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Abstract

The modern development of data acquisition technologies in many industrial pro-

cesses is facilitating the collection of quality characteristics that are apt to be modelled

as functions, which are usually referred to as pro�les. At the same time, measure-

ments of concurrent variables, which are related to the quality characteristic pro�les,

are often available in a functional form as well, and usually referred to as covariates.
In order to adjust the monitoring of the quality characteristic pro�les by the e�ect

of this additional information, a new functional control chart is elaborated on the

residuals obtained from a function-on-function linear regression of the quality charac-

teristic pro�le on the functional covariates. Furthermore, by means of a Monte Carlo

simulation study, the performance of the proposed control chart are compared with

those of other charts proposed in the literature. Eventually, a real-case study in the

shipping industry is presented with the purpose of monitoring ship fuel consumption

and thus, CO2 emissions from a Ro-Pax ship, with particular regard to detecting CO2

emission reduction after a speci�c energy e�ciency initiative.
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1 Introduction

In many industrial contexts, the development in data acquisition systems allow massive

amounts of data to be recorded at high-rate and modelled as functions de�ned on multidi-

mensional domains, i.e., functional data (Ramsay, 2005; Ferraty and Vieu, 2006; Hsing and

Eubank, 2015). In this scenario, new statistical process control (SPC) methods must be

developed to monitor and control the stability over time of the quality characteristic, when

functional data are available. In the classical SPC literature, functional data are more of-

ten referred to as pro�les (Woodall et al., 2004). An overview of the main achievements in

pro�le monitoring can be found in Noorossana et al. (2012). Other relevant contributions

include the works of Jin and Shi (1999); Colosimo and Pacella (2010); Grasso et al. (2016,

2017); Menafoglio et al. (2018). As in the classical SPC (i.e., where data are scalars) pro�le

monitoring control charts have the task of continuously monitoring the quality characteris-

tic and of triggering a signal when assignable sources of variations (i.e. special causes) act

on it. When this happens, the process is said to be out-of-control (OC). On the contrary,

the process is said to be in-control (IC) when only normal sources of variation (i.e., common

causes) apply.

In practice, there are situations where the quality characteristic is in�uenced by one or

more covariates. In this scenario, if one of these covariates manifests itself with an extreme

realization, the quality characteristic may wrongly be judged to be OC. Otherwise, there

may be situations where the covariates are not extreme and the quality characteristic

may wrongly appear IC. As well as, the quality characteristic may wrongly appear IC,

because the variance explained by the covariates is overlooked. In the multivariate SPC

literature these issues have been addressed by means of the regression control chart (RCC)

(Mandel, 1969). The basic idea behind this chart is to consider the quality characteristic

after being adjusted for the e�ects of the covariates, that is monitoring the residuals of

the regression of the quality characteristic on the covariates. Hawkins (1991) applied this

idea to the multivariate setting by considering the regression of a variable on covariates

that are assumed to be IC, and developed Shewhart and cumulative sum (CUSUM) control

charts (Montgomery, 2007) based on the regression residuals. Hawkins (1993) applied the

regression adjustment to particular kind of processes, said cascade processes in order to
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take advantage of the correlation between measures. Another application of the idea of

regression adjustment appeared in Wade and Woodall (1993) where the so called cause-

selecting control chart has been used for monitoring and control multistage processes. Other

studies on the RCC include those of Shu et al. (2004), which studied the e�ects of the

parameter estimation on the run length performance of the control chart, and those of

Zhou and Goh (2016), where the in�uence of the regression model choice on the control

chart performance was analysed.

In the literature of the RCC, the model used to describe the relation between the

quality characteristic (hereinafter referred to also as response variable) and the covariates

(hereinafter referred to also as predictor variables) is the linear regression model. In the

functional context, functional linear regression models with one scalar response and one

functional covariate have been deeply analysed in Cardot et al. (2003) and Hall et al.

(2007); whereas, the extension to functional response was study by Ramsay (2005) and

Yao et al. (2005a). Functional linear models with functional response and multiple func-

tional covariates have been far less studied. Matsui et al. (2009) developed estimation and

evaluation methods based on regularized functional regression, whereas Fan et al. (2014)

introduced the functional response additive model estimation (FRAME) and applied it to

a case study in the online virtual stock markets. Chiou et al. (2016) proposed a func-

tional liner model where both the response and the predictor variables are multivariate

functional data, which relies on the multivariate functional principal component (MFPC)

(or Karhunen�Loève) decomposition (Chiou et al., 2014; Happ and Greven, 2018).

In this paper, we propose a new framework for monitoring a functional quality charac-

teristic when functional covariates are available. This framework is henceforth referred to

as functional regression control chart (FRCC) and can be regarded as an extension of the

RCC to the functional context. In particular, we consider the case when the model which

links the functional response and functional covariates is linear and, we monitor residuals

by using the pro�le monitoring approach introduced by Woodall et al. (2004) and then

used in Noorossana et al. (2012); Grasso et al. (2016); Pini et al. (2018), which is based on

the simultaneous application of the Hotelling 's T 2 and the squared prediction error (SPE)

control charts.
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A Monte Carlo simulation study is performed to quantify the FRCC average run length

(ARL) (Montgomery, 2007), in identifying mean shifts in the functional response in pres-

ence or absence of drifts in the covariate means. This is done by comparing the proposed

FRCC with other two control charts widely used in both the industrial context and the

literature. In addition, a real-case study in the shipping industry is presented to illustrate

the practical applicability of the proposed control chart. In particular, the FRCC is shown

to adequately identify reductions of cumulative fuel consumption, and thus CO2 emissions

(which are stoichiometrically related to it) after an energy e�ciency initiative (EEI) was

performed o�-line on the considered Ro-Pax ship. In addition, a functional bootstrap

procedure is developed and applied to evaluate uncertainty of the obtained results.

The paper is structured as follows. Section 2 introduces the proposed FRCC. In Section

3 the performance of the FRCC is compared to that of other two popular control charts used

for the same purpose. The real-case study is presented in Section 4. Section 5 concludes

the paper. Supplementary Materials for the article are available online. All computations

and plots have been obtained using the programming language R (R Core Team, 2018).

2 The Functional Regression Control Chart Framework

The proposed FRCC can be regarded as a general framework for pro�le monitoring that

can be divided into three main steps. Firstly, (i) de�ne a functional regression model to be

�tted

Y = g (X) + ε, (1)

where Y is the functional response variable and ε is a functional error term, both de�ned

on the compact domain T , g is a generic function of a vector X of random functional

covariates X1, . . . , Xp, de�ned on the compact domain S.

Secondly, (ii) de�ne the estimation method of the chosen model, and, thirdly (iii) de�ne

the monitoring strategy of the functional residual de�ned as

e = Y − Ŷ , (2)

4



where Ŷ is the �tted value of Y .

In what follows, after some preliminaries, we describe the FRCC when the following

choices are made: (i) the multivariate functional linear regression (MFLR) model (Section

2.1) is set for the �rst step, (ii) an estimation method based on the Karhunen-Loève's

decomposition (Section 2.2) is chosen for the second, and (iii) the Hotelling 's T 2 and the

squared prediction error (SPE) control charts (Section 2.3) are built in the third step.

Preliminaries

Assume that X1, . . . , Xp and Y have smooth realizations in L2 (S) and L2 (T ), i.e., the

Hilbert spaces of square integrable functions de�ned on the compact sets S and T , respec-

tively. Moreover, let us denote with HX = (L2 (S))
p the Hilbert space whose elements are

vectors of functions in L2 (S). Then, X = (X1, . . . , Xp)
T is random vector of functions

whose realizations are in HX . Accordingly, for a compact set Z, the inner product of two

functions f and g in L2 (Z) is 〈f, g〉 =
∫
Z f (z) g (z) dz, with dz the Lebesgue measure on Z,

and the norm is ‖·‖ =
√
〈·, ·〉. The inner product of two function vectors f = (f1, . . . , fp)

T

and g = (g1, . . . , gp)
T in HX is 〈f ,g〉HX =

∑p
i=1〈fi, gi〉 and the norm is ‖·‖HX =

√
〈·, ·〉HX .

Further, assume that X has mean function µX =
(
µX1 , . . . , µ

X
p

)T , with µXi = E (Xi)

and covariance function CX = {CX
i,j}1≤i,j≤p, with CX

i,j (s1, s2) = Cov (Xi (s1) , Xj (s2)), for

s1, s2 ∈ S. Analogously, let µY = E (Y ) and CY (t1, t2) = Cov (Y (t1) , Y (t2)), for t1, t2 ∈ T ,

be the mean and the covariance function of the response variable Y (t), respectively.

The transformation approach of Chiou et al. (2014) is here used, as covariates can

exhibit di�erent amount of variation. In what follows, all the operations between functions

have to be considered pointwise. Let Xstd =
(
Xstd

1 , . . . , Xstd
p

)T
=
(
VX
)−1 (

X− µX
)
, be the

vector of the standardized covariates, with the matrix VX = diag
((
vX1
)1/2

, . . . ,
(
vXp
)1/2
)

where vXi (s) = CX
i,i (s, s), for s ∈ S. The response variable Y is also standardized as

Y std =
(
vY
)−1/2 (

Y − µY
)
, with vY (t) = CY (t, t), for t ∈ T . Let CX

std and CY
std be the

covariance functions of the standardized covariate and response variables, respectively. Let

us consider for CX
std the expansion CX

std (s1, s2) =
∑∞

i=1 λ
X
i ψ

X
i (s1)ψX

i (s2)T , for s1, s2 ∈ S,

where {ψX
i } are the orthonormal (i.e., 〈ψX

i ,ψ
X
j 〉HX = δij, with δij the Kronecker delta)

multivariate eigenfunctions of CX
std corresponding to the eigenvalues {λXi } in descending
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order. Similarly, we consider for CY
std the expansion C

Y
std (t1, t2) =

∑∞
i=1 λ

Y
i ψ

Y
i (t1)ψYi (t2),

for t1, t2 ∈ T where {λYi } and {ψYi } are de�ned in the same way. Note that both expansions

are well de�ned in virtue of the multivariate and univariate versions of the Mercer's Theorem

(Happ and Greven, 2018), respectively.

2.1 The Model

For the MFLR model we assume that the covariates Xstd linearly in�uence the response

Y std as follows

Y std (t) =

∫
S

(β (s, t))T Xstd (s) ds+ ε (t) t ∈ T , (3)

that is a particular version of Equation (1). The regression coe�cient vector β =

(β1, . . . , βp)
T , is in (L2 (S × T ))

p, whose elements are vectors of bivariate functions in

L2 (S × T ) (i.e., the space of square integrable function on the closed interval S × T ),

and the random error function ε has E (ε) = 0 and Var (ε) = v2
ε , and is independent of

Xstd. Thus, the regression function is

E
(
Y std (t) |Xstd

)
=

∫
S

(β (s, t))T Xstd (s) ds t ∈ T . (4)

2.2 The Estimation Method

From the multivariate and univariate Karhunen-Loève's Theorem (Happ and Greven, 2018),

standardized covariate and response variables can be represented as follows

Xstd =
∞∑
i=1

ξXi ψ
X
i Y std =

∞∑
i=1

ξYi ψ
Y
i , (5)

where ξXi = 〈Xstd,ψX
i 〉HX and ξYi = 〈Y std, ψYi 〉 are random variables, said principal com-

ponent scores or simply scores, such that E
(
ξXi
)

= 0, E
(
ξXi ξ

X
j

)
= λXi δij and E

(
ξYi
)

= 0,

E
(
ξYi ξ

Y
j

)
= λYi δij, respectively. In this context, the eigenfunctions {ψX

i } and {ψYi } (as de-

�ned in the preliminaries) are referred to as principal components as well. As demonstrated
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in Chiou et al. (2016), the regression coe�cient vector is as follows

β (s, t) =
∞∑

i,j=1

E
(
ξXi ξ

Y
j

)
λXi

ψX
i (s)ψYj (t) s ∈ S, t ∈ T , (6)

which is also the minimizer of the expected squared L2 (T ) distance between Y std and∫
S (f (s, ·))T Xstd (s) ds, with f ∈ (L2 (S × T ))

p, i.e.

β = argmin
f∈(L2(S×T ))p

E‖Y std −
∫
S

(f (s, ·))T Xstd (s) ds‖2. (7)

By plugging Equation (5) and Equation (6) into Equation (4), and using the orthonor-

mality of {ψX
i }, we obtain

E
(
Y std (t) |Xstd

)
=

∞∑
i,j=1

bijξ
X
i ψ

Y
j (t) t ∈ T , (8)

where bij = E
(
ξXi ξ

Y
j

)
/λXi . Therefore, the best least squares predictor of Y given X is

E (Y (t) |X) = µY (t) + vY (t)1/2E
(
Y std (t) |Xstd

)
t ∈ T . (9)

An estimation method of the above unknown quantities is described in the Supplemen-

tary Materials. Broadly speaking, it is based on the truncated versions of Equation (5),

namely

Xstd
L =

L∑
i=1

ξXi ψ
X
i Y std

M =
M∑
i=1

ξYi ψ
Y
i , (10)

where the number of retained scores L and M are chosen such that they explain at least

given proportions δX and δY of total variation respectively (Ramsay, 2005). The estimation

method provides estimators β̂LM of β, in Equation (3), and Ŷ std
LM of E

(
Y std|Xstd

)
, in

Equation (8), through the estimators ĈX
std and Ĉ

Y
std of C

X
std and C

Y
std calculated using the

sample mean and covariance functions (Hsing and Eubank, 2015).
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2.3 The Monitoring Strategy

Upon using the estimator Ŷ std
LM , the functional residual in Equation (2) particularizes as

estd = Y std − Ŷ std
LM . (11)

To monitor the residuals, we follow the strategy of Woodall et al. (2004); Noorossana et al.

(2012); Grasso et al. (2016); Pini et al. (2018). In particular, the Hotelling 's T 2 and the

SPE control charts are applied on the coe�cients obtained from the univariate functional

principal component decomposition (Hsing and Eubank, 2015) of estd, i.e.,

estd =
∞∑
i=1

ξeiψ
e
i , (12)

where the scores ξei = 〈estd, ψei 〉 and the principal components {ψei } are the eigenfunc-

tions corresponding to the eigenvalues {λei} in descending order of the covariance function

Ce (t1, t2) = Cov
(
estd (t1) , estd (t2)

)
, for t1, t2 ∈ T . As a matter of fact, Ce is di�erent

from CY
std (and thus {ψYi } from {ψei }), because the former refers to the distribution of

Y std, whereas the latter is related to the conditional distribution of Y std given Xstd. A

straightforward approximation of estd can be thus obtained as

estdK =
K∑
i=1

ξeiψ
e
i , (13)

where K is the number of retained scores.

The Hotelling 's statistic T 2 can be then particularized as follows

T 2
estd = ξeΣ−1

ξe ξ
e, (14)

where Σξe = diag (λe1, . . . , λ
e
K) is the variance-covariance matrix of ξe = (ξe1, . . . , ξ

e
K)T . Note

that T 2
estd

is the standardized square distance of the projection of estd from the origin of the

space spanned by the principal components {ψei }. Analogously, changes along directions
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orthogonal to the latter space are monitored by the statistic

SPEestd =

∫
T

(
estd (t)− estdK (t)

)2
dt. (15)

The design phase of the control charts (Phase I) can be performed by means of a set of

n functional residuals estdi , i = 1, . . . , n, obtained by n independent observations (Xi, Yi)

acquired under IC conditions. This phase involves the estimation of the MFLR model

unknown parameters (Supplementary Materials), of the principal components {ψei } and of

the matrix Σξe (calculated by means of the sample covariance) as well as the estimation of

the control limits for both the the Hotelling 's T 2 and the SPE control charts, which can be

obtained by means of (1− α∗) quantiles of the empirical distribution of the two statistics.

Note that, to control the family wise error rate (FWER) in the strong sense (Lehmann and

Romano, 2006), α∗ is chosen by using the �idák correction (Lehmann and Romano, 2006)

α∗ = 1 − (1− α)1/2, where α is the overall Type I error. In the monitoring phase (Phase

II), functional residuals of a new observation (X∗, Y ∗) are calculated and an alarm signal

is issued if at least one realization of the T 2
estd

and SPEestd statistics violates the control

limits.

3 Performance Analysis

3.1 Data Generation

The overall performance of the proposed FRCC are evaluated by means of a Monte Carlo

simulation. Pro�le patterns have been generated with signal and correlation structures sim-

ilar to those in the real-case study presented in Section 4. Details about the data generation

process are provided in the Supplementary Materials. The compact domains S and T are

set, without loss of generality, equal to [0, 1] and the number of covariates p is set equal to

3. Moreover, in this section, the data are generated with R2 =
∫

[0,1]

Var(E(Y std(t)|Xstd))
Var(Y std(t))

dt set

equal to 0.97 (Yao et al., 2005b). Additional analysis at di�erent values of R2 are provided

in the Supplementary Materials.

The mean functions µX and µY of the generated data are obtained through the following
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reference model

µ (z) = P (z) + r
I∑
i=1

gi (z;mi, si) z ∈ [0, 1] , (16)

where

P (z) = az2 + bz + c z ∈ [0, 1] , (17)

a, b, c are real numbers, and the terms gi (z;mi, si) are normal probability density functions

having parameters mi and si with values given in the Supplementary Materials. The right

side term of Equation (16) is inspired by the data generation process proposed in Pini et al.

(2018); Grasso et al. (2017).

The aim of the simulation is to asses the FRCC performance in identifying mean function

shifts in the response in presence of

1. mean function shifts in Y conditional on X, i.e. E (Y |X), resulting from changes in

µY ;

2. mean function shifts in X, i.e., E (X) = µX , and E (Y |X).

The types of shift are consistent with those of Shu et al. (2004) and Wade and Woodall

(1993). Note from Equations (4) and (9) that shifts in E (Y |X) can result from changes in

µY and β. However, the latter, in addition, can a�ect variability of the functional regression

residuals as well. Because we are interested in the FRCC performance in identifying mean

function shifts in the response, given that the variability of the residuals are assumed

constant, then, only shifts caused by changes in µY are considered.

The functional patterns with shift in the mean function are generated using the model

in Equation (16) with P de�ned as follows

P (z) = (a+ δa) z
2 + (b+ δb) z + (c+ δc) z ∈ [0, 1] , (18)

where the real number δa, δb, and δc de�ne the shift type. Without loss of generality δa, δb,

and δc are set equal to a positive severity level d as reported in Table 1 where four di�erent

types of shift (namely A,B,C,D) in µX and µY are considered. Shift A is representative of a

change in the mean function curvature, whereas shift B and C represent slope modi�cation

and translation of the pro�le pattern, respectively. Shift D consists of both curvature and
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Table 1. Di�erent types of shift in µX and µY .

Shift δa δb δc

A d 0 0
B 0 d 0
C 0 0 d
D d d 0

Table 2. Severity levels associated to each type of shift in µY for Scenario 1 (a) and for Scenario 2 (b).

Shift Severity

µY

A d ∈ {0.5, 1.0, 1.5, 2.0}
B d ∈ {0.5, 1.0, 1.5, 2.0}
C d ∈ {0.5, 1.0, 1.5, 2.0}
D d ∈ {0.5, 1.0, 1.5, 2.0}

(a)

Shift Severity Shift Severity

µY A d ∈ {0.5, 1.0, 1.5, 2.0}
µX1 D d ∈ {0.5}
µX2 A d ∈ {0.5}
µX3 D d ∈ {1.0}

(b)

slope modi�cations of the mean function. These types of shift are indeed consistent with

the real-case study of Section 4 and apt to model usual ways as ship performance increase

or decrease in reality.

3.2 Simulation Results and Discussion

Three di�erent pro�le monitoring methods are compared: (a) monitoring residuals by

means of the FRCC, (b) monitoring model coe�cients of the response variable Y via a

Hotelling 's T 2 and SPE control charts (hereinafter denoted by RESP -RESPonse- control

chart), and (c) monitoring the area under the response variable Y considered also in Pini

et al. (2018) (hereinafter denoted by INBA -INdex BAsed- control chart).

Performance analysis of the FRCC is carried out by considering shifts in the conditional

mean E (Y |X), �rstly, by means of changes in µY only (Scenario 1), and secondly by means

of changes in both µY and µX (Scenario 2). The �rst scenario aims to analyse FRCC

performance in absence of shift in the regressor mean µX ; whereas, the second aims to

study the unwanted in�uence of shifts in µX on the FRCC performance. Severity levels

and types of shift considered by Scenario 1 and Scenario 2 are listed in Table 2a and Table

2b, respectively. Note that in Scenario 2 we consider only shift type A (with the same

severity levels of Scenario 1) for µY , shift type D for µX1 , µ
X
3 , and shift type A for µX2 . The

latter three shifts are explored at only one severity level d as reported in Table 2b. For

each shift type and severity level for Scenario 1 and for each severity level combination for

Scenario 2, 100 simulation runs were performed. Each run consists of the following steps:
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Phase I) A design set of 4000 IC patterns is randomly generated. In particular, N1 = 1000

patterns form the training set are used to estimate MFLR model unknown quantities

along with mean and covariance functions. The remaining N2 = 3000 IC pro�les are

used as tuning set to estimate the empirical quantiles via the kernel density estimation

(KDE) approach (Chou et al., 2001) with gaussian kernel, 2000 equally spaced points

and bandwidth chosen by means of the Silverman's rule of thumb (Silverman, 1986).

The number of retained scores L, M and K in Equation (10) and Equation (13) are

chosen such that the retained principal components explain at least 95% of the total

variability.

Phase II) A testing set of further 4000 OC patterns is randomly generated to carry out the

monitoring phase and to evaluate the chart performance.

As is usually done in the literature (Montgomery, 2007), the FRCC and the competitor

chart performance are compared by means of the average run length (ARL), that is referred

to as ARL0 in the case of no response mean shift (d = 0 for µY ), and as ARL1 otherwise.

For the sake of simplicity, we set ARL0 = 100 and denote indistinctly by ÂRL the estimated

ARL (regardless whether it is referred to ARL0 or ARL1).

For Scenario 1, Table 3 shows the ÂRLs along with 95% approximate con�dence inter-

vals based on the Student's t approximation. Graphical representation of the latter are in

Figure 1, which shows that the FRCC outperforms the RESP and INBA control charts for

all the considered shifts. The gain in e�ciency is less evident for Shift C (i.e., in presence

of translations of the pro�le pattern, only) at high severity level (d = 2). Whereas, in

Scenario 2, Table 4 and Figure 2 point out that shifts in covariate mean functions strongly

impact the ARL of the FRCC. Indeed, when the response variable is IC (d = 0), ÂRLs for

the FRCC are usually lower than ARL0 = 100. Table 4 shows that this issue occurs to both

the RESP and INBA control charts as well. For the latter charts this is expected because

they do not account for the correlation between covariates and the response variable. On

the contrary, this is not intuitive for the FRCC because it is expected not to be sensitive to

unusual covariate realizations. However, this is completely consistent with what happens

in the multivariate case (Shu et al., 2004). Indeed, let us denote with ∆Y , ∆X1 , ∆X2 and

∆X3 the shift size of Y , X1, X2 and X3 means, respectively. Moreover, Y std and Xstd
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Table 3. Estimated ARLs (ÂRLs) and 95% con�dence intervals (CI) for Scenario 1.

Shift Severity FRCC RESP INBA

d ÂRL CI ÂRL CI ÂRL CI

In-control - 102.94 [97.95, 107.94] 100.81 [95.86, 105.76] 100.74 [97.81, 103.68]

A

0.5 62.14 [59.29, 64.98] 97.47 [92.37, 102.57] 100.03 [96.52, 103.53]
1.0 20.43 [19.76, 21.10] 86.17 [82.21, 90.14] 91.85 [88.36, 95.34]
1.5 6.94 [6.73, 7.14] 69.50 [66.80, 72.20] 73.44 [71.07, 75.80]
2.0 2.93 [2.87, 2.99] 55.57 [53.26, 57.88] 62.59 [60.51, 64.67]

B

0.5 47.00 [45.02, 48.99] 98.65 [93.08, 104.22] 94.68 [91.16, 98.21]
1.0 10.58 [10.18, 10.98] 82.10 [78.07, 86.13] 74.71 [72.38, 77.04]
1.5 3.19 [3.11, 3.27] 68.97 [65.48, 72.45] 55.19 [53.31, 57.07]
2.0 1.56 [1.54, 1.58] 52.78 [50.49, 55.08] 39.25 [38.18, 40.31]

C

0.5 8.30 [8.07, 8.54] 61.82 [59.56, 64.09] 74.51 [71.90, 77.12]
1.0 1.33 [1.32, 1.34] 25.13 [24.20, 26.06] 39.03 [38.12, 39.95]
1.5 1.00 [1.00, 1.00] 10.89 [10.52, 11.26] 20.82 [20.36, 21.27]
2.0 1.00 [1.00, 1.00] 4.93 [4.81, 5.06] 11.48 [11.29, 11.67]

D

0.5 15.42 [14.89, 15.94] 87.00 [83.54, 90.47] 84.08 [80.77, 87.39]
1.0 2.09 [2.06, 2.12] 56.50 [53.82, 59.18] 50.19 [48.53, 51.86]
1.5 1.07 [1.07, 1.08] 32.38 [31.16, 33.60] 28.61 [27.99, 29.23]
2.0 1.00 [1.00, 1.00] 19.37 [18.65, 20.08] 16.93 [16.64, 17.23]

Table 4. Estimated ARLs (ÂRL) and 95% con�dence intervals (CI) for the FRCC in Scenario 2 at di�erent severity levels
d of shifts in the response mean (µY ) (Table 2b) as a function of which and how many covariates are subject to mean shift
(each at the severity level reported in Table 2b). Zeros and ones in the triplets (000, 100, 010, 001, 110, 101, 011, 111) indicate
IC and OC covariates, respectively. For instance, the triplet 100 means that only the �rst covariate is OC, 111 means that
all the covariates are OC, and so on.

µY FRCC RESP INBA

d shifted covariate combination ÂRL CI ÂRL CI ÂRL CI

0

0 0 0 99.79 [95.42, 104.17] 105.07 [99.21, 110.93] 104.19 [100.32, 108.05]

1 0 0 78.09 [74.65, 81.53] 89.28 [85.67, 92.90] 100.1 [95.73, 104.48]
0 1 0 100.61 [95.74, 105.49] 88.02 [84.26, 91.77] 79.51 [76.60, 82.41]
0 0 1 100.59 [96.22, 104.97] 99.58 [94.68, 104.48] 102.34 [98.62, 106.05]

1 1 0 73.43 [70.03, 76.84] 66.59 [63.48, 69.71] 93.63 [90.52, 96.75]
1 0 1 64.73 [62.41, 67.05] 96.74 [92.93, 100.56] 99.88 [96.30, 103.45]
0 1 1 97.21 [92.56, 101.86] 89.87 [85.42, 94.33] 80.11 [77.25, 82.98]

1 1 1 63.26 [60.72, 65.8] 80.75 [76.73, 84.77] 92.93 [89.57, 96.29]

0.5

0 0 0 63.65 [60.80, 66.50] 105.16 [99.96, 110.37] 101.95 [98.24, 105.66]

1 0 0 44.65 [43.18, 46.11] 85.52 [81.62, 89.41] 85.17 [82.11, 88.24]
0 1 0 62.50 [59.69, 65.31] 96.76 [91.19, 102.32] 98.52 [95.03, 102.00]
0 0 1 57.61 [55.37, 59.84] 97.09 [92.40, 101.79] 100.44 [96.94, 103.93]

1 1 0 45.68 [43.87, 47.49] 77.36 [73.17, 81.56] 100.75 [96.94, 104.56]
1 0 1 39.19 [37.58, 40.80] 94.04 [89.26, 98.82] 89.21 [86.48, 91.94]
0 1 1 59.47 [56.76, 62.17] 96.78 [92.13, 101.42] 91.13 [87.46, 94.80]

1 1 1 38.89 [37.34, 40.44] 84.76 [80.41, 89.11] 102.87 [98.66, 107.08]

1.0

0 0 0 21.08 [20.26, 21.90] 85.43 [81.25, 89.61] 89.22 [86.16, 92.28]

1 0 0 17.23 [16.73, 17.74] 77.09 [73.45, 80.73] 69.95 [67.71, 72.19]
0 1 0 21.18 [20.32, 22.04] 99.23 [94.10, 104.36] 102.16 [98.34, 105.97]
0 0 1 20.28 [19.45, 21.11] 80.57 [76.86, 84.28] 91.30 [88.00, 94.60]

1 1 0 17.68 [17.08, 18.27] 80.68 [76.93, 84.43] 99.91 [96.41, 103.41]
1 0 1 16.41 [15.89, 16.93] 81.56 [77.90, 85.22] 77.33 [74.69, 79.97]
0 1 1 20.64 [19.82, 21.45] 96.69 [92.09, 101.29] 98.09 [94.38, 101.81]

1 1 1 16.53 [15.92, 17.14] 89.58 [84.46, 94.71] 100.85 [96.47, 105.22]

1.5

0 0 0 6.90 [6.70, 7.09] 69.54 [66.41, 72.67] 76.22 [73.66, 78.78]

1 0 0 6.31 [6.14, 6.48] 68.29 [64.69, 71.89] 59.58 [57.74, 61.42]
0 1 0 7.15 [6.91, 7.40] 91.92 [87.36, 96.47] 102.86 [98.68, 107.03]
0 0 1 6.78 [6.58, 6.99] 66.91 [64.08, 69.75] 78.76 [76.14, 81.37]

1 1 0 6.69 [6.50, 6.87] 76.35 [72.85, 79.84] 92.75 [89.30, 96.20]
1 0 1 6.05 [5.89, 6.22] 66.45 [63.77, 69.12] 61.33 [59.57, 63.10]
0 1 1 7.04 [6.83, 7.25] 86.49 [82.15, 90.84] 103.80 [99.44, 108.16]

1 1 1 6.32 [6.12, 6.53] 80.95 [77.09, 84.82] 96.19 [92.72, 99.66]

2.0

0 0 0 2.92 [2.86, 2.98] 54.72 [52.55, 56.89] 63.70 [61.61, 65.80]

1 0 0 2.83 [2.77, 2.89] 53.80 [51.71, 55.90] 48.41 [47.12, 49.71]
0 1 0 3.01 [2.94, 3.08] 73.53 [70.12, 76.94] 96.58 [92.72, 100.43]
0 0 1 2.90 [2.84, 2.96] 55.65 [53.00, 58.30] 66.34 [64.11, 68.57]

1 1 0 2.86 [2.80, 2.92] 66.80 [63.87, 69.73] 80.97 [78.51, 83.43]
1 0 1 2.76 [2.71, 2.81] 53.47 [51.42, 55.52] 50.93 [49.48, 52.39]
0 1 1 2.94 [2.88, 3.00] 76.18 [72.50, 79.86] 99.79 [95.80, 103.77]

1 1 1 2.77 [2.71, 2.83] 68.11 [64.88, 71.35] 82.87 [80.14, 85.61]
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Figure 1. Estimated ARLs (ÂRL) and 95% con�dence intervals for di�erent response mean shifts for Scenario 1 (Table 3).
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(resp. Y std
∆ and Xstd

∆ ) indicate the standardized response and predictors in absence (resp.

presence) of shift. Then, when mean shifts in both response variable and covariates occur,

the functional residual (Equation (11)) can be rewritten, for t ∈ [0, 1], as

estd∆ (t) = Y std
∆ (t)− Ŷ std

LM∆ (t)

= Y std (t) +

∫ 1

0

(β (s, t))T VX (s)−1 ∆X (s) ds+
∆Y (t)

vY (t)1/2
− Ŷ std

LM∆ (t)

−
∫ 1

0

(
β̂LM (s, t)

)T
VX (s)−1 ∆X (s) ds

= estd (t) +
∆Y (t)

vY (t)1/2
−
∫ 1

0

(
β (s, t)− β̂LM (s, t)

)T
VX (s)−1 ∆X (s) ds, (19)

where estd is as in Equation (11), β̂LM is the estimator of β given in the Supplementary

Materials and VX is de�ned in Section 2 with p = 3, ∆X =
(
∆X1 ,∆X2 ,∆X3

)T and

Ŷ std
LM∆ (t) =

∫ 1

0

(
β̂LM (s, t)

)T
Xstd

∆ (s) ds t ∈ [0, 1] . (20)

Then expected value of estd∆ conditioned on β̂LM is

E
(
estd∆ (t)

)
=

∆Y (t)

vY (t)1/2
−
∫ 1

0

(
β (s, t)− β̂LM (s, t)

)T
VX (s)−1 ∆X (s) ds t ∈ [0, 1] .

(21)
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Table 5. Estimation error magnitude of the entries of the coe�cient vector β

Xstd
1 Xstd

2 Xstd
3

Error 0.086 0.009 0.010

From Equation (19), it is clear that a mean shift in the residual, caused by covariate

mean shifts (∆X 6= 0), occurs when the di�erence β − β̂LM is not negligible, even though

the response variable is IC, i.e., ∆Y = 0.

Figure 2. Estimated ARLs (ÂRLs) and 95% con�dence intervals for the FRCC in Scenario 2 at di�erent severity levels
d = {0, 0.5, 1} of shifts in the response mean (µY ) (Table 2b) as a function of which and how many covariates are subject to
mean shift (each at the severity level reported in Table 2b). Zeros and ones in the triplets (000, 100, 010, 001, 110, 101, 011, 111)
indicate IC and OC covariates, respectively. For instance, the triplet 100 means that only the �rst covariate is OC, 111 means

that all the covariates are OC, and so on. The severity levels d = {1.5, 2} are not reported because the ÂRLs are all very
small. The Figure depicts part of the results reported in Table 4.
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From Figure 2 and Table 4, it is clear that the magnitude of the deviations depends

both on the number of covariates with shift in the mean function and the estimation error

magnitude of the entries of the coe�cient vector β in Table 5. The latter is measured as

the L2 distance between β and β̂LM , estimated by means of 50 random realization of β̂LM .

Therefore, shifts in µX1 a�ect the performance of the FRCC stronger than mean shifts in

the other covariates (viz. µX2 and µX3 ). Obviously, this e�ect is more evident when the

term ∆Y

(vY )1/2
in Equation (19) is zero and do not cover the contribution to estd∆ of β− β̂LM .

The problem of issuing an alarm only when a mean shift occurs in the response variable

regardless of covariate mean shifts is addressed in Section 3.3 and solutions are proposed

in this respect.

3.3 Remarks on the Use of the FRCC in Presence of Covariate

Mean shifts

As stated before, the FRCC performance in identifying OC condition (of the response

variable) can be a�ected by the number of covariates with shift in the mean function and

15



the estimation error of the coe�cient vector β (Table 4). In particular, when mean shifts

occur in the covariates only, the interpretation of the FRCC becomes cumbersome, because

a point falling outside the FRCC control limits is wrongly assigned to a shift in the response

variable. In this section, we propose some solutions to enhance the FRCC performance in

presence of covariate mean shifts.

As pointed out in Scenario 1 of the simulation study (Table 2a), which assumes no

covariate mean shift, the FRCC performance in identifying response mean shifts is always

better than that achieved by the competitor control charts (Figure 1). A straightforward

solution is to verify the assumption that no covariate mean shift occurs by extending to

the functional setting the control charts proposed by Wade and Woodall (1993) in the

multivariate case. In this regard, Capezza et al. (2019) suggest to monitor the covariates X

through the jointly use of the Hotelling 's T 2 and SPE control charts built on the principal

component decomposition of Xstd.

When the number of observations available in Phase I, N1, is large, an alternative

solution, which does not the construction of additional control charts, can be based on the

consistency of the estimator β̂LM of the coe�cient vector β (Chiou et al., 2016). Indeed,

when truncation parameters L and M in Equation (10) go to in�nity with N1, the impact

of ∆X in Equation (19) and (21) fades out, as in (Yao et al., 2005b), even though they do

not provide more detailed indications on the convergence rate. That is

lim
N1→∞

∫
S

∫
T

[
β (s, t)− β̂LM (s, t)

]2

dsdt = 0 in probability. (22)

This result indicates that, theoretically, for large N1, L and M can be increased in order

to ensure convergence. In this perspective, we perform again the simulations in Scenario 2

(that assumes covariate mean shifts reported in Table 2b in the case of no response mean

shifts (d = 0 for µY )) with L = 5, 10, 20 and M = 2, 3, 4. The results are shown in Figure

3, where ÂRLs (which is in this case estimating ARL0 = 100) in function of the number of

covariates with shift in the mean function (according to Table 4) are reported by varying

L (row-wise) and M (column-wise). Comparing these results with the top-left panel of

Figure 2 (d = 0), it is clear that the negative e�ect (i.e., ÂRL not equal to ARL0 = 100)

caused by covariate mean shifts are attenuated by choosing L and M as large as possible
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Figure 3. Estimated ARLs (ÂRL) and 95% con�dence intervals for the FRCC in Scenario 2 no shift (d = 0) in the response
mean (µY ) at di�erent values of truncation parameters L (increasing from top to bottom panel) and M (increasing from left
to right panel) as a function of which and how many covariates are OC (each at the severity level reported in Table 2b). Zeros
and ones in the triplets (000, 100, 010, 001, 110, 101, 011, 111) indicate IC and OC covariates, respectively. For instance, the
triplet 100 means that the �rst covariate mean has shifted, 111 means that all the covariate mean are shifted, and so on.
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(see the bottom-right panel of Figure 3). In general, the latter recommendation is expected

to attenuate the e�ect on ÂRL of the covariate mean shifts, when there is a shift also in

the response mean (depicted in panels d = 0.5, 1.0, 1.5, 2.0 of Figure 2).

Otherwise, when N1 is small, we propose to use in the monitoring strategy (Section 2.3)

the following scaled functional residual (hereinafter referred to as studentized residual)

estdstu (t) =
Y std (t)− Ŷ std

LM (t)

(σ̂2
ε (t) + ω̂LM (t, t))1/2

t ∈ T , (23)

instead of that in Equation (11). In Equation (23), σ̂2
ε is an estimator of Var (ε) and ω̂LM

is de�ned as

ω̂LM (s, t) = Cov
(
Ŷ std
LM (t) |Xstd

)
=
(
ξ̂XL

)T (
Ξ̂T
XΞ̂X

)−1

ξ̂XL ψ̂
Y
M (s)T Σ̂εM ψ̂

Y
M (t) s ∈ S, t ∈ T ,

(24)

where ξ̂XL is the estimator of the score vector ξXL of Xstd, Ξ̂T
XΞ̂X is the estimator of

N1 Cov
(
ξXL , ξ

X
L

)
, ψ̂Y

M is the estimator of the vector of the �rst M eigenfunctions of Y std,
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and Σ̂εM is the estimator of Cov (εM). Given estdstu in Equation (23), the Hotelling 's T 2

and SPE statistics, de�ned in Section 2.3, are particularized by the statistics T 2
estdstu

and

SPEestdstu
obtained by replacing estd with estdstu, in Equation (14) and (15), respectively. This

particular choice for the FRCC will be referred to as studentized functional regression

control chart (sFRCC) which can be regarded as an extension to functional data of the

regression control chart with prediction interval proposed by Wade and Woodall (1993).

The studentized functional residual is the functional extension of the studentized residual

that arises in the multivariate case (Woodall et al., 2004), with σ̂2
ε (t)+ ω̂LM (t, t), for t ∈ T ,

the variance function of estd. The e�ect of σ̂2
ε (t)+ ω̂LM (t, t), for t ∈ T , on the latter is that

of reducing the in�uence of covariate mean shifts on the residual mean. Indeed, the larger

the term ω̂LM , i.e., the more extreme realization of Xstd, the heavier the corresponding

residual is rescaled and thus the higher the probability of the observation to be judged IC.

And this is because the more the observations are far from the center of the sample cloud

the larger the residual uncertainty. However, for a large N1, consistently with the dataset

complexity, the use of the sFRCC leads to the same results of the FRCC de�ned before,

because in this case, ω̂LM (t, t), for t ∈ T , tends to zero. Therefore, all the residuals are

equally rescaled regardless of the values achieved by the covariates.

To investigate the performance of the sFRCC, we carry out again simulation in Scenario

2 only in the case of no response mean shift (d = 0 for µY ) by setting N1 equal to 100

and 50. Results are reported in Figure 4 and show that ÂRLs achieved by the sFRCC are

closer to the true value (ARL0 = 100) than those obtained by means of the FRCC. In this

simulation, the truncation parameters L, M and K in Equation (10) and Equation (13)

shall be chosen large enough to avoid truncation bias, as addressed before, (in case of large

N1) but small enough to avoid over�tting problems due to small N1. In this simulation,

we found appropriate to choose L, M and K such that the retained principal components

explain the 99% of total variation. Too small values of L, M and K would not highlight

the bene�t of the term ω̂LM (t, t), for t ∈ T , in the studentized residuals of Equation (23).

Therefore, as in the multivariate case studied by Woodall et al. (2004), also in the functional

setting, the sFRCC is able to control the Type I error (i.e., ARL0 = 100) in case of covariate

mean shifts. However, when the assumption of no covariate mean shift can be given as
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Figure 4. Estimated ARLs (ÂRLs) and 95% con�dence intervals for the FRCC (left column panels) and sFRCC (right column
panels) in Scenario 2 no shift (d = 0) in the response mean (µY ) at di�erent sample sizes N1 = 100, 50 as a function of which
and how many covariates are subject to mean shift (each at the severity level reported in Table 2b). Zeros and ones in the
triplets (000, 100, 010, 001, 110, 101, 011, 111) indicate IC and OC covariates, respectively. For instance, the triplet 100 means
that only the �rst covariate is OC, 111 means that all the covariates are OC, and so on.
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satis�ed (e.g., for technological reasons), the FRCC is recommended since it results more

sensitive than the sFRCC in detecting OC condition (of the functional response mean) as

the latter has control limits wider than those of the FRCC.

4 Real-case Study: Fuel Consumption Monitoring in the

Shipping Industry

To demonstrate the potential and the applicability of the proposed control chart in practical

situations, a real-case study in the shipping industry is presented henceforth. It addresses

the issue of monitoring ship fuel consumption and, thus, CO2 emissions, which, in view of

the dramatic climate change, is of great interest in the maritime �eld in the very last years.

Indeed, the new Regulation (EU 2015/757) of the European Union (EU) Council of 25 April

2015, coherently with the previous guidelines of the International Maritime Organization

(IMO), compel operators having ships sailing in the Mediterranean Sea to monitor, report

and verify (MRV) CO2 emissions. In account of this, shipping companies are nowadays

setting-up multi-sensor systems for massive high frequency recordings of operational data

to be available. A large portion of these is suitably modelled as functional data.

In this study, data recorded during 2015, 2016, and 2017 from a Ro-Pax ship (owned by

the shipping company Grimaldi Group) are analysed. The total number of voyages is 315.

During each voyage the Data AcQuisition (DAQ) device mounted on the ship have been

collecting signals at �ve-minute frequency. The data refer only to the navigation phase, i.e.,

the time interval between the �nished with engine order (when the ship leaves the departure

port) and the stand by engine order (when the ship enters the arrival port). In particular,
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the percentage of travelled distance over the voyage is chosen as functional domain so that

variables coming from di�erent voyages are de�ned on interval of the same width. The

cumulative fuel consumption (CFC) per each voyage is assumed as the functional response

variable. It is the cumulative sum of the fuel consumption during the navigation phase.

The following set of covariates are assumed as in�uencing the response: sailing time (T ),

measured in hours (h), which is the cumulative navigation time during the navigation phase;

speed over ground (SOG), measured in knots (kn), which is the ratio between the sailed

distance over ground, i.e., the distance travelled by the vessel during the navigation, and

the sailing time; longitudinal and transverse wind components (Wlo and Wtr), measured in

knots (kn), which are functions of the true wind speed and the di�erence between the true

wind angle (in the earth system) and the course over ground. Covariates are chosen on the

basis of both engineering and statistical considerations. Additional information about the

response and regressor variables can be found in Bocchetti et al. (2015); Erto et al. (2015).

The 315 pro�les observed for the response and covariates in the considered period are

shown in the Supplementary Materials. Throughout February 2016, EEI (energy e�ciency

initiative) was performed on the considered ship, which mainly consisted in a silicone foul

realising coat of the hull. As guranteed by the paint company, and described in Erto

et al. (2015), this EEI plausibly produces a shift in the CFC mean. As shown in the

Supplementary Materials, this is also con�rmed by visual inspection of the mean function

of the response before and after the EEI. In light of this, the 112 pro�les relating to the

period before dry-dock operations, are used to form the Phase I sample. Whereas, the

remaining 203 pro�les are used in Phase II to evaluate the proposed chart performance.

4.1 Implementation Details and Results

The Phase I sample consists of 112 pro�les observed at �ve-minute frequency during each

voyage. The functional observations are obtained by solving a regularization problem where

pro�les are approximated by means of a cubic B-spline basis expansion (i.e., of order 4) with

100 basis and 98 equispaced knots, and a smoothing parameter on the second derivative

equal to 10−10, chosen by means of generalized cross validation (Ramsay, 2005). Then, the

IC observations are identi�ed by extending the approach proposed by Colosimo and Pacella
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Figure 5. T 2
estd

and SPEestd charts for the FRCC, the sFRCC, and, the RESP and INBA control charts. The vertical
dotdash line corresponds to the last voyage before the EEI.
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(2007) to the multivariate functional case. As in Section 3, the appropriate values of L,

M and K in Equation (10) and Equation (13) are found as those for whichf the retained

principal components explain at least 95% of total variation. Then, the control limits are

estimated using the empirical quantiles of the T 2
e ans SPEe distribution estimated through

the KDE procedure, as in the simulation study (Section 3.2), with the overall Type I error

α equal to 0.0027 (which corresponds to ARL0 = 370). The choice of α is prompted by the

common industrial practice in analogy with the classic Shewhart control chart with 3-sigma

limits (Montgomery, 2007). The remaining 203 pro�les used in Phase II are obtained in

the same way as in Phase I. Even if the use of the sFRCC has been recommended in all

cases (Section 3.3), for the sake of completeness both the FRCC and the sFRCC have been

applied. Each observation is plotted onto those two control charts and the two competitor

ones (RESP and INBA) as shown in Figure 5.

By comparing the four charts, the responsiveness of the FRCC and the sFRCC is

evidently higher than that of the the INBA and the RESP control charts which signal a

much lower number of OCs. In particular, in the FRCC and the sFRCC the change in the
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Table 6. Estimated ARL (ÂRL), mean ARL
∗
of the empirical bootstrap ARL distribution, 95% con�dence interval (CI) for

the ARL statistic, and p-values of bootstrap test on the ARL mean di�erences for each chart combination.

ÂRL ARL
∗

CI p-value

FRCC sFRCC RESP INBA

FRCC 2.07 2.03 [1.78, 2.34] - - - -
sFRCC 2.11 2.21 [1.90, 2.56] 0.000999 - - -
RESP 9.46 10.09 [6.13, 17.92] 0.000999 0.000999 - -
INBA 11.28 11.71 [7.81, 18.45] 0.000999 0.000999 0.000999 -

response mean is almost exclusively captured by the T 2 control chart, which means that

dissimilarities between the Phase I and Phase II samples occur mostly in the space spanned

by the retained principal components. As expected by remarks given in Section 3.3, Figure

5 shows that the sFRCC is less sensitive than the FRCC in detecting OC condition (of

the functional response). However, the former chart should be used in this case because

the assumption of no covariate mean shift cannot be given as satis�ed. More precisely, by

looking at the �rst column of Table 6, the estimated ARLs (ÂRL) achieved by FRCC and

sFRCC are at least a fourth of those achieved by the RESP and INBA control charts.

To quantify the uncertainty of ÂRLs, a bootstrap analysis (Efron and Tibshirani, 1986)

was performed (see Supplementary Materials for more details).

Table 6 shows the mean ARL
∗
of the empirical bootstrap ARL distribution and the

bootstrap con�dence intervals for each chart. Moreover, to test whether the mean of the

empirical bootstrap ARL distributions di�er signi�cantly, bootstrap tests on the ARL mean

di�erences (Efron and Tibshirani, 1986) for each chart combination were performed. The

p-values are shown in Table 6 for each chart combination test. The bootstrap analysis,

i.e., tests and con�dence intervals, further con�rms that both the FRCC and the sFRCC

outperform the competitor control charts. Indeed, 95% con�dence intervals are strictly

below those of the RESP and INBA control charts and accordingly the tests reject the

hypothesis of equal means for each chart combination.

Table 7 shows for the FRCC, sFRCC, and RESP control charts the estimated ARLs

(ÂRL), the mean ARL
∗
of the empirical bootstrap ARL distribution and the bootstrap

95% con�dence intervals at di�erent δY and δX (i.e., percentages of variance explained by

the retained scores in the response and covariates). The analysis for the INBA control

charts is not in�uenced by di�erent values of δY and δX and therefore, the results are equal

to those already reported in Table 6. Results in Table 7 show that bot FRCC and sFRCC

22



Table 7. Estimated ARL (ÂRL), mean ARL
∗
of the empirical bootstrap ARL distribution, and 95% con�dence interval (CI)

for the ARL statistic at di�erent δY , and δX , for the FRCC, sFRCC and RESP control chart.

δY 0.95 (M = 2) 0.98 (M = 3) 0.99 (M = 5)

δX ÂRL ARL
∗

CI ÂRL ARL
∗

CI ÂRL ARL
∗

CI

0.90 (L = 19)
FRCC 2.99 3.06 [2.51, 3.77] 1.97 2.00 [1.77, 2.31] 1.96 2.00 [1.74, 2.29]
sFRCC 2.89 2.95 [2.46, 3.62] 2.19 2.20 [1.92, 2.55] 2.25 2.28 [1.94, 2.67]
RESP 9.46 9.99 [6.23, 17.87] 9.08 9.72 [5.90, 17.95] 5.72 6.50 [2.12, 12.92]

0.95 (L = 36)
FRCC 2.02 2.03 [1.76, 2.34] 1.66 1.67 [1.51, 1.87] 1.24 1.23 [1.17, 1.31]
sFRCC 2.16 2.21 [1.90, 2.56] 1.71 1.72 [1.54, 1.94] 1.28 1.28 [1.21, 1.37]
RESP 9.46 10.09 [6.13, 17.92] 9.08 9.45 [5.74, 16.55] 5.72 6.43 [2.41, 11.53]

0.97 (L = 56)
FRCC 1.36 1.36 [1.26, 1.47] 1.27 1.26 [1.19, 1.34] 1.62 1.63 [1.46, 1.82]
sFRCC 1.46 1.48 [1.36, 1.62] 1.42 1.43 [1.31, 1.57] 1.84 1.86 [1.64, 2.13]
RESP 9.46 10.24 [6.05, 17.14] 9.08 9.60 [5.75, 17.16] 5.72 6.41 [2.39, 12.19]

outperform the competitor ones for all δY and δX values. However, as expected by remarks

given in Section 3.3, the choice of the number L and M (Equation (10)) of the retained

scores (related to δY and δX ) a�ects the performance of the FRCC and sFRCC.

5 Conclusions

In this paper, we propose a new general framework for monitoring a functional quality

characteristic when functional covariates are available, referred to as functional regression

control chart (FRCC). In particular, the quality characteristic is adjusted for the e�ects of

the covariates by means of multivariate functional linear regression model and then moni-

tored by using jointly the Hotelling 's T 2 and the SPE control charts built on its functional

principal component decomposition. However the approach is very general, indeed the

choice of the model, the estimation method as well as the monitoring strategy can be eas-

ily extended. To the best of the authors' knowledge, pro�le monitoring methods that are

promptly able to enhance the monitoring by exploiting additional information on covariates

(even possibly functional ones) are not present in the literature, whose attention is mainly

focused on procedures that consider measurements of the functional quality characteristic

only.

A Monte Carlo simulation is carried out with the aim of investigating the performance

of the proposed control chart in identifying mean shifts in the response. The FRCC is then

compared with other two control charts (named Response and INdex-BAsed control charts)

that are widely used both in the literature and in real pro�le monitoring applications. The

results showed that, �rstly, the FRCC is far better than the competitor control charts
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in identifying response mean shifts, when no covariate mean shift occurs; secondly, the

covariate mean shift implies estimation error of the coe�cient vector and thus, strongly

a�ects FRCC performance in terms of average run length. When the assumption of no

covariate mean shift cannot be given as satis�ed, some solutions are proposed in case of

both large and small Phase I sample sizes. In the latter case, a studentized version of the

FRCC (sFRCC) is proposed to take into account the di�erent residual variance at di�erent

covariate values. Eventually, by means of a real-case study in the shipping industry, the

FRCC and sFRCC is shown to outperform the competitor control charts in identifying CO2

emission reduction after a speci�c energy e�ciency initiative.

Future researches can be addressed on extending the FRCC framework to di�erent types

of regression models and to di�erent residual monitoring strategies. Moreover, the e�ect

on the FRCC performance in detecting shifts in the variance function of both the response

and covariates deserve further investigations.

Supplementary Materials

The Supplementary Materials contain the procedure to estimate the MFLR model, details

on data generation in the simulation study, additional simulation for di�erent values of R2,

the description of the bootstrap procedure used in the real-case study as well as �gures

showing the observed pro�les.
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