
n+1
(k) ,U

n+1
(k+1),G

n+1) = Ck(Un+1
(k+1),D

n+1
(k) ) ,

Cs(D̃
n+1
(k+1),U

n+1
(k+1),G

n+1) = Cd(D̃n+1
(k+1),U

n+1
(k+1),G

n+1) ,

resulting in the kinematic coupling condition being applied to the fluid and the dynamic coupling
condition being applied to the structure;

• Robin-Neumann (RN) scheme [13, 14]:

Cf(D
n+1
(k) ,U

n+1
(k+1),G

n+1) = αfCk(Un+1
(k+1),D

n+1
(k) ) + Cd(Dn+1

(k) ,U
n+1
(k+1),G

n+1) ,

Cs(D̃
n+1
(k+1),U

n+1
(k+1),G

n+1) = Cd(D̃n+1
(k+1),U

n+1
(k+1),G

n+1) ,

where αf > 0 is a suitable parameter chosen to improve convergence [39].

Other schemes can be obtained in a similar way (e.g. Robin-Robin schemes, [9, 13, 14, 43]), by
combining the kinematic and dynamic coupling conditions. We mainly consider these two because on
the one hand the DN scheme is extremely simple to formulate and implement, on the other hand the
RN scheme has been shown to perform particularly well in comparison to other fixed-point schemes,
most notably DN [13, 14]. In any case, such schemes guarantee the fulfillment, up to a prescribed
tolerance, of the kinematic and dynamic conditions.

We remark that the structure subproblem is in general nonlinear, and it must be solved e.g. by
means of Newton’s method at each iteration [76].

4.1.2 Partitioned schemes with implicit geometric coupling (PI)

A fixed-point scheme with implicit geometric coupling can be obtained by by iterating also over the
geometric interface condition, solving (3) within the same loop used to achieve the convergence of both
the kinematic and dynamic conditions. For each n = 1, 2, . . . , Nt, given Gn, Dn and Un, in order to
compute Gn+1, Dn+1 and Un+1, we set Dn+1

(0) = Dn, and iterate for k = 0, 1, 2, . . . until convergence:

1. compute Gn+1
(k+1) by solving the fluid domain displacement problem, using the structure displace-

ment at previous iteration: {
Gf(G

n+1
(k+1)) = 0 ,

Cg(Gn+1
(k+1),D

n+1
(k) ) = 0 ,

and update the fluid domain according to the newly computed fluid domain displacement;

2. compute Un+1
(k+1) by solving the fluid problem, using the newly computed fluid domain and the

structure displacement at previous iteration to provide suitable boundary data at the interface:{
Ff(U

n+1
(k+1),G

n+1
(k+1)) = 0 ,

Cf(D
n+1
(k) ,U

n+1
(k+1),G

n+1
(k+1)) = 0 ;

3. compute D̃n+1
(k+1) by solving the structure problem, using the just computed fluid domain solution

to provide suitable boundary data at the interface:Ss(D̃
n+1
(k+1)) = 0 ,

Cs(D̃
n+1
(k+1),U

n+1
(k+1),G

n+1
(k+1)) = 0 ;

10



4. apply relaxation or acceleration to the structure displacement, by setting

Dn+1
(k+1) = R(k+1)(D̃

n+1
(k+1),D

n+1
(k) ,D

n+1
(k−1), . . . ) .

We use the same stopping criterion as for PE schemes.
This type of scheme is depicted in Figure 2b. As before, different schemes are obtained by making

different choices for the interface conditions Cf and Cs.
We remark that other types of schemes with implicit geometric coupling can be obtained e.g. by

performing two nested loops at each timestep: in the outer loop, the geometry problem is solved and
the fluid domain updated, and in the inner loop the fluid and structure problems are solved for a fixed
fluid domain [68]. Moreover, an intermediate approach in this context is obtained by performing a
small, fixed number of iterations on the outer loop for the domain displacement [68].

4.2 Monolithic (M) schemes
Now, we consider schemes based on solving in a single shot the algebraic nonlinear system arising
from the time and space discretization of the FSI problem. We employ the Newton scheme for the
linearization of such system. With this purpose, let us rewrite (6) in the following more compact form:

G(Gn+1,Dn+1) = 0 ,

F(Gn+1,Un+1,Dn+1) = 0 ,

S(Gn+1,Un+1,Dn+1) = 0 ,

n = 0, 1, 2, . . . , Nt , (7)

where G includes both Gf and the boundary conditions for the fluid domain displacement, F includes
Ff and Ck and S includes Ss and Cd (see Appendix A for the explicit definition of the operators).

4.2.1 Monolithic scheme with explicit geometric coupling (ME)

Given Gn, Dn and Un, to compute the solution at timestep n+ 1:

1. compute Gn+1 by solving the fluid domain displacement problem, using the structure displace-
ment at previous time step: {

Gf(G
n+1) = 0 ,

Cg(Gn+1,Dn) = 0 ,

and update the fluid domain according to the newly computed fluid domain displacement;

2. solve the fluid-structure coupled problem with a Newton loop: set Un+1
(0) = Un and Dn+1

(0) = Dn,
then for k = 0, 1, 2, . . . and until convergence,

JFS(Gn+1,Un+1
(k) ,D

n+1
(k) )

[
δU
δD

]
= R(Gn+1,Un+1

(k) ,D
n+1
(k) ) , (8)

Un+1
(k+1) = Un+1

(k) − δU ,

Dn+1
(k+1) = Dn+1

(k) − δD ,

where

JFS =

 dF
dUn+1

dF
dDn+1

dS
dUn+1

dS
dDn+1

 R =

[
F
S

]
We remark that in the computation of R and JFS the last available fluid domain displacement,
Gn+1 is used.

11



(a) (b)

Figure 3: Fluid (a) and structure (b) meshes for the prolate ellipsoid (tests A, B and C).

4.2.2 Monolithic scheme with implicit geometric coupling (MI)

To obtain a scheme with implicit geometric coupling, it is possible to update the fluid domain dis-
placement within the Newton loop, resulting in a scheme in which the fluid domain displacement is
treated implicitly. Given Gn, Dn and Un, to compute the solution at timestep n+ 1 set Gn+1

(0) = Gn,
Un+1

(0) = Un and Dn+1
(0) = Dn, then iterate for k = 0, 1, 2, . . . until convergence:

1. compute Gn+1
(k+1) by solving the fluid domain displacement problem, using the structure displace-

ment at previous iteration: {
Gf(G

n+1
(k+1)) = 0 ,

Cg(Gn+1
(k+1),D

n+1
(k) ) = 0 ,

and update the fluid domain according to the newly computed fluid domain displacement;

2. compute Un+1
(k+1) and Dn+1

(k+1) with a Newton step:

JFS(Gn+1
(k+1),U

n+1
(k) ,D

n+1
(k) )

[
δU
δD

]
= R(Gn+1

(k+1),U
n+1
(k) ,D

n+1
(k) ) ,

Un+1
(k+1) = Un+1

(k) − δU ,

Dn+1
(k+1) = Dn+1

(k) − δD .

This corresponds to solving the fully coupled system (7) with an inexact-Newton approach, in which
the Jacobian terms involving derivatives with respect to the fluid domain displacement (i.e. the shape
derivatives [17, 35]) are neglected.

4.2.3 Preconditioning

In both the ME and the MI schemes, the linear systems to be solved are the one arising from the ALE
lifting problem, which is preconditioned by means of algebraic multigrid (AMG) [49], and a linear
system with fluid and structure unknowns, with the general block structure

J =

[
Jff Jfs

Jsf Jss

]
. (9)
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(a) (b)

Figure 4: Analytical activation functions for the active stress (a) and active strain (b)
test cases.

A possible way to precondition (9) is to use a block lower triangular preconditioner:

P =

[
Jff 0
Jsf Jss

]
.

The inverse of P is

P−1 =

[
J−1

ff 0
−J−1

ss Jsf J
−1
ff J−1

ss

]
.

The inverse of fluid and structure blocks, required by the application of P−1, is approximated by
means of suitable inner preconditioners. For the fluid block (both velocity and pressure variables), we
make use of the SIMPLE preconditioner PSIMPLE [31]. For the structure block, we employ an AMG
preconditioner Ps, whence

P−1
FSI =

[
P−1

SIMPLE 0
−P−1

s Jsf P
−1
SIMPLE P−1

s

]
.

The application of P−1
FSI can be expressed in terms of one application of the SIMPLE preconditioner,

one application of the AMG preconditioner for the structure, and a few matrix-vector multiplications.
Other preconditioners can be derived similarly, e.g. by resorting to a block LU factorization of

matrix (9) [30] or using a block upper triangular or block diagonal preconditioners. Among these
options, we found the block lower triangular preconditioner to perform slightly better than the others
in terms of overall computational cost.

5 Numerical results

We present numerical results on FSI test cases. We aim at comparing the performance of the coupling
schemes presented, in terms of overall computational costs and, for partitioned schemes, number of
iterations required for convergence. We will consider idealized problems in the context of cardiovascular
haemodynamics. In all cases we will assume the solid to have density ρs = 1000 kg/m3, and the fluid
to have density ρf = 1060 kg/m3 and viscosity µ = 3.5 · 10−3 Pa · s.

For each test, we consider the ME (Section 4.2.1) and MI (Section 4.2.2) schemes, as well as
DN and RN partitioned schemes with static relaxation (13), Aitken acceleration (14) and Anderson
acceleration.

Simulations were carried out using lifex [3], a C++ library developed in-house, tailored to cardiac
applications, based on the finite element library deal.II [2, 7, 8]. All the simulations ran on 48 cores
from CINECA GALILEO100 [1].

13



(a) t = 0ms (b) t = 100ms (c) t = 200ms

Figure 5: Snapshots of the fluid velocity (top) and pressure (bottom) of the idealized
ventricle test case, in systole with the active stress formulation (test A1).

5.1 Test A: idealized left ventricle in systole
We consider an idealized left ventricle shaped as a prolate ellipsoid. The corresponding fluid and
structure computational domains are represented in Figure 3, left and right respectively. On the top
surface of the fluid domain, we identify two intersecting circular regions ΓAV, ΓMV that represent in this
idealized context the aortic and mitral valve orifice, respectively, similarly to the test case considered
in [91] for a CFD ventricular simulation. In this test case, we reproduce the systolic phase during
which the ventricle contracts and blood is ejected through the aortic valve. Therefore, we impose the
no-slip condition u = 0 on ΓMV\ΓAV and on Γf,b, and a resistance boundary condition on ΓAV [40, 91]:

σfn = −
(
p0 +R

∫
ΓAV

u · ndΓ

)
n on ΓAV , (10)

where p0 = 6000 Pa represents the minimum aortic pressure and R = 1 · 107 kg/(s ·m4) is a resistance
parameter, calibrated in accordance with [79]. We impose a no-slip condition u = 0 on Γf,b as well.

The material model of the solid is the Guccione law (2). As boundary conditions for the structure
problem, we use a homogeneous Dirichlet condition d = 0 on the base Γs,b, and consistently keep
the fluid domain base fixed, that is we impose df = 0 on Γf,b ∪ ΓAV ∪ ΓMV. We remark that this
condition is not physiological, but in this simplified test case avoids issues related to having moving
inlet or outlet sections for the fluid. In a more realistic case, boundary conditions allowing for the
displacement of the structure base should be employed, such as Robin boundary conditions [40] or
more sophisticated conditions modeling the presence of the neglected part of the ventricle [80, 81].
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(a) t = 0ms (b) t = 100ms (c) t = 200ms

Figure 6: Snapshots of the fluid velocity (top) and pressure (bottom) of the idealized
ventricle test case, in systole with the active strain formulation (test A2).

Finally, on the epicardium Γs,epi of the ventricle, we impose generalized Robin boundary conditions
that mimic the presence of the pericardium, a sac containing the heart [40, 73, 80, 89]:

P (d)n = −(n⊗ n)

(
K⊥d + C⊥

∂d

∂t

)
− (I − n⊗ n)

(
K‖d + C‖

∂d

∂t

)
, (11)

in which K⊥, K‖ are constant elasticty coefficients for the directions normal and parallel to the
boundary respectively, and C⊥ and C‖ are constant viscosity coefficients for the directions normal and
parallel to the boundary.

We run two tests in this setting, prescribing active contraction in the active stress formulation in
one case (test A1) and in the active strain formulation in the other (test A2). The active contraction of
the myocardium is achieved by defining the active stress or strain to be constant in space and variable
in time according to a prescribed analytical function. Similarly to what done in [71], we choose a
function of the form

A(t) =


0 t < t0 ,

Amax

(
t− t0
T

)p
exp

{
p

(
1− t− t0

T

)}
t ≥ t0 ,

(12)

where t0 is the time at which contraction starts, T is the time of activation peak and p is a positive
parameter. The graph of A(t) is shown in Figure 4. For the active stress test case, we choose t0 = 0 s,
T = 0.1 s, Amax = 60 kPa and p = 1. For the active strain test case we use t0 = 0 s, T = 0.2 s,
Amax = 0.3 and p = 0.25. These values do not lead to physiological deformations of the idealized
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CPU time [s] Fixed-point iterations
Scheme total assembly min. avg. max.

ME 6850 4270 - - -
PE-DN-SR CPU time > 24 h

PE-DN-AitA convergence failure
PE-DN-AndA convergence failure

PE-RN-SR CPU time > 24 h
PE-RN-AitA 60120 28300 13 15.6 17
PE-RN-AndA 54090 25500 13 14.0 15

MI 16500 4262 - - -
PI-DN-SR CPU time > 24 h

PI-DN-AitA convergence failure
PI-DN-AndA convergence failure

PI-RN-SR CPU time > 24 h
PI-RN-AitA 74890 34770 14 15.9 18
PI-RN-AndA 58180 26980 13 14.2 15

Table 1: Performance of the different schemes for the systole test case with active stress
formulation (test A1). For each scheme we report the total CPU time required for the
solution of the test case, as well as the time spent assembling linear systems; for fully
coupled partitioned schemes we also report the minimum, average and maximum across
timesteps of the number of iterations required for convergence.

ventricle, but are chosen so that the resulting velocities, both of the myocardium and of the blood,
have the same orders of magnitude that can be expected in a physiological simulation.

Due to the nonlinearity and anisotropy of the contitutive law of the solid structure, optimal re-
laxation and acceleration parameters are not available. They were tuned so as to obtain convergence,
although it is worth observing that tuning parameters is itself a major issue with these schemes. The
same argument holds true for RN schemes as well. Although optimal values of the parameter αf have
been studied for sperical geometries and linear elasticity in [42], their application here is not trivial
due to the non-linearity of the structure. More investigations are needed on this point.

The solution at a few time instants is reported in Figures 5 and 6, and the computational times
associated to the different coupling schemes are reported in Tables 1 and 2.

Partitioned schemes with static relaxation require more time than 24 h to converge, except for RN
in the active strain test case. The DN scheme fails to converge with all acceleration schemes, for ex-
plicit and implicit geometric coupling, and in both the active stress and active strain cases. Conversely,
the RN scheme converges successfully when using Aitken and Anderson acceleration, with Anderson
acceleration slightly improving over Aitken acceleration. In all cases considered the monolithic ap-
proach was several times faster than any of the partitioned schemes. The MI scheme is more costly
than its explicit counterpart, while no significant increase in number of iterations is observed for RN
schemes with implicit geometric coupling. No relevant difference is observed between the active stress
and active strain approaches, in terms of relative efficiency of the monolithic and partitioned schemes.

5.2 Test B: idealized left ventricle in diastole
In this case we use the same geometry as described for the systole. Boundary conditions on the structure
and on the fluid domain are also the same. For the fluid problem, we impose an inlet condition through
ΓMV, to reproduce the diastolic filling of the ventricle. In particular, we set σfn = −pMVn on ΓMV,
with pMV = 1333 Pa. Conversely, we set u = 0 on ΓAV\ΓMV and on Γf,b. Since during diastole the
ventricle is relaxing, we do not prescribe any activation.

We remark that the initial conditions of this test case are not consistent with end-systolic conditions
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CPU time [s] Fixed-point iterations
Scheme total assembly min. avg. max.

ME 7230 4090 - - -
PE-DN-SR CPU time > 24 h

PE-DN-AitA convergence failure
PE-DN-AndA convergence failure

PE-RN-SR 79110 36090 19 20.5 25
PE-RN-AitA 46920 21300 11 12.1 21
PE-RN-AndA 46380 21000 11 11.8 14

MI 17100 8790 - - -
PI-DN-SR CPU time > 24 h

PI-DN-AitA convergence failure
PI-DN-AndA convergence failure

PI-RN-SR 79340 36260 19 20.4 24
PI-RN-AitA 50020 22400 11 12.5 22
PI-RN-AndA 48760 21630 11 12.3 14

Table 2: Performance of the different schemes for the systole test case with active strain
formulation (test A2). For each scheme we report the total CPU time required for the
solution of the test case, as well as the time spent assembling linear systems; for fully
coupled partitioned schemes we also report the minimum, average and maximum across
timesteps of the number of iterations required for convergence.

as found at the end of the previous test case. The aim of this test is to assess the performance of
the algorithms in the context of a slow inflow and in absence of the active contraction, rather than
providing physiologically meaningful insight.

A few snapshots of the solution are reported in Figure 7, and computational times for the different
schemes are reported in Table 3. From there, it is again evident that the monolithic approach outper-
forms the partitioned approach, both with an explicit and with an implicit treatment of the geometry,
even during the relatively slow diastolic phase.

5.3 Test C: idealized left ventricle, full heartbeat
In this test we assess the reliability of the ME scheme for the simulation of a full heartbeat on an
idealized ventricle geometry. This is of particular interest since specific features arise when both
systolic and diastolic are considered. In particular, during the heartbeat, the opening and closing of
valves determine four distinct phases [57]:

• isovolumetric contraction; both valves are closed; the ventricle starts contracting, resulting in a
rapid increase of ventricular pressure; when the pressure inside the chamber becomes larger than
that of the aorta, the aortic valve opens and ejection phase begins;

• ejection; the aortic valve is open, and the mitral valve is closed; blood exits from the ventricle into
the aorta. The aortic valve closes to prevent reverse flow, starting the isovolumetric relaxation
phase;

• isovolumetric relaxation; both valves are closed, and the ventricle relaxes, resulting in the decrease
of ventricular pressure; when the pressure falls below the atrial pressure, mitral valve opens and
the filling phase starts;

• filling; the mitral valve is open, and the aortic valve is closed; blood flows from the atrium into
the ventricle, increasing its volume; the mitral valve closes to prevent reverse flow, and a new
isovolumetric contraction phase begins.
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(a) t = 0.2ms (b) t = 100ms (c) t = 200ms

Figure 7: Snapshots of the fluid velocity (top) and pressure (bottom) of the idealized
ventricle test case, in diastole (test B).

CPU time [s] Fixed-point iterations
Scheme total assembly min. avg. max.

ME 6560 3830 - - -
PE-DN-SR CPU time > 24 h

PE-DN-AitA convergence failure
PE-DN-AndA convergence failure

PE-RN-SR CPU time > 24 h
PE-RN-AitA 50050 22677 12 14.1 15
PE-RN-AndA 46650 21235 12 13.4 14

MI 10900 6150 - - -
PI-DN-SR CPU time > 24 h

PI-DN-AitA convergence failure
PI-DN-AndA convergence failure

PI-RN-SR CPU time > 24 h
PI-RN-AitA 50870 22780 12 14.0 15
PI-RN-AndA 49700 22168 12 13.7 14

Table 3: Performance of the different schemes for the diastole test case (test B). For each
scheme we report the total CPU time required for the solution of the test case, as well as
the time spent assembling linear systems; for fully coupled partitioned schemes we also
report the minimum, average and maximum across timesteps of the number of iterations
required for convergence.
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Figure 8: Pressure and volume plots of the full heartbeat test case (test C).

We reproduce these phases by switching the boundary conditions applied on ΓAV and ΓMV according
to the ventricular pressure and to the flow through the valve orifices. Specifically, we represent open
valves with the resistance condition (10) for the aortic valve and the Neumann condition for the mitral
valve, and closed valves with the no-slip condition u = 0. Valves are opened according to the average
pressure p̄ in the fluid domain: the aortic valve is opened when p̄ ≥ pAV, and the mitral valve when
p̄ ≤ pMV. Conversely, valves are closed when reverse flow occurs through their section.

With respect to previous tests, we also change boundary and initial conditions. On the ventricular
base of the structure, we impose a Robin-like condition as in (11), to allow for the base to move towards
the apex as the ventricle contracts, as is the case in healthy hearts. We remark that this leads inlet
and outlet boundaries for the fluid domain to move, and this can be problematic in more complex
test cases with realistic geometries. Moreover, we start the simulation by inflating the structure with
a pressure of 1333 Pa, roughly corresponding to the pressure at the end of the diastolic phase. This
allows to start from a more realistic initial condition.

We use an active stress formulation for active mechanics. The final simulation time is T = 0.8 s,
and we set ∆t = 2 · 10−4 s. Overall, the total CPU time needed for the simulation was 14 h.

We report ventricular volume and pressure in Figure 8. The evolution of volume and pressure
is qualitatively consistent with the behavior of a normal human heart [57]. Some snapshots of the
solution are shown in Figures 9 and 10. It can be seen how the ventricle deforms and contracts during
systole by shortening and thickening, and how the original volume and shape are recovered at the end
of the heartbeat, after relaxation.

It is worth remarking that this simplified model includes isovolumetric phases of the heartbeat,
as can be seen from Figure 8. Such phases are usually neglected in purely CFD simulations, in
which the endocardial wall displacement is provided as data [37, 91, 94]. Indeed, because of the fluid
incompressibility and the fact that both valves are closed, in isovolumetric phases prescribing a Dirichlet
condition on the whole boundary would generally be incompatible with the divergence-free constraint.
As a matter of fact, Dirichlet data should satisfy a compatibility condition [76], often not satisfied by
noisy imaging1. Moreover, pressure would be defined only up to a constant, in that setting. Therefore,

1Notice that this is true only for physiological cases, where the valves are perfectly closed. In regurgitant cases, such
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(a) t = 0ms (b) t = 5ms (c) t = 10ms

(d) t = 25ms (e) t = 35ms (f) t = 75ms

Figure 9: Snapshots of the fluid velocity of the idealized ventricle test case, for the full
heartbeat (test C).

isovolumetric phases cannot be treated in a CFD model, unless special techniques are implemented
to obtain a well-posed problem [94]. An FSI model is instead capable of representing isovolumetric
phases [71, 94], thanks to the fact that the velocity at the endocardial wall is not known from data
but is itself an unknown of the problem, and the model also accounts for the stresses exchanged at the
fluid-structure interface.

However, after time and space discretizations, in our computational model the fluid volume is not
exactly preserved over time. This is due mostly to two different sources of spurious volume variations:

• explicit treatment of the geometry: the use of the structure displacement at previous timestep
to compute the fluid domain at current timestep leads to a mismatch between the fluid volume
and the fluid velocity at the boundary;

• SUPG stabilization terms: these can be interpreted as artificial compressibility, so that at the
discrete level the fluid is not strictly incompressible, and a small variation in volume is observed.

Both effects reduce as ∆t→ 0. Moreover, the volume variations that they introduce are several orders
of magnitude smaller than the characteristic variations in volume of the ventricle over a heartbeat: in

as mitral valve regurgitation, a Neumann boundary would appear in correspondence of the regurgitation orifice.
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(a) t = 0ms (b) t = 5ms (c) t = 10ms

(d) t = 15ms (e) t = 35ms (f) t = 75ms

Figure 10: Snapshots of the fluid pressure of the idealized ventricle test case, for the full
heartbeat (test C).

this test case, during isovolumetric contraction, the total volume variation was of 0.07 ml, corresponding
to 0.075 % of the initial volume. Overall, these spurious effects can be considered negligible.

6 Conclusions

In the context of FSI heart modeling, we compare in a systematic way fully coupled partitioned
and monolithic FSI coupling schemes on benchmark cases that mimic, in an idealized setting, the
flow regime characteristic of a human ventricle. For all the cases considered, the performance of the
monolithic scheme was significantly better than that of partitioned iterations, resulting in a total
computational time several times smaller for the whole heartbeat simulation. Partitioned schemes
based on Dirichlet-Neumann interface conditions suffer from convergence issues, and have proven to be
impractical for the cardiac tests. Robin-Neumann schemes performed slightly better, and benefit from
acceleration methods, but they still require parameter tuning to be used effectively. For the complex
geometries and material models characterizing the heart, this tuning is not trivial. Conversely, the
monolithic approach is parameter-free, and is consequently more robust and flexible.

In the monolithic approach, using an implicit discretization for fluid domain displacement entails a
higher computational cost than using an explicit discretization. Fully coupled partitioned schemes, on

21



the contrary, have similar costs with both explicit and implicit geometric coupling. Nonetheless, the
monolithic scheme is more efficient than the partitioned ones even if an implicit geometric coupling
is used. We also found that Anderson acceleration is capable of slightly improving the results of
partitioned schemes. Moreover, the relative performance of the schemes does not vary depending on
the choice of active mechanics formulation: indeed, with both with active stress and active strain
formulations, the monolithic scheme performed significantly faster than the partitioned ones.

Finally, using the monolithic scheme, we run a simulation of a full heartbeat on the idealized
geometry, switching inlet and outlet boundary conditions to simulate in a simplified way the opening
and closing of cardiac valves. This test case shows the ability of the computational model to replicate
a full heartbeat. In particular, we reproduce the isovolumetric phases, which is a challenge in other
simulation settings involving three dimensional modeling of the cardiac blood flow.

Overall, this study indicates that, for strongly coupled FSI simulations in the cardiac context,
a monolithic approach seems to be preferrable to a partitioned one, thanks to its robustness and
efficiency. However, more specific studies on the Robin interface parameters for the cardiac case are
mandatory to improve the corresponding partitioned schemes.
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A Definition of algebraic operators

In this section we will give the explicit definition of each of the operators introduced in Section 3.
We will not give details on the derivation of the operators, as it follows the classical finite elements
procedure, and refer the interested reader to [54, 76].

In the following, we shall use the subscripts f, s and Σ for the vectors G, D and U to denote their
entries that correspond to nodes located on the interior (not on the interface) of the fluid domain, on
the interior of the structure domain and on the fluid-structure interface respectively.

We shall assume that the same discretization is used for the fluid domain displacement and fluid
velocity, so that both are described using the same set of basis functions. We partition the basis
functions as done for the solution vectors into a subset for interior nodes and a subset for interface
nodes. We will denote the basis functions as follows:

• ϕs
s,i, for i ∈ {1, . . . , N s

s }, are the basis functions for the structure displacement corresponding to
the interior nodes of the structure domain (i.e. such that their support does not intersect Σ);

• ϕs
Σ,i, for i ∈ {1, . . . , N s

Σ}, are the basis functions for the structure displacement corresponding
to the interface nodes of the structure domain (i.e. such that their support intersects Σ);

• ϕf
f,i, for i ∈ {1, . . . , N f

f }, are the basis functions for the fluid velocity and fluid domain displace-
ment corresponding to the interior nodes of the fluid domain;
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• ϕf
Σ,i, for i ∈ {1, . . . , N f

Σ}, are the basis functions for the fluid velocity and fluid domain dis-
placement corresponding to the interface nodes of the fluid domain;

• ψi, for i ∈ {1, . . . , NP}, are the basis function for the fluid pressure.

We assume that the fluid and structure meshes are conforming, so that there exists a one-to-one
correspondence between interface nodes on the two subdomains. This entails N s

Σ = N f
Σ. We will

assume that the numbering of interface basis functions on the two subdomains is the same, so that
ϕs

Σ,i = ϕf
Σ,i on Σ.

A.1 Structure displacement
The operator Ss is defined as

Ss(D
n+1) =

ρs

∆t
M s

ss(D
n+1
s − 2Dn

s + Dn−1
s ) +

ρs

∆t
M s

sΣ(Dn+1
Σ − 2Dn

Σ + Dn−1
Σ ) +Ks

s (Dn+1) ,

where

M s
kl ∈ RN

s
k×N

s
l (M s

kl)i,j =

∫
Ω̂s

ϕs
k,i ·ϕs

l,j i ∈ {1, . . . , N s
k}, j ∈ {1, . . . , N s

l }, k, l ∈ {s,Σ}

are the structure mass matrix blocks corresponding to the different combinations of interior and inter-
face basis functions, and

Ks
k(Dn+1) ∈ RN

s
k (Ks

k)i =

∫
Ω̂s

P (dn+1) : ∇ϕs
k,i i ∈ {1, . . . , N s

k}, k ∈ {s,Σ}

is the nonlinear stiffness operator, corresponding to either the interior or interface basis functions.

A.2 Fluid domain displacement
The operators Gf and Cg are defined as

Gf(G
n+1) = Kg

ffG
n+1
f +Kg

fΣG
n+1
Σ ,

Cg(Gn+1,Dn+1) = Gn+1
Σ −Dn+1

Σ ,

where

Kg
kl ∈ RN

f
k×N

f
l (Kg

kl)i,j =

∫
Ω̂f

∇ϕf
k,i : ∇ϕf

l,j i ∈ {1, . . . , N f
k}, j ∈ {1, . . . , N f

l }, k, l ∈ {f,Σ} ,

are the stiffness matrix blocks corresponding to the different combinations of interior and interface
basis functions. The operator G reads

G(Gn+1,Dn+1) =

[
G(Gn+1)

Cg(Gn+1,Dn+1)

]
.

A.3 Fluid problem
Let us denote by V and P the subset of fluid degrees of freedom U related to velocity and pressure
respectively. The operator Ff =

[
FU

f ,FP
f

]T
has two blocks, corresponding to the discretization of the

momentum and incompressibility equations respectively. The first block reads:

FU
f (Un+1,Gn+1) =

ρf

∆t
M f

ff(Vn+1
f −Vn

f ) +
ρf

∆t
M f

fΣ(Vn+1
Σ −Vn

Σ) + Cff(Vn,Gn+1,Gn)Vn+1
f +

+ CfΣ(Vn,Gn+1,Gn)Vn+1
Σ +Kf

ffU
n+1
f +Kf

fΣU
n+1
Σ +BTf P

n+1 ,
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while the second one is given by

FP
f (Un+1,Un,Gn+1,Gn) = BfV

n+1
f +BΣVn+1

Σ .

In the above equations,

M f
kl ∈ RN

f
k×N

f
l (M f

kl)i,j =

∫
Ωt

f

ϕf
k,i ·ϕf

l,j i ∈ {1, . . . , N f
k}, j ∈ {1, . . . , N f

l }, k, l ∈ {f,Σ}

are the fluid velocity mass matrix blocks corresponding to the different combinations of interior and
interface basis functions. Cff and CfΣ arise from the discretization of the advection term of the
momentum equation, and are given by:

Ckl ∈ RN
f
k×N

f
l (Cf

kl)i,j =

∫
Ωt

f

(w ·∇)ϕf
l,k ·ϕf

k,i i ∈ {1, . . . , N f
k}, j ∈ {1, . . . , N f

l }, k, l ∈ {f,Σ} ,

in whichw is the advection velocity, computed from the discrete velocity and fluid domain displacement
vectors through

w =

N f
f∑

i=1

(
Un

f,i −
Gn+1

f,i −Gn
f,i

∆t

)
ϕf

f,i +

N f
Σ∑

i=1

(
Un

Σ,i −
Gn+1

Σ,i −Gn
Σ,i

∆t

)
ϕf

Σ,i .

Matrices Kf
ff and Kf

fΣ are stiffness matrices for the fluid, defined by

Kf
kl ∈ RN

f
k×N

f
l (Kg

kl)i,j =

∫
Ω̂f

2µε(ϕf
l,j) : ∇ϕf

k,i i ∈ {1, . . . , N f
k}, j ∈ {1, . . . , N f

l }, k, l ∈ {f,Σ} ,

and the matrices Bf and BΣ are defined by

Bk ∈ RN
P×N f

k (Bk)i,j =

∫
Ωt

f

ψi∇ ·ϕf
k,j i ∈ {1, . . . , NP}, j ∈ {1, . . . , N f

k} k ∈ {f,Σ} .

Terms arising from the SUPG stabilization are not reported here for the sake of brevity, but they
are discussed e.g. in [28, 76, 93, 102]

A.4 Coupling conditions
The kinematic coupling operator Ck is defined as

Ck(Un+1,Dn+1) = MΣΣ

(
Vn+1

Σ −
Dn+1

Σ −Dn
Σ

∆t

)
.

We remark that in the implementation of DN scheme and of monolithic scheme, the continuity of
velocity is applied essentially, i.e. we strongly impose the constraint that fluid and structure velocity
interface degrees of freedom are equal. However, this formulation of the kinematic coupling operator
is relevant when defining the interface conditions involved in partitioned schemes based on Robin
conditions [13, 14].

Dynamic coupling is imposed in residual form [13], so that the dynamic coupling operator Cd reads

Cd(Dn+1,Un+1,Gn+1) =
ρs

∆t
M s

Σs(D
n+1
s − 2Dn

s + Dn−1
s ) +

ρs

∆t
M s

ΣΣ(Dn+1
Σ − 2Dn

Σ + Dn−1
Σ )+

+Ks
Σ(Dn+1) +

ρf

∆t
M f

Σf(V
n+1
f −Vn

f ) +
ρf

∆t
M f

ΣΣ(Vn+1
Σ −Vn

Σ) + CΣf(V
n,Gn+1,Gn)Vn+1

f +

+ CΣΣ(Vn,Gn+1,Gn)Vn+1
Σ +Kf

ΣfU
n+1
f +Kf

ΣΣU
n+1
Σ +BTΣP

n+1 .
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B Relaxation and convergence acceleration

The convergence properties of PE and PI schemes can be enhanced by using suitable relaxation or con-
vergence acceleration schemes. We embed such schemes in the operator R(k+1)(D̃

n+1
(k+1),D

n+1
(k) ,D

n+1
(k−1), . . . )

that, for a given guess D̃n+1
(k+1) for the structure displacement at next iteration and the structure dis-

placements of previous iterations, computes Dn+1
(k+1). We consider three different relaxation operators.

B.1 Static relaxation (SR)
The relaxation operator is given by [13, 24, 60]

R(k+1)(D̃
n+1
(k+1),D

n+1
(k) ,D

n+1
(k−1), . . . ) = λD̃n+1

(k+1) + (1− λ)Dn+1
(k) k = 0, 1, 2, . . . , (13)

where λ ∈ (0, 1] is a suitable parameter whose choice is critical to the convergence of the scheme; in
particular, large values of λ typically lead to a fast convergence (when convergence occurs), but too
large values of λ may cause the scheme to diverge [24].

B.2 Aitken acceleration (AitA)
The relaxation operator is defined as [13, 60, 66]

R(k+1)(D̃
n+1
(k+1),D

n+1
(k) ,D

n+1
(k−1), . . . ) = λ(k+1)D̃

n+1
(k+1) + (1− λ(k+1))D

n+1
(k) k = 0, 1, 2, . . . , (14)

with λ(k+1) computed as [60]

λ(k+1) = λ(k)

D̃n+1
k ·

(
D̃n+1

(k+1) −Dn+1
(k) − D̃n+1

k +−Dn+1
(k−1)

)
∥∥∥D̃n+1

(k+1) −Dn+1
(k) − D̃n+1

k +−Dn+1
(k−1)

∥∥∥ k = 0, 1, 2, . . . ,

for λ0 given. This scheme typically improves the convergence with respect to static relaxation [60].
However, the choice of the initial relaxation parameter λ0 is still problem dependent and needs to be
manually tuned [60].

B.3 Anderson acceleration (AndA)
Anderson acceleration (AndA) [6, 33, 99], also known as Anderson mixing, can be interpreted as a
multi-secant method [33] or as a nonlinear generalization of GMRES [99] and is based on computing
the new iterate making use of the previous m ones, with m a suitable integer parameter. While
generally used for self-consistent field iterations in the computation of electronic structures [33], it has
been also been applied to domain decomposition [99] and multiphysics problems [21] and can be used
to accelerate the convergence of FSI fixed-point schemes [64].

The procedure behind Anderson acceleration can be detailed as follows [99]. Consider the fixed-
point iteration

x(k+1) = g(xk)

used to compute the solution of x = g(x). Then, given m ∈ N and an initial guess x0, Anderson
acceleration of the sequence x(k+1) can be computed as follows:

1. set m(k) = min{m, k};

2. set F(k) =
[
fk−m(k)

, fk−m(k)+1, . . . , f(k)

]
, where fi = g(xi)− xi;
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3. find α(k) =
[
α

(k)
0 , α

(k)
1 , . . . , α(k)

m(k)

]T
= arg min

α∈A

∥∥F(k)α
∥∥, with

A =

{
α =

[
α0, α1, . . . , αm(k)

]T such that
m(k)∑
i=0

αi = 1

}
;

4. set x(k+1) =

m(k)∑
i=0

α
(k)
i g(xk−m(k)+i).

Details on how to interpret the method, as well as alternative formulations, criteria for the choice of
m and implementation details can be found in [99].
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