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Abstract

Due to the presence of multiple types of adverse events with different levels of severity, the
analysis of longitudinal toxicity data is a difficult task in cancer studies. In this work, a novel
approach based on latent Markov models and compositional data techniques is proposed. The
latent status of interest is the Latent Overall Toxicity (LOTox) condition of each patient. The
main objectives are to identify different latent states of overall toxicity burden and to inves-
tigate the evolution of individual toxicity risk during cancer treatment. This methodology is
applied to osteosarcoma treatment data to provide novel techniques that may support medical
decisions in childhood cancer therapy.
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1 Introduction

Osteosarcoma is a malignant bone tumour mainly affecting children and young adults. Although
osteosarcoma is the most common primary malignant bone cancer, it is a rare disease and has an
annual incidence of 3-4 patients per million (Smeland et al., 2019). Multidisciplinary management
including neoadjuvant and adjuvant chemotherapy with aggressive surgical resection (Ritter and
Bielack, 2010) or intensified chemotherapy has improved clinical outcomes but over the past 40
years there have been no further improvements in survival (Anninga et al., 2011).
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In cancer trials, the relationship between chemotherapy dose and clinical efficacy outcomes are
problematic to analyse due to the presence of negative feedback between exposure to cytotoxic
drugs and other aspects, such as latent accumulation of chemotherapy-induced toxicity. Toxici-
ties, developed by patients through chemotherapy, are time-dependent confounders for the effect
of chemotherapy on patient’s status (Lancia et al., 2019). Toxicities affect subsequent exposure by
delaying the next cycle or reducing chemotherapy doses (Souhami et al., 1997), being at the same
time risk factors for mortality and predictors for future exposure levels. According to the Common
Terminology Criteria for Adverse Events (CTCAE) (U.S. Department of Health and Human Ser-
vices, 2006), a multimodality grading system for the standardized classification of adverse events
(AEs) in cancer therapy, nominal grades of AEs severity range from minor to life-threatening in-
juries or death (Trotti et al., 2003). Since patients may have multiple AEs with different levels of
severity, identifying the actual extent of toxic burden and investigating the evolution of patient’s
overall toxicity status during treatment represent challenging problems in cancer research.

Due to the complexity of longitudinal chemotherapy data, no standard method is available for
analysing AEs data. Toxicity data are mainly used in cancer studies as summary indexes, such
as maximum toxicity over time, maximum grade among events, or weighted sums of individual
toxic effects (Bekele and Thall, 2004; Rogatko et al., 2004; Trotti et al., 2007; Lee et al., 2012;
McTiernan et al., 2012; Sivendran et al., 2014; Thanarajasingam et al., 2015, 2016; Zhang et al.,
2016; Carbini et al., 2018). Although these methods can summarise data over time, substantial
amount of information (e.g., isolated vs repeated events, single vs multiple episodes, longer-lasting
lower-grade toxicities, toxic events timing) are discarded. As neglecting the time component may
give an inaccurate depiction of toxicity, alternative methods for a longitudinal analysis of AEs
have been proposed (Trotti et al., 2007; Thanarajasingam et al., 2016, 2020; Hirakawa et al., 2019;
Spreafico et al., 2021). These approaches are not suitable for the nominal CTCAE grades still
they provide more insights into treatment-related toxicity, suggesting that longitudinal methods
should become routine in future analyses of cancer trials. Models to deal with both longitudinal
and categorical aspects of toxicity levels progression are then necessary, still not well developed.

Longitudinal data are often of interest in a wide range of research fields, such as social, economic
and behavioural sciences, education or public health. In many applications involving longitudinal
data, the interest lies in analysing the evolution of a latent characteristic of a group of individuals
over time, rather than in studying their observed attributes (Bartolucci et al., 2014). The phe-
nomenon which affects the distribution of the response variables that are relevant for the problem
under consideration may not be directly observable. In a clinical context, this latent characteris-
tic may reflect patients’ quality-of-life and could contain valuable information related to patient’s
health status and disease progression.

In the statistical literature many models have been proposed for the analysis of longitudinal
data; for a concise review see Fitzmaurice et al. (2009). For longitudinal categorical data, where
the interest is in describing individual changes with respect to a latent status, Latent Markov (LM)
models can be used (Wiggins, 1973; Bartolucci et al., 2013). These models study the evolution of
an individual characteristic of interest, when it is not directly observable. The idea behind a LM
model is that the latent process fully explains the observable behaviour of a subject, assuming that
the response variables are conditionally independent given the latent process. The latent process
follows a Markov chain with a finite number of states, which represent different conditions of the
latent characteristic of interest. LM models can also account for the effect of observable covariates,
serial dependence between observations, measurement errors, or unobservable heterogeneity. For
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a detailed overview on LM models see Bartolucci et al. (2013, 2014).
Motivated by the need to improve methods for summarising and quantifying the overall toxicity

level and its evolution during treatment, in this work a novel procedure based on LM models for
longitudinal toxicity data is proposed. The latent status of interest is the Latent Overall Toxicity
(LOTox) condition of a patient, which affects the distribution of the observed categorical toxic
grades measured over treatment. The proposed approach aims at identifying different latent states
of overall toxicity burden (LOTox states) and investigating how patients move between states
during chemotherapy treatment.

A LM model for longitudinal toxicity data assumes that at each time occasion for each patient
a vector of probabilities of being in the various LOTox states is given. Since the probability ele-
ments of each vector are non-negative coordinates whose sum is one, these vectors are naturally
confined to a suitably dimensioned simplex, thus being Compositional Data (CoDa) or compo-
sitions. In statistics, CoDa are quantitative descriptions of the parts of some whole, carrying
relative information. In this context, Aitchison (1986) developed a methodology based on log-ratio
transformations of CoDa, which nowadays represent the mainstream approach in the analysis of
compositions formed by probabilities or percentages. Among the developed transformations, the
additive log-ratios consider a specific reference part in contrast with all the others. In this work,
this approach is exploited to compare over time a reference "good" overall toxicity condition (i.e.,
the LOTox state characterized by the lowest toxicity burden) in contrast with all the other LOTox
states, characterized by worsening overall toxicity. In this way, the dynamic risk of experiencing
"worse" overall toxicity statuses relative to a "good" toxic condition over time is investigated.

Three are the main novelties presented in this work: (i) the introduction of a new method based
on LM models to summarize and quantify multiple AEs and their evolution during treatment,
where both longitudinal and categorical aspects of the observed toxic levels are included in the
model; (ii) the identification of groups of patients with a common distribution for the observed
toxic categories, and thus a similar overall toxicity burden; (iii) the reconstruction of personalized
longitudinal LOTox profiles, which represent the probability over time of being in a specific LOTox
state or the relative risk with respect to a reference "good" toxic condition; this allow to study the
individual overall toxic risk evolution during treatment for each subject. The proposed approach
is applied to osteosarcoma treatment to provide novel techniques which could support clinicians
in planning new protocols and guidelines for childhood cancer therapy. Provided that longitudinal
CTCAE-graded toxicity data are available, the developed procedure is a flexible approach that can
be adapted and applied to other cancer studies.

The article is organized as follows. Data from the MRC BO06/EORTC 80931 Randomized
Controlled Trial for patients with osteosarcoma (Lewis et al., 2007) are described in Section 2.
Statistical methods are introduced in Section 3. Results for MRC BO06 data are presented in
Section 4. Section 5 ends with a discussion of strengths and limitations of the proposed approach,
identifying some possible developments for future research.

2 MRC BO06 randomized clinical trial data

In childhood cancer research, the development of new evidence-based guidelines to support clinical
decisions in tailored interventions for an effective management of adverse symptoms and treatments
is still a key issue. Analysing the evolution of toxicities in patients who have completed the
treatment could lead to new insights into the progression and tolerance of toxic AEs during therapy.
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Initial sample size
n = 497

Patients who started the therapy
n = 484

Patients with normal dosages
n = 478

Final sample size
n = 377

Patients who did not start the 
therapy: 13

Patient who did not complete 
all six cycles within 180 days: 8

Patient who did not complete
all six cycles: 93

Patients with abnormal 
dosages: 6

Patients who completed the chemotherapy
n = 385

Figure 1: Flowchart of cohort selection.

In Section 2.1 the selected cohort of patients is illustrated. Longitudinal chemotherapy data and
patient characteristics are presented in Section 2.2.

2.1 Data illustration

Data from the MRC BO06/EORTC 80931 randomized clinical trial for patients with non-metastatic
high-grade osteosarcoma recruited between 1993 and 2002 were analysed (Lewis et al., 2007). Pa-
tients were randomized between conventional (Reg-C ) and dose-intense (Reg-DI ) regimens. Both
arms had six cycles of the same course of doxorubicin and cisplatin with different time schedule
(3-weekly vs 2-weekly, supported by granulocyte colony stimulating factor). Details concerning the
trial protocol are provided in Appendix A.

The dataset included 497 eligible patients; 19 patients who did not start chemotherapy (13) or
reported an abnormal dosage (i.e., +25% higher than planned) for a single or both agents (6) were
excluded. Patients who did not complete all six cycles of chemotherapy (93) and did not terminate
the last cycle within 180 days after randomization (8) were excluded. The final cohort of 377
patients included in the analyses (75.9% of the initial sample) is shown in the consort diagram in
Figure 1.

2.2 Longitudinal chemotherapy data

During the trial treatment, case report forms were used to document across cycles all the informa-
tion required by the MRC BO06/EORTC 80931 trial protocol for each patient.

Patients baseline characteristics (age, gender, allocated chemotherapy regimen, site and loca-
tion of the tumour) were registered at randomization. Among 377 patients, 229 (60.7%) were
males and Reg-DI was allocated in 52.3% of the patients (197). Median age was 15 years (IQR [11;
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18]). Treatment-related factors (administered dose of chemotherapy, cycles delays, chemotherapy-
induced toxicity, haematological parameters) were collected at each cycle of chemotherapy. For
each patient i and cycle t, chemotherapy dose was analysed as percentage of achieved chemotherapy
dose up to cycle t, i.e., the percentage of the cumulative drugs administrated up to cycle t divided
by the cumulative drugs planned up to t. Non-haematological chemotherapy-induced toxicity for
nausea/vomiting (naus), infection (inf), oral mucositis (oral), cardiac toxicity (car), ototoxicity
(oto) and neurological toxicity (neur) were graded according to the Common Terminology Criteria
for Adverse Events Version 3 (CTCAE v3.0) (U.S. Department of Health and Human Services,
2006), with grades ranging from 0 (none) to 4 (life-threatening) (see Appendix A for further de-
tails). Nausea/vomiting, infection and oral mucositis were classified as generic toxicities since they
represent common adverse events for chemotherapeutic treatments in general. Cardiac toxicity,
ototoxicity and neurological toxicity, which could also cause irreversible conditions (see Appendix
Table A.1), were classified as drug-specific toxicities since they are related to the use of cisplatin
or doxorubicin (Al-malky et al., 2020; dos Santos et al., 2020).

Considering the CTCAE-grades registered over cycles for each non-haematological adverse
event, generic toxicities were more frequent than drug-specific ones, as expected. Nausea/vomit-
ing was reported at least once over cycles in 97.3% of patients (367/377), with a percentage that
decreased over cycles from 84.9% in cycle 1 to 52.5% in cycle 6. The percentages of patients who
reported oral mucositis or infections were more stable over cycles: 30.5%–43.3% for mucositis,
with 78% (294/377) reporting mucositis at least once, and 23.8%–31.3% for infection, with 69%
(260/377) reporting an infection at least once. Ototoxicity was reported at least once in 21.5%
(81/377), cardiac toxicity in 14.1% (53/377) and neurological toxicity in 11.7% (44/377). At each
cycle, CTCAE-grade 4 for generic toxicities and CTCAE-grades ≥ 2 for drug-specific toxicities
were reported in less than 5% of patients. Low-frequency classes were merged and toxic categories
were represented according to the degree of severity or as present or not, depending on the type
of toxicity as follows:

• the severity of the toxic event for generic toxicities: none (CTCAE-grade 0), mild (CTCAE-
grade 1), moderate (CTCAE-grade 2), and severe (CTCAE-grades 3 or 4);

• the absence or the presence of toxic event for drug-specific toxicities: no (CTACE-grade 0)
and yes (CTACE-grades ≥ 1).

These categories identified for each toxicity constitute the item-response elements selected to model
the latent process representing the “true” overall toxic status. Table 1 shows the observed frequen-
cies (and percentages) of the selected categories for each toxicity over cycles for the final cohort.
The observed responses for each patient are then given by the longitudinal toxic categories mea-
sured along the cycles, which are then used to evaluate the LOTox condition during treatment.

3 Statistical Methods

In the following Sections, the novel Latent Markov (LM) approach for modelling the Latent Overall
Toxicity (LOTox) condition of each patient starting from the observed longitudinal toxic categories
measured during chemotherapy treatment is introduced. In Section 3.1 motivations for the pro-
posed approach for treating the longitudinal toxicity data are discussed. Mathematical details
are provided in Section 3.2. Model selection procedure and longitudinal profiles are presented in
Sections 3.3 and 3.4, respectively.
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Table 1: Frequencies of toxic categories over the six cycles. For nausea, infection and mucositis
(j = 1, 2, 3), the set of toxic categories indicating the severity of the toxic event is defined as Cj =
{none; mild; moderate; severe}. For cardiotoxicity, otoxocity and neurological toxicity (j = 4, 5, 6), the
set of toxic categories indicating the presence or the absence of the toxic event is defined as Cj = {no; yes}.

Toxicity Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6
Nausea
none 57 (15.1%) 88 (23.3%) 115 (30.5%) 126 (33.4%) 146 (38.7%) 179 (47.5%)
mild 74 (19.6%) 87 (23.1%) 76 (20.2%) 72 (19.1%) 86 (22.8%) 74 (19.6%)
moderate 117 (31.1%) 117 (31.1%) 114 (30.2%) 113 (30.0%) 96 (25.5%) 87 (23.1%)
severe 129 (34.2%) 85 (22.5%) 72 (19.1%) 66 (17.5%) 49 (13.0%) 37 (9.8%)

Infection
none 259 (68.7%) 287 (76.1%) 268 (71.1%) 265 (70.3%) 268 (71.1%) 286 (75.9%)
mild 30 (7.9%) 24 (6.4%) 26 (6.9%) 31 (8.2%) 23 (6.1%) 16 (4.3%)
moderate 64 (17.0%) 45 (11.9%) 61 (16.2%) 54 (14.3%) 52 (13.8%) 45 (11.9%)
severe 24 (6.4%) 21 (5.6%) 22 (5.8%) 27 (7.2%) 34 (9.0%) 30 (8.0%)

Mucositis
none 265 (70.3%) 228 (60.5%) 234 (62.1%) 237 (62.9%) 214 (56.8%) 262 (69.5%)
mild 54 (14.3%) 46 (12.2%) 59 (15.6%) 52 (13.8%) 62 (16.4%) 44 (11.7%)
moderate 44 (11.7%) 54 (14.3%) 43 (11.4%) 55 (14.6%) 63 (16.7%) 50 (13.2%)
severe 14 (3.7%) 49 (13.0%) 41 (10.9%) 33 (8.7%) 38 (10.1%) 21 (5.6%)

Cardiotoxicity
no 374 (99.2%) 361 (95.8%) 362 (96.0%) 359 (95.2%) 357 (94.7%) 355 (94.2%)
yes 3 (0.8%) 16 (4.2%) 15 (4.0%) 18 (4.8%) 20 (5.3%) 22 (5.8%)

Ototoxicity
no 357 (94.7%) 361 (95.8%) 350 (92.8%) 342 (90.7%) 346 (91.8%) 326 (86.5%)
yes 20 (5.3%) 16 (4.2%) 27 (7.2%) 35 (9.3%) 31 (8.2%) 51 (13.5%)

Neurological toxicity
no 371 (98.4%) 367 (97.3%) 362 (96.0%) 367 (97.3%) 356 (94.4%) 363 (96.3%)
yes 6 (1.6%) 10 (2.7%) 15 (4.0%) 10 (2.7%) 21 (5.6%) 14 (3.7%)

3.1 Motivations for latent Markov models for longitudinal toxicity data

LM models are statistical methods employed for the analysis of longitudinal (categorical) data
specifically designed to study the evolution of an individual characteristic of interest, when it is
not directly observable (Wiggins, 1973; Bartolucci et al., 2013). A LM approach for longitudinal
toxicity data assumes the existence of a latent process representing the "true" LOTox status, which
affects the distribution of the response variables, in our case the observed toxicities. Two main
motivations justify the use of LM models to quantify the toxic risk in cancer studies: (i) account
for measurement errors in the observed toxicity variables, and (ii) identify different LOTox sub-
populations (i.e., the latent states) in the global population (i.e., the patients’ cohort) and their
changes over time.

Since therapy protocol is adapted at each cycle depending on patient’s reaction to treatment, it
is reasonable to assume that the latent variables follow a first-order Markov chain, so that the "true"
level of overall toxicity at a given cycle is influenced only by the previous level. Non-hematological
toxicities do not depend directly on each other as they relate to different systems and functions of
the human body (i.e., nausea/vomiting is part of the stomach-gastrointestinal system, infections
of the immune system, oral mucositis of the mouth-gastrointestinal system, cardiotoxicity of the
cardiovascular system, ototoxicity of the auditory-sensory system and neurotoxicity of the nervous
system). Therefore, the response toxicity variables can be assumed conditionally independent, as
each observed response is expected to depend only on the corresponding "true" LOTox level.

In this context, a LM model may be seen as an extension of the latent class model (Collins
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and Lanza, 2010), where patients are allowed to move between latent states during the observation
period. LM models for longitudinal toxicity data are characterized by several parameters: the
initial probability of each LOTox state, the transition probabilities among different states over
chemotherapy cycles, and the conditional response probabilities given the latent variable. Indi-
vidual covariates (if available) can be included in the latent model and may affect the initial and
transition probabilities of the Markov chain (Bartolucci et al., 2009), as explained in Section 3.2.

A LM approach is appropriate to both identify the actual overall toxicity burden and investigate
its evolution during treatment for each patient. On one hand, patients that at a specific time
result in the same sub-population are characterized by a common distribution for the observed
toxic categories, and by a similar overall toxicity burden. On the other hand, individual dynamic
changes among latent states allow to evaluate the LOTox evolution during treatment for each
subject.

3.2 Latent Markov model with covariates

Let J be the set of J = |J | categorical response variables measured at each time t = 1, . . . , T .
Denote by Y

(t)
ij the response variable j ∈ {1, . . . , J} for subject i ∈ {1, ..., n} at time t, with

set of categories Cj coded from 0 to cj − 1. Let Y (t)
i =

(
Y

(t)
i1 , ..., Y

(t)
iJ

)
denote the observed

multivariate response vector at time t for patient i and Ỹi =
(
Y

(1)
i , . . . ,Y

(T )
i

)
be the corresponding

complete response vector. Denote by X̃i =
(
X

(1)
i , . . . ,X

(T )
i

)
the complete vector of individual

covariates, where elements X(t)
i =

(
Si,Z

(t)
i

)
are the vectors of time-fixed Si and time-varying

Z
(t)
i covariates for subject i at occasion t. The general LM model assumes the existence of a latent

process Ui =
(
U

(1)
i , . . . , U

(T )
i

)
which affects the distribution of the response variables Ỹi. The

latent process follows a first-order Markov chain with state space {1, . . . , k}, where k is the total
number of latent states. LM models usually assume that the response vectors Y (1)

i , . . . ,Y
(T )
i are

conditionally independent given the latent process Ui (local independence of the response vectors)
and that the elements Y (t)

ij are conditionally independent given U
(t)
i (conditional independence

of elements). The motivation of these assumptions is that the latent process fully explains the
observable behaviour of a subject, as explained in Section 3.1.

LM models are made by two components: the measurement model concerns the conditional
distribution of the response variables given the latent process, and the latent model is related
to the distribution of the latent process (i.e., initial and transition probabilities). The latent
process represents an individual characteristic of interest that is not directly observable that may
evolve over time, also depending on observable covariates. The main research interest hence lies
in modelling the latent process and the effect of covariates on its dynamic. LM models where
both the initial and the transition probabilities of the latent process may depend on covariates is
considered. Three different sets of probabilities (i.e., parameters) can be defined.

• Conditional response probability (or item-response probability) φ(t)
jy|u is the probability of

observing a response y for variable j at time t, given the latent status u ∈ {1, ..., k}:

P
(
Y

(t)
ij = y

∣∣U (t)
i = u

)
= φ

(t)
jy|u j = 1, . . . , J y = 0, ..., cj − 1.

To ensure that the interpretation of the latent states remains constant over time, conditional
response probabilities are assumed time-homogeneous, i.e., φ(t)

jy|u = φjy|u ∀t = 1, . . . , T .
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Given the estimated φ̂jy|u, the latent states can be characterized in terms of observed response
categories.

• Initial latent states prevalence δ
u|x(1)

i
is the probability of membership in latent state u ∈

{1, . . . , k} at time t = 1, given the vector of covariates x(1)
i for individual i:

P
(
U

(1)
i = u|X(1)

i = x
(1)
i

)
= δ

u|x(1)
i
.

The estimated δ̂
u|x(1)

i
may be interpreted as quantities proportional to the size of each la-

tent state at the first time-occasion, given the covariates. A natural way to allow the ini-
tial probabilities of the LM chain to depend on individual covariates is a multinomial logit
parametrization:

log
P
(
U

(1)
i = u |X(1)

i = x
(1)
i

)
P
(
U (1) = 1 |X(1)

i = x
(1)
i

) = log
δ
u|x(1)

i

δ
1|x(1)

i

= β0u + x
(1)>
i β1u (1)

where u = 2, ..., k and βu =
(
β0u,β

>
1u

)>
are the parameters vectors to be estimated.

• Transition probability τ
(t)

u|ūx(t)
i

is the probability of a transition to latent state u at time t,
conditional on membership in latent state ū at time t − 1, given the individual vector of
covariates x(t)

i (if available):

P
(
U

(t)
i = u | U (t−1)

i = ū,X
(t)
i = x

(t)
i

)
= τ

(t)

u|ūx(t)
i

where t = 2, . . . , T and u, ū = 1, . . . , k. The estimated τ̂ (t)

u|ūx(t)
i

reflect changes or persistence
in the various states over time, given the individual covariates whose effects can be modelled
through a multinomial logit parametrization:

log
P
(
U

(t)
i = u | U (t−1)

i = ū,X
(t)
i = x

(t)
i

)
P
(
U

(t)
i = ū | U (t−1)

i = ū,X
(t)
i = x

(t)
i

) = log
τ

(t)

u|ūx(t)
i

τ
(t)

ū|ūx(t)
i

= γ0ūu + x
(t)>
i γ1ūu (2)

for t = 2, ..., T and ū, u = 1, ..., k with ū 6= u. γūu =
(
γ0ūu,γ

>
1ūu

)> are the parameters
vectors to be estimated.

Under the assumptions of local and conditional independence, the manifest distribution of the
response variables (i.e., the conditional distribution of Ỹi given X̃i) is given by:

P(ỹi | x̃i) = P
(
Ỹi = ỹi | X̃i = x̃i

)
=

=
∑
u

P
(
Ỹi = ỹi | X̃i = x̃i,Ui = u

)
× P

(
Ui = u | X̃i = x̃i

)
=

=
∑
u

P
(
Ui = u | X̃i = x̃i

)
× P

(
Ỹi = ỹi | Ui = u

)
=

=
∑
u

δ
u(1)|x(1)

i

T∏
t=2

τ
(t)

u(t)|u(t−1)x
(t)
i

×
T∏

t=1

J∏
j=1

φ
jy

(t)
ij |u(t)

(3)
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where u = (u(1), . . . , u(T )). The vector ỹi =
(
y

(1)
i , . . . ,y

(T )
i

)
is a realization of Ỹi, where y

(t)
i is

a realization of Y (t)
i with elements y(t)

ij . The vector x̃i =
(
x

(1)
i , . . . ,x

(T )
i

)
is a realization of X̃i,

where x(t)
i =

(
si, z

(t)
i

)
is a realization of X(t)

i =
(
Si,Z

(t)
i

)
.

Parameters estimation is performed maximizing the log-likelihood for a sample of n independent
units, i.e., `(θ) =

∑n
i=1 logP (ỹi | x̃i), using an Expectation-Maximization algorithm (Bartolucci

et al., 2013, 2014, 2015). Deterministic and random initializations are implemented to reach the
global maximum of `(θ) and prevent identifiability issue related to the multimodality of the like-
lihood function.

3.3 Model selection

The choice of the final LM model for the application consists of two steps: (i) identification of the
number of latent states k, and (ii) selection of the covariates to be included in the final model.
When the number of latent states k can not be a priori defined based on clinical indications, it can
be selected according different measures. Akaike information criterion (AIC) by Akaike (1973) or
the Bayesian information criterion (BIC) by Schwarz (1978), defined as

AIC = −2ˆ̀+ 2g and BIC = −2ˆ̀+ log(n)g,

where ˆ̀ is the maximum of the log-likelihood of the model of interest and g denotes the number
of free parameters, are used. In particular, the smaller the values of the above criteria, the better
the model represents the optimum compromise between goodness-of-fit and complexity. If the two
criteria lead to selecting a different number of states, BIC is usually preferred (Bacci et al., 2014;
Bartolucci et al., 2017).

Basic LM models (i.e., LM models with time-heterogeneous transitions and no covariates -
named M1) were fitted increasing the value of k from 1 to 10, and the number of latent states
k was selected according to the minimum BIC. Once k was determined, a forward strategy was
adopted to identify the covariates to be included in the final model. In particular, the smallest basic
LM model with k latent states and time-homogeneous transitions (i.e., the LM model restricted to
the case in which initial and transition probabilities are parametrized by multinomial logit without
covariates - named M2) was initially fitted and then the effect of each covariate on initial and/or
transition probabilities (models M3-M12) was added. Only the covariates whose effect reduces the
value of the BIC index were included in the final LM model.

3.4 Longitudinal profiles: latent probability and relative risk

In LM models literature, once the model has been estimated, a decoding procedure is usually
implemented to obtain a path prediction for each subject, i.e., finding the most likely sequence of
latent states on the basis patient-specific observed data (Bartolucci et al., 2013, 2014). However,
this sequence represents a summary of how the entire latent process evolves over time, as it only
provides information about the most-likely condition without giving details about other states (see
Appendix B). To obtain more insights into the entire latent process and its evolution, longitudinal
information related to each latent state can be reconstructed for each subject. For each patient-
specific observed data (x̃i, ỹi), the Expectation-Maximization algorithm provides the posterior

9



probabilities of variables U (t)
i

p
(t)
iu = P

(
U

(t)
i = u

∣∣Ỹi = ỹi, X̃i = x̃i

)
t = 1, . . . , T u ∈ {1, ..., k}, (4)

which can be estimated using recursions and involving the manifest distribution in Equation (3).
For each latent state u ∈ {1, . . . , k}, probabilities in (4) can be used to reconstruct the longitudinal
latent probability profile of the i-th subject, as follows:

piu =
{
p

(t)
iu = P

(
U

(t)
i = u

∣∣Ỹi = ỹi, X̃i = x̃i

)
, t = 1, . . . , T

}
. (5)

Each profile piu represents the probability over time t of being in latent state u for individual i,
given the observed complete response ỹi and covariates x̃i (if available). Applying this procedure,
k longitudinal latent probability profiles (one for each latent state) are obtained for each subject i,
which can be expressed as a k × T matrix

Pi =


pi1

. . .

. . .

pik

 =


p

(1)
i1 p

(2)
i1 . . . p

(T )
i1

. . . . . .

. . . . . .

p
(1)
ik p

(2)
ik . . . p

(T )
ik

 =
[
p

(1)
i p

(2)
i . . . p

(T )
i

]

with longitudinal latent probability profiles piu as row-components. Columns of Pi represent the
vectors p(t)

i of posterior probabilities over time t = 1, . . . , T and can be seen as Compositional
Data (CoDa) vectors belonging to the k-part Aitchison-Simplex Sk (Aitchison, 1986), i.e.,

p
(t)
i ∈ S

k =

{
p = [p1, ..., pk] ∈ Rk

∣∣∣pu > 0, u = 1, . . . , k;

k∑
u=1

pu = 1

}
. (6)

Due to the sum constraint in Equation (6), elements p(t)
iu of the composition p(t)

i are mutually
dependent features which only carry relative information. In this context, Aitchison (1986) intro-
duced a methodology based on log-ratio transformations of CoDa, which are required to remove
constraints and eventually to map the composition to a real space, allowing standard statisti-
cal techniques to be applied to the transformed data. In most practical settings, the choice of
transformation will depend on the preferred interpretation.

In the current framework, rather than considering the absolute individual elements p(t)
iu , it could

be of interest to examine over time the relative risk of being in a reference latent state u = R in
contrast with all the other latent states. Among the transformations introduced by Aitchison
(1986), this can be done considering the additive log-ratios of each CoDa vector p(t)

i , as follows:

alr
(
p

(t)
i

)
=

[
log

p
(t)
i1

p
(t)
iR

. . . log
p

(t)
iR−1

p
(t)
iR

log
p

(t)
iR+1

p
(t)
iR

. . . log
p

(t)
ik

p
(t)
iR

]T
=
[
r

(t)
i1 . . . r

(t)
iR−1 r

(t)
iR+1 . . . r

(t)
ik

]T
= r

(t)
i ∈ Rk−1

(7)

where R is the reference latent state which can be chosen arbitrary among {1, . . . , k}. Note that
this transformation maps each bounded sample into a real space

(
alr: Sk → Rk−1

)
and if one

of the p(t)
iu elements is exactly zero, a zero-handling procedure would be needed before applying
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the transformation. In that case, an easily applicable possibility would be to replace each zero
with a small appropriate value, modifying the non-zero values of the relative composition in a
multiplicative way in order to satisfy the sum constraint requirement. For further details see
Martín-Fernández et al. (2011). Applying this procedure to each compositions, k − 1 longitudinal
relative risk profiles (one for each non-reference state) are obtained for each subject i, which can
be expressed as a (k − 1)× T matrix

Ri =
[
r

(1)
i r

(2)
i . . . r

(T )
i

]
=



ri1

. . .

riR−1

riR+1

. . .

rik


where column-element r(t)

i are given by Equation (7) and row-element riu with u 6= R are the
longitudinal relative risk profile of state u for subject i, as follows:

riu =

{
r

(t)
iu = log

p
(t)
iu

p
(t)
iR

, u 6= R, t = 1, . . . , T

}
. (8)

Each profile riu represents the relative risk (in logarithmic scale) over time t of being in latent
state u 6= R with respect to the reference state R for individual i. Since this procedure is a
transformation-based analysis, transformed elements r(t)

iu must then be interpreted with respect to
the chosen reference. In particular, a positive (negative) value r(t)

iu at time t means that the risk for
subject i of being in latent state u 6= R is exp

{
r

(t)
iu

}
times higher (lower) than being in reference

state R.
For the application discussed in this work, the LOTox states summarize different levels of

overall toxicity burden, representing a proxy for patient’s quality of life. Therefore, for each
patient i, longitudinal latent probability profile in Equation (5) represents the probability over
time of being in the LOTox state u (i.e., the probability over time of developing an overall toxic
burden quantified by state u) given patient’s history: observed toxicity categories ỹi and personal
characteristics x̃i over treatment. Once the LOTox states have been identified, it is reasonable
to analyse and interpret the different results in relation to the state characterized by the lowest
overall toxicity burden (i.e., "good" toxic condition), which is chosen as the reference R. In this
way, the longitudinal relative risk profile in Equation (8) represents the risk of being in LOTox
condition u 6= R compared to the lowest toxic status. By reconstructing the longitudinal LOTox
profiles, it is possible to (i) describe patient’s response to therapy over cycles, (ii) quantify the
overall toxicity burden evolution over treatment cycles given patient’s history and (iii) investigate
the individual dynamic changes among latent states, detecting differences in health status and
quality of life among patients.

4 Data application

In this section, the results obtained from the application of the proposed LM model to the MRC
BO06/EORTC 80931 randomized clinical trial are reported. Statistical analyses were performed in
the R-software environment (R Core Team, 2020), using LMest package by Bartolucci et al. (2017).
R code for the current study is available at https://github.com/mspreafico/BO06-LOTox.
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Table 2: Results for Latent Markov (LM) model selection for longitudinal toxicity data with different
values of latent states k and different restrictions. The maximum log-likelihood of each model is denoted
by ˆ̀ and g is the number of free parameters. WBC, PLT and NEUT in models M10-12 refers to white
blood cell, platelets and neutrophils counts, respectively.
Latent Markov (LM) model k g ˆ̀ AIC BIC
M1: Unrestricted LM model without covariates 1 18 -8794.91 17625.81 17696.59

2 35 -8420.19 16910.38 17048.01
3 68 -8216.99 16569.98 16837.37
4 111 -8035.21 16292.42 16728.90
5 164 -7902.59 16133.18 16778.07
6 227 -7793.14 16040.29 16932.91
7 300 -7688.12 15976.24 17155.91
8 383 -7603.30 15972.61 17478.66
9 476 -7530.49 16012.98 17884.73

10 579 -7462.34 16082.68 18359.45
M2: Multinomial logit LM model without covariates 4 63 -8069.21 16264.43 16512.16
M3: M2 + regimen effect on initial prob. 4 66 -8065.49 16262.97 16522.50
M4: M2 + gender effect on initial prob. 4 66 -8061.73 16255.45 16514.98
M5: M2 + age effect on initial prob. 4 66 -8055.35 16242.69 16502.22
M6: M2 + regimen effect on transition prob. 4 75 -8063.37 16276.74 16571.66
M7: M2 + gender effect on transition prob. 4 75 -8060.33 16270.66 16565.58
M8: M2 + age effect on transition prob. 4 75 -8061.07 16272.14 16567.06
M9: M2 + time-var chemotherapy dose on both prob. 4 78 -8045.55 16247.10 16553.82
M10: M2 + time-var WBC count on both prob. 4 78 -8062.53 16281.07 16587.78
M11: M2 + time-var PLT count on both prob. 4 78 -8047.15 16250.30 16557.02
M12: M2 + time-var NEUT count on both prob. 4 78 -8062.67 16281.34 16588.05

4.1 Latent Markov model for longitudinal toxicity data

For each cycle t = 1, . . . , 6, let J = {naus, inf, oral, car, oto, neur} be the set of non-haematological
toxicities, representing response variables Y (t)

ij . The relative sets of response categories identified
in Section 2.2 were coded from 0 to cj − 1, as follows:

Cj = {0 : none, 1 : mild, 2 : moderate, 3 : severe} for generic toxicities (j = 1, 2, 3),

Cj = {0 : no, 1 : yes} for drug-specific toxicities (j = 4, 5, 6).

𝑌𝑖1
(1)

𝑌𝑖2
(1)

𝑌𝑖3
(1)

𝑌𝑖4
(1)

𝑌𝑖5
(1)

𝑌𝑖6
(1)

Cycle  𝑡 = 1

𝑼𝑖
(1)

…

Cycle 𝑡 = 2

𝑼𝑖
(2)

𝑎𝑔𝑒𝑖 − 15

Covariates

𝑿𝑖
(1)

𝑼𝑖
(6)

𝒀𝑖
(1)

𝒀𝑖
(2)

𝒀𝑖
(6)

Cycle 𝑡 = 6

Response
variables

Initial latent states 
prevalence 𝛿

𝑢|𝒙𝑖
(1)

Transition probabilities 𝜏𝑢|ഥ𝑢

Conditional response
probabilities 𝜙𝑗𝑦|𝑢

Latent variables

nausea infection cardiac
toxicity

oral
mucositis

ototoxicity neurological
toxicity

Figure 2: Path diagram for a given subject i under the latent Markov model M5 with non-haematological
toxicities as response variables, time-homogeneous transitions and age at randomization as covariate af-
fecting the initial probabilities of the latent variables.

The procedure described in Section 3.3 was applied to first identify the number of latent states
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k and then select the covariates to be included in the final model. Age, gender and allocated
regimen at randomization were considered as time-fixed covariates, while percentage of achieved
chemotherapy dose up to cycle t, white blood cell, neutrophils and platelets counts measured at
each cycle were considered as time-varying ones. Results are shown in Table 2. The unrestricted
LM model without covariates (M1) with the minimum BIC (16728.90) was obtained for k = 4,
identifying a latent process with four LOTox states. Moreover, the basic model M2 with initial and
transition probabilities parametrized by multinomial logit was preferable (BIC = 16512.16) to the
unrestricted model M1 with the same number of latent states. Several models (M3-M12) with four
latent states, obtained from M2 adding covariates effect to initial and/or transition probabilities,
were fitted. By comparing models M3-M12 with M2, age (centred with respect to the mean) at
randomization was the only covariate leading to a significant improvement in terms of both BIC
and AIC (M5). Model M5, whose path diagram for a given subject i is shown in Figure 2, was
then selected as final model:

• initial probabilities were associated with patient’s age at randomization and Equations (1)
for a patient i became

log
δu|agei
δ1|agei

= β0u + β1u · (agei − 15) u = 2, 3, 4; (9)

• transition probabilities were assumed time-homogeneous and Equations (2) became

log
τu|ū

τū|ū
= γ0ūu ū, u = 1, 2, 3, 4 with ū 6= u. (10)

Figure 3 shows the estimated conditional response probabilities φ̂jy|u for each type of non-
haematological toxicity under the selected model M5, which can be used for interpreting the latent
states. In each toxicity-panel, each column refers to a different latent state u ∈ {1, 2, 3, 4}. People in
good conditions are allocated in state 1, since for all non-haematological toxicities the most probable
category was the absence of the adverse event. State 2 seems to correspond to patients with non-
severe nausea and it was the only state where drug-specific toxicities occurred with a relevant
probability, especially for ototoxicity where φ̂51|2 = 0.429. State 3 seems to be characterized
by patients undergoing only nausea or vomiting, mostly moderate or severe. In State 4 people
with multiple generic toxicities - mostly severe or moderate - with the certainty of having nausea
(φ̂10|4 = 0) are present. Based on these results, the following LOTox states labelling were derived:

• State 1: quite good conditions (non-toxic) → no LOTox

• State 2: non-severe nausea with possible drug-specific AEs → moderate LOTox

• State 3: moderate/severe nausea/vomiting only → low LOTox (limited to nausea)

• State 4: multiple severe/moderate generic toxicities → high LOTox.

Note that the states numbering (from 1 to 4) does not correspond with the progressive severity of
overall toxicity burden (from no to high).

Table 3 displays the estimated regression parameters β̂u =
(
β̂0u, β̂1u

)
for the initial probabili-

ties in Equation (9) and the estimated transition probabilities τ̂u|ū in Equation (10). The estimated
intercepts indicates that for 15-year patients the most prevalent state at cycle 1 was low LOTox
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Figure 3: Estimated conditional response probabilities φ̂jy|u for the final LM model in Figure 2. Each
panel refers to a different toxicity j ∈ J = {1 : naus, 2 : inf, 3 : oral, 4 : car, 5 : oto, 6 : neur}. Each row
refers to a response categories y ∈ {none; mild; moderate; severe} for j = 1, 2, 3 (generic toxicities) and
y ∈ {no; yes} for j = 4, 5, 6 (drug-specific toxicities). Each column refers to a latent states u ∈ {1, 2, 3, 4}.

Table 3: Estimated regression parameters affecting the distribution of the initial probabilities in Equation
(9) and estimated transition probabilities in Equation (10).

Regression parameters for initial probabilities
u 2 3 4

Intercept β̂0u -1.2679 1.0138 -0.3031
Age β̂1u 0.1858 0.0014 0.0512
Transition probabilities from ū to u (τ̂u|ū)
ū \ u 1 2 3 4
1 0.9674 0.0167 0.0032 0.0127
2 0.0525 0.9214 0.0245 0.0016
3 0.1070 0.0526 0.7581 0.0824
4 0.1555 0.0356 0.0868 0.7221

state 3 (limited to nausea), followed by no LOTox state 1, high LOTox state 4 and moderate
LOTox state 2. The estimates for age were all positive, indicating that older individuals reported
a higher overall severity at the first cycle compared to younger patients. The estimated transition
probabilities τ̂u|ū shows a quite high persistence in the same state, especially for non-toxic state
1 and moderate state 2, where drug-specific AEs may also lead to permanent conditions (see Ap-
pendix Table A.1). The highest transition probability was 15.6% and was observed from the high
LOTox state 4, where the effects of generic AEs are reversible and temporary, to the first non-toxic
state. Other transitions were observed from high LOTox state 4 to nausea/vomiting only in state
3 (8.7%) and from low LOTox state 3 (limited to nausea) to no LOTox state 1 (10.7%) or high
LOTox state 4 (8.2%). The remaining transition probabilities were always lower than 8%.

Starting from these parameter estimates, Figure 4 (left panel) displays the estimated vectors of
initial probabilities δ̂i =

(
δ̂1|agei , δ̂2|agei , δ̂3|agei , δ̂4|agei

)
for patients aged 10, 15 and 20 years old

and the vector δ̄ =
(
δ̄1, δ̄2, δ̄3, δ̄4

)
= (0.202, 0.093, 0.557, 0.148) obtained as average of vectors δ̂i

over all the 377 subjects in the sample. On average, at cycle 1 low LOTox state 3 of subjects with
nausea/vomiting only had the largest dimension (55.7%), followed by 20.2% of individuals for no
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Figure 4: Left panel: estimated initial probabilities of latent states for patients aged 10, 15 and 20 years
old and average δ̄ of the initial probabilities over all the 377 subjects in the sample.
Right panel: latent states prevalences over cycles t = 1, . . . , 6 averaged over all the subjects.
Different colours refer to different Latent Overall Toxicity (LOTox) state (green: no LOTox state 1 ; yellow:
low LOTox state 3 ; orange: moderate LOTox state 2 ; red: high LOTox state 4 ).

LOTox state 1. No and low LOTox states together, representing the states with the lowest overall
toxic severity, accounted for more than 75% of the patients, whereas less than 25% belonged to
the latent states corresponding to the worst toxic conditions (moderate and high LOTox states 2
and 4).

Right panel in Figure 4 shows the estimated average probability of each latent state at each
time-occasion, i.e., the latent states prevalences averaged over all the subjects at each cycle. On
average, the presence of low overall severity limited to nausea (state 3) decreased over cycles from
55.7% to 19.3% (t = 6), whereas no and moderate overall toxicity (state 1 and 2, respectively)
increased from 20.2% to 49.7% and from 9.2% to 18.9%. The presence in high overall severity
(state 4) was rather stable over cycles ranging in 10.1%-15.6%, with peaks at cycles 2 and 3.

4.2 Longitudinal profiles of Latent Overall Toxicity

Once the parameters were estimated for the final LM model, the longitudinal latent probability
profiles piu were reconstructed for each patient i and latent state u, as explained in Section 3.4.
In case of longitudinal toxicity data, profiles piu in Equation (5) can be also named longitudinal
Probability profiles of LOTox (P-LOTox ) since they represent the probability over cycles t =

1, 2..., 6 of being in the LOTox state u ∈ {1, 2, 3, 4} for each patient i, given the observed toxic
categories over treatment and individual characteristics (i.e., the age at randomization).

Figure 5 shows the longitudinal P-LOTox profiles piu for four patients i = {A,B,C,D} aged 15
years old and with different observed toxic categories over cycles, as reported in Appendix C. Each
panel refers to a different patient and displays the individual realisations of the latent process over
cycles. Different patterns of overall toxicity evolution during treatment can be observed between
subjects, based on patient-specific observed toxicity data. As an example, right panel shows that
at cycle 1 patient D had probabilities 79.6% of being in low LOTox state, 15.5% of having a non-
toxic condition, 4.5% and 0.4% of high and moderate LOTox, respectively. Then, the probabilities
evolved over the cycles, as shown by the four profiles, ending with a 99.7% probability of being in
quite good conditions at the end of treatment.
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P−LOTox: longitudinal Probability profiles of LOTox over cycles
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Figure 5: Longitudinal Probability profiles of Latent Overall Toxicity (P-LOTox) piu for four 15 year-
old patients at randomization. Each panel refers to a different patient i = {A,B,C,D} in Appendix C.
Different colours refer to different latent states u ∈ {1, 2, 3, 4} (green: no LOTox state 1 ; yellow: low
LOTox state 3 ; orange: moderate LOTox state 2 ; red: high LOTox state 4 ).

RR−LOTox: longitudinal Relative Risk profiles of LOTox over cycles
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Figure 6: Longitudinal Relative Risk profiles of Latent Overall Toxicity (RR-LOTox) riu for four 15
year-old patients at randomization. Each panel refers to a different patient i = {A,B,C,D} in Appendix
C. Reference LOTox state is no LOTox state R = 1. Different colours refer to different non-reference
latent states u ∈ {2, 3, 4} (light-blue: low LOTox state 3 vs no LOTox ; blue: moderate LOTox state 2 vs
no LOTox ; purple: high LOTox state 4 vs no LOTox ).

As mentioned in Section 4.1, the lowest toxic burden is represented by the non-toxic state 1
of patients in quite good conditions, which was chosen as reference state (R = 1: no LOTox )
to reconstruct the longitudinal latent relative risk profiles riu for each patient i and latent state
u ∈ {2, 3, 4}, as explained in Section 3.4. In case of longitudinal toxicity data, profiles riu in
Equation (8) can be also called longitudinal Relative Risk profiles of LOTox (RR-LOTox ) since
they represent for each patient i the relative risk (in logarithmic scale) over cycles t = 1, 2..., 6 of
being in the LOTox state u ∈ {2, 3, 4} rather than in the non-toxic state R = 1, given the observed
toxic categories over treatment and individual characteristics (i.e., the age at randomization).

Figure 6 shows the longitudinal RR-LOTox profiles riu for patients i = {A,B,C,D} in Ap-
pendix C. Each panel refers to a different subject. Different toxic risk progressions during treatment
may be observed among patients, depending on their observed toxicity data. For example, right
panel shows that at first cycle patient D’s risk of being in low LOTox state was 5.14 times higher
the risk of having a non-toxic condition, whereas risks of high and moderate LOTox were 0.29 and
0.03 times lower, respectively. Then, RR-LOTox profiles evolved over the cycles, as shown by the
four trajectories, ending up with negligible relative risks (< 0.01) for low/moderate/high LOTox
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conditions compared with a non-toxic condition at the end of treatment.
Both longitudinal P-LOTox and RR-LOTox profiles summarize and quantify the overall toxic

risk over time for each patient based on observed individual characteristics, capturing differences
in the overall history of toxicity across patients. P-LOTox profiles reflect the absolute size of
the probabilities over time for each latent state, whereas RR-LOTox profiles focus on the relative
risk with respect to the clinically desirable condition, i.e., the non-toxic one. Both information in
cooperation with medical staff could lead to improvements in the definition of new guidelines and
useful tools for healthcare assessment and treatment planning.

5 Discussion

Due to the presence of multiple types of Adverse Events (AEs) with different levels of severity,
identifying the actual extent of toxic burden and investigating the evolution of patient’s overall
toxicity represent challenging problems in cancer research. AEs are one of the main factors deter-
mining clinical decisions in medical interventions and treatment planning, playing a fundamental
role in health assessment and patient monitoring. The development of statistical methods able
to summarize multiple AEs and to deal with the complexity of chemotherapy data, considering
both the longitudinal and categorical aspects of toxicity levels progression, is then necessary and
clinically relevant.

This paper proposed a new taxonomy based on LM model with covariates and CoDa methods
to provide novel techniques for investigating the evolution of the latent overall toxicity condition
for each patient over chemotherapy treatment. This is important in light of the need to develop
new tools to support clinical decisions in tailored interventions for effective management of adverse
symptoms and treatments. This approach was applied to longitudinal chemotherapy data for
osteosarcoma patients from MRC BO06/EORTC 80931 Randomized Controlled Trial, where toxic
AEs were registered over cycles according to CTCAE grades (U.S. Department of Health and
Human Services, 2006) through apposite case report forms, as indicated by the protocol (Lewis
et al., 2007).

By assuming the existence of a LM chain for the LOTox condition of a patient, the proposed
taxonomy identified sub-populations of patients characterized by a common distribution of toxic
categories, and by a similar overall toxicity burden. Four LOTox states were found, representing
different levels of multiple AEs severity: (i) people in quite good conditions (no LOTox state 1 ),
(ii) patients undergoing only nausea or vomiting - mostly moderate or severe - (low LOTox state
3 ), (iii) subjects with non-severe nausea and the possibility to develop drug-specific AEs (moderate
LOTox state 2 ), or (iv) people with multiple severe/moderate generic toxicities (high LOTox state
4 ). The LM approach estimated the initial prevalence of each state and the probability of individual
changes over time. This allowed to reconstruct the patient-specific longitudinal LOTox profiles to
assess the dynamic evolution of overall toxicity burden during treatment for each subject.

Both longitudinal P-LOTox and RR-LOTox profiles captured the individual realisations of the
latent process over cycles, showing different patterns of overall toxicity evolution during treatment
among patients. On one hand, P-LOTox profiles illustrated the latent process using absolute terms,
giving insights into the actual probabilities of being in the various LOTox states over cycles. On
the other hand, RR-LOTox profiles – obtained by additive log-ratios transformation – reported
relative risk measures to emphasize the difference between low/moderate/high LOTox states and
the clinically desirable non-toxic condition. These aspects can not be investigated using a simple
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path prediction (see Appendix B). Together, absolute probabilities and relative risks provide a
complete picture of the individual LOTox dynamics during treatment, which may be considered as
a proxy for patient’s quality of life and used to describe patient’s response to therapy over cycles
in terms of toxic AEs.

This retrospective exploratory analysis has some limitations. The procedure used to select
the final model may miss the best available one, since not all possible models have been fitted.
However, it is computationally efficient and follows a standard stepwise forward selection approach.
The analysis was performed on a single trial in osteosarcoma, considering only non-haematological
toxicities. Other factors of potential interest were not routinely recorded during the trial, including
among others nephrotoxicity, lymphocytes count or tumour size. To get more information about
the robustness of the model developed in this study, it should be applied to other osteosarcoma
data provided that the toxicity are longitudinally recorded.

On the other hand, this LM procedure can be adapted and applied to other cancer studies.
Provided that toxicities are recorded according to the CTCAE scale or an analogous grading system,
the LM approach represents a general and flexible method to quantify the personal evolution of
overall toxic risk during chemotherapy. Moreover, this work opens doors to further researches,
both in the field of statistical methodology development as well as in cancer research. The additive
log-ratios transformation allowed to remove non-negative and sum-to-one constraints of the CoDa
vectors, mapping the compositions to a real space and opening up the possibility to apply standard
statistical techniques to the transformed data. Patients can be stratified in different risk groups
to be used during treatment, based on their different LOTox dynamics. Association between
longitudinal LOTox profiles and survival outcomes may provide new insights in the treatment
effect during the evolution of the disease.

In conclusion, the proposed approach provided novel techniques to summarise and quantify
patient’s overall toxic risk and its evolution during treatment. In cooperation with medical staff,
these techniques could lead to improvements in the definition of new guidelines and useful tools for
healthcare assessment and treatment planning, trying to reduce the impact of therapies in terms
of toxic AEs.
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Appendix

A MRC BO06/EORTC 80931 RCT protocol

Data from the MRC BO06/EORTC 80931 Randomized Controlled Trial (RCT) for patients with
non-metastatic high-grade osteosarcoma recruited between 1993 and 2002 were analysed (Lewis
et al., 2007). The trial randomised patients between conventional treatment with doxorubicin
(DOX) and cisplatin (CDDP) given every 3 weeks (Reg-C ) versus a dose-intense regimen of the
same two drugs given every 2 weeks (Reg-DI ), supported by granulocyte colony-stimulating factor.
Chemotherapy was administered for six cycles (a cycle is a period of either 2 or 3 weeks depending
on the allocated regimen), before and after surgical removal of the primary osteosarcoma. In both
arms, DOX (75 mg/m2) plus CDDP (100 mg/m2) were given over six cycles. Surgery to remove
the primary tumour was scheduled at week 6 after starting treatment in both arms, that is, after
2 cycles (2 × [DOX+CDDP]) in regimen-C and after 3 cycles (3 × [DOX+CDDP]) in regimen-DI.
Postoperative chemotherapy was intended to resume 2 weeks after surgery in both arms. Figure A.1
shows the trial design. Laboratory tests were usually performed before each cycle of chemotherapy
(in some cases also during and after the cycle) in order to monitor patient’s health status and the
development of toxicities or adverse events. Non-haematological chemotherapy-induced toxicity for
nausea/vomiting, infection, oral mucositis, cardiac toxicity, ototoxicity and neurological toxicity
were graded according to the Common Terminology Criteria for Adverse Events Version 3 (CTCAE
v3.0) by U.S. Department of Health and Human Services (2006), with grades ranging from 0 (none)
to 4 (life-threatening), as shown in Table A.1. Delays or chemotherapy dose reductions during
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Regimen-DI:  6 cycles of DOX+CDDP every 2 weeks (DOX: 75 mg/m2/cycle;  CDDP: 100 mg/m2/cycle) 

Regimen-C:   6 cycles of DOX+CDDP every 3 weeks (DOX: 75 mg/m2/cycle;  CDDP: 100 mg/m2/cycle)  

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

C1 C2 Surgery C3 C4 C5 C6

 Week

122 days 

1 2 3 4 5 6 7 8 9 10 11 12 13

C1 C2 C3 Surgery C4 C5 C6

 Week

87 days 

Figure A.1: Patients are randomized at baseline to one of the two regimens, with the same anticipated
cumulative dose but different duration.

Table A.1: Toxicity coding based on Common Terminology Criteria for Adverse Events (CTCAE) v3.0
by U.S. Department of Health and Human Services (2006) for non-haematological chemotherapy-induced
toxicity related to nausea/vomiting, infection, oral mucositis, cardiac toxicity, ototoxicity and neurological
toxicity.

Toxicity Grade 0 Grade 1 Grade 2 Grade 3 Grade 4
Nausea/Vomiting None Nausea Transient vom-

iting
Continuative
vomiting

Intractable
vomiting

Infection None Minor infection Moderate infec-
tion

Major infection Major infection
with hypoten-
sion

Oral Mucositis No change Soreness or ery-
thema

Ulcers: can eat
solid

Ulcers: liquid
diet only

Alimentation
not possible

Cardiac toxicity No change Sinus tachycar-
dia

Unifocal PVC
arrhythmia

Multifocal PVC Ventricular
tachycardia

Ototoxicity No change Slight hearing
loss

Moderate hear-
ing loss

Major hearing
loss

Complete hear-
ing loss

Neurological tox-
icity

None Paraesthesia Severe paraes-
thesia

Intolerable
paraesthesia

Paralysis

treatment were possible in case of toxicity. Additional details can be found in the primary analysis
of the trial by Lewis et al. (2007).

B Path prediction for latent Markov models

In latent Markov models literature, once the model has been estimated, a decoding procedure is

usually implemented to obtain a path prediction
∗
ui =

(
∗
u

(1)

i , . . . ,
∗
u

(T )

i

)
for each subject i, on the

basis patient-specific observed data over time.
Among the developed procedures, local decoding finds the most likely state occupied by a subject

at any time point t: elements of
∗
ui can be obtained by maximizing the posterior probabilities at
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each time t in Equation (4), as follows

∗
u

(t)

i = max
u∈{1,...,k}

p
(t)
iu for all t = 1, ..., T.

As an alternative, global decoding finds the most likely sequence of latent states for a given
subject on the basis of the responses he/she provided. It is based on an adaptation of the Viterbi
algorithm (Viterbi, 1967; Juang and Rabiner, 1991) which maximises the joint conditional proba-
bility for each subject i, i.e.,

∗
ui = arg max

u
P
(
Ui = u

∣∣Ỹi = ỹi, X̃i = x̃i

)
,

through a forward-backward recursion. For further details see Bartolucci et al. (2013, 2014).

B.1 Data Application: LOTox sequences

In case of longitudinal toxicity data, path prediction
∗
ui represents the sequence of LOTox states

over time for subject i. Let us consider the four patients aged 15 years old with different ob-
served toxic categories over cycles reported in Appendix C. The LOTox sequences for patients
i = {A,B,C,D} can be then obtained as

(i) the sequences of the most probable LOTox states at each cycle t (i.e., local decoding)

∗
uA = (3, 3, 4, 4, 4, 4),

∗
uB = (3, 3, 3, 2, 2, 2),

∗
uC = (3, 3, 3, 3, 3, 3),

∗
uD = (3, 1, 1, 1, 1, 1),

(ii) the sequences of the most likely LOTox states across cycles (i.e., global decoding)

∗
uA = (3, 3, 4, 4, 4, 4),

∗
uB = (3, 3, 3, 2, 2, 2),

∗
uC = (3, 3, 3, 3, 3, 3),

∗
uD = (3, 3, 1, 1, 1, 1).

Differences between (i) and (ii) are due to the different types of probabilities that are maximized,
respectively posterior and joint conditional probabilities. The individual LOTox sequence allows to
predict the LOTox state to which every patient belongs at a given occasion. However, it represent
a summary of how the entire latent process evolves over time for a patient, as it only provides
information about the most-likely condition without giving details about other states.

C Observed toxic categories over cycles for patients A–D

Table C.1 reports the observed toxic categories over cycles related to four 15-year patients named
A, B, C and D, whose relative longitudinal probability/relative risk profiles of LOTox are shown in
Figures 5 and 6, respectively .
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Table C.1: Observed toxicity categories over cycles t = 1, ..., 6 for four random patients i ∈ {A,B,C,D}
aged 15 years old. Categories for generic toxicities (nausea, infection and oral mucositis) are {0 : none, 1 :
mild, 2 : moderate, 3 : severe} (j = 1, 2, 3). Categories for drug-specific toxicities (cardiac toxicity,
ototoxicity and neurological toxicity) are {0 : no, 1 : yes} (j = 4, 5, 6). For each patient i the complete
response vector is ỹi =

(
y
(1)
i , . . . ,y

(1)
i

)
where y(t)

i =
(
y
(t)
i1 , . . . , y

(t)
i6

)
.

Patient i Cycle t agei Naus y(t)i1 Inf y(t)i2 Oral y(t)i3 Car y(t)i4 Oto y(t)i5 Neur y(t)i6

A 1 15 3 0 1 0 0 0
2 3 1 0 0 0 0
3 3 3 0 0 0 0
4 3 2 1 0 0 0
5 3 0 2 0 0 0
6 3 0 1 0 0 0

B 1 15 1 0 0 0 0 0
2 1 0 0 0 0 0
3 3 0 0 0 0 0
4 1 0 0 0 1 0
5 1 0 0 0 1 0
6 1 0 0 0 1 0

C 1 15 2 0 0 0 0 0
2 1 0 0 0 0 0
3 1 0 0 0 0 0
4 1 0 0 0 0 0
5 1 0 0 0 0 0
6 1 0 0 0 0 0

D 1 15 2 0 0 0 0 0
2 2 0 2 0 0 0
3 0 0 0 0 0 0
4 0 0 0 0 0 0
5 0 0 0 0 0 0
6 0 0 0 0 0 0
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