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A Mathematical Dashboard for the Analysis of
Italian COVID-19 Epidemic Data

Nicola Parolini, Giovanni Ardenghi, Luca Dede’, and Alfio Quarteroni

Abstract A data analysis of the COVID-19 epidemic is proposed on the basis of the
dashboard publicly accessible at https://www.epimox.polimi.it that focuses
on the characterization of the first and second epidemic outbreaks in Italy. The
scope of this tool, which provides an immediate appreciation of the past epidemic
development together with its current trends, is to foster a deeper interpretation of
available data as well as to provide a hint on the near future evolution of the most
relevant epidemic indicators.

Introduction

During the health crisis due to the COVID-19 pandemic, the development of reliable
mathematical models, supported by the availability and analysis of complete and
accurate data, prove to be fundamental tools for the interpretation and understanding
of the epidemic outbreak, as well as for providing support to digital health [11]. If fed
by accurate input data, epidemiological mathematical models can enable forecasting
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the trend of the outbreak and allow a description of the dynamics of the infection,
in particular for those figures related to number of infected, hospitalized, healed
and deceased individuals. Even when available, data may be difficult to polish,
organize, and analyse in meaningful ways that allow for a coherent and immediate
interpretation. This can be very useful, from one hand, to inform the general public
and, from another hand, to provide institutional bodies and authorities with factual
quantitative information that may enable the implementation of relevant decisions.
This paper has a twofold goal. The first one is to present a newly developed
mathematical dashboard (accessible online at the address https://www.epimox.
polimi.it) that gathers all the most relevant data concerning infected, hospitalized,
healed and deceased individuals, as well as to characterize the evolution of the
epidemic outbreak through suitable fittings of the former figures, together with their
first and second rates of variation. This analysis, which focuses on the situation
in Italy at both national and regional scales — for all the 20 Italian regions — will
enhance the interpretation and transparency of available data thanks to an immediate
appreciation of the past epidemic development, together with its current trends. The
second goal is to enable a comparison between the first epidemic wave, the one
that initiated on February 21st, 2020 and exhausted in early June 2020, and the
new (second) wave that took off in early October and is currently violently hitting
Italy this Fall. The two waves feature indeed several analogies as well as significant
differences that we aim to highlight and analyze. Moreover, still on the ground of
this comparison, a preview on the expected trend of the epidemic outbreak for the
near future will be discussed, based on a data extrapolation after curve registration
from one side, and of a model-based epidemiological model from another side.
Our analysis highlights several important features. The more relevant are:

(1) In the early phase of the exponential outbreak, the timeline for the implemen-
tation of containment measures is crucial. It is more efficient to operate early
with moderate restrictions than later with stricter ones;

(i) The second epidemic wave has a slower pace but a much larger diffusion that
will eventually yield far worse figures (in terms of fatalities, hosted in intensive
care units, etc.);

(iii) The epidemiological mathematical model allows the investigation of various
scenarios that conform to the different operational modes devised by the Ital-
ian government. A comparison among them allows to identify those that are
potentially more effective to contrast the near future epidemic development.

An outline of this paper is as follows: in Section 1 a description of the COVID-19
epidemic data time series is supplied together with a description of the data process-
ing tools (filtering, derivative, scaling, normalization) used to ease a straightforward
identification of the main characteristics of each time series. The first epidemic wave
is analysed and the results are compared with the corresponding analysis of the
second epidemic wave. In Section 2, a data-based strategy to forecast the evolution
of the epidemic is proposed. A model-based alternative for the forecast is finally
introduced in Section 3, where it is used to compare different near future scenarios.
Conclusions follow.
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1 Data acquisition, analysis and processing

The data used in this paper are those made available by the Italian Dipartimento
della Protezione Civile through the open data repository https://github.com/
pcm-dpc/COVID-19. Data are communicated on a daily basis and comprise: the
number of individuals who are currently positive, isolated at home, hospitalized,
hosted in ICUs (Intensive Care Units), the daily new positive cases, the cumulative
number of deaths and recovered since the beginning of the pandemic, and the number
of swabs performed. All these data are supplied at the regional and national levels,
while the available data at a finer scale (provinces) are unfortunately limited to the
count of rotal positive cases since the beginning of the epidemic.

From now on we will refer to these data as raw data. These raw data are then
smoothed by resorting to a local polynomial regression based on the Savitzky—Golay
convolution filter [14]: at day n we attribute the value of the polynomial of degree r
that approximates, in the least squares sense, the 2g+1 values of the raw data centered
on day n, i.e. in the range [n — g, n + ¢q], where r < 2q. Here, we consider a cubic
least squares polynomial and a window size of 21 days (that is, r = 3 and ¢ = 10).
A standard approach based on a weekly moving average could be obtained by taking
r = 0 and g = 3. Finally, a backward moving average can also be considered where
the average for day n is computed on the time window [n — 6, n].

From now on, when not differently specified, the time series that will be presented
will be the smoothed curves obtained using the Savitzky—Golay convolution filter.

The second step is to calculate the first and second rates of variation of the dif-
ferent compartments. First rate of variation describes how fast a trend is increasing
or decreasing: change of sign from positive to negative for the first rate of varia-
tion indicates switching from increasing to decreasing in the corresponding curves,
whereas a change on the second rate of variations denotes a change of convexity (a
point of inflection).

1.1 The first COVID-19 epidemic wave in Italy

The time series of the raw data (dashed lines) and filtered data (solid lines) for some
relevant indicators at the national Italian level, namely the daily new positive cases,
the daily deaths, the number of individuals that are hospitalized with symptoms and
those hosted in ICUs, are reported in Figure 1.

By analysing the time series of the fotal positive cases using a log scale (see
Figure 2) along the full evolution of the epidemic in Italy, we can observe, for the
first epidemic wave, an exponential growth f(r) = Ce'' (which is linear in log
scale with slope A1) located in the first two weeks of March with a doubling time
of approximately 3 days. During the second half of August, very likely because of
the relaxation of social distances during holidays and newly imported cases from
abroad, a few days of exponential growth can be observed, although featuring a much
lower growth factor A,, yielding a doubling time of approximately 15 days. Finally,



4 Nicola Parolini, Giovanni Ardenghi, Luca Dede’, and Alfio Quarteroni

40k
35k
30k
25k
20k
15k
10k

5k

0

01/03 01/04 01/05 01/06 01/07 01/08 01/09 0110 01/11

- == Dalily deaths ----- == Daily new positives -~~~ == Hospitalized -~~~ = Hosted in ICUs

Fig. 1: Time series of different compartments during the whole epidemic history in
Italy

what we will refer to as the second wave had its exponential growth during October,
with growth factor A3 and a doubling time of about 8 days. We believe this is likely
connected to the increased number of contacts associated with the school opening
in September and related commuting, the restart of recreational activities in closed
ambiences, and the full recovery of the working activities that were dramatically
reduced during the spring lockdown, as well as (although at a minor extent) during
the summer period.

We first focus on the first epidemic wave that occurred in Italy across the Spring
2020. In our dashboard, a specific time range can be selected and each time series
can be normalised with respect to its maximum attained in the prescribed time

5
01/03 01/04 01/05 01/06 01/07 01/08 01/09 0110 01/11

—— Total positives

Fig. 2: Identification of three exponential growth phases in the time series of the
total positive cases in logarithmic scale
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range. This allows for an immediate identification of the day the different peaks have
occurred and of their relative positions (relative delays). As displayed in Figure 3, it
can be noticed that the first compartment that reaches a peak is that of the number
of daily new positive cases (on March 24th), followed 5 days later on March 29th
by the peak of daily deaths. The peaks for the number of individuals hosted in ICUs
and those hospitalized occur on April 1st and 3rd, respectively, that is after 7 and
9 days since the peak of daily new positive cases. Even if, at a first glance, the fact
that the peak of daily deaths occurs before those of the hospitalized and hosted in
ICUs may appear surprising, this is instead reasonable since the latter data do not
refer to new daily entries but to the total number of individuals who are hosted in
hospitals or ICUs at a specific date. Unfortunately, information (raw data) on the
daily admissions in hospitals and ICUs are not available. Finally, the peak of fotal
positive cases was reached on April 21st, that is almost 1 month past the peak of
daily new positive cases.

—

01/03 15/03 29/03 12/04 26/04 10/05 24/05

Daily deaths == Daily new positives == Hospitalized = Hosted in ICUs Total positives

Fig. 3: Normalized time series of different compartments highlighting the time-shifts
between the different peaks during the first epidemic wave

A similar analysis carried out on the rate of change (first derivative) of the
different indicators may be used to determine when the initial exponential phase
for each indicator is over. In Figure 4, the normalized first derivatives of the same
indicators discussed above are presented. In particular, we notice that the growth
rate of the daily new positive cases reached its maximum on March 15th, while the
growth rate of the number of hosted in ICUs is attained just 4 days later (March
19th). This corresponds to an inflection point in the time series and indicates the
time at which the growth rate starts decreasing.

It is worth noticing that, even if a maximum on the rate of change indicates that the
evolution of the epidemic has overcome the initial exponential phase, relaxing too
early the containment measures might turn not being wise. For instance, on March
15th the number of cumulative deaths at the Italian national level was 1, 809, and it
raised up to 10,779 on March 29th when the peak of daily new positive cases was
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Fig. 4: Rate of change of daily new positive cases and hosted in ICUs highlighting
the time shifts between the inflection points during the first epidemic wave

reached and, even under the strict lockdown conditions, the death count continued to
climb up to the value of 28, 884 on May 3rd when the lockdown restrictions began
to be relaxed (see Figure 5).
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Fig. 5: Time series of cumulative deaths over the epidemic history

1.2 The second COVID-19 epidemic wave in Italy

The second wave of the COVID-19 epidemic in Italy is still in its rising phase
at the current time (November 19th). At the date of the current analysis the only
compartment that seems to have reached its peak is the daily new positive cases.
However, since the raw data on this compartment is very noisy (see Figure 6), due
to the different number of cases tested across the weekend, it may be possible that
the actual peak is not yet reached.
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Fig. 6: Raw and smoothed time series of daily new cases during the second wave

A different indicator that can be used to assess whether the peak of new infections
has been attained is the ratio between the daily new positive cases and the daily
number of swabs (see Figure 7). As expected, this quantity has weekly oscillations
with lower amplitudes and it also display a peak on November 11th.

All the other compartments, including that of the patients hosted in ICUs, that of
the hospitalized and that of the daily deaths, are still rising (the associated normalized
curves are displayed in Figure 8).

The first hint of a possible reduction of the growing rate has been observed for
some compartments (Figure 9), such as the daily new positive cases, with a peak on
the growth rate on October 24th, and on the the hosted in ICUs, with a peak attained

13/09 27/09 1110 25/10 08/11

----- = Daily cases/swabs ratio

Fig. 7: Raw (dotted line) and smoothed (full line) time series of the ratio between
daily new positive cases and the daily number of swabs during the second epidemic
wave
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Fig. 8: Normalized time series of different compartments during the second epidemic
wave

on November 5th, that is 12 days later. We observe that this delay is larger (12 days
against 4 days) than the one observed in the first wave. This may suggest a possible
slower dynamics of the second wave, a fact that ought to be considered when trying
to perform any forecasting of the near future evolution of the epidemic.

In particular, a possible estimate of the peak dates for the different compartments
may be guessed. In particular, if the peak of daily new positive cases can be assumed
on November 12th, then we may expect the peak of patients hosted in ICUs 20-
25 days later (December 2nd-7th). Although this estimate is based on a merely
speculative argument, nonetheless it will be confirmed by an approach based on
curve registration that will be introduced in Section 2.

15

12 days

0.5

13/09 27/09 11/10 25/10 08/11

= Daily new positives = Hosted in ICUs

Fig. 9: Rate of change of daily new cases and hosted in ICUs highlighting the time
shifts between the inflection points during the first epidemic wave
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1.3 Data analysis at the regional level

The same analyses that have been proposed at the national Italian level can be carried
out at the regional scale, that is for each of the 20 Italian Regions. In Figure 10, the
normalized time series of daily new positive cases, hospitalized, hosted in ICUs and
daily deaths are presented for 8 Italian regions, among which Lombardia, Emilia
Romagna, Piemonte, Veneto that were severely hit by the first epidemic outbreak,
and Lazio, Puglia, Campania, Sicilia that are far more evidently affected by the latter
epidemic wave than by the former.

— Doty dests — Doty e posives — Hespialized — Hosied i ICUS by e postves — Hospasiaed — Hosied 1CUs

(a) Lombardia (b) Piemonte

— Doy dests — Doty e posives — Hespalized — Hosied i ICUS — Dyt — Bl e posives — Hoapialzed — Hosted mIEUs

(¢) Veneto (d) Emilia-Romagna

— Doty deats — Doty new posives — Hespialized — Hosied i ICUS — Daly deaths — Dl new posives — Hospiaized — Hosted i ICUs

(g) Campania (h) Sicilia

Fig. 10: Normalized time series of different compartments during the whole epidemic
history in 8 Italian regions
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The aim is to help highlighting some peculiar dynamics and trends that occur
at the local, regional level. For instance, in Figure 11 the normalized time series
restricted to the second wave are displayed. It can be noticed that in most regions
the curves of patients hosted in ICUs and those hospitalized follow a similar trend,
while in Campania the evolution of the hosted in ICUs has a different behaviour at the
beginning of November: the trend may seem to indicate a possible saturation effect
on the availability of ICUs (assuming that the raw data that have been communicated
were correct).

(a) Lombardia (b) Piemonte

(c) Campania (d) Sicilia

Fig. 11: Normalized time series of hosted in ICUs and hospitalized during the second
wave in 4 Italian regions

2 A look ahead (by data extrapolation)

Peaks dates estimates based solely on similarities between the two waves may not
be rigorously justified, especially if we consider that the two waves occurred under
very different conditions, e.g. different individual behaviours (masks wearing, so-
cial distancing habits, ...), different social distancing rules and very different initial
conditions. Still, they are most likely yielding better estimates than those that could
be obtained by a naive polynomial extrapolation of the most recent observed data.
As a matter of example, in Figure 12, we display (in dashed lines) the forecast on
the next 50 days for hosted in ICUs and daily deaths, based on a polynomial fit of
degree 4 on the last recorded 20 days. The abrupt reduction that is obtained drives
to zero these quantities in just a few weeks, which is totally unrealistic having in
mind how typically epidemic waves decrease. It is clear that this forecast can only be
considered when looking at a short time horizon, namely few days, while it becomes
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unmeaning for predictions on a longer time - a well known numerical misbehaviour

of polynomial extrapolation (see [12]).
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Fig. 12: Polynomial extrapolation of degree 4 (dashed line) for two compartments

A better forecasting strategy can be obtained by exploiting the similarities between
the first and second waves, not only limited to the location of the curve peaks (as done
at the end of the previous section), but considering the full curve shape. This can be
accomplished by curve registration (see [13] for an overview on this subject). The
registration procedure is sketched in Figure 13 and is performed by first computing
the Exponentially Modified Gaussian (EMG) curve (blue line) that best fits the first
wave. We denote this curve as w(t), ty < t < t1, with ¢ the first day of the recorded
data (February 24th) and ¢ equal to August 1st. Then a second minimization problem
is solved to compute the time shift and scaling factors to apply to the computed EMG
curve (red line) to best fit the rising portion of the second wave in the time range
[k, 1], with g coinciding with October 15th and #,, with the last recorder date.

Namely, we look for the optimal time shift h, and the scaling factors §; and 5§, such
that

I
(h,51,52) = argmin > (syw(sa; +h) = d;)?,
SS1582 j=p,
where d; is the value of the considered data series at day ;.

For each data series, the fitted EMG curve and the optimal values for shift and
scaling factors are computed and, in this way the shape of the first wave can be used
to complete the second wave for the different compartments.

The extrapolation based on this curve registration procedure is implemented in

the dashboard and, in Figure 14, it has been used for the forecast of two relevant
compartments such as hosted in ICUs and daily deaths.

11
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Fig. 13: Registration between the two waves: EMG curve fitting the first wave (blue
line), shifted and rescaled EMG curve fitting the rising part of the second wave (red
line)

3 A look ahead (by predictive mathematical models)

Epidemic forecasting is a difficult task because of the intrinsic variability and un-
certainty of the Covid-19 pandemic. Uncertain, incomplete or inaccurate data (with
regards to both initial conditions and time series of the different compartments) rep-
resent a serious threat, another being due to the partial knowledge of the behaviour of
the specific infecting agent, not to say about the dynamic evolution of environmental
and social conditions.

Since the seminal work [7], where the first SIR compartmental model based on
a system of nonlinear ordinary differential equations was proposed, a large variety
of models have appeared in the literature — see, for instance, [6, 2, 8, 5, 4, 1] — each
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Fig. 14: Data registration (dashed line) between the two waves for two compartments
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trying to cope with specific aspects of the problem. If in the original SIR model
the epidemic evolution is described by the number of individuals belonging to the
susceptible (S), infected (I) and removed (R) compartments, several models consider
increasing the number of compartments to include, for instance:

* the exposed individuals (those who have already been exposed to the infecting
agent but are not yet infectious);

* possible splitting of the infected compartment into different classes according to
the actual level of severity;

 adistinction of the removed compartment in recovered and dead.

Although these models are typically working under many simplifying assump-
tions intrinsically related to their compartmental nature, they enable forecasting
analysis which go beyond the simple extrapolation of a measured data. Indeed, once
a model has been calibrated to be able to reproduce the past, observed time evolution
until the present time, simulation regarding the future dynamics may include the
investigation of different scenarios where the change of conditions (associated, for
instance, to changing social distancing rules) are included by suitably modeling how
the parameters change. One of the most critical aspects in the development of com-
plex compartmental models is indeed related to their calibration based on available
data. This critical aspect is twofold: on the one hand, data related to the different
compartments may not be available (or they may not even be collected); on the other
hand, the resulting data assimilation problem may suffer from limited identifiability
of the parameters, as discussed in the recent paper [10] focusing on SIR-like models
for COVID-19. A new compartmental model named SUIHTER has been recently
developed by these authors (and will be presented in a forthcoming paper) with the
goal of facing the first of these two issues, i.e. defining a model best suited for the
data actually available. In the context of the COVID-19 epidemic outbreak, the time
series that are daily collected and made available (which have already been described
discussing the dashboard for the data analysis) lead us to consider for the new model
the following compartment:

* S (susceptibles);

e U (undetected), infectious individuals who have not yet been identified;

* I (isolated), infectious individuals that have been quarantined at home;

e H (hospitalized), infectious individuals that have been hospitalized with symp-
toms;

e T (threatened): infectious individuals that are hosted in ICUs;,

¢ E (extinct);

e R (recovered).

Based on the SUIHTER model, a preliminary analysis has been carried out with
the objective of investigating the possible impact of containment measures, with
various levels of restriction. The considered scenarios range between the current
state (at November 19th) to a strict lockdown (similar to the one imposed during the
Spring 2020), in particular we identify the following:
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e Scenario 0: the current situation (at November 19th) in which some limitations
are adopted at national level (distance learning from 9th grade, bar and restaurant
with limited activity during the evening, . . . ), while additional stricter limitations
(confinement within municipality limits, distance learning from 7th grade and
universities, . . . ) are adopted only in some regions (denoted as “red" regions) 1;

* Scenario 1: the stricter limitations are imposed in the whole national territory (all
regions becoming “red") starting on November 20th;

» Scenario 2: a complete lockdown is imposed starting on November 20th.

Three compartments which are considered relevant for monitoring the evolution of
the epidemic are displayed in Figure 15, namely the isolated (representing the 95%
of the total detected cases), the hosted in ICUs (which should not exceed the available
ICUs places) and the cumulative deaths (that can be regarded as a dramatic synthetic
indicator of the epidemic effect).

The model has been calibrated using a Monte-Carlo Markov Chain (MCMC) [3]
approach implemented in the Python library pymcmcstat [9] looking for a robust
estimate of the parameters minimizing the least square error with respect to the data.
For each parameter considered in the calibration (in our case the transmission rates
during the different phases of the epidemic), the MCMC calibration starts from a
prior, in our case a uniform distribution around an initial guess, and provides its
posterior probability density function.

The solid curves displayed in Figure 15 represent the time evolution of the different
compartments in the 3 considered scenarios, while the shaded region surrounding
each curve represents the 95% confidence interval associated with the probabilistic
characterization of the model parameters. As expected, when more severe restrictions
are imposed the epidemic curve evolves faster towards its flattening, even if these
results seem to indicate that, considering the timing for this stricter restrictions, it
may be by now too late to obtain a significant drop of the number of fatalities. Indeed,
the cumulative deaths that amounts today at 47, 870 will overcome the impressive
threshold of approximately 90, 000 on February 1st for Scenario 0, while Scenarios 1
and 2 would allow to lower this estimate down to 86, 617 and 84, 076, respectively.

A second set of simulations has been performed using the calibrated model and
imposing that the same restrictions would be kept for a shorter time range and in
fact relaxed on December 15th. (This strategy would be pursued to comply with an
increasing demand for reopening most commercial and social activities in view of
Christmas holidays.)

1 A detailed description of the limitation introduced have been published on the Gazzetta Ufficiale
on November 4th and can be found at https://www.gazzettaufficiale.it/eli/gu/2020/
11/04/275/s0/41/sg/pdf
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Fig. 15: Forecast of isolated at home (top), hosted in ICUs (middle) and cumulative
deaths (bottom) for different restriction scenarios until mid January 2021
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This restriction relaxation is considered in three new scenarios (named 3, 4 and
5), which evolve before December 15th as scenarios 0, 1 and 2, respectively. The
results, which are presented in Figure 16, show that interventions with a limited
time range of application may impair the effect of the restrictions. Public authorities
should carefully weight whether a lighter restriction over a longer time frame could
be more effective than a stricter one that however ends too early.

To better appreciate the comparison between the 6 scenarios, in Figure 17 we
report the differences in terms of cumulative deaths with respect to Scenario 0. The
positive contribution given by the additional restrictions in Scenarios 1 and 2 are
clearly highlighted, as well as the negative effect of the relaxation at December 15th
for all scenarios which partially impairs the results obtained by the previous stricter
restrictions.

A similar comparison on the number of patients hosted in ICUs is reported in
Figure 18 where the effect of the relaxation on December 15th amounts to an increase
exceeding 200 units for both Scenarios 3 and 4.

Conclusions

In this paper we have examined the epidemic outbreak that occurred in northern
Italy since early Spring 2020 and is still severely affecting the entire Country. Data
were reported for several compartments (total and daily new positive cases, isolated
at home, hospitalized, hosted in ICUs, cumulative deaths, recovered) that allow to
provide a synthetic yet informative description of the epidemic evolution. Several
analyses were carried out. A careful comparison between the two waves (that of last
Spring, and the one that took off in early Fall) is made, followed by an extrapolation
of the second wave along the next few months based on a registration procedure
operated on the two curves. Finally, we have reported a few results obtained by using
the new epidemiological differential mathematical model SUIHTER with the aim of
providing a forecast on the epidemic curves for the next couple of months.
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Fig. 16: Forecast of isolated at home, hosted in ICUs and cumulative deaths for
different restriction scenarios (relaxed on December 15th) until mid January 2021
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Fig. 17: Differences in cumulative deaths with respect to Scenario 0 for the different
Scenarios

200 et
-
f”
- -7
—
o ==
—200
—400 4
= Scenario 0
—— Scenario 1
—600 | —— Scenario 2
== Scenario 3
== Scenario 4
_8004 —— Scenario 5 =
T T T
1712 1 12

Fig. 18: Differences in hosted in ICUs with respect to Scenario O for the different
Scenarios



MOX Technical Reports, last issues
Dipartimento di Matematica

Politecnico di Milano, ViaBonardi 9 - 20133 Milano (Italy)

76/2020

75/2020

74/2020

73/2020

72/2020

71/2020

70/2020

69/2020

67/2020

66/2020

Centofanti, F.; Lepore, A.; Menafoglio, A.; Palumbo, B.; Vantini, S.
Functional Regression Control Chart

F. Dassi; A. Fumagalli; D. Losapio; S. Sciao; A. Scotti; G. Vacca
The mixed virtual element method for grids with curved interfaces

Formaggia, L; Fumagalli, A.; Scotti, A.
A multi-layer reactive transport model for fractured porous media

Bennati, L.; Vergara, C.; Domanin, M.; Trimarchi, S.; Malloggi, C.; Silani, V.; Parati, G.; Case
A computational fluid structure interaction study for carotids with different
atherosclerotic plaques

Belli E.; Vantini S.
Measure Inducing Classification and Regression Trees for Functional Data

Belli E; Vantini S.
Ridge regression with adaptive additive rectangles and other piecewise
functional templates

Belli E.
Smoothly Adaptively Centered Ridge Estimator

Galvani, M.; Torti, A.; Menafoglio, A.; Vantini S.
FunCC: a new bi-clustering algorithm for functional data with misalignment

Caramenti, L.; Menafoglio, A.; Sgobba, S.; Lanzano, G.
Multi-Sour ce Geographically Weighted Regression for Regionalized
Ground-Motion Models

Didkovsky, O.; Ivanov, V.; Papini, M.; Longoni, L.; Menafoglio, A.
A comparison between machine learning and functional geostatistics
approaches for data-driven analyses of solid transport in a pre-Alpine stream



	77-2020 1
	EpiMOXdashboardPaper
	77-2020 21

