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Abstract

This work presents a numerical model for the simulation of potential flow
past three dimensional lifting surfaces. The solver is based on the collocation
Boundary Element Method, combined with Galerkin variational formulation
of the nonlinear Kutta condition imposed at the trailing edge. A similar
Galerkin variational formulation is also used for the computation of the fluid
velocity at the wake collocation points, required by the relaxation algorithm
which aligns the wake with the local flow. The use of such a technique,
typically associated with the Finite Element Method, allows in fact for the
evaluation of the solution derivatives in a way that is independent of the local
grid topology. As a result of this choice, combined with the direct interface
with CAD surfaces, the solver is able to use arbitrary order Lagrangian el-
ements on automatically refined grids. Numerical results on a rectangular
wing with NACA 0012 airfoil sections are presented to compare the accu-
racy improvements obtained by grid spatial refinement or by discretization
degree increase. Finally, numerical results on rectangular and swept wings
with NACA 0012 airfoil section confirm that the model is able to reproduce
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experimental data with good accuracy.

Keywords: Mathematical Modeling, Potential Flow Theory, Boundary
Element Method, Lifting Surfaces, Wake Vortex Sheet

1. Introduction and literature review

Accurate force prediction on three dimensional lifting bodies is paramount
for the design of wings, tailplanes, rudders, aircraft and naval propellers, hy-
drofoils and keels. The study of the forces and loads generated by such
appendages through their interaction with the surrounding fluid is in fact
not only necessary for reliable equilibrium and stability estimates for cruis-
ing aircraft or vessels, but also for the the proper sizing of their structure.
For most of the 20th century, potential flow theory has been the backbone
of fluid dynamic computations in aerospace and naval engineering. This is
a result of the fact that — when used on the correct problems — potential
flow solvers are capable of very accurate pressure force estimates while re-
quiring very limited computational resources. Despite the fact that in the
last decades the constant increase in computational power made affordable
more accurate models, such as Navier–Stokes equations, potential flow the-
ory is still widespread among aircraft and vessel designers. Simpler models
are in fact extremely valuable in the earlier stages of design, when both faster
feedback is needed and not enough data is available to feed more accurate
solvers.

There are of course several different mathematical and numerical models
based on potential flow theory that were developed to compute forces gener-
ated by lifting bodies. For the most part, these models differ in the way the
boundary conditions of the potential flow governing equation — the Laplace
equation — are handled. The lifting line [1] and lifting surface methods
[2], for instance, exploit slenderness of the lifting body in one or two direc-
tions to linearize the Laplace problem boundary conditions. Due to their
extremely favorable balance between accuracy and computational cost these
methods still enjoy significant success in the engineering community. How-
ever, the linearized boundary conditions makes them unable to account for
significantly thick surfaces, or for the presence of arbitrarily shaped stream-
lined bodies surrounding the lifting bodies. The latter cases — which include
bulbs or fuselages — can be instead treated by models based on the exact
formulation of the — Neumann — non penetration boundary condition for
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the velocity potential, and are in most cases discretized via the Boundary
Element Method (BEM). Since the early works of Hess et al. [3], BEM dis-
cretization of the Laplace equation for the flow velocity potential with exact
non penetration boundary conditions represents a very interesting compro-
mise, as it is able to both model complex streamlined geometries and obtain
fast predictions.

This work describes the development of a numerical tool based on the
BEM library π-BEM [4] for the computation of the flow past three dimen-
sional lifting bodies. As opposed to most BEM discretizations typically used
for this application [5], which make use of virtual singularity distribution
formulations, π-BEM library implements an arbitrary order isoparametric
discretization based on Lagrangian finite elements. To allow for the auto-
matic generation of the grids required by high order formulations, the library
is also geometry aware, as described in [6]. In the present context, this means
that the simulations are directly interfaced with CAD data structures — in
the form of IGES files — so that the solver is able to generate on demand new
grid points on the user-prescribed surfaces. The BEM solver has been shown
in [4] to have the expected convergence properties on academic test cases
characterized by — regular enough — analytic solutions. The potential flow
on the lifting bodies application tackled in this work poses instead several
challenges, associated with the complex geometry features and lower solution
regularity when compared to the academic test cases one. In addition, fur-
ther complications had to be addressed to adapt the methods to the lifting
body problem. Based on quasi-potential flow model [7, 8], the simulations
have to account for the presence of the wake vortex sheet detaching from the
wing trailing edge. In this regard, among the many different forms of the
Kutta condition [9] used to determine the velocity potential jump on the wake
vortex sheet, we elected to employ the nonlinear form of the condition, impos-
ing continuous pressure across the wing trailing edge. At the numerical level,
this condition involves the potential gradient evaluation at the trailing edge
collocation points. In all BEM formulations based on standard Lagrangian
finite elements, such potential gradients are discontinuous on all the edges of
the computational grid cells. For such a reason, BEM formulations typically
used in this application are based on piecewise constant discretizations, in
which the solution gradient is computed making use of finite differences [5].
Clearly, such methodology results in a formulation heavily dependent on the
specific topology and orientation of the computational grid used. Moreover,
of course, it limits the degree of the finite elements that can be employed. A
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possible interesting alternative presented in [10] is represented by the use of
isogeometric formulation, in which smooth NURBS shape functions result in
continuous gradients at the collocation points. However, isogeometric formu-
lation typically requires water tight CAD surfaces in most cases composed by
NURBS patches all having similar size, which is are quite difficult to obtain
in industrial applications. So, to make the present isoparametric formulation
independent on the kind of mesh used, and suitable for arbitrary degree La-
grangian finite elements, the potential gradients in the Kutta condition are
here computed via Galerkin L2 projection [11]. To the best of the authors’
knowledge, such a procedure — borrowed from FEM — has never been cou-
pled to the BEM solution of quasi-potential flow simulations. In addition,
the geometry aware implementation allows for fully automated refinement of
a coarse initial mesh on CAD surfaces that are not necessarily water tight.
We refer the interested reader to [6, 12, 13] for more detail on such a method-
ology. Again, this represents an aspect of novelty, as no arbitrary order and
CAD interfaced solver has been developed for this aeronautical and naval
engineering application.

A further extension to adapt π-BEM functions to the simulation of the
flow past lifting surfaces is related to the wake geometry relaxation. In the
quasi-potential flow model [7, 8], the wake vortex sheet surface must be a flow
surface everywhere parallel to the local velocity field. The wake relaxation
algorithm used in this work to align the wake geometry to the local fluid ve-
locity requires the computation of the the potential gradient on all the wake
collocation points. Since on the wake vortex sheet the only variable available
is the jump of the potential across such surface of discontinuity, the Galerkin
L2 projection method used to obtain the potential gradient on the body can-
not be used in this context. As in other works [5, 14] we then resorted to
the integration of the hypersingular Boundary Integral Equation (BIE) on
the wake collocation points. Quadrature rules by Guiggiani et al. [15] were
used to evaluate the hypersingular integrals resulting from the gradient BIE.
However, such quadrature rules are based on the assumption that the poten-
tial gradient is Hölder continuous at each collocation point considered. This
of course poses a problem for finite elements which feature collocation points
located on cell edges. In particular, this problem affects all Lagrangian finite
elements of order higher than zero. Also in the present case, it is possible to
abandon Lagrangian shape functions and resort to NURBS shape functions
as in [14] to build a single patch for the wake in which the potential gradient
has the desired regularity. In the present work, we elected instead to write a
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weak form of the hypersingular BIE and solve it based on a Galerkin method.
As will be shown, at the numerical level this will only require the evaluation
of the hypersingular BIE on the standard Gauss quadrature nodes. These
are located inside the grid cells, where the potential derivatives are Hölder
continuous. Once again, the Galerkin approach results in a formulation that
is independent of the grid or finite element used, allowing for user prescribed
discretization order selection at the start of each simulation.

Given the CAD data structures integration and use of Galerkin variational
formulation for both the Kutta condition and wake velocity computation,
the BEM solver developed is able to make use of Lagrangian shape functions
of arbitrary order on structured or unstructured meshes with possible non
conformal cells. As such, the present work shows that all the necessary ingre-
dients have been put in place towards the implementation of hp refinement
for the simulation of quasi-potential flow past lifting bodies. The derivation
of adequate error estimators and the test of such a refinement strategy will
be object of future work.

The content of this paper is organized as follows. Section 2 describes the
physical problem and discusses the derivation of the mathematical model
equations. Section 3 presents the main features of the BEM solver used, re-
porting details of the Galerkin formulation for the Kutta condition and wake
velocity computation. Section 5 presents and discusses numerical results and
comparison with experimental data. Finally, Section 6 is devoted to some
concluding remarks and future perspectives.

2. Mathematical model equations

The equations of motion that describe the velocity and pressure fields v
and p in a fluid region surrounding a moving body are the incompressible
Navier–Stokes equations. In the present context, such equations are written
in the moving domain Ω(t) ⊂ R3 which represents the simply connected
region of air and water surrounding the lifting body — or wing. Making use
of the right handed orthogonal coordinate system x̂yz, where î, ĵ, k̂ are the
unit vectors aligned with axes x, y and z, respectively, the equations read:
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ρ

(
∂v

∂t
+ v ·∇v

)
= ∇ · σ + b in Ω(t) (1a)

∇ · v = 0 in Ω(t) (1b)

v = vg on Γ(t) (1c)

in which ρ is the — constant — density of the fluid and b are external
volume forces which in the present framework typically are related to gravity
and possible inertial forces due to possible acceleration of the reference frame.
The term σ = −pI+µ(∇v+∇vT ) is the stress tensor for an incompressible
Newtonian fluid, Γ(t) := ∂Ω(t) is the boundary of the region of interest,
and n is the outer normal to the boundary Γ(t). On the boundaries of the
domain, the prescribed velocity vg is either equal to the body velocity, or to
a given velocity field (for surfaces far away from body).

Equation (1a) is usually referred to as the momentum balance equation,
while (1b) is referred to as the incompressibility constraint, or continuity
equation.

2.1. Potential flow model

In the flow field past a slender body — such as a wing, as depicted in
Figure 1 — aligned with the free stream velocity, vorticity is confined to
the boundary layer region and to a thin wake following the body. In such
conditions, the assumption of irrotational flow and non viscous fluid are fairly
accurate in the vast majority of the computational domain.

If simply connected domains are considered, under the assumptions of
irrotational flow and inviscid fluid, at each point x = xî+ yĵ+ zk̂ the veloc-
ity field v(x, t) admits a representation through a scalar potential function
Φ(x, t), namely

v(x, t) = ∇Φ(x, t) in Ω(t). (2)

In such a case, the equations of motion simplify to the unsteady Bernoulli
equation and to the Laplace equation for the flow potential:

∂Φ

∂t
+

1

2
|∇Φ|2 +

p

ρ
+ β · x = C(t) in Ω(t) (3a)

∆Φ = 0 in Ω(t) (3b)
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where C(t) is an arbitrary function of time. In Equation (3a) we have as-
sumed that all body forces can be expressed as b = −∇(β · x), i.e., they
are all of potential type. This is true for gravitational body forces and for
inertial body forces due to uniform accelerations along fixed directions of the
frame of reference.

We remark that the unknowns of System (3) Φ and p are uncoupled.
Once the solution of Laplace Problem (3b) is obtained, the pressure can
be in fact recovered by means of a postprocessing step through Bernoulli’s
Equation (3a).

2.2. Perturbation potential

As mentioned, we solve Problem (3) in the region Ω(t) surrounding the
wing. In this work, we will assume that the wing is moving in a fluid at
rest at velocity V ∞ = V∞î. Exploiting Galilean relativity, we then solve the
governing equations in a relative frame of reference moving with the wing
average speed. In such an inertial frame, the x axis of the right-handed co-
ordinate system used will be aligned with the asymptotic fluid velocity, the
z is aligned with the vertical — gravity acceleration — direction, and the y
axis identifies a lateral direction normal to both x and z. Figure 1 depicts
the domain Ω(t), along with the asymptotic velocity vector and coordinate
system. We remark that possible accelerations of the wing in the inertial
frame chosen can be accounted for by specifying, at each time instant, the
updated position and velocity of the wing surface points. Such a strategy
would allow for the simulation of possible pitching or plunging motions of
the wing under the action of fluid dynamic forces, or rotations around a
shaft experienced by propeller blades. However, in all the numerical tests
and simulations presented in this work the wing is not experiencing time de-
pendent motions in the relative reference frame described. We also point out
that, due to the absence of inertia in the potential flow model, whenever the
boundary conditions are independent of time, a steady solution is expected.
For such a reason, and to lighten the notation, we will omit the explicit time
dependence of both Ω and its boundaries and the solution in the following
sections.

It is convenient to split the potential Φ as the sum between a mean flow
potential (due to the free stream velocity) and the so called perturbation
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potential φ due to the presence of the wing, namely

Φ(x) = V ∞ · x+ φ(x) (4a)

v(x) = ∇Φ(x) = V ∞ + ∇φ(x). (4b)

The perturbation potential still satisfies Poisson equation

∆φ = 0 in Ω, (5)

and in practice it is convenient to solve for φ, and obtain the total potential
Φ from equation (4).

z

x

y

ΓB

Γ∞

V ∞ = {V∞, 0, 0}

Figure 1: The computational domain

Figure 1 presents a sketch of the explicit splitting of the various parts
of the boundary Γ. On the wing surface ΓB, we apply a non penetration
condition which takes the form

φn := ∇φ · n = −n · V ∞ on ΓB, (6)

8



when expressed in terms of the perturbation potential and V ∞.
As the name suggests, the perturbation potential represents the flow po-

tential component associated with the presence of the wing in the otherwise
undisturbed stream. Clearly, the influence of a body having finite dimen-
sions on the flow field is expected to fade at infinite distance from the body
itself. Thus, a possible condition for the perturbation potential on the far
field boundary Γ∞ is the homogeneous Dirichlet condition

φ = 0 on Γ∞. (7)

A more accurate estimate of the expected asymptotic behavior of the
perturbation potential will be obtained based on the boundary integral for-
mulation of the problem described in Section 3.1.

2.3. Wake modeling and quasi-potential flow

The model described by Equation (5) and Boundary Conditions (6) and
(7) results unfortunately unable to predict that forces are exchanged between
the ideal fluid and a body moving at constant speed in it. This fact is known
as D’Alembert’s paradox [16]. However, it is possible to modify the potential
flow model so as to extend its limits and make it able to compute accurate
approximations of the fluid dynamic forces exchanged by the fluid and a
streamlined body. This leads to the so called quasi-potential flow theory. We
refer the interested reader to [7, 8] for a more detailed analysis such flow
model, while in this section we will only report its main features.

In a quasi-potential model, the flow is assumed irrotational in all the flow
domain except from a free vortex sheet of null thickness detaching from the
trailing edge. In this way, the effects of the finite thickness vortical shear
layer detaching from the wing or airfoil trailing edge are recovered, in the
potential flow theory framework, by means of a wake of null thickness. The
surface ΓW representing such a wake sheet (see Figure 2) is by all means an
additional boundary of the domain Ω. As such, on each point x ∈ ΓW the
limits of the potential as the surface is approached from the top side φ+(x)
or from the bottom side φ−(x) are in principle different.

Enforcing the conservation of mass as in [17] on a infinitely thin control
volume sitting across ΓW yields

∂φ

∂n

+

=
∂φ

∂n

−
on ΓW . (8)
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z

x

y

Γ∞

V ∞ = {V∞, 0, 0}

ΓW

ΓB

γTE

Figure 2: The computational domain including the presence of the wake sheet ΓW detach-
ing from the trailing edge γTE

On the same infinitely thin control volume across ΓW , under the assump-
tion that pressure is continuous across the wake sheet, the enforcement of
the momentum conservation results in

D(δφ)

Dt
=
∂(δφ)

∂t
+ V w ·∇(δφ) = 0 on ΓW , (9)

in which

δφ = φ+ − φ− (10)

is the potential jump across the wake surface and V w = (∇φ++∇φ−)
2

+V ∞ is
the mean fluid velocity on Γw. Equation (9) indicates that the potential jump
remains constant following a material point on the wake which moves with
velocity V w. As a consequence, once the values of δφ on the trailing edge
points are known, they can be used to readily obtain the potential jump field
on the entire wake. Of course, this requires that on every point of the wake
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boundary, the latter is aligned with the local wake velocity. Unfortunately,
since the flow velocity is an unknown of our mathematical problem, the shape
of the wake boundary Γw cannot be known a priori. So, the values of δφ on
the trailing edge points and the effective shape of the wake are additional un-
knowns of the potential flow problem of the quasi-potential model governing
equations. Section 2.4 will discuss the supplementary condition added to the
problem to allow for the computation of the additional unknown δφ. Section
3.5 will provide details of the fixed point wake relaxation algorithm used to
compute the correct shape and position of the wake during the simulations.

2.4. Kutta condition

As mentioned, the wake vortex sheet is introduced to account for the im-
portant effects of the thin shear layer detaching from the trailing edge of an
airfoil or wing. In the idealization of the quasi potential model, all the vor-
ticity contained in such a shear layer is in fact carried within a null thickness
wake sheet. As a consequence, the velocity potential becomes discontinuous
across the wake.

A discontinuity in the potential is an acceptable feature in the simulations,
but, of course, it should not translate into a discontinuity in the pressure
field. Equation (9) is derived based on the assumption that the pressure is
continuous across the wake. Thus, aligning the wake with the local velocity
field ensures that pressure is continuous on the two sides of the wake. We
then only need to impose pressure continuity on the points of the trailing
edge, namely

δp = p+ − p− = 0 on γTE, (11)

where p+ and p− are the pressure values computed on the leeward and wind-
ward side of the trailing edge, respectively. The latter condition is the one
added in this work to obtain the correct value of the additional trailing edge
unknown δφ. There are of course many forms available in the literature of
the so called Kutta condition needed to find the correct δφ value (see among
others [9]).

As pointed out in Section 2.1, the pressure value is obtained making use
of Bernoulli’s Equation (3a). Given the steady flow assumption used for
all the simulations considered in this work, a perturbation potential based

11



expression for pressure reads

p(x, t) =
1

2
ρ
(
|V ∞|2 − |∇φ+ V ∞|2

)
− ρgz in Ω, (12)

where in the derivation of Equation (12) we have assumed that the only
inertial force considered is due to a gravity acceleration of module g aligned
with the z axis. Kutta condition will then read

|∇φ+ + V ∞|2 = |∇φ− + V ∞|2 on γTE. (13)

3. Numerical approximation based on the Boundary Element Method

In this work, we make use of the Boundary Element Method (BEM) for
the spatial discretization of the governing Laplace equation. In the context
of potential flow simulation, this is quite a common choice. We must how-
ever remark that the Laplace equation for the velocity potential can be also
discretized by means of the Finite Element Method (FEM). At a first glance,
it would appear that the most important advantage of BEM compared to
FEM is the reduced number of unknowns associated with the codimension
one grid. Unfortunately, in the practice such an advantage is offset by the
presence of a dense resolution matrix in the discretized algebraic system.
Yet, there are other advantages of BEM that made us favor it over FEM. In
particular, in the context of the present physical problem, the codimension
one grids required by BEM are much easier to generate, deform and manage
without significant quality drop.

For the BEM discretization we use the same formalism presented in [4,
18, 19]

3.1. Boundary integral formulation

To rewrite (5) as a Boundary Integral Equation (BIE) we make use of
a fundamental solution (or Green’s function) of Laplace equation. More
specifically, in this work we employ the free space Green’s function

G(y − x) =
1

4π|y − x|
,

which is the distributional solution of the following problem
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−∆G(y − x) = δ(x) in R3

lim
|y|→∞

G(y − x) = 0,

where y ∈ R3 is a generic point, and x ∈ R3 is the center of the Dirac delta
distribution δ(x). If we select x to be inside Ω, using the defining property
of the Dirac delta and the second Green identity, we obtain

φ(x) =

∫
Γ

G(y − x)
∂φ

∂n
(y) dsy −

∫
Γ

φ(y)∇G(y − x) · n(y) dsy, ∀x ∈ Ω,

(14)
where in this case y ∈ Γ is a generic integration point on the domain bound-
ary — as indicated by the subscript in differential dsy — and n(y) is the
outward unit normal vector to boundary Γ. The Green’s function gradient
is ∇G = y−y

−4π|y−x|3 .

From (14) we notice that if the solution and its normal derivative on the
boundary Γ are known then the potential φ can be computed in any point
of the domain. Considering the trace of (14) we can write the boundary
integral form of the original problem as

c(x)φ(x) =

∫
Γ

G(y − x)
∂φ

∂n
(y) dsy (15)

−
∫ PV

Γ

φ(y)∇G(y − x) · n(y) dsy ∀x ∈ Γ = ∂Ω (16)

where c(x) is obtained from the Cauchy Principal Value (CPV) evaluation of
the integral involving the derivative of the Green’s function — as indicated
by the

∫ PV
symbol. By a geometric perspective, the value of c represents the

fraction of solid angle of the domain Ω seen from the boundary point x. As
we are interested in computing the solution on the surface of the lifting body,
the point x is here assumed to always lie on ΓB. We then need to introduce
the boundary conditions of the Laplace problem described in Sections 2.2
and 2.3 to obtain the values of the integrals appearing in Equation (16) and
formulate the discretized lifting body problem. To this end, we split the
domain boundary into its non overlapping regions illustrated in Figure 2,
namely Γ = ΓB ∪Γ∞ ∪ΓW+ ∪ΓW− and analyze separately the contributions
of each region to the integrals in Equation (16).
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Wake surface integrals. Note that ΓW+ and ΓW−, are the top and bottom
boundaries, respectively, of the potential flow region interfacing it with the
vortical wake region. As discussed in Section 2.3, in the framework of the
quasi-potential model the vortical region past the trailing edge is assumed
to have zero thickness, and it is represented as a vortex sheet surface. Thus
ΓW+ and ΓW− will be characterized by the same position and shape — which
coincides with ΓW — but by opposite orientation and normal vectors. Given
these considerations, the contributions of the wake boundary ΓW to the in-
tegrals appearing in Equation (16) result in

∫
ΓW+

G(y − x)
∂φ

∂n

+

(y) dsy +

∫
ΓW−

G(y − x)
∂φ

∂n

−
(y) dsy = 0 (17)∫ PV

ΓW+

φ+(y)∇G(y − x) · n(y) dsy +

∫ PV

ΓW−

φ−(y)∇G(y − x) · n(y) dsy

=

∫ PV

ΓW

δφ(y)∇G(y − x) · n(y) dsy, (18)

where we have used Equations (8) and (10), and the opposite sign of the
normal unit vectors on the two sides of the wake surface.

Far field surface integrals. As for boundary Γ∞, we can assume, without loss
of generality, that it can be represented as the surface of a sphere with radius
R→∞ (see Figure 2). Making use of spherical coordinates (r, ϕ, θ) a generic
point x ∈ Γ∞ can be expressed as x = R sinϕ cos θî+R sinϕ sin θĵ+R cosϕk̂
and the BIE integrals on Γ∞ read∫

Γ∞

G(y − x)
∂φ

∂n
(y) dsy = lim

R→∞

∫ π

0

sinϕ dϕ

∫ 2π

0

1

4πR

∂φ

∂n
(R,ϕ, θ)R2 dθ (19)∫

Γ∞

φ(y)∇G(y − x) · n(y) dsy = lim
R→∞

∫ π

0

sinϕ dϕ

∫ 2π

0

R

4πR3
φ(R,ϕ, θ)R2 dθ,

where we have used the fact that as R → ∞ x − y ' x and (x − y) ·
nΓ∞ ' R. Equations (19) suggest that assuming φ = o(1) and ∂φ

∂n
= o( 1

R
) as

R → ∞ results in null values for both integrals on Γ∞. Such assumptions
are by no means restrictive. Requiring that the perturbation potential is
a function that fades at an infinite distance from the body generating the
perturbation is in fact consistent with its very definition. In light of this,
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the perturbation potential normal derivative must present an asymptotic
behavior proportional to the derivative of the perturbation potential, which
makes the assumption ∂φ

∂n
= o( 1

R
) also reasonable. For these reasons, in

this work the contribution of Γ∞ to the boundary integrals in Equation (16)
is considered null. The discretization of such boundary will then not be
necessary.

Body surface integrals. On the body boundary ΓB, making use of Equation
(6), we can write∫

ΓB

G(y − x)
∂φ

∂n
(y) dsy = −

∫
ΓB

G(y − x)(n(y) · V ∞) dsy (20)

The final boundary integral formulation of the problem, written for a
generic point x ∈ ΓB, reads

c(x)φ(x) +

∫ PV

Γ

φ(y)∇G(y − x) · n(y) dsy + (21)∫ PV

ΓW

δφ(y)∇G(y − x) · n(y) dsy = −
∫

ΓB

G(y − x)(n(y) · V ∞) dsy

3.2. Discretisation

The numerical discretization of (21) leads to a real-valued Boundary Ele-
ment Method (BEM). The resolution of a BEM requires the discretization of
the unknowns using functional spaces defined on a Lipschitz boundary. We
address this problem introducing suitable discretizations of the unknown φ
on the body surface and of the unknown δφ on the wake surface. Such dis-
cretizations are based on standard Lagrangian finite element spaces defined
on Γ. We then use the same functional space to describe the geometry. This
setting is often referred to as Isoparametric BEM.

We define the computational mesh as a quadrilateral decomposition Γh of
the boundary Γ. We require that two cellsK, K ′ of the mesh only intersect on
common edges or vertices, and that there exists a mapping from a reference
cell K̂ to K. The Jacobian must be uniformly bounded away from zero for
all cells K. To ease mesh generation, the simulation tool developed allows
for the definition of a very coarse initial grid, which is then automatically
refined on the user prescribed geometry of the wing up to the desired level of
refinement. Following [20, 21] an interface to CAD data structures — which
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are the most common tool to define arbitrary geometrical descriptions [6,
22, 23] — is used to specify the desired geometry of the wing. This feature
has been previously employed in hydrodynamics simulations through BEM,
[11, 24, 25], and [4] presents an example of a Laplacian problem with known
analytic solution solved for convergence testing purposes on the geometry
of an aeronautics-like NACA wing shape. As will be shown in Section 4,
such CAD-interfacing feature has also been used in this work for the proper
placing of the degrees of freedom on the CAD surface whenever a high order
finite element is selected for the mapping and the solution. We point out
that the latter feature is ultimately what results in the possibility for the
user to effectively select arbitrary order finite elements at the start of each
simulation. In fact, the generation of quality unstructured high-order meshes
remains a significant obstacle in the adoption of high-order finite elements. In
the framework of the methodology here presented however, only a standard
low order grid is required at the start of the simulation, as possible additional
high order mapping degrees of freedom are automatically generated on the
CAD surfaces.

If φ and ∂φ
∂n

lie in the spaces V , defined as

V :=
{
φ ∈ H

1
2 (Γ)

}
,

where Γ = ∂Ω, then the integrals in Equation (21) are bounded. H
1
2 (Γ) is

the space of traces on Γ of functions in H1(Ω). We construct the discretized
space Vh as conforming finite dimensional subspace of V

Vh :=
{
φh ∈ C0(Γh) : φh|K ∈ Qr(K), K ∈ Γh

}
≡ span{ψi}NV

i=1 (22)

where Qr(K) is the space of polynomials of order r in each coordinate di-
rection. In Equation (22) ψi denotes the shape function associated with the
i-th degree of freedom of the discretized space. For additional details on the
finite elements used in the BEM formulation we refer the interested reader
to [26]. Following [4] we use iso-parametric discretizations based on stan-
dard QN Lagrangian finite elements, and by collocating the support points
of the geometry patches directly on the CAD surfaces. This work reports
results obtained with bi-linear elements (r = 1), as well as of higher order
bi-quadratic (r = 2) or bi-cubic (r = 3) elements.

Since the unknowns φ and δφ are defined on complementary portions of
the discretized domain, we can define a single function in the discretized
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space φh ∈ Vh that approximates φ on the body surface and δφ on the wake
surface. The generic element of the discretized space reads

φh(x) =

NV∑
j=1

φ̂jψj(x), (23)

where the vector φ̂ ∈ RNV contains the value of the discretized potential φh
on each collocation point located on the wing surface ΓB, and of the potential
jump δφh on each collocation point located on the wake. NV then represents
the overall number of degrees of freedom of the discretized space Vh. To allow
for possible discontinuities of the unknown functions across the trailing edge
γTE we use a methodology inspired to the double nodes technique presented
in [27]. More precisely, the use of a continuous Lagrangian Finite Element
space is in principle not suited for the representation of the solution at the
trailing edge. On one hand in fact, the value of the potential obtained ap-
proaching the trailing edge from the windward side of the airfoil is different
from that obtained approaching the same point from the leeward side. On
the other hand, the value obtained approaching the same point from the wake
side must be the difference between the two airfoil side values, as stated by
Equation (10). To accommodate for this, the computational mesh will be
built in such a way that in correspondence with the sharp trailing edge, the
degrees of freedom of the discretization space will be triple (see Figure 3).
This allows for the functions of space Vh to have different trailing edge values
on the cells of the airfoil leeward side, windward side, and wake. Note that
the increased number of unknowns implies that additional equations must be
introduced for the closure of the mathematical problem. As it will be shown
in Section 3.3, such equations will be obtained making use of Equation (10)
and by imposing a discretized version of the Kutta condition (13).

The collocation method is a common resolution technique for a BEM
since it does not require any additional integration of (21). We refer the
interested reader to [4] for a detailed analysis of the accuracy of this setting.
Collocating Equation (21) results in the following linear system

(C +N)φ̂− b = 0, (24)

where, for all the row indices i corresponding to collocation points xi ∈ ΓB:

• C is a diagonal matrix with diagonal entries Cii = c(xi)
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Figure 3: A two dimensional sketch of the computational domain including details of the
collocation nodes, coinciding with on the degrees of freedom (DOFs) of the discretization
space. The image also indicates that in correspondence with the trailing edge γTE , a triple
DOF is present to allow for the space Vh functions to have different trailing edge values
on the cells of the airfoil leeward side, windward side, and wake.

• Nij =
∑K

k=1

∑Nq

q

∂G

∂n
(xi − xq)ψjqJk(xq), where Jk is the determinant

of the first fundamental form for each panel K, and xq are the Nq

quadrature nodes used to compute the integral at the numerical level;

• bi =
∑K

k=1

∑Nq

q G(xi − xq)(−V ∞ · n(xq))J
k(xq);

When the collocation point lies inside the current integration cell, we
make use of bidimensional quadrature formulas based on Duffy transforma-
tion as in [28] to treat singular kernel integrals; in any other case, we use
standard Gauss quadrature rules.

It is important to point out that the linear system equation written on
each row corresponding to a wake collocation point is not the discretized BIE,
but is instead the discretized version of Equation (9). This requires the use
of a structured grid in such a region, and that the grid is conformal along the
trailing edge γTE. An example of structured wake grid is depicted in Figure
5. With this kind of grids it is possible to arrange the degrees of freedom of
the wake in lines that sit on the pathlines detaching from the trailing edge.
The wake relaxation algorithm used to align such wake degrees of freedom
lines with the pathlines is described in Section 3.5. Thus, for all the row
indices i corresponding to collocation points xi ∈ ΓW :

• computing integrals for the BEM matrices is not needed on the wake,
as on ΓW Equation (9) is exploited;

• the system matrix (C+N) is used to impose that the value of δφ at each
degree of freedom on the wake is equal to that of the previous degree
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of freedom on the same pathline. Thus, for each line the only non null
entries will be a 1 on the principal diagonal, and a -1 in correspondence
with the index of the previous degree of freedom along the pathline;

• the right hand side entries bi are null in this region.

3.3. Numerical enforcement of the nonlinear Kutta condition

System (24) has to be completed with the additional conditions on the
trailing edge degrees of freedom to close the problem and obtain the desired
solution. As discussed in the previous section and illustrated in Figure 3,
each collocation point on γTE will correspond to three degrees of freedom in
the resolution system. The equations written on the row corresponding to
each of these degrees of freedom in the system will be:

• Wing leeward side: on the row corresponding to this degree of free-
dom, we write the Boundary Integral Equation (21), centered at the
collocation point on the trailing edge.

• Wing windward side: on the row corresponding to this degree of
freedom, we write the discretized Kutta condition (13), namely

|∇φ+
lw + V ∞|2 = |∇φ−ww + V ∞|2, (25)

where the subscripts lw and ww indicate the local degree of freedom
index on the airfoil leeward side and airfoil windward side, respectively.

• Wake degree of freedom: in this degree of freedom, the unknown
quantity is the potential jump δφ on the wake point attached to the
trailing edge. As such, the equation written is

(δφ)wk = φlw − φww, (26)

where the subscript wk indicates the local degree of freedom index on
the wake.

Introducing Equation (26) in the resolution system does not pose sig-
nificant problems, as it translates in adding a line in correspondence with
the wk-th degree of freedom, in which only a unit diagonal term and two
negative unit off diagonal terms at columns lw and ww are present. On the
other hand, the discretization of Equation (25) requires special attention,
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as the gradients of the potential function are not a single valued function if
evaluated in correspondence with collocation points located on cells edges.
We then resort to a L2 projection strategy to obtain suitable approximations
χx, χy, χz ∈ Vh of the components of the surface gradient ∇sφh combined
with the potential normal derivative

(
∂φ
∂n

)
h

= −V ∞ · n and the asymptotic
velocity V ∞. The weak form of the velocity x component computation reads

∫
Γ

vhχx ds =

∫
Γ

vh (∇sφh + (−V ∞ · n)n+ V ∞) · î ds ∀vh ∈ Vh. (27)

From the discretization of Equation (27) we get the N dimensional sparse
system

Mχ̂x = bχx , (28)

where

• M : mij =
∫

Γ
ψiψj ds is a sparse mass matrix;

• bχx : bχx

i =
∫

Γ
ψi (∇sφh − V ∞ · n+ V ∞) · î ds is the right hand side

vector;

• χ̂x is the vector containing the values of the fluid velocity on each
collocation point.

Note that the value of the local discretized velocity at each integration point
is computed as

∇sφh − V ∞ · n+ V ∞ =

NV∑
j=1

((∇sφ)j − V ∞ · n+ V ∞)ψj. (29)

Since all the standard Gauss quadrature points are located inside the
grid cells, the velocity evaluated with Equation (29) is single valued. Thus,
χx(x) =

∑NV

j=1 χ̂xjψj(x) is the best possible approximation, in the L2 norm
sense, of the x velocity component in space Vh.

A system similar to (27) — with identical matrix M — is solved for the y
and z components of the velocity. Thus, the discretized version of Equation
(25) reads

χ̂x
2
lw + χ̂y

2
lw + χ̂y

2
lw = χ̂x

2
ww + χ̂y

2
ww + χ̂y

2
ww, (30)
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3.4. Newton iterations solution

The final resolution nonlinear system is assembled combining Equations
(24), (26) and (30) as discussed in Section 3.3, where the nonlinearity is
given by the quadratic term in Equation (30). The final resolution system is
solved by means of the Newton method. The nonlinear solver implemented
is typically able to converge to the solution in few iterations.

3.5. Velocity computation on wake and wake relaxation

After the resolution of the nonlinear system, the values of the velocity
potential φh and of the wake potential jump δφh are available at the body
and wake collocation points, respectively. As discussed in Section 2.3, the
position of the wake surface is an unknown of the numerical problem. For
such a reason, the values of φh and δφh computed through the resolution
of the nonlinear system are used to obtain the fluid velocity values at the
wake collocation points, and consequently deform the wake so as to align
it with the local velocity field. Once the new wake position is computed,
the nonlinear system is solved to obtain the new body surface potential and
wake potential jump, leading to new wake collocation point velocities. Such
a fixed point strategy is repeated until convergence, which typically requires
5 to 10 iterations.

An important aspect of the procedure just outlined is represented by the
computation of the fluid velocity in correspondence with the wake collocation
points. Once again, we point out that with our finite elements choice, the
collocation points are often located on the edges of the quadrilaterals com-
posing the grid, where the potential gradients, and consequently the velocity,
is discontinuous. We could in principle think of avoiding the problem, also
in this case, making use of a gradient recovery strategy as in Equation (27).
However, the unknown in the wake boundary is not φ, but its jump δφ across
the vortex sheet. For such a reason, the result of the application of a gradi-
ent recovery strategy on such region would result in a function with dubious
physical interpretation. In this work, we then resort to the Hypersingular
Boundary Integral Equation for the computation of the fluid velocity on the
wake. The Hypiersingular BIE is obtained taking the gradient of Equation
(16) with respect to x. Such equation reads
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a(x)φ(x) + ¯̄C(x)∇φ(x) +

∫ FP

Γ

φ(y)(∇(∇G(y − x))) · n(y) dsy

=

∫ FP

Γ

∇G(y − x)(−V ∞ · n(y)) dsy (31)

where the notation
∫ FP

indicates the Hadamard’s finite part evaluation of
the integrals involving the Green’s function gradients and Hessian, a is a
free coefficient vector and ¯̄C is a free coefficient double tensor. Given the
free space Green’s function here used, the double gradient term in the first
integral takes the form

(∇(∇G(y − x))) · n(y) = − 1

4π|y − x|3

(
(y − x) · n
|y − x|2

(y − x)− n
)
. (32)

Please note that, as pointed out in [15], such synthetic notation is not
providing specific information on the — spherical — shape of exclusion region
in the finite parts evaluation. Such shape has a direct influence on the specific
values assumed by the free coefficients, as well as on the numerical quadrature
rules developed Guiggiani et al. in [15] for the integrals evaluation, which
we employ in the present work. We then refer the interested reader to [15]
for a more detailed description of the equation and its derivation, which goes
beyond the scope of the present paper.

After the solution of the potential problem, the collocation of Equation
(31) at a point x ∈ ΓW allows us for the direct evaluation of the potential
full gradient ∇φ, that can be in turn used to compute the local fluid velocity
V s = V ∞+∇φh. Ideally, ∇φh should be evaluated at each BEM collocation
point on the wake surface ΓW , so that it can be readily used to align the wake
geometry with the fluid velocity. However, in [15] Equation (31) is derived
under the assumptions that function ∂φ

∂n
is Hölder continuous at x, and that

φ must be differentiable at the same point, with Hölder continuous first
derivatives. With our Lagrangian finite elements choice, the latter condition
is clearly violated at all the collocation points located on the cell edges and
vertices. For such a reason, in this work we resort the weak form of the
hypersingular BIE. The corresponding Galerkin numerical problem will be
that of finding the approximation of ∇φ, uh ∈ Wh, such that
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∀v ∈ Wh (33)∫
Γ

(
a(x)φh(x) + ¯̄C(x)uh(x)

)
· v(x) dsx =

=

∫
Γ

(∫ FP

Γ

(
∇G(y − x)(−V ∞·n(y))−φh(y)(∇(∇G(y − x)))·n(y)

)
dsy

)
︸ ︷︷ ︸

g(x)

·v(x)dsx.

Here, the scalar solution space Vh is used to define the space Wh for the
vector valued solution function uh as

Wh := {(uh)k ∈ Vh, k = 1, 2, 3} ≡ span{ξi}3NV
i=1 . (34)

Note that in Equation (33) the function g(x) indicated in the right hand
side represents the perturbation potential gradient computed on point x
of the external integration loop. In this regard, the main advantage of the
Galerkin formulation used for the gradient computation problem in Equation
(33) is that, in the framework of the double integrals computation, the Hyper-
singular BIE singularities are always located on the — Gauss — quadrature
nodes. Since such points are always internal to the cells of the computational
grid, the Hölder continuous first derivatives requirement on φ is satisfied, re-
sulting in a stable numerical algorithm. In addition, the surface of each cell is
smooth in correspondence with the quadrature nodes. On such a geometry,
the values for the free coefficients on the double sided wake surface are set to
a = 0 and ¯̄C = ¯̄I, where ¯̄I is the identity double tensor. Thus, the Galerkin
formulation results in the following algebraic linear system

AÛ = bU , (35)

where

• Û ∈ R3NV is the solution vector containing all the components of the
potential gradient solution on all the BEM collocation points;

• A ∈ R3NV ×3NV : Aij =
∫

Γ
ξi(x)ξj(x) ds is a sparse mass matrix;

• bU ∈ R3NV : bUi =
∫

Γ
g(x) · ξ(x)dsx is the right hand side vector.
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Finally, the velocity on the BEM collocation points is obtained adding
the asymptotic velocity to the gradient values contained in Û . The resulting
velocity vectors are used to carry out the wake relaxation step. As previ-
ously mentioned, and as illustrated in Figure 5, the computational grid is
structured in the wake region. Thus, it is possible to arrange the wake col-
location points in lines oriented in the streamwise direction. Given a wake
degree of freedom iw in the BEM problem, and the degree of freedom pw
corresponding to the previous collocation point on a pathline, the position
of collocation point iw will be computed as

xiw = xpw +
vi
|vi|

d ∀xi ∈ ΓW (36)

in which d is a user prescribed wake cell length. The wake relaxation step
in Equation 36 is carried out on all the wake collocation points, leading to
a modified wake geometry. The BEM nonlinear problem for the velocity
potential is then solved making use of the new wake shape, and the new
fluid velocities are used to again modify the wake geometry. Such a fixed
point iteration strategy is repeated until convergence of the wake position
and velocity potential, which in the test cases considered in Sections 4 and
5 requires less than 10 iterations.

4. Convergence tests

This section presents and discusses the numerical results obtained with
the lifting surface potential flow solver proposed. The numerical tests have
been designed to evaluate the accuracy and spatial convergence capability
of both the nonlinear system solved to obtain the potential and the wake
relaxation algorithm.

4.1. Test case setup and resolution

The initial test case considered is the potential flow past a rectangular
and constant-section wing. The airfoil section considered is a NACA 0012
with a chord c = 1 m, and the wing is generated translating such a shape for
a span b = 4 m along a direction perpendicular to it. In the simulations, we
make use of the right handed reference frame described in Sec. 2.2 in which
axis x is aligned with the inflow velocity vector V ∞ = V∞î, axis z is aligned
with the gravity acceleration vector g = −gk̂, with g = −9.81m/s2 and axis
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Figure 4: A CAD rendering of the wing used in the first numerical tests, with relevant
length measures.

y normal to both x and z. In such framework, the NACA 0012 airfoil sections
are parallel to the xz plane. The wing span direction is then aligned with
the y axis, and the center of the reference frame is located at the leading
edge of the section corresponding with the symmetry plane of the wing, as
illustrated in Figure 4. As the image shows, the angle of attack between the
the chord c and the x axis is α = 8.5◦. In this particular test the wing tip has
been capped with a solid of revolution smoothly connected to the remaining
part of the solid. As will be seen, this will help showcasing the ability of the
solver developed, to automatically refine the computational mesh on curved
CAD surfaces. In fact, an extremely coarse initial mesh composed by three
rectangular cells (one covering the leeward side of the wing, one covering the
windward side of the wing, and one covering the initially flat wake — having
length 4c) is automatically refined to obtain the desired computational grid
for each simulation. As discussed in [4], the automated mesh generation
process consists of an initial phase in which the aspect ratio of each cell is
limited to a user defined maximum value, followed by user specified numbers
of uniform refinement cycles and adaptive refinements based on the local
underlying CAD surface curvature.

Examples of the initial grids obtained with the automated mesh gen-
eration algorithm are presented in Figure 5. The grid shown on the left,
in particular, accounts for a total of 384 cells. Such a grid results in 459,
1683 and 3675 degrees of freedom when bi-linear, bi-quadratic and bi-cubic
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Figure 5: A top view of the automatically generated initial mesh on the wing and wake
grid. On the left, the — structured — grid obtained setting maximum aspect ratio 2.5,
and 3 uniform refinement cycles. On the right, the — unstructured — grid obtained
setting maximum aspect ratio 2.5, 3 uniform refinement cycles, and 4 adaptive refinement
cycles based on CAD curvature. Note that, regardless of the wing grid type, the wake
mesh is structured. The interface between the two regions, occurring at the trailing edge,
is conformal.

finite elements are selected, respectively. The additional collocation points
required by the high order finite elements are automatically placed on the
curved CAD surfaces at the moment of the degrees of freedom distribution.
Thus, the switch from low to high order finite elements does not require the
generation of specific computational grids. For reference, the solution of the
nonlinear problem with 459 degrees of freedom requires few seconds — in-
cluding jacobian matrix assembling — on a single processor of the Intel Quad
Core i7-7700HQ 2.80GHz, 32 GB RAM laptop used to produce all the results
shown in this work. After this, the velocity computation combined with the
wake relaxation step, requires up to 10 seconds. Thus, the execution time
required by 10 wake relaxation cycles is approximately 2 minutes. Scaling up
to the largest grids considered in this work, which feature up to 5500 degrees
of freedom, the resolution of the nonlinear problem requires approximately
a minute, while the computation of the velocity on the wake nodes can take
as much as 10 minutes. In such case, the required computation time for
the full wake relaxation can reach more than an hour. Things can be made
even worse when high order finite elements are considered, as they typically
demand higher quadrature order to obtain accurate solutions. Clearly, the
computational cost highlighted, can be significantly reduced through par-
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allelization of both the nonlinear system resolution and the wake velocity
computation algorithms. For such a reason, a parallel version of the solver
is currently being implemented.

4.2. Nonlinear system resolution accuracy and convergence

The first result presented aims at confirming that the algorithm developed
is correctly solving the nonlinear system described in Section 3.3. Thus, the
wake geometry is kept flat in these first numerical tests presented. Clearly,
no analytic solution is available for the realistic — and non analytic — wing
geometry selected. For such a reason, the convergence of the resolution
algorithm developed is assessed observing the numerical solutions behavior
when increasingly refined grids or higher order discretizations are considered.

4.2.1. Potential jump at trailing edge

Figure 6 presents the values of the potential jump δφ obtained at the wing
trailing edge, as a function of the span wise coordinate y. The automated
grid generation algorithm is here set up to produce structured computational
grids (as in 5, on the left), which are progressively refined doubling at each
additional cycle the number of nodes in both the span wise and chord wise
directions. As the main focus of the present numerical test is that of eval-
uating the solution at the trailing edge, such structured grids appear better
suited to evaluate the spatial convergence of the solver in such region.

The top left plot in Figure 6 refers to the convergence results obtained
making use of bi-linear finite elements. In this case, the δφ curves clearly
suggest that the solution converges as the number of equispaced nodes on
the trailing edge is increased. This is the case also when bi-quadratic and
bi-cubic finite elements are considered, as shown in the top right and bottom
left diagram, respectively. The limit solutions obtained with finite elements
of different degrees are also compared in the bottom right plot of Figure
6. We point out that, because a structured mesh is used in the present
test, the bi-linear and bi-quadratic solutions in the bottom right plot feature
the same number — and location — of the system degrees of freedom. In
fact, given any structured quadrilateral grid, the degrees of freedom obtained
using bi-quadratic elements or using bi-linear finite elements on a grid with
an additional uniform refinement step are the same. For such a reason,
the bottom right plot of Figure 6 suggests that the best solution obtained
with bi-linear and bi-quadratic finite elements, when using 128 of degrees of
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Figure 6: Analysis concerning the distribution of δφ on the wake surface. The graphs
refer to a plane section normal to the x-direction. This section is located downstream of
the wing trailing edge, at x/c = 1.05. In three of these four graphs, a mesh convergence
analysis was conducted, while in the fourth (the one on the bottom right), the various
degrees of approximation of the solution were compared in terms of the quality of the
results.

freedom, appear rather similar. Also the solutions obtained with bi-cubic
elements appear similar — although with these elements it is not possible
to have a comparison with exactly the same degrees of freedom number and
distribution used for the lower degree discretizations. However, the plots
in Figure 6 also suggest that the high order solutions seem, as expected,
to converge faster to the limit solution, as the cubic and quadratic curves
obtained on the coarser grids are much closer to the limit solution than their
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linear counterparts.

4.2.2. Pressure coefficient on wing sections

The second numerical test is aimed at the characterization of the solver
accuracy in the estimation of the pressure field on the wing surface. This is
relevant for the present application, in which the main goal of the simulations
is the computation of the fluid dynamic forces on the wing. And, as well
known, such forces in the context of potential flow theory, are in fact obtained
as the integral of the pressure stresses on the wing surface. The pressure field
is here evaluated by means of Equation (12), and Figure 7 presents plots of
the non dimensional pressure coefficient

cp =
p− p∞
1
2
ρV 2
∞

(37)

at vertical sections of the wing located at different span wise coordinate.
The present convergence test starts from a moderately accurate base so-
lution obtained with bi-linear elements on a computational grid generated
setting maximum aspect ratio 2.5, 3 uniform refinement cycles, and 2 adap-
tive refinement cycles based on CAD curvature. To evaluate the effectiveness
of possible hp refinement strategies, the system degrees of freedom are then
increased either by refining the computational grid, or by increasing the fi-
nite element degree. The three plots on each row of Figure 7 depict values of
−cp as a function of non dimensional chord wise coordinate x/c, on vertical
sections located at non dimensional span wise coordinate values y/2c = .211,
y/2c = .611 and y/2c = .811, from left to right. In the first row plots,
the base solution (blue lines) and is compared with the one obtained with
bi-linear elements on a grid featuring an additional uniform refinement step
(green lines). The three diagrams suggest that the bi-linear solution on the
finer grid appears significantly less dissipative than the solution on the coarser
grid. With the finer grid, the peak cp value on the wing windward side cor-
responding to the flow stagnation point is approaching the theoretical limit
cp = 1. In addition, also the suction side peak value is significantly higher on
the refined grid simulation. As a result of the increased peak values located
close to the leading edge, the entire solution amplitude up to the trailing
edge appears slightly higher, with a consequent increase of the overall area
included between the leeward and windward side cp lines. A similar behavior
is observed also when the base solution degrees of freedom are increased by
means of an increment of the discretization degree. The three plots in the
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second row in of Figure 7 refer to the comparison between the base bi-linear
solution cp values, and the pressure coefficient values obtained making use of
bi-quadratic finite elements on the same grid. In the third row plots instead,
the base solution cp field is compared to the one computed making use of the
same grid and bi-cubic finite elements. In both cases, the results show that
a refinement strategy based on the increase of the discretization degree is ef-
fective in reducing numerical diffusion. The peak values in the leading edge
region, including the one associated with the stagnation point, are in fact
sharper, and as a result the overall area between the leeward and windward
curves is increased. The plots in the final row of of Figure 7 finally compare
the cp solutions obtained with the different refinement strategies tested. As
a general trend, the diagrams indicate that the solution obtained with the
three refinement strategies appear quite similar. Once again, this seems to
suggest that the solver solutions converge as the number of degrees of free-
dom in the system is increased. A more detailed look at the plots indicates
that the bi-linear solution on the finer grid and the bi-quadratic solution on
the coarser grid are particularly close to each other across all the regions and
sections. Instead, the bi-cubic solution seems to have less numerical dissi-
pation, as its peaks present higher values with respect to the bi-linear and
bi-quadratic ones. This could be associated to the fact that, in the case of
the present numerical test, the cubic solution has a slightly higher amount of
degrees of freedom with respect to the bi-linear and bi-quadratic solutions,
which share the same spacing among the collocation points.

4.3. Wake relaxation

After the convergence and accuracy features of the nonlinear problem
resolution algorithm have been described and discussed, the present section
focuses on highlighting and discussing the performance of the wake relaxation
algorithm described in Section 3.5. Also in this case, we make use of the
geometrical layout described in Figure 4, and compare the results obtained
with different discretization degrees. The grid used for the first bi-linear finite
elements test here considered is set up prescribing maximum cell aspect ratio
2.5, 2 uniform refinement cycles, and 1 adaptive refinement cycle based on
CAD curvature. To obtain an even comparison in terms of collocation point
distribution with respect to the bi-linear test case, the grid generated for
the bi-quadratic case features identical refinement parameters, but one less
uniform refinement cycle. As for the bi-cubic test case a similar spacing of
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Figure 7: Development of the pressure coefficient in three different wing sections. All
of the sections were obtained by using planes parallel to the chord of the profile and
perpendicular to the y-axis. These are located at y/c = 0.211, 0.611 and 0.811. The
comparison was made by analysing four different case studies: starting with a base case,
the aim is to observe how the solution changes in response to grid refinement or the use
of higher degree finite elements, such as quadratic and cubic.
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the collocation points is obtained imposing maximum cell aspect ratio 1.85,
1 uniform refinement cycle, and 1 adaptive refinement cycle based on CAD
curvature. In all the simulations discussed in the present sections, the wake
relaxation algorithm has been set up with a prescribed wake cell length (see
Equation (36)) d = 0.15 m, and has been arrested after 9 iterations.

Figure 8: A front view of the grid in the — rounded — tip region of the wing and of the
fully developed wake. The three images on the top refer to the base solution obtained
with linear (left), quadratic (middle) and cubic (right) finite elements, respectively. The
three images on the bottom show the linear (left), quadratic (middle) and cubic (right)
solutions obtain with one additional uniform refinement level.

The final wake geometries obtained with the grids just described are de-
picted in the top row of Figure 8. The left, right and middle images refer
to the solutions obtained with bi-linear, bi-quadratic and bi-cubic finite el-
ements. We point out that, in order to show all the collocation points of
the solutions obtained with higher degree finite elements, in all the following
wake geometry visualizations the higher order cells have been split in multiple
bi-linear cells. In this way, each bi-quadratic cell is represented in the visu-
alizations as a set of 4 bi-linear cells, whereas each bi-cubic cell is visualized
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by means of 9 bi-linear cells. The wake plots confirm that the wake velocity
computation and wake relaxation algorithm used lead to a qualitatively cor-
rect representation of the wake geometry. The images in fact clearly show
the presence of a vortex developing past the wing tip, which curls upward the
lateral edge of the wake vortex sheet. Instead, in the region located down-
stream with respect to the wing middle portion, the wake appears flat and
aligned with the trailing edge slope. We point out that in the framework of
the wake relaxation algorithm developed the wake orientation at the trailing
edge is not imposed, but is instead a result of the computations. Thus, the
latter observation is quite satisfactory. At a closer look, the wake geometries
obtained with bi-linear and bi-quadratic finite elements appear very simi-
lar, especially in the wake roll up region. The bi-cubic solution also appears
similar to that obtained with lower degree finite elements, despite being com-
puted making use of a different distribution and number of collocation points.
In the central portion of the wake, the bi-quadratic and bi-cubic solutions
differ from their bi-linear counterpart, as they both present a series of oscil-
lations. The plots in the bottom row of 8, which have been obtained adding
a uniform refinement step to the grids in the top row, confirm the presence
of these oscillations. On the finer grid here considered, the oscillations in
the bi-quadratic solution appear more visible, as they extend to the wake
roll up region, which appears wider than the one computed with bi-linear
elements. These oscillations are the consequence of not fully accurate com-
putations of the velocity at the wake collocation points. Higher order shape
functions change sign multiple times over each cell, which causes cancellation
problems when computing the hypersingular kernel integrals required by the
wake velocity Galerkin BEM problem. Clearly, when the oscillations are so
severe that they are able to cause self contact of the wake surface, they induce
instabilities that lead to simulations break up. Indeed, the problem can be
significantly reduced both through an increase of the number of quadrature
nodes in both the inner and outer loop of the wake velocity Galerkin BEM
problem, and with a choice of shorter cells in the wake. However, we must
warn that increasing these parameters leads to more than linear increment in
the computational cost of the wake relaxation algorithm. For such a reason,
the execution of the velocity computation and wake relaxation algorithm in
the present example were extremely more time consuming when higher order
finite elements were employed. In addition, to avoid instabilities, the bi-cubic
simulation on the finer grid required a shorter wake cell length, which in turn
resulted in shorter overall wake length.
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Given the aforementioned considerations, in the remainder of the article
we will only present solutions based on bi-linear finite elements, in which
localized grid refinements are used to compensate for the slower convergence
rate with respect to higher order elements, highlighted in Figure 6. A combi-
nation of h-adaptivity and linear elements appear in fact to strike a balance
between accuracy, stability and efficiency of the simulations. Thus, the next
test case is designed to showcase the local refinement capabilities of the solver
developed. To this end, three different grids are generated starting from a
base grid with maximum cell aspect ratio 1.85, 3 uniform refinement cy-
cles and 1 adaptive refinement cycle based on CAD curvature. So, the first
grid considered is obtained adding one cycle refining cells located in corre-
spondence with the rounded tip of the wing. Similarly, the second and third
computational grids are generated adding to the base grid two and three local
refinement cycles in the tip region, respectively. Figure 9 shows the results
obtained using bi-linear elements on the three grids generated. As can be
appreciated in the plots, the rounded tip geometry is reproduced with greater
accuracy as the grid is locally refined. This has clearly a consequence on the
computed tip vortex, which appears confined in a smaller region when finer
tip grids are considered (right plot), as opposed to the wider curl computed
with coarser grids. The wider wake tip vortex appearing in the coarser mesh
simulation (left plot) is also affecting the nearby portion of the wake vortex
sheet, which appears less flat than the one computed with the finer meshes.
Clearly, this can have significant effects on the accuracy of the computed
downwash caused by the wing presence.

Further confirmation of the effect that tip refinements can have on the
overall wake shape is given by Figure 10. The plot displays a vertical cut
of the converged wake geometry on a plane located at constant longitudinal
coordinate x = 2.5 m. The curves in the plot show that adding nodes to
the final portion of the wake vortex sheet increases the tendency of the wake
edge to curl up in a spiraling fashion. As this results in smaller spiral coils,
the influence of the tip vortex presence on the central part of the wake is
weakened. Thus, the central portion of the wake geometry seems to converge
to a more flat solution as the tips are refined.
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Figure 9: A front view of the grid in the — rounded — tip region of the wing and of
the fully developed wake. The three images refer to the solution obtained with the base
grid (on the left), with one additional refinement on the tip (in the middle), and with two
additional refinements on the tip (on the right).

5. Comparison with experimental data

As a final confirmation of the accuracy of the mathematical model pre-
sented in this work, the present section is devoted to the comparison of the
numerical results with experimental measurements available in the literature.
The test cases considered are presented in [29] and both feature a semi-wing
with constant NACA 0012 airfoil section and chord length c = 1 m. In the
first test, the wing has a regular rectangular shape with semi-span s = 2.95c.
The semi-wing is mounted on a wall on one side, and has a free tip on the
other. In the second test, the wing is rotated along the vertical axis z to
obtain a swept semi-wing in which the leading edge is inclined by an angle
β = 20◦ with respect to the y axis. In such a case, the semi-wing span re-
ported is s = 2.91c. In the specific experiments here considered, both wings
are set at an angle of attack α = 6.75◦.

5.0.1. Rectangular wing

The experimental setup corresponding to the rectangular semi-wing de-
scribed, is reproduced in the simulations with a geometric arrangement by
all means identical to that of the numerical tests presented in section 4. To
obtain an equivalent flow on a wing in free air — as opposed to the exper-
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Figure 10: Wing tip refinement effect on a section of the wake located 1.5 chord lengths
downstream with respect to the trailing edge. The blue, red and green curves in the plot
refer to solutions obtained with the base solution, one and two tip refinements, respectively.

imental one on a semi-wing — we considered an aspect ratio of Λ = 5.9,
corresponding in our case to a wingspan b = 5.9c = 5.9 m.

The geometric CAD model, designed using FreeCad, features in this case
a flat cap surface on each wing tip. An initial mesh made of approximately 10
cells is then refined onto the surface of the CAD model imposing maximum
cell aspect ratio 4.5, 2 uniform refinement cycles and 1 adaptive refinement
cycle based on CAD curvature. This results in a computational grid featuring
approximately 3800 quadrilateral cells. Bi-linear finite elements are used for
this test, which result in a resolution system of 4240 degrees of freedom.

Figure 11, presents a comparison between experimental and numerical
values of −cp on four cross-sections perpendicular to the wingspan direction.
The wing sections are located at wingspan coordinates y/c = 0.200, 0.350,
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Figure 11: Comparative analysis between results obtained using Π-BEM and experimental
data for a rectangular planform wing. The plots refer to four planar sections normal to
the y-axis located along the semi-wingspan direction at y/s = 0.050, 0.350, 0.610, 0.900.

0.610, 0.900. In each section, the numerical values of windward and leeward
pressure coefficients obtained imposing a flat wake (blue lines) and with
relaxed wake (green lines) are plotted against their experimental counterparts
(red dots).

By a qualitative standpoint, the comparisons appear satisfactory, as the
model appears able to reproduce with accuracy the main features of the
experimental curves. By a more quantitative point of view, the peaks location
is well captured and their height, especially on the windward side stagnation
point, appears accurately reproduced by the numerical results. Also the
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height of the suction side peaks seems reasonably accurate, although slightly
underestimated. This is more evident for the peaks on the sections closer to
the tip. Such a discrepancy is likely due to the potential flow model inability
to reproduce viscous effects associated with the increasingly close tip vortex.
In addition, in every plot in Figure 11 the numerical solution appears to be
consistently overestimating the experimental pressure at the trailing edge.
This should be in part associated to the sharp trailing edge considered in the
potential flow simulations which — as opposed to the finite thickness one used
in the experimental campaign — leads to higher pressure recovery. Finally,
we point out that the results obtained with flat wake are extremely close to
the ones obtained including the wake relaxation part of the algorithm. The
only visible differences can be in fact observed at the trailing edge, where the
relaxed wake solution consistently exhibits higher pressure values than its flat
wake counterpart. On one hand, such a marginal difference might not seem
enough to justify the additional computational cost associated with the wake
velocity computation and wake relaxation part of the resolution algorithm.
On the other hand, there surely are different applications in which the wake
geometry has more influence on the computed body pressure, with respect to
the isolated wing considered in the present numerical tests. This is definitely
the case for propellers, in which the helical shape of the wake is typically
closer to the propeller blades than it is in the example here considered.

5.1. Swept wing

The experimental setup corresponding to the semi-wing with sweep angle
β = 20◦ previously described, is also in this case reproduced in the simu-
lations by considering the entire extent of a V-shaped wing, as illustrated
in Figure 12. In the experimental setup [29], the swept wing was obtained
first by rotating the NACA 0012 rectangular wing previously considered, and
then adding a fairing at the tip. This resulted in a wing having semi-wing
span s = 2.91c. The geometric CAD model, designed using FreeCad, features
again flat cap surfaces on the wing tips. The initial mesh made of approxi-
mately 10 cells is refined onto the surface of the CAD model imposing, also
in this case, maximum cell aspect ratio 4.5, 2 uniform refinement cycles and
1 adaptive refinement cycle based on CAD curvature. This results in a com-
putational grid featuring approximately 4000 quadrilateral cells. Bi-linear
finite elements are used for this test too, which result in a resolution system
of 4520 degrees of freedom. Figure 12 depicts the computational grid on the
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wing and on the fully relaxed wake. The body surface is colored according
to contours of pressure coefficient cp.

Figure 12: A view of the grid obtained on the geometry of the NACA 0012 wing with
aspect ratio Λ = 5.47 and sweep angle β = 20◦, and on the fully developed wake following
the body. The surfaces are colored according to contours of pressure coefficient cp.

Figure 13 presents a comparison between experimental and numerical val-
ues of −cp on four cross-sections perpendicular to the wing axis direction.
We point out in fact that because in the experimental setup the swept wing
has been obtained merely rotating the NACA 0012 wing model, all the pres-
sure taps in this test are not here aligned with the incident flow, but are
instead inclined of an angle β = 20◦ with respect to such a direction. The
wing sections are located at coordinates y/s = 0.260, 0.510, 0.710, 0.840, as
measured at their intersection with the trailing edge. In each section, also in
this case the numerical values of windward and leeward pressure coefficients
obtained imposing a flat wake (blue lines) or computing the relaxed wake
(green lines) are plotted against their experimental counterparts (red dots).

The results appear quite consistent with the ones obtained on the rectan-
gular wing geometry. The comparisons with the experimental results appear
in fact once again satisfactory, by a qualitative perspective. The experimen-
tal curves are in fact reproduced in all their main traits by the numerical
results. By a more quantitative point of view, also in this case the peaks
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Figure 13: Comparative analysis between results obtained using Π-BEM and experimental
data for a swept wing with a sweep angle of 20◦. The plots refer to four planar sections
normal to the wing axis, and located at coordinates y/s = 0.260, 0.510, 0.710, 0.840, as
measured at their intersection with the trailing edge.

location appear accurately reproduced by the numerical results. As for the
peaks height, on one hand the windward side pressure peak is captured with
good accuracy also in this swept wing case, in which a stagnation point is
missing and the cp maximum is approximately 0.9. On the other hand, the
peaks on the suction side are slightly underestimated, as was the case for the
rectangular wing. And, also in the present case, the discrepancy seems more
evident for the sections closer to the tip, likely due to viscous effects associ-
ated with the tip vortex. Again, we can observe that the sharp trailing edge
considered in the numerical simulations — as opposed to the experimental
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finite thickness one — results in a noticeable difference in correspondence
with the last pressure probe measurement, at every section considered. Fi-
nally, we remark that also in the present case the effect of wake relaxation
appears marginal, except on the trailing edge region, in which the relaxed
wake solution predicts higher pressure recovery.

6. Conclusions and future perspectives

This work presented a numerical method for the simulation of quasi-
potential flow past lifting surfaces. The solver combines the collocation
Boundary Element Method formulation implemented in the open source li-
brary π-BEM [4] with a Galerkin formulation of the nonkinear Kutta condi-
tion imposed at the lifting body trailing edge. In addition, Galerkin formu-
lation is used also for the Hypersingular Boundary Integral Equation solved
to obtain the velocities at the wake collocation points needed for wake relax-
ation. The latter techniques, borrowed from the Finite Element Method, al-
low for the evaluation of the solution derivatives in a way that is independent
of the local grid topology. As such, the proposed Boundary Element Method
based solver allows for the user selection of the finite element degree at the
start of each simulation. This is also made possible by the direct interface
with CAD files, which are interrogated to obtain new points for high order el-
ements grids on curved surfaces. Numerical experiments on rectangular and
V-shaped wings with NACA 0012 airfoil sections reproduce in a satisfactory
way experimental data. The results on rectangular wings also confirm the
quality of the arbitrary order numerical approach implemented. In particu-
lar, the higher order solutions show less numerical dissipation in the leading
edge region, which is characterized by the highest gradients. However, in
BEM the polynomial shape functions are multiplied by singular Green func-
tions so as to obtain the linear system matrices and vectors. Thus, because
high order shape functions change sign multiple times within each cell, in-
creased accuracy granted by high order elements can only be obtained at the
price of a significant increase in the Gaussian quadrature nodes used for the
BEM integrals. For such a reason, the combination of linear elements and
additional local refinements appears to better balance accuracy and compu-
tational cost. In the near future, a possible way to best exploit the accuracy
premium that higher order elements offer is that of implementing suitable
hp refinement algorithms. Indeed, this paper showed that the methodology
implemented possesses all the ingredients necessary for the implementation
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of such a strategy. Another interesting possible extension of this work, is
that of using the CAD interface for the mapping of the reference cell to three
dimensional cells in the calculation of the integrals involved in BEM. This
approach, which is also discussed in [6], has never been applied to BEM. As
isogeometric analysis, such a heterogeometric approach would allow for the
calculation of integrals on the exact surface prescribed by the user, but with-
out the need to use NURBS shape functions also for the solution. Finally,
further developments of this work can come from an extension of the range of
application of the model. In particular, the free of a surface in proximity of
the wing can be initially introduced as a homogeneous Neumann boundary
condition, and can be then treated with a linearized [18] or fully nonlinear
[30] formulation. Including the presence of a free surface in close to the wing
would make the solver able to estimate the forces generated by hydrofoils in
different relative position with respect to the free surface, and contribute to
the design of such artifacts.
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tero Università e Ricerca (MUR), Italy. We finally thank Istituto Nazionale
di Alta Matematica ”Francesco Severi” (INdAM), Gruppo Nazionale per il
Calcolo Scientifico (GNCS) for the support.

References

[1] W. F. Phillips, D. O. Snyder, Modern adaptation of prandtl’s classic
lifting-line theory, Journal of Aircraft 37 (4) (2000) 662–670. arXiv:

https://doi.org/10.2514/2.2649, doi:10.2514/2.2649.
URL https://doi.org/10.2514/2.2649

[2] D. D. Liu, P. C. Chen, Z. X. Yao, D. Sarhaddi, Recent advances in lifting
surface methods, The Aeronautical Journal 100 (998) (1996) 327–340.
doi:10.1017/S0001924000067038.

[3] J. Hess, A. Smith, Calculation of potential flow about arbi-
trary bodies, Progress in Aerospace Sciences 8 (1967) 1–138.

42

https://doi.org/10.2514/2.2649
https://doi.org/10.2514/2.2649
http://arxiv.org/abs/https://doi.org/10.2514/2.2649
http://arxiv.org/abs/https://doi.org/10.2514/2.2649
https://doi.org/10.2514/2.2649
https://doi.org/10.2514/2.2649
https://doi.org/10.1017/S0001924000067038
https://www.sciencedirect.com/science/article/pii/0376042167900036
https://www.sciencedirect.com/science/article/pii/0376042167900036


doi:https://doi.org/10.1016/0376-0421(67)90003-6.
URL https://www.sciencedirect.com/science/article/pii/

0376042167900036

[4] N. Giuliani, A. Mola, L. Heltai, π-bem: A flexible parallel imple-
mentation for adaptive, geometry aware, and high order boundary
element methods, Advances in Engineering Software 121 (2018) 39 –
58. doi:https://doi.org/10.1016/j.advengsoft.2018.03.008.
URL http://www.sciencedirect.com/science/article/pii/

S0965997818300371

[5] S. Gaggero, S. Brizzolara, Exact Modeling of Trailing Vorticity in Panel
Method for Marine Propeller, 2nd International Conference on Marine
Research and Transportation, 2007, ischia, 28-30 June.

[6] L. Heltai, W. Bangerth, M. Kronbichler, A. Mola, Propagating geometry
information to finite element computations, ACM Trans. Math. Softw.
47 (4) (sep 2021). doi:10.1145/3468428.
URL https://doi.org/10.1145/3468428

[7] Boundary Integral Equation Methods for Aerodynamics, pp. 279–320.
arXiv:https://arc.aiaa.org/doi/pdf/10.2514/5.9781600866180.

0279.0320, doi:10.2514/5.9781600866180.0279.0320.
URL https://arc.aiaa.org/doi/abs/10.2514/5.9781600866180.

0279.0320

[8] M. Gennaretti, F. Salvatore, L. Morino, Forces and moments in incom-
pressible quasi-potential flows, Journal of Fluids and Structures 10 (3)
(1996) 281–303. doi:https://doi.org/10.1006/jfls.1996.0017.
URL https://www.sciencedirect.com/science/article/pii/

S0889974696900171

[9] C. Xu, Kutta condition for sharp edge flows, Mechanics Re-
search Communications 25 (4) (1998) 415–420. doi:https:

//doi.org/10.1016/S0093-6413(98)00054-8.
URL https://www.sciencedirect.com/science/article/pii/

S0093641398000548

[10] S. Chouliaras, P. Kaklis, K. Kostas, A. Ginnis, C. Politis, An isogeo-
metric boundary element method for 3d lifting flows using t-splines,

43

https://doi.org/https://doi.org/10.1016/0376-0421(67)90003-6
https://www.sciencedirect.com/science/article/pii/0376042167900036
https://www.sciencedirect.com/science/article/pii/0376042167900036
http://www.sciencedirect.com/science/article/pii/S0965997818300371
http://www.sciencedirect.com/science/article/pii/S0965997818300371
http://www.sciencedirect.com/science/article/pii/S0965997818300371
https://doi.org/https://doi.org/10.1016/j.advengsoft.2018.03.008
http://www.sciencedirect.com/science/article/pii/S0965997818300371
http://www.sciencedirect.com/science/article/pii/S0965997818300371
https://doi.org/10.1145/3468428
https://doi.org/10.1145/3468428
https://doi.org/10.1145/3468428
https://doi.org/10.1145/3468428
https://arc.aiaa.org/doi/abs/10.2514/5.9781600866180.0279.0320
http://arxiv.org/abs/https://arc.aiaa.org/doi/pdf/10.2514/5.9781600866180.0279.0320
http://arxiv.org/abs/https://arc.aiaa.org/doi/pdf/10.2514/5.9781600866180.0279.0320
https://doi.org/10.2514/5.9781600866180.0279.0320
https://arc.aiaa.org/doi/abs/10.2514/5.9781600866180.0279.0320
https://arc.aiaa.org/doi/abs/10.2514/5.9781600866180.0279.0320
https://www.sciencedirect.com/science/article/pii/S0889974696900171
https://www.sciencedirect.com/science/article/pii/S0889974696900171
https://doi.org/https://doi.org/10.1006/jfls.1996.0017
https://www.sciencedirect.com/science/article/pii/S0889974696900171
https://www.sciencedirect.com/science/article/pii/S0889974696900171
https://www.sciencedirect.com/science/article/pii/S0093641398000548
https://doi.org/https://doi.org/10.1016/S0093-6413(98)00054-8
https://doi.org/https://doi.org/10.1016/S0093-6413(98)00054-8
https://www.sciencedirect.com/science/article/pii/S0093641398000548
https://www.sciencedirect.com/science/article/pii/S0093641398000548
https://www.sciencedirect.com/science/article/pii/S0045782520307416
https://www.sciencedirect.com/science/article/pii/S0045782520307416


Computer Methods in Applied Mechanics and Engineering 373 (2021)
113556. doi:https://doi.org/10.1016/j.cma.2020.113556.
URL https://www.sciencedirect.com/science/article/pii/

S0045782520307416

[11] A. Mola, L. Heltai, A. DeSimone, A stable and adaptive semi-
Lagrangian potential model for unsteady and nonlinear ship-wave
interactions, Eng. Anal. Bound. Elem. 37 (1) (2013) 128–143.
doi:10.1016/j.enganabound.2012.09.005.
URL http://www.sciencedirect.com/science/article/pii/

S0955799712001907http://linkinghub.elsevier.com/retrieve/

pii/S0955799712001907

[12] A. Mola, L. Heltai, A. De Simone, Ship Sinkage and Trim
Predictions Based on a CAD Interfaced Fully Nonlinear Po-
tential Model, Vol. All Days of International Ocean and Po-
lar Engineering Conference, 2016, iSOPE-I-16-438. arXiv:

https://onepetro.org/ISOPEIOPEC/proceedings-pdf/ISOPE16/

All-ISOPE16/ISOPE-I-16-438/1337253/isope-i-16-438.pdf.

[13] F. Dassi, A. Mola, H. Si, Curvature-adapted remeshing of
cad surfaces, Procedia Engineering 82 (2014) 253–265, 23rd
International Meshing Roundtable (IMR23). doi:https:

//doi.org/10.1016/j.proeng.2014.10.388.
URL https://www.sciencedirect.com/science/article/pii/

S1877705814016671

[14] D. J. Bernasconi, A higher-order potential flow method for thick bod-
ies, thin surfaces and wakes, Ph.D. thesis, University of Southampton
(2007).
URL https://eprints.soton.ac.uk/466428/

[15] M. Guiggiani, G. Krishnasamy, T. J. Rudolphi, F. J. Rizzo, A
General Algorithm for the Numerical Solution of Hypersingular
Boundary Integral Equations, Journal of Applied Mechanics 59 (3)
(1992) 604–614. arXiv:https://asmedigitalcollection.asme.org/

appliedmechanics/article-pdf/59/3/604/5462606/604\_1.pdf,
doi:10.1115/1.2893766.
URL https://doi.org/10.1115/1.2893766

44

https://doi.org/https://doi.org/10.1016/j.cma.2020.113556
https://www.sciencedirect.com/science/article/pii/S0045782520307416
https://www.sciencedirect.com/science/article/pii/S0045782520307416
http://www.sciencedirect.com/science/article/pii/S0955799712001907 http://linkinghub.elsevier.com/retrieve/pii/S0955799712001907
http://www.sciencedirect.com/science/article/pii/S0955799712001907 http://linkinghub.elsevier.com/retrieve/pii/S0955799712001907
http://www.sciencedirect.com/science/article/pii/S0955799712001907 http://linkinghub.elsevier.com/retrieve/pii/S0955799712001907
https://doi.org/10.1016/j.enganabound.2012.09.005
http://www.sciencedirect.com/science/article/pii/S0955799712001907 http://linkinghub.elsevier.com/retrieve/pii/S0955799712001907
http://www.sciencedirect.com/science/article/pii/S0955799712001907 http://linkinghub.elsevier.com/retrieve/pii/S0955799712001907
http://www.sciencedirect.com/science/article/pii/S0955799712001907 http://linkinghub.elsevier.com/retrieve/pii/S0955799712001907
http://arxiv.org/abs/https://onepetro.org/ISOPEIOPEC/proceedings-pdf/ISOPE16/All-ISOPE16/ISOPE-I-16-438/1337253/isope-i-16-438.pdf
http://arxiv.org/abs/https://onepetro.org/ISOPEIOPEC/proceedings-pdf/ISOPE16/All-ISOPE16/ISOPE-I-16-438/1337253/isope-i-16-438.pdf
http://arxiv.org/abs/https://onepetro.org/ISOPEIOPEC/proceedings-pdf/ISOPE16/All-ISOPE16/ISOPE-I-16-438/1337253/isope-i-16-438.pdf
https://www.sciencedirect.com/science/article/pii/S1877705814016671
https://www.sciencedirect.com/science/article/pii/S1877705814016671
https://doi.org/https://doi.org/10.1016/j.proeng.2014.10.388
https://doi.org/https://doi.org/10.1016/j.proeng.2014.10.388
https://www.sciencedirect.com/science/article/pii/S1877705814016671
https://www.sciencedirect.com/science/article/pii/S1877705814016671
https://eprints.soton.ac.uk/466428/
https://eprints.soton.ac.uk/466428/
https://eprints.soton.ac.uk/466428/
https://doi.org/10.1115/1.2893766
https://doi.org/10.1115/1.2893766
https://doi.org/10.1115/1.2893766
http://arxiv.org/abs/https://asmedigitalcollection.asme.org/appliedmechanics/article-pdf/59/3/604/5462606/604_1.pdf
http://arxiv.org/abs/https://asmedigitalcollection.asme.org/appliedmechanics/article-pdf/59/3/604/5462606/604_1.pdf
https://doi.org/10.1115/1.2893766
https://doi.org/10.1115/1.2893766


[16] G. Grimberg, W. Pauls, U. Frisch, Genesis of d’alembert’s paradox
and analytical elaboration of the drag problem, Physica D: Nonlinear
Phenomena 237 (14) (2008) 1878–1886, euler Equations: 250 Years On.
doi:https://doi.org/10.1016/j.physd.2008.01.015.
URL https://www.sciencedirect.com/science/article/pii/

S0167278908000225

[17] L. Morino, G. Bernardini, Singularities in bies for the laplace
equation; joukowski trailing-edge conjecture revisited, Engineer-
ing Analysis with Boundary Elements 25 (9) (2001) 805–818.
doi:https://doi.org/10.1016/S0955-7997(01)00063-7.
URL https://www.sciencedirect.com/science/article/pii/

S0955799701000637

[18] N. Giuliani, A. Mola, L. Heltai, L. Formaggia, FEM SUPG stabilisation
of mixed isoparametric BEMs : Application to linearised free surface
flows, Engineering Analysis with Boundary Elements 59 (2015) 8–22.
doi:10.1016/j.enganabound.2015.04.006.
URL http://linkinghub.elsevier.com/retrieve/pii/

S0955799715001058

[19] C. A. Brebbia, The Boundary Element Method for Engineers, Pentech
Press, 1978.

[20] N. Giuliani, A. Mola, L. Heltai, pi-BEM: Parallel BEM Solver., https:
//github.com/mathLab/pi-BEM (2021).

[21] D. Arndt, W. B. M. Feder, M. Fehling, R. Gassmöller, T. Heister,
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