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Abstract

We propose an efficient, accurate and robust IMEX solver for the com-
pressible Navier-Stokes equation with general equation of state. The method,
which is based on an h−adaptive Discontinuos Galerkin spatial discretiza-
tion and on an Additive Runge Kutta IMEX method for time discretiza-
tion, is tailored for low Mach number applications and allows to simulate
low Mach regimes at a significantly reduced computational cost, while main-
taining full second order accuracy also for higher Mach number regimes. The
method has been implemented in the framework of the deal.II numerical li-
brary, whose adaptive mesh refinement capabilities are employed to enhance
efficiency. Refinement indicators appropriate for real gas phenomena have
been introduced. A number of numerical experiments on classical bench-
marks for compressible flows and their extension to real gases demonstrate
the properties of the proposed method.

1 Introduction

The efficient numerical solution of the compressible Navier-Stokes equa-
tions poses several major computational challenges. In particular, for flow
regimes characterized by low Mach number and moderate Reynolds number
values, severe time step restrictions may be required by standard explicit
time discretization methods. The use of implicit and semi-implicit methods
has a long tradition in low Mach number flows, see for example the seminal
papers [11, 12, 36], as well as many other contributions in the literature on
numerical weather prediction, see e.g. [6, 18, 20, 21, 29, 35, 37, 43, 42] and
the reviews in [39, 8]. Other contributions have been proposed in the liter-
ature on more classical computational fluid dynamics, see e.g. [5, 4, 9, 10,
13, 31, 41]. Many of these contributions focus exclusively on the equations
of motion of an ideal gas and their extension to real gases is not necessarily
straightforward. Stability concerns are even more critical in these particular
regimes for spatial discretizations based on the Discontinuous Galerkin (DG)
method (see e.g. [19, 26] for a general presentation of this method), which
is the spatial discretization used in many of the above referenced papers.

In this work, we seek to combine an accurate and flexible discontinuous
DG space discretization with an implicit-explicit (IMEX) time discretiza-
tion, see e.g. [27, 33], to obtain an efficient method for compressible flow
of real gases at low to moderate Mach numbers. Our goal is to derive a
method that can then be easily extended to handle multiphase compressible
flows, where a number of coupling and forcing terms arise that cannot be
dealt with efficiently by straightforward application of conventional solvers.
In order to obtain a method that is robust in the low Mach number limit,
following [11, 13], we couple implicitly the energy equation to the momen-
tum equation, while treating the continuity equation in an explicit fashion.
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Notice that a conceptually similar approach has been used in [29, 37] for the
discretization employed in the IFS-FVM atmospheric model. In order to
obtain a formulation that is efficient also in presence of non negligible vis-
cous terms, we resort to an operator splitting approach, see e.g. [30]. More
specifically, as commonly done in numerical models for atmospheric physics,
we split the hyperbolic part of the problem, which is treated by an IMEX
extension of the method proposed in [13], from the diffusive terms, which
are treated implicitly. Second order accuracy can then be obtained by the
Strang splitting approach [30, 40]. Notice that, with respect to the IMEX
approach proposed for the Euler equations in [45], the technique presented
here does not require to introduce reference solutions, does not introduce
inconsistencies in the splitting with respect to a reference solution and only
requires the solution of linear system of a size equal to that of the number of
discrete degrees of freedom needed to describe a scalar variable, as in [13].

For the spatial discretization, we rely on the DG approach implemented
in the numerical library deal.II [2], which is a very convenient environment
to develop a reliable and easily accessible tool for large scale industrial ap-
plications. This software also provides h−refinement capabilities that are
exploited by the proposed method. For the specific case of real gases, physi-
cally based refinement criteria have been developed and tested, which allow
to track accurately convection phenomena also for general equations of state.
The numerical experiments reported below show the ability of the proposed
scheme and of its adaptive implementation to perform accurate simulations
in different settings. The model equations and their non dimensional for-
mulation are reviewed in Section 2. The time discretization approach is
outlined and discussed in Section 3. The spatial discretization is presented
in Section 4. Some implementation issues are described in Section 5, while
the validation of the proposed method and its application to a number of
significant benchmarks is reported in Section 6. Some conclusions and per-
spectives for future work are presented in Section 7.

2 The compressible Navier-Stokes equa-

tions

Let Ω ⊂ Rd, 2 ≤ d ≤ 3 be a connected open bounded set with a suffi-
ciently smooth boundary ∂Ω and denote by x the spatial coordinates and by
t the temporal coordinate. We consider the classical unsteady compressible
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Navier-Stokes equations, written in flux form as:

∂ρ

∂t
+∇· (ρu) = 0

∂(ρu)

∂t
+∇· (ρu⊗ u) +∇p = ∇· τ + ρf (1)

∂(ρE)

∂t
+∇· [(ρE + p)u] = ∇·(τu− q) + ρf · u

for x ∈ Ω, t ∈ [0, Tf ], supplied with suitable initial and boundary conditions.
Here Tf is the final time, ρ is the density, u is the fluid velocity, p is the
pressure, q denotes the heat flux and f represents volumetric forces. Notice
that, at this stage, no more specific assumptions are made on the fluid.
Possible choices of thermal and caloric equations of state will be specified in
the following. ρE is the total energy, which can be rewritten as ρE = ρe+ρk,
where e is the internal energy and k = ‖u‖2/2 is the kinetic energy. We also
introduce the specific enthalpy h = e + p/ρ and remark that one can also
rewrite the energy flux as

(ρE + p)u = (e+ k +
p

ρ
)ρu = (h+ k)ρu.

We assume that q = −κ∇T, where T denotes the absolute temperature and
κ the thermal conductivity. Furthermore, we assume that the linear stress
constitutive equation holds and we neglect the bulk viscosity, so that

τ = µ
(
∇u +∇uT

)
− 2µ

3
(∇ · u)I.

The equations can then be rewritten as

∂ρ

∂t
+∇· (ρu) = 0

∂(ρu)

∂t
+∇· (ρu⊗ u) +∇p = µ∇·

[(
∇u +∇uT

)
− 2

3
(∇ · u)I

]
+ ρf (2)

∂(ρE)

∂t
+∇· [(h+ k)ρu] = µ∇·

[(
∇u +∇uT

)
u− 2

3
(∇ · u)u

]
+ κ∆T + ρf · u.

We now introduce reference scaling values L, T ,U for the length, time and
velocity, respectively, as well as reference values P,R, T T , E , I for pressure,
density, temperature, total energy and internal energy, respectively. We
assume unit Strouhal number St = L/UT ≈ 1, that the enthalpy scales like
I + P/R and that

E = I +
P
R

+ U2.
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The model equations can then be written in non-dimensional form as

∂ρ

∂t
+∇· (ρu) = 0

∂ρu

∂t
+∇· (ρu⊗ u) +

P
RU2

∇p =
µ

RUL
∇·
[(
∇u +∇uT

)
− 2

3
(∇ · u)I

]
+
T
U
ρf (3)

∂ρE

∂t
+∇·

[(
h
I + P/R
E

+ k
U2

E

)
ρu

]
=

µU
REL

∇·
[(
∇u +∇uT

)
u− 2

3
(∇ · u)u

]
+

κT T
REUL

∆T +
L
E
ρf · u.

We then define the Reynolds, Prandtl and Mach numbers as

Re =
RUL
µ

κ =
cpµ

Pr
Ma2 =

RU2

P
,

where cp denotes the specific heat at constant pressure, so that, for low and
moderate Mach numbers,

U2

E
=

1
I
U2 + 1 + 1

Ma2

= O(Ma2)

I + P/R
E

=
I
U2 + 1

Ma2

I
U2 + 1 + 1

Ma2

= O(1). (4)

This justifies, in the above mentioned regimes, methods in which an implicit
coupling between the pressure gradient and the energy flux is enforced. This
strategy has been proposed in the seminal paper [11] and in the more recent
works [13, 31]. We finally assume that the only acting volumetric force is
gravity, so that f = −gk, where g denotes the acceleration of gravity and k
the upward pointing unit vector in the standard Cartesian reference frame.
It follows that

T
U
ρg =

gT U
U2

ρ =
gL
U2
ρ =

ρ

Fr2
Fr2 =

U2

gL
L
E
ρg =

gρL
I + P

R + U2
=
gρL
U2

1
I
U2 + 1 + 1

Ma2

=
ρ

Fr2
O(Ma2). (5)

As a result, we will consider the non dimensional model equations
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∂ρ

∂t
+∇· (ρu) = 0

∂ρu

∂t
+∇· (ρu⊗ u) +

1

Ma2
∇p =

1

Re
∇·
[(
∇u +∇uT

)
− 2

3
(∇ · u)I

]
− ρ

Fr2
k (6)

∂ρE

∂t
+∇·

[(
h+ kMa2

)
ρu
]

=
Ma2

Re
∇·
[(
∇u +∇uT

)
u− 2

3
(∇ · u)u

]
+

1

PrRe
∆T − ρMa2

Fr2
k · u,

where we have taken cpT T /E ≈ 1, which can be justified at moderate values
of the Mach number. Notice that these non dimensional equations are very
similar to those derived in [31].

As previously remarked, the above equations must be complemented by
an equation of state (EOS) for the compressible fluid. A classical choice is
that of an ideal gas, whose EOS, in the non dimensional variables introduced
above, is given by

p = (γ − 1)

(
ρE − 1

2
Ma2ρu · u

)
. (7)

An example of non ideal gas model is given instead by van der Waals EOS,
see e.g. [44]:

p =
γ − 1

1− ρb

(
ρE − 1

2
Ma2ρu · u

)
−
(

1 +
1− γ
1− ρb

)
aρ2 (8)

where a and b are known as the van der Waals’ constants. Notice that, for
a = b = 0 the ideal gas law is retrieved. The caloric EOS for the ideal and
van der Waals case reads

e =
R

γ − 1
T − aρ (9)

where R is the specific gas constant. An important parameter to determine
the regime in which real gas effects are relevant is the so-called compress-
ibility factor z = p

ρRT . When z ≈ 1, the gas can be treated as an ideal one,
while the ideal gas law is no longer valid for values of z very different from
one. Another example is the Stiffened Gas equation of state (SG-EOS) [32],
which is interesting for its convexity property and is given by

p = (γ − 1)

(
ρE − 1

2
Ma2ρu · u− ρq

)
− γπ (10)

where q and π parameters that determine the gas characteristics. The caloric
equation for the SG-EOS can be written as:

e =
(p+ γπ)RT

(γ − 1) (p+ π)
+ q. (11)
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3 The time discretization strategy

In the low Mach number limit, terms proportional to 1/Ma2 in equa-
tions (6) yield stiff components of the resulting semidiscretized ODE system.
Therefore, following as remarked above [11, 13], it is appropriate to couple
implicitly the energy equation to the momentum equation, while the con-
tinuity equation can be discretized in a fully explicit fashion. While this
would be sufficient to yield an efficient time discretization approach for the
purely hyperbolic system associated to (6) in absence of gravity, in regimes
for which

Pr ≈ O(1), F r << 1

thermal diffusivity and gravity terms would also have to be treated implicitly
for the time discretization methods to be efficient. Straightforward applica-
tion of any monolithic solver would then yield large algebraic systems with
multiple couplings between discrete DOF associated to different physical
variables. To avoid this, we resort to an operator splitting approach, see
e.g. [30], as commonly done in numerical models for atmospheric physics,
see e.g. the reviews in [8], [39]. More specifically, after spatial discretization,
all diffusive terms on the right hand side of (6) are split from the hyperbolic
part on the left hand side. The hyperbolic part is treated in a similar fashion
to what outlined in [13], while the diffusive terms are treated implicitly. For
simplicity, the gravity terms will be treated explictly in this first attempt
and only a basic, first order splitting will be described, which can be easily
improved to second order accuracy by the Strang splitting approach [30, 40].

For the time discretization, an IMplicit EXplicit (IMEX) Additive Runge
Kutta method (ARK) [27] method will be used. These methods are useful
for time dependent problems that can be formulated as y′ = fS(y, t) +
fNS(y, t), where the S and NS subscripts denote the stiff and non-stiff
components of the system, to which the implicit and explicit companion
methods are applied, respectively. If vn ≈ y(tn), the generic s− stage
IMEX-ARK method can be defined as

v(n,l) = vn + ∆t
s−1∑
m=1

(
almfNS(v(n,m), t+ cm∆t)

+ ãlmfS(v(n,m), t+ cm∆t)

)
+ ∆t ãll fS(v(n,l), t+ cl∆t).

where l = 1, . . . , s. After computation of the intermediate stages, vn+1 is
computed as

vn+1 = vn + ∆t
s∑
l=1

bl

[
fNS(v(n,l), t+ cl∆t) + fS(v(n,l), t+ cl∆t)

]
.

Coefficients alm, ãlm, cl and bl are determined so that the method is con-
sistent of a given order. In particular, in addition to the order conditions
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specific to each sub-method, the coefficients should respect coupling condi-
tions. Here, we consider a variant of the IMEX method proposed in [20],
whose coefficients are presented in the Butcher tableaux reported in Tables
1 and 2 for the explicit and implicit method, respectively, where γ = 2−

√
2.

The coefficients of the explicit method were proposed in [20], while the im-
plicit method, also employed in the same paper, coincides indeed for the
above choice of γ with the TR-BDF2 method proposed in [3, 24] and ap-
plied to the Euler equations in [43]. Notice that, even though we focus here
on this specific second order method, the same strategy we outline is appli-
cable to a generic DIRK method. In particular, higher order methods could
be considered for coupling to high order spatial discretization, even though
the effective overall accuracy would be limited by the splitting procedure if
gravity and viscous terms are present.

0 0
γ γ 0
1 1− α α 0

1
2
− γ

4
1
2
− γ

4
γ
2

Table 1: Butcher tableaux of the explicit ARK2 method

0 0
γ γ

2
γ
2

1 1
2
√

2
1

2
√

2
1− 1√

2
1
2
− γ

4
1
2
− γ

4
γ
2

Table 2: Butcher tableaux of the implicit ARK2 method

Notice that, as discussed in [20], the choice of the coefficients

α =
7− 2γ

6
1− α =

2γ − 1

6

in the third stage of the explicit part of the method is arbitrary. In [20], the
above value of α was chosen with the aim of maximizing the stability region
of the method. However, if a stability and absolute monotonicity analysis is
carried out, as discussed in detail in Appendix A, it can be seen that different
choices might be more advantageous, in order to improve the monotonicity
of the method without compromising its stability. In particular, the value
of α = 1/2 appears to be a more appropriate choice, as also demonstrated
by the numerical experiments reported in Section 6.
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We now describe the application of this IMEX method and of the split-
ting approach outlined above to equations (6). Notice that, for simplicity,
we first present the time semi-discretization only, while maintaining the
continuous form of (6) with respect to the spatial variables. The detailed
description of the algebraic problems resulting from the full space and time
discretization according to the method outlined here will be presented in
Section 4.

For each time step, we first consider the discretization of the hyperbolic
and forcing terms. For the first stage of the method, one simply has

ρ(n,1) = ρn u(n,1) = un E(n,1) = En.

For the second stage, we can write formally

ρ(n,2) = ρn − a21∆t∇· (ρnun)

ρ(n,2)u(n,2) + ã22
∆t

Ma2
∇p(n,2) = m(n,2) (12)

ρ(n,2)E(n,2) + ã22∆t∇·
(
h(n,2)ρ(n,2)u(n,2)

)
= e(n,2),

where we have set

m(n,2) = ρnun

− a21∆t∇· (ρnun ⊗ un)− ã21
∆t

Ma2
∇pn − a21

∆t

Fr2
ρnk (13)

e(n,2) = ρnEn − ã21∆t∇· (hnρnun)− a21∆tMa2∇· (knρnun)

− a21
∆tMa2

Fr2
ρnk · un.

Notice that, substituting formally ρ(n,2)u(n,2) into the energy equation and
taking into account the definitions ρE = ρe+ρk and h = e+p/ρ, the above
system can be solved by computing the solution of

ρ(n,2)[e(p(n,2), ρ(n,2)) + k(n,2)] (14)

− ã2
22

∆t2

Ma2
∇·

[(
e(p(n,2), ρ(n,2)) +

p(n,2)

ρ(n,2)

)
∇p(n,2)

]

+ ã22∆t∇·

[(
e(p(n,2), ρ(n,2)) +

p(n,2)

ρ(n,2)

)
m(n,2)

]
= e(n,2)

in terms of p(n,2) according to the fixed point procedure described in [13].
More specifically, setting ξ(0) = p(n,2), k(n,2,0) = k(n,1) one solves for l =
1, . . . ,M the equation
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ρ(n,2)e(ξ(l+1), ρ(n,2)) − ã2
22

∆t2

Ma2
∇·

[(
e(ξ(l), ρ(n,2)) +

ξ(l)

ρ(n,2)

)
∇ξ(l+1)

]
= e(n,2) − ρ(n,2)k(n,2,l) (15)

− ã22∆t∇·

[(
e(ξ(l), ρ(n,2)) +

ξ(l)

ρ(n,2)

)
m(n,2)

]

and updates the velocity as

u(n,2,l+1) +
ã22∆t

ρ(n,2)Ma2
∇ξ(l+1) = m(n,2).

In case of a non-ideal gas equation of state, ρ(n,2)e
(
ξ(l+1), ρ(n,2)

)
contains a

term that only depends on the density, as evident from Equation (8) and
from Equation (10). Therefore, it has to be considered on the right-hand
side. For the sake of clarity, we report the fixed point equation for the van
der Waals EOS:

ρ(n,2)e(ξ(l+1), ρ(n,2)) − ã2
22

∆t2

Ma2
∇·

[(
e(ξ(l), ρ(n,2)) +

ξ(l)

ρ(n,2)

)
∇ξ(l+1)

]

= e(n,2) − ρ(n,2)k(n,2,l) −
(

1 +
1− γ

1− ρ(n,2)b

)
a(ρ(n,2))2

− ã22∆t∇·

[(
e(ξ(l), ρ(n,2)) +

ξ(l)

ρ(n,2)

)
m(n,2)

]
.

The same considerations as in [13] apply concerning the favourable proper-
ties of the weakly nonlinear system resulting from the discrete form of (15).
Once the iterations have been completed, one sets u(n,2) = u(n,2,M+1) and
E(n,2) accordingly. For the third stage, one can write formally

ρ(n,3) = ρn − a31∆t∇· (ρnun)− a32∆t∇·
(
ρ(n,2)u(n,2)

)
ρ(n,3)u(n,3) + ã33

∆t

Ma2
∇p(n,3) = m(n,3) (16)

ρ(n,3)E(n,3) + ã33∆t∇·
(
h(n,3)ρ(n,3)u(n,3)

)
= e(n,3),
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where the right hand sides are defined as

m(n,3) = ρnun

− a31∆t∇· (ρnun ⊗ un)− ã31
∆t

Ma2
∇pn − a31

∆t

Fr2
ρnk (17)

− a32∆t∇·
(
ρ(n,2)u(n,2) ⊗ u(n,2)

)
− ã32

∆t

Ma2
∇p(n,2) − a32

∆t

Fr2
ρ(n,2)k

e(n,3) = ρnEn − ã31∆t∇· (hnρnun)− a31∆tMa2∇· (knρnun)

− a31∆t
Ma2

Fr2
ρnk · un

− ã32∆t∇·
(
h(n,2)ρ(n,2)u(n,2)

)
− a32∆tMa2∇·

(
k(n,2)ρ(n,2)u(n,2)

)
− a32∆t

Ma2

Fr2
ρ(n,2)k · u(n,2).

Again, the solution of this stage is computed by substituting formally ρ(n,3)u(n,3)

into the energy equation and computing the solution of

ρ(n,3)[e(p(n,3), ρ(n,3)) + k(n,3)] (18)

− ã2
33

∆t2

Ma2
∇·

[(
e(p(n,3), ρ(n,3)) +

p(n,3)

ρ(n,3)

)
∇p(n,3)

]

+ ã33∆t∇·

[(
e(p(n,3), ρ(n,3)) +

p(n,3)

ρ(n,3)

)
m(n,3)

]
= e(n,3).

More specifically, setting ξ(0) = p(n,3), k(n,3,0) = k(n,2) one solves for l =
1, . . . ,M the equation

ρ(n,3)e(ξ(l+1), ρ(n,3)) − ã2
33∆t2

Ma2
∇·

[(
e(ξ(l), ρ(n,3)) +

ξ(l)

ρ(n,3)

)
∇ξ(l+1)

]
= e(n,3) − ρ(n,3)k(n,3,l) (19)

− ã33∆t∇·

[(
e(ξ(l), ρ(n,3)) +

ξ(l)

ρ(n,3)

)
m(n,3)

]

and updates the velocity as

u(n,3,l+1) + ã33
∆t

ρ(n,3)Ma2
∇ξ(l+1) = m(n,3).

Once again, in case of a non-ideal gas equation of state, the expression of
ρ(n,3)e

(
ξ(l+1), ρ(n,3)

)
is slightly different. For the sake of clarity, we report

11



also for this stage the fixed point equation for the van der Waals EOS:

ρ(n,3)e(ξ(l+1), ρ(n,3)) − ã2
33∆t2

Ma2
∇·

[(
e(ξ(l), ρ(n,3)) +

ξ(l)

ρ(n,3)

)
∇ξ(l+1)

]
= e(n,3) − ρ(n,3)k(n,3,l) (20)

−
(

1 +
1− γ

1− ρ(n,3)b

)
a(ρ(n,3))2

− ã33∆t∇·

[(
e(ξ(l), ρ(n,3)) +

ξ(l)

ρ(n,3)

)
m(n,3)

]

Let us consider now the diffusive part of the Navier-Stokes equations that,
as already mentioned in Section 1, will be treated with an operator splitting
technique. For the sake of clarity, we denote with ∼ the quantities computed
in this part of the scheme; hence, we define

ũ(n,1) = u(n,3) Ẽ(n,1) = E(n,3)

and we proceed to the discretization of the viscous terms, which is carried
out by the implicit part of the IMEX method previously described:

ρn+1ũ(n,2) − ã22
∆t

Re
∇·
[(
∇ũ +∇ũT

)
− 2

3
(∇ · ũ)I

](n,2)

= m̃(n,2)(21)

ρn+1Ẽ(n,2) − ã22
∆tMa2

Re
∇·
[(
∇ũ +∇ũT

)
ũ− 2

3
(∇ · ũ)ũ

](n,2)

− ã22
∆t

PrRe
∆T̃ (n,2) = ẽ(n,2),

where we have set

m̃(n,2) = ρn+1ũ(n,1) + ã21
∆t

Re
∇·
[(
∇ũ +∇ũT

)
− 2

3
(∇ · ũ)I

](n,1)

ẽ(n,2) = ρn+1Ẽ(n,1)

+ ã21
∆tMa2

Re
∇·
[(
∇u +∇uT

)
u− 2

3
(∇ · u)u

](n,1)

+ ã21
∆t

PrRe
∆T̃ (n,1).

Notice that the momentum equation in (21) is decoupled from the energy
equation and can be solved independently, so that in a subsequent step the
equation for Ẽ(n,2) can be solved using temperature as an unknown. For the
third stage, one can write formally
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ρn+1ũ(n,3) − ã33
∆t

Re
∇·
[(
∇ũ +∇ũT

)
− 2

3
(∇ · ũ)I

](n,3)

= m̃(n,3)

ρn+1Ẽ(n,3) − ã33
∆tMa2

Re
∇·
[(
∇ũ +∇ũT

)
ũ− 2

3
(∇ · ũ)ũ

](n,3)

− ã33
∆t

PrRe
∆T̃ (n,3) = ẽ(n,3),

where the right hand sides are defined as

m̃(n,3) = ρn+1ũ(n,1) + ã31
∆t

Re
∇·
[(
∇ũ +∇ũT

)
− 2

3
(∇ · ũ)I

](n,1)

+ ã32
∆t

Re
∇·
[(
∇ũ +∇ũT

)
− 2

3
(∇ · ũ)I

](n,2)

(22)

ẽ(n,3) = ρn+1Ẽ(n,1) (23)

+ ã31
∆tMa2

Re
∇·
[(
∇ũ +∇ũT

)
ũ− 2

3
(∇ · ũ)ũ

](n,1)

+ ã32
∆tMa2

Re
∇·
[(
∇ũ +∇ũT

)
ũ− 2

3
(∇ · ũ)ũ

](n,2)

+ ã31
∆t

PrRe
∆T̃ (n,1) + ã32

∆t

PrRe
∆T̃ (n,2).

Again, the momentum equation in (22) is decoupled from the energy equa-
tion and can be solved independently, so that in a subsequent step the
equation for E(n,3) can be solved using temperature as an unkown. Finally,
one sets

un+1 = ũ(n,3) En+1 = Ẽ(n,3)

and the computation of the n−th time step is completed.

4 The spatial discretization strategy

We consider a decomposition of the domain Ω into a family of hexahedra
Th (quadrilaterals in the two-dimensional case) and denote each element by
K. The skeleton E denotes the set of all element faces and E = EI ∪ EB,
where EI is the subset of interior faces and EB is the subset of boundary
faces. Suitable jump and average operators can then be defined as customary
for finite element discretizations. A face Γ ∈ EI shares two elements that
we denote by K+ with outward unit normal n+ and K− with outward unit
normal n−, whereas for a face Γ ∈ EB we denote by n the outward unit
normal. For a scalar function ϕ the jump is defined as

[[ϕ]] = ϕ+n+ + ϕ−n− if Γ ∈ EI [[ϕ]] = ϕn if Γ ∈ EB.
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The average is defined as

{{ϕ}} =
1

2

(
ϕ+ + ϕ−

)
if Γ ∈ EI {{ϕ}} = ϕ if Γ ∈ EB.

Similar definitions apply for a vector function ϕ:

[[ϕ]] = ϕ+ · n+ +ϕ− · n− if Γ ∈ EI [[ϕ]] = ϕ · n if Γ ∈ EB

{{ϕ}} =
1

2

(
ϕ+ +ϕ−

)
if Γ ∈ EI {{ϕ}} = ϕ if Γ ∈ EB.

For vector functions, it is also useful to define a tensor jump as:

〈〈ϕ〉〉 = ϕ+ ⊗ n+ +ϕ− ⊗ n− if Γ ∈ EI 〈〈ϕ〉〉 = ϕ⊗ n if Γ ∈ EB.

We also introduce the following finite element spaces

Qk =
{
v ∈ L2(Ω) : v|K ∈ Qk ∀K ∈ Th

}
Vk = [Qk]

d ,

where Qk is the space of polynomials of degree k in each coordinate direction.
We then denote by ϕi(x) the basis functions for the space Vk and by ψi(x)
the basis functions for the space Qk, the finite element spaces chosen for the
discretization of the velocity and of the pressure (as well as the density),
respectively.

u ≈
dim(Vh)∑
j=1

uj(t)ϕj(x) p ≈
dim(Qh)∑
j=1

pj(t)ψj(x).

Given these definitions, the weak formulation for the momentum equation
of the second stage (12) reads as follows:

∑
K

∫
K
ρ(n,2)u(n,2) · vdΩ

−
∑
K

∫
K
ã22

∆t

Ma2
p(n,2)∇ · vdΩ +

∑
Γ∈E

∫
Γ
ã22

∆t

Ma2

{{
p(n,2)

}}
[[v]] dΣ

=
∑
K

∫
K
ρnun · vdΩ−

∑
K

∫
K
a21

∆t

Fr2
ρnk · vdΩ

+
∑
K

∫
K
a21∆t (ρnun ⊗ un) : ∇vdΩ +

∑
K

∫
K
ã21

∆t

Ma2
pn∇ · vdΩ

−
∑
Γ∈E

∫
Γ
a21∆t {{ρnun ⊗ un}} : 〈〈v〉〉 dΣ

−
∑
Γ∈E

∫
Γ
ã21

∆t

Ma2
{{pn}} [[v]] dΣ

−
∑
Γ∈E

∫
Γ
a21∆t

λ(n,1)

2
〈〈ρnun〉〉 : 〈〈v〉〉 dΣ (24)

14



where
λ(n,1) = max

(∣∣∣un+ · n+
∣∣∣ , ∣∣∣un− · n−∣∣∣)

In view of the implicit coupling between the momentum and the energy
equations, we need to derive the algebraic formulation of (24) in order to
formally substitute the degrees of freedom of the velocity into the algebraic
formulation of the energy equation. We take v = ϕi, i = 1...dim(Vh) and
we exploit the representation introduced above to obtain

∑
K

∫
K
ρ(n,2)

dim(Vh)∑
j=1

u
(n,2)
j ϕj ·ϕidΩ−

∑
K

∫
K
ã22

∆t

Ma2

dim(Qh)∑
j=1

p
(n,2)
j ψj∇ ·ϕidΩ

+
∑
Γ∈E

∫
Γ
ã22

∆t

Ma2

dim(Qh)∑
j=1

p
(n,2)
j {{ψj}} [[ϕi]] dΣ

=
∑
K

∫
K
ρnun ·ϕidΩ−

∑
K

∫
K
a21

∆t

Fr2
ρnk ·ϕidΩ

+
∑
K

∫
K
a21∆t (ρnun ⊗ un) : ∇ϕidΩ +

∑
K

∫
K
ã21

∆t

Ma2
pn∇ ·ϕidΩ

−
∑
Γ∈E

∫
Γ
a21∆t {{ρnun ⊗ un}} : 〈〈ϕi〉〉 dΣ

−
∑
Γ∈E

∫
Γ
ã21

∆t

Ma2
{{pn}} [[ϕi]] dΣ

−
∑
Γ∈E

∫
Γ
a21∆t

λ(n,1)

2
〈〈ρnun〉〉 : 〈〈ϕi〉〉 dΣ (25)

which can be written in compact form as

A(n,2)U(n,2) + B(n,2)P(n,2) = F(n,2) (26)

where we have set

A
(n,2)
ij =

∑
K

∫
K
ρ(n,2)ϕj ·ϕidΩ (27)

B
(n,2)
ij =

∑
K

∫
K
−ã22

∆t

Ma2
∇ ·ϕiψjdΩ +

∑
Γ∈E

∫
Γ
ã22

∆t

Ma2
{{ψj}} [[ϕi]] dΣ

(28)

with U(n,2) denoting the vector of the degrees of freedom associated to the
velocity field and P(n,2) denoting the vector of the degrees of freedom asso-
ciated to the pressure. Consider now the weak formulation for the energy
equation of the second stage (12)
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∑
K

∫
K
ρ(n,2)E(n,2)wdΩ−

∑
K

∫
K
ã22∆th(n,2)ρ(n,2)u(n,2) · ∇wdΩ

+
∑
Γ∈E

∫
Γ
ã22∆t

{{
h(n,2)ρ(n,2)u(n,2)

}}
· [[w]] dΣ

=
∑
K

∫
K
ρnEnwdΩ−

∑
K

∫
K
a21

∆tMa2

Fr2
ρnk · unwdΩ

+
∑
K

∫
K
a21∆tMa2 (knρnun) · ∇wdΩ +

∑
K

∫
K
ã21∆t (hnρnun) · ∇wdΩ

−
∑
Γ∈E

∫
Γ
a21∆tMa2 {{knρnun}} · [[w]] dΣ

−
∑
Γ∈EI

∫
Γ
ã21∆t {{hnρnun}} · [[w]] dΣ (29)

Take w = ψi and consider the expansion for u(n,2) in (29) to get

∑
K

∫
K
ρ(n,2)E(n,2)ψidΩ−

∑
K

∫
K
ã22∆th(n,2)ρ(n,2)

dim(Vh)∑
j=1

u
(n,2)
j ϕj · ∇ψidΩ

+
∑
Γ∈E

∫
Γ
ã22∆t

dim(Vh)∑
j=1

u
(n,2)
j

{{
h(n,2)ρ(n,2)ϕj

}}
· [[ψi]] dΣ

=
∑
K

∫
K
ρnEnψidΩ−

∑
K

∫
K
a21

∆tMa2

Fr2
ρnk · unψidΩ

+
∑
K

∫
K
a21∆tMa2 (knρnun) · ∇ψidΩ +

∑
K

∫
K
ã21∆t (hnρnun) · ∇ψidΩ

−
∑
Γ∈E

∫
Γ
a21∆tMa2 {{knρnun}} · [[ψi]] dΣ

−
∑
Γ∈E

∫
Γ
ã21∆t {{hnρnun}} · [[ψi]] dΣ (30)

which can be expressed in compact form as

C(n,2)U(n,2) = G(n,2) (31)

where we have set
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C
(n,2)
ij =

∑
K

∫
K
−ã22∆th(n,2)ρ(n,2)ϕj · ∇ψidΩ

+
∑
Γ∈E

∫
Γ
ã22∆t

{{
h(n,2)ρ(n,2)ϕj

}}
· [[ψi]] dΣ (32)

Formally we can then derive U(n,2) = (A(n,2))−1
(
F(n,2) −B(n,2)P(n,2)

)
and

obtain the following relation

C(n,2)(A(n,2))−1
(
F(n,2) −B(n,2)P(n,2)

)
= G(n,2) (33)

Taking into account that

ρ(n,2)E(n,2) = ρ(n,2)e(n,2)(p(n,2)) +Ma2ρ(n,2)k(n,2),

we finally obtain

C(n,2)(A(n,2))−1
(
F(n,2) −B(n,2)P(n,2)

)
= −D(n,2)P(n,2) + G̃(n,2) (34)

where we have set

D
(n,2)
ij =

∑
K

∫
K
ρ(n,2)e(n,2)(ψj)ψidΩ (35)

and G̃(n,2) takes into account all the other terms (the one at previous stage
and the kinetic energy). The above system can be solved in terms of P(n,2)

according to the fixed point procedure described in [13]. More specifically,
setting P(n,2,0) = P(n,1), k(n,2,0) = k(n,1), for l = 1, . . . ,M one solves the
equation

(
D(n,2,l) −C(n,2,l)(A(n,2))−1B(n,2)

)
P(n,2,l+1) = G̃(n,2,l)−C(n,2,l)(A(n,2))−1F(n,2,l)

and updates the velocity solving

A(n,2)U(n,2,l+1) = F(n,2,l) −B(n,2)P(n,2,l+1).

For the third stage, we proceed in a similar manner. We start with the weak
formulation of the momentum equation in (16):
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∑
K

∫
K
ρ(n,3)u(n,3) · vdΩ

−
∑
K

∫
K
ã33

∆t

Ma2
p(n,3)∇ · vdΩ +

∑
Γ∈E

∫
Γ
ã33

∆t

Ma2

{{
p(n,3)

}}
[[v]] dΣ

=
∑
K

∫
K
ρnun · vdΩ−

∑
K

∫
K
a31

∆t

Fr2
ρnk · vdΩ−

∑
K

∫
K
a32

∆t

Fr2
ρ(n,2)k · vdΩ

+
∑
K

∫
K
a31∆t (ρnun ⊗ un) : ∇vdΩ +

∑
K

∫
K
ã31

∆t

Ma2
pn∇ · vdΩ

+
∑
K

∫
K
a32∆t

(
ρ(n,2)u(n,2) ⊗ u(n,2)

)
: ∇vdΩ +

∑
K

∫
K
ã32

∆t

Ma2
p(n,2)∇ · vdΩ

−
∑
Γ∈E

∫
Γ
a31∆t {{ρnun ⊗ un}} : 〈〈v〉〉 dΣ

−
∑
Γ∈E

∫
Γ
ã31

∆t

Ma2
{{pn}} [[v]] dΣ

−
∑
Γ∈E

∫
Γ
a32∆t

{{
ρ(n,2)u(n,2) ⊗ u(n,2)

}}
: 〈〈v〉〉 dΣ

−
∑
Γ∈E

∫
Γ
ã32

∆t

Ma2

{{
p(n,2)

}}
[[v]] dΣ

−
∑
Γ∈E

∫
Γ
a31∆t

λ(n,1)

2
〈〈ρnun〉〉 : 〈〈v〉〉 dΣ

−
∑
Γ∈E

∫
Γ
a32∆t

λ(n,2)

2

〈〈
ρ(n,2)u(n,2)

〉〉
: 〈〈v〉〉 dΣ (36)

where

λ(n,2) = max
(∣∣∣u(n,2)+ · n+

∣∣∣ , ∣∣∣u(n,2)− · n−
∣∣∣)

Now, taking v = ϕi and exploiting the representation of u(n,3) and p(n,3),
we end up with the following relation
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∑
K

∫
K
ρ(n,3)

dim(Vh)∑
j=1

u
(n,3)
j ϕj ·ϕidΩ−

∑
K

∫
K
ã33

∆t

Ma2

dim(Qh)∑
j=1

p
(n,3)
j ψj∇ ·ϕidΩ

+
∑
Γ∈E

∫
Γ
ã33

∆t

Ma2

dim(Qh)∑
j=1

p
(n,3)
j {{ψj}} [[ϕi]] dΣ

=
∑
K

∫
K
ρnun ·ϕidΩ−

∑
K

∫
K
a31

∆t

Fr2
ρnk ·ϕidΩ−

∑
K

∫
K
a32

∆t

Fr2
ρ(n,2)k ·ϕidΩ

+
∑
K

∫
K
a31∆t (ρnun ⊗ un) : ∇ϕidΩ +

∑
K

∫
K
ã31

∆t

Ma2
pn∇ ·ϕidΩ

+
∑
K

∫
K
a32∆t

(
ρ(n,2)u(n,2) ⊗ u(n,2)

)
: ∇ϕidΩ +

∑
K

∫
K
ã32

∆t

Ma2
p(n,2)∇ ·ϕidΩ

−
∑
Γ∈E

∫
Γ
a31∆t {{ρnun ⊗ un}} : 〈〈ϕi〉〉 dΣ

−
∑
Γ∈E

∫
Γ
ã31

∆t

Ma2
{{pn}} [[ϕi]] dΣ

−
∑
Γ∈E

∫
Γ
a32∆t

{{
ρ(n,2)u(n,2) ⊗ u(n,2)

}}
: 〈〈ϕi〉〉 dΣ

−
∑
Γ∈E

∫
Γ
ã32

∆t

Ma2

{{
p(n,2)

}}
[[ϕi]] dΣ

−
∑
Γ∈E

∫
Γ
a31∆t

λ(n,1)

2
〈〈ρnun〉〉 : 〈〈ϕi〉〉 dΣ

−
∑
Γ∈E

∫
Γ
a32∆t

λ(n,2)

2

〈〈
ρ(n,2)u(n,2)

〉〉
: 〈〈ϕi〉〉 dΣ (37)

which can be written in compact form as

A(n,3)U(n,3) + B(n,3)P(n,3) = F(n,3) (38)

where we have set

A
(n,3)
ij =

∑
K

∫
K
ρ(n,3)ϕj ·ϕidΩ (39)

B
(n,3)
ij =

∑
K

∫
K
−ã33

∆t

Ma2
∇ ·ϕiψjdΩ

+
∑
Γ∈E

∫
Γ
ã33

∆t

Ma2
{{ψj}} [[ϕi]] dΣ (40)
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and U(n,3) denotes the vector of the degrees of freedom associated to the
velocity field, whereas P(n,3) denotes the vector of the degrees of freedom as-
sociated to the pressure. Consider now the weak formulation for the energy
equation in (16)

∑
K

∫
K
ρ(n,3)E(n,3)wdΩ−

∑
K

∫
K
ã33∆th(n,3)ρ(n,3)u(n,3) · ∇wdΩ

+
∑
Γ∈E

∫
Γ
ã33∆t

{{
h(n,3)ρ(n,3)u(n,3)

}}
· [[w]] dΣ

=
∑
K

∫
K
ρnEnwdΩ−

∑
K

∫
K
a31

∆tMa2

Fr2
ρnk · unwdΩ−

∑
K

∫
K
a32

∆tMa2

Fr2
ρ(n,2)k · u(n,2)wdΩ

+
∑
K

∫
K
a31∆tMa2 (knρnun) · ∇wdΩ +

∑
K

∫
K
ã31∆t (hnρnun) · ∇wdΩ

+
∑
K

∫
K
a32∆tMa2

(
k(n,2)ρ(n,2)u(n,2)

)
· ∇wdΩ +

∑
K

∫
K
ã32∆t

(
h(n,2)ρ(n,2)u(n,2)

)
· ∇wdΩ

−
∑
Γ∈E

∫
Γ
a31∆tMa2 {{knρnun}} · [[w]] dΣ

−
∑
Γ∈E

∫
Γ
ã31∆t {{hnρnun}} · [[w]] dΣ

−
∑
Γ∈E

∫
Γ
a32∆tMa2

{{
k(n,2)ρ(n,2)u(n,2)

}}
· [[w]] dΣ

−
∑
Γ∈E

∫
Γ
ã32∆t

{{
h(n,2)ρ(n,2)u(n,2)

}}
· [[w]] dΣ (41)

Take now w = ψi and consider the expansion for u(n,3)
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∑
K

∫
K
ρ(n,3)E(n,3)ψidΩ−

∑
K

∫
K
ã33∆th(n,3)ρ(n,3)

dim(Vh)∑
j=1

u
(n,3)
j ϕj · ∇ψidΩ

+
∑
Γ∈EI

∫
Γ
ã33∆t

dim(Vh)∑
j=1

u
(n,3)
j

{{
h(n,3)ρ(n,3)ϕj

}}
· [[ψi]] dΣ

=
∑
K

∫
K
ρnEnψidΩ−

∑
K

∫
K
a31

∆tMa2

Fr2
ρnk · unψidΩ−

∑
K

∫
K
a32

∆tMa2

Fr2
ρ(n,2)k · u(n,2)ψidΩ

+
∑
K

∫
K
a31∆tMa2 (knρnun) · ∇ψidΩ +

∑
K

∫
K
ã31∆t (hnρnun) · ∇ψidΩ

+
∑
K

∫
K
a32∆tMa2

(
k(n,2)ρ(n,2)u(n,2)

)
· ∇ψidΩ +

∑
K

∫
K
ã32∆t

(
h(n,2)ρ(n,2)u(n,2)

)
· ∇ψidΩ

−
∑
Γ∈E

∫
Γ
a31∆tMa2 {{knρnun}} · [[ψi]] dΣ

−
∑
Γ∈E

∫
Γ
ã31∆t {{hnρnun}} · [[ψi]] dΣ

−
∑
Γ∈E

∫
Γ
a32∆tMa2

{{
k(n,2)ρ(n,2)u(n,2)

}}
· [[ψi]] dΣ

−
∑
Γ∈E

∫
Γ
ã32∆t

{{
h(n,2)ρ(n,2)u(n,2)

}}
· [[ψi]] dΣ (42)

which can be expressed in compact form as

C(n,3)U(n,3) = G(n,3) (43)

where

C
(n,3)
ij =

∑
K

∫
K
−ã33∆th(n,3)ρ(n,3)ϕj · ∇ψidΩ

+
∑
Γ∈E

∫
Γ
ã33∆t

{{
h(n,3)ρ(n,3)ϕj

}}
· [[ψi]] dΣ (44)

Formally, one can derive U(n,3) = (A(n,3))−1
(
F(n,3) −B(n,3)P(n,3)

)
and ob-

tain the following relation

C(n,3)(A(n,3))−1
(
F(n,3) −B(n,3)P(n,3)

)
= G(n,3) (45)

Taking into account that

ρ(n,3)E(n,3) = ρ(n,3)e(n,3) +Ma2ρ(n,3)k(n,3),
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we obtain

C(n,3)(A(n,3))−1
(
F(n,3) −B(n,3)P(n,3)

)
= −D(n,3)P(n,3) + G̃(n,3) (46)

where

D
(n,3)
ij =

∑
K

∫
K
ρ(n,3)e(n,3)(ψj)ψidΩ (47)

and G̃(n,3) takes into account all the other terms (the one at previous stage
and the kinetic energy). Again, the above system is solved by a fixed point
procedure. More specifically, setting P(n,3,0) = P(n,3), k(n,3,0) = k(n,2) for
l = 1, . . . ,M one solves the equation

(
D(n,3,l) −C(n,3,l)(A(n,3))−1B(n,3)

)
P(n,3,l+1) = G̃(n,3,l)−C(n,3,l)(A(n,3))−1F(n,2,l)

and then updates the velocity solving

A(n,3)U(n,3,l+1) = F(n,3,l) −B(n,3)P(n,3,l+1)

Once the iterations have been completed, one sets u(n,3) = u(n,3,M+1) and
E(n,3) accordingly. One sets then

ρn+1 = ρ(n,3) ũ(n,1) = u(n,3) Ẽ(n,1) = E(n,3)

and proceeds to the implicit discretization of the viscous terms, which is
carried out by the implicit part of the IMEX method described above. We
would like to stress that the method outlined above does not require to intro-
duce reference solutions, does not introduce inconsistencies in the splitting
and only requires the solution of linear systems of a size equal to that of the
number of discrete degrees of freedom needed to describe a scalar variable,
as in [13]. This contrasts with other low Mach approaches based on IMEX
methods, such as e.g. the technique proposed for the Euler equations in
[45].

5 Implementation issues

As stated in Section 1, the proposed method has been implemented using
the numerical library deal.II, which is based on a matrix-free approach.
As a consequence, no global sparse matrix is built and only the action of
the linear operators defined above on a vector is actually computed. The
implementation follows the operator splitting strategy previously described.
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Therefore, we have built two ad-hoc structures, one for the hyperbolic part
and one for the diffusive part. Another feature of the library employed
during the numerical simulations is the mesh adaptation capability, as we
will see in the presentation of the results. The preconditioned conjugate
gradient method implemented in the function SolverCG of the library was
employed to solve the linear systems for the density and for the update
of the velocity in the fixed point iterations, as well as to solve the linear
systems associated to the matrices A(n,2) and A(n,3), while the GMRES
solver implemented in the function SolverGMRES of the same library was
used for the remaining linear systems.

On the other hand, in the diffusive part, a Symmetric Interior Penalty
(SIP) approach has been adopted for the space discretization [1]. Moreover,
following [15], we set for each face Γ of a cell K

σΓ,K = (k + 1)2 diam (Γ)

diam (K)

and we define the penalization constant of the SIP method as

C =
1

2

(
σΓ,K+ + σΓ,K−

)
if Γ ∈ EI and C = σΓ,K if Γ ∈ EB. All the linear systems for this part
are solved using the preconditioned conjugated gradient mentioned above.
A geometric multigrid preconditioner has been employed for the solution of
the symmetric linear systems using the procedure described in [25], whereas
a Jacobi preconditioner has been used for the non symmetric ones.

6 Numerical tests

The numerical scheme outlined in the previous Sections has been validated
in a number of benchmarks. We set H = min{diam(K)|K ∈ Th} and we
define two Courant numbers, one based on the speed of sound denoted by
C and one based on the local velocity of the flow, the so-called advective
Courant number, denoted by Cu:

C =
1

Ma
kc∆t/H, Cu = ku∆t/H (48)

where c is the magnitude of the speed of sound and u is the magnitude of
the flow velocity. In most of the tests, the ideal gas law with γ = 1.4 as
the specific heat ratio is employed. In general, we consider k = 1 for all the
simulations, unless differently stated.
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6.1 Isentropic vortex

As a first benchmark, we consider for an ideal gas the two dimensional
inviscid isentropic vortex also studied in [41, 45]. For this test, an analytic
solution is available, that can be used to assess the convergence properties of
the scheme. The initial conditions are given as a perturbation of a reference
state

ρ(x, 0) = ρ∞ + δρ u(x, 0) = u∞ + δu p(x, 0) = p∞ + δp

and the exact solution is a propagation of the initial condition at the back-
ground velocity

ρ(x, t) = ρ(x−u∞t, 0) u(x, t) = u(x−u∞t, 0) p(x, t) = p(x−u∞t, 0)

The typical perturbation is defined as

δ̃T =
1− γ
8γπ2

β2e1−r2

with r =
√

(x− x0)2 + (y − y0)2 denoting the radial coordinate and β being

the vortex strength. As explained in [45], however, in order to emphasize
the role of the Mach number Ma, we define

δT =
1− γ
8γπ2

Ma2β2e1−r2

and we set

ρ(x, 0) = (1 + δT )
1

γ−1 p(x, 0) = Ma2 (1 + δT )
γ
γ−1 . (49)

For what concerns the velocity the typical perturbation is defined as

δ̃u = β

(
−y
x

)
e

1
2(1−r2)

2π
(50)

and also in this case we rescale it using Ma

δu = βMa

(
−y
x

)
e

1
2(1−r2)

2π
.

We apply the same reasoning also to the background velocity and therefore
we define u∞ = Maũ∞ with ũ∞ = [10, 10]T . To avoid any kind of issue
from the boundary conditions, we choose a sufficiently large domain Ω =
(−10, 10)2 and periodic boundary conditions and, eventually, we set ρ∞ = 1,
p∞ = 1, x0 = y0 = 0, β = 10, the final time Tf = 1 and Ma = 0.1. Notice
that we refrain from investigating the properties of the method in the very
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low Mach number regime for this test, since this entails an almost constant
solution. The numerical experiments have been carried out on Cartesian
meshes of square elements with Nel elements in each coordinate direction,
choosing for each spatial resolution time steps so that the Courant numbers
remained constant (hyperbolic scaling).

We first consider the original IMEX-ARK scheme with α = 7−2γ
6 for

the explicit part. In Tables 3-5, the L2 errors for density, velocity and
pressure are reported at various resolutions for the k = 1 case, while the
corresponding errors in the k = 2 case are given in Tables 6-8. We observe
that, in general, convergence rates of at least k + 1

2 are observed for k = 1
while for k = 2 the convergence rate seem to degrade at the finest resolution
as soon as the Courant number grows.

Nel L2 rel. error ρ L2 rate ρ L2 rel. error u L2 rate u L2 rel. error p L2 rate p
10 1.99 · 10−3 1.19 · 10−2 2.79 · 10−3

20 7.87 · 10−4 1.34 3.87 · 10−3 1.62 1.11 · 10−3 1.33
40 2.56 · 10−4 1.62 1.08 · 10−3 1.84 3.62 · 10−4 1.62
80 7.22 · 10−5 1.83 2.73 · 10−4 1.98 1.01 · 10−4 1.84

Table 3: Convergence test for the inviscid isentropic vortex at C ≈ 0.01, Cu ≈ 0.01
with k = 1 and α = 7−2γ

6
for the explicit part. Relative errors for the density, the

velocity and the pressure in L2 norm. Nel denotes the number of elements along
each direction.

Nel L2 rel. error ρ L2 rate ρ L2 rel. error u L2 rate u L2 rel. error p L2 rate p
10 1.99 · 10−3 1.20 · 10−2 2.78 · 10−3

20 7.92 · 10−4 1.33 3.93 · 10−3 1.61 1.11 · 10−3 1.32
40 2.60 · 10−4 1.61 1.12 · 10−3 1.81 3.64 · 10−4 1.61
80 7.43 · 10−5 1.81 2.91 · 10−4 1.94 1.03 · 10−4 1.82

Table 4: Convergence test for the inviscid isentropic vortex at C ≈ 0.05, Cu ≈ 0.05
with k = 1 and α = 7−2γ

6
for the explicit part. Relative errors for the density, the

velocity and the pressure in L2 norm. Nel denotes the number of elements along
each direction.
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Nel L2 rel. error ρ L2 rate ρ L2 rel. error u L2 rate u L2 rel. error p L2 rate p
10 2.10 · 10−3 1.20 · 10−2 2.73 · 10−3

20 8.00 · 10−4 1.39 4.07 · 10−3 1.56 1.09 · 10−3 1.32
40 2.67 · 10−4 1.58 1.21 · 10−3 1.75 3.64 · 10−4 1.58
80 7.95 · 10−5 1.75 3.44 · 10−4 1.81 1.06 · 10−4 1.78

Table 5: Convergence test for the inviscid isentropic vortex at C ≈ 0.15, Cu ≈ 0.14
with k = 1 and α = 7−2γ

6
for the explicit part. Relative errors for the density, the

velocity and the pressure in L2 norm. Nel denotes the number of elements along
each direction.

Nel L2 rel. error ρ L2 rate ρ L2 rel. error u L2 rate u L2 rel. error p L2 rate p
10 6.37 · 10−4 2.61 · 10−3 9.09 · 10−4

20 1.18 · 10−4 2.43 3.59 · 10−4 2.86 1.64 · 10−4 2.47
40 1.83 · 10−5 2.69 4.39 · 10−5 3.03 2.55 · 10−5 2.69
80 3.08 · 10−6 2.57 6.96 · 10−6 2.66 4.21 · 10−6 2.60

Table 6: Convergence test for the inviscid isentropic vortex at C ≈ 0.01, Cu ≈ 0.01
with k = 2 and α = 7−2γ

6
for the explicit part. Relative errors for the density, the

velocity and the pressure in L2 norm. Nel denotes the number of elements along
each direction.

Nel L2 rel. error ρ L2 rate ρ L2 rel. error u L2 rate u L2 rel. error p L2 rate p
10 6.34 · 10−4 2.64 · 10−3 9.08 · 10−4

20 1.19 · 10−4 2.41 3.80 · 10−4 2.80 1.65 · 10−4 2.46
40 1.95 · 10−5 2.61 5.82 · 10−5 2.71 2.63 · 10−5 2.65
80 4.31 · 10−6 2.18 1.81 · 10−5 1.69 5.06 · 10−6 2.38

Table 7: Convergence test for the inviscid isentropic vortex at C ≈ 0.05, Cu ≈ 0.05
with k = 2 and α = 7−2γ

6
for the explicit part. Relative errors for the density, the

velocity and the pressure in L2 norm. Nel denotes the number of elements along
each direction.
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Nel L2 rel. error ρ L2 rate ρ L2 rel. error u L2 rate u L2 rel. error p L2 rate p
10 6.25 · 10−4 2.74 · 10−3 8.94 · 10−4

20 1.24 · 10−4 2.33 4.63 · 10−4 2.57 1.65 · 10−4 2.44
40 2.55 · 10−5 2.28 1.17 · 10−4 1.98 3.03 · 10−5 2.45
80 9.36 · 10−6 1.45 5.14 · 10−5 1.19 9.14 · 10−6 1.73

Table 8: Convergence test for the inviscid isentropic vortex at C ≈ 0.15, Cu ≈ 0.14
with k = 2 and α = 7−2γ

6
for the explicit part. Relative errors for the density, the

velocity and the pressure in L2 norm. Nel denotes the number of elements along
each direction.

Analogous results are shown in Tables 9-14 for the modified scheme with
α = 0.5 , chosen, as discussed in Appendix A, in order to increase the region
of absolute monotonicity without affecting too much stability. It can be seen
that, for k = 1, slightly lower errors are obtained, especially for the density,
while the behaviour for k = 2 is similar to that of the original scheme.

Nel L2 rel. error ρ L2 rate ρ L2 rel. error u L2 rate u L2 rel. error p L2 rate p
10 2.02 · 10−3 1.19 · 10−2 2.80 · 10−3

20 7.82 · 10−4 1.37 3.81 · 10−3 1.64 1.11 · 10−3 1.33
40 2.51 · 10−4 1.64 1.04 · 10−3 1.87 3.58 · 10−4 1.63
80 6.96 · 10−5 1.85 2.50 · 10−4 2.06 9.89 · 10−5 1.86

Table 9: Convergence test for the inviscid isentropic vortex at C ≈ 0.01, Cu ≈ 0.01
with k = 1 and α = 0.5 for the explicit part. Relative errors for the density, the
velocity and the pressure in L2 norm. Nel denotes the number of elements along
each direction.

Nel L2 rel. error ρ L2 rate ρ L2 rel. error u L2 rate u L2 rel. error p L2 rate p
10 2.08 · 10−3 1.19 · 10−2 2.81 · 10−3

20 7.70 · 10−4 1.43 3.66 · 10−3 1.70 1.10 · 10−3 1.35
40 2.41 · 10−4 1.68 9.44 · 10−4 1.95 3.49 · 10−4 1.66
80 6.52 · 10−5 1.89 2.08 · 10−4 2.18 9.45 · 10−5 1.88

Table 10: Convergence test for the inviscid isentropic vortex at C ≈ 0.05, Cu ≈
0.05 with k = 1 and α = 0.5 for the explicit part. Relative errors for the density,
the velocity and the pressure in L2 norm. Nel denotes the number of elements
along each direction.
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Nel L2 rel. error ρ L2 rate ρ L2 rel. error u L2 rate u L2 rel. error p L2 rate p
10 2.34 · 10−3 1.17 · 10−2 2.88 · 10−3

20 7.49 · 10−4 1.64 3.29 · 10−3 1.83 1.09 · 10−3 1.40
40 2.26 · 10−4 1.73 7.68 · 10−4 2.10 3.32 · 10−4 1.72
80 6.76 · 10−5 1.74 2.18 · 10−4 1.82 9.10 · 10−5 1.87

Table 11: Convergence test for the inviscid isentropic vortex at C ≈ 0.15, Cu ≈
0.14 with k = 1 and α = 0.5 for the explicit part. Relative errors for the density,
the velocity and the pressure in L2 norm. Nel denotes the number of elements
along each direction.

Nel L2 rel. error ρ L2 rate ρ L2 rel. error u L2 rate u L2 rel. error p L2 rate p
10 6.41 · 10−4 2.59 · 10−3 9.07 · 10−4

20 1.18 · 10−4 2.44 3.41 · 10−4 2.93 1.65 · 10−4 2.43
40 1.84 · 10−5 2.68 4.46 · 10−5 2.94 2.54 · 10−5 2.50
80 3.72 · 10−6 2.31 1.33 · 10−5 1.75 4.61 · 10−6 2.46

Table 12: Convergence test for the inviscid isentropic vortex at C ≈ 0.01, Cu ≈
0.01 with k = 2 and α = 0.5 for the explicit part. Relative errors for the density,
the velocity and the pressure in L2 norm. Nel denotes the number of elements
along each direction.

Nel L2 rel. error ρ L2 rate ρ L2 rel. error u L2 rate u L2 rel. error p L2 rate p
10 6.53 · 10−4 2.56 · 10−3 9.05 · 10−4

20 1.24 · 10−4 2.40 3.49 · 10−4 2.87 1.68 · 10−4 2.43
40 2.53 · 10−5 2.29 1.03 · 10−4 1.76 2.96 · 10−5 2.50
80 9.76 · 10−6 1.37 5.01 · 10−5 1.00 9.51 · 10−6 1.64

Table 13: Convergence test for the inviscid isentropic vortex at C ≈ 0.05, Cu ≈
0.05 with k = 2 and α = 0.5 for the explicit part. Relative errors for the density,
the velocity and the pressure in L2 norm. Nel denotes the number of elements
along each direction.
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Nel L2 rel. error ρ L2 rate ρ L2 rel. error u L2 rate u L2 rel. error p L2 rate p
10 7.10 · 10−4 2.60 · 10−3 9.17 · 10−4

20 1.68 · 10−4 2.08 6.10 · 10−4 2.09 1.98 · 10−4 2.21
40 5.91 · 10−5 1.51 3.04 · 10−4 1.00 5.76 · 10−5 1.78
80 2.85 · 10−5 1.05 1.52 · 10−4 1.00 2.66 · 10−5 1.11

Table 14: Convergence test for the inviscid isentropic vortex at C ≈ 0.15, Cu ≈
0.14 with k = 2 and α = 0.5 for the explicit part. Relative errors for the density,
the velocity and the pressure in L2 norm. Nel denotes the number of elements
along each direction.

In further numerical experiments, we have observed that the lack of
absolute monotonicity strongly effectively affects the computation of density
and, as a consequence, the stability of the whole numerical scheme. For
Courant number around C ≈ 0.2 the original method becomes unstable,
while the modified scheme with α = 0.5 is still able to recover the expected
convergence rates at least in the k = 1 case, as evident from Table 15, while
again in the k = 2 reported in Table 16 we observe a degradation of the
convergence rates. In order to be able to run at slightly longer time steps
we have then chosen to use the α = 0.5 value for the IMEX scheme for the
rest of the numerical simulations carried out in this paper. We notice also
that, for both schemes, the results compare well with the analogous results
presented in [41] and with those obtained in [45] with a higher order IMEX
method.

Nel L2 rel. error ρ L2 rate ρ L2 rel. error u L2 rate u L2 rel. error p L2 rate p
10 2.71 · 10−3 1.16 · 10−2 2.96 · 10−3

20 7.74 · 10−4 1.81 2.95 · 10−3 1.98 1.09 · 10−3 1.44
40 2.34 · 10−4 1.73 7.71 · 10−4 1.94 3.28 · 10−4 1.73
80 8.91 · 10−5 1.39 3.74 · 10−4 1.04 1.01 · 10−4 1.70

Table 15: Convergence test for the inviscid isentropic vortex at C ≈ 0.2, Cu ≈ 0.2
with k = 1 and α = 0.5 for the explicit part. Relative errors for the density, the
velocity and the pressure in L2 norm. Nel denotes the number of elements along
each direction.
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Nel L2 rel. error ρ L2 rate ρ L2 rel. error u L2 rate u L2 rel. error p L2 rate p
10 8.18 · 10−4 2.92 · 10−3 9.58 · 10−4

20 2.42 · 10−4 1.76 1.02 · 10−3 1.52 2.57 · 10−4 1.90
40 9.88 · 10−5 1.29 5.20 · 10−4 0.97 9.36 · 10−5 1.46
80 4.79 · 10−5 1.04 2.58 · 10−4 1.01 4.47 · 10−5 1.07

Table 16: Convergence test for the inviscid isentropic vortex at C ≈ 0.2, Cu ≈ 0.2
with k = 2 and α = 0.5 for the explicit part. Relative errors for the density, the
velocity and the pressure in L2 norm. Nel denotes the number of elements along
each direction.

We have also tested in this case the h−adaptive version of the method, in
order to validate the implementation also in case of non-conforming meshes.
The local refinement criterion is based on the gradient of the density. More
specifically, we define for each element K the quantity

ηK = ‖∇ρ‖∞,K

that acts as local refinement indicator, where ‖·‖∞,K denotes the L∞−norm
over the element K. Table 17 shows the relative errors for all the quanti-
ties on a sequence of adaptive simulations keeping the maximum Courant
numbers fixed. Figure 1 shows instead the density and the adapted mesh
at t = Tf , from which it can be seen that the refinement criterion is able to
track the vortex correctly.

Nel L2 rel. error ρ L2 rel. error u L2 rel. error p
271 2.19 · 10−2 1.20 · 10−2 2.97 · 10−3

586 6.39 · 10−4 3.09 · 10−3 9.08 · 10−4

1999 1.80 · 10−4 7.93 · 10−4 2.56 · 10−4

7678 5.16 · 10−5 1.84 · 10−4 7.42 · 10−5

Table 17: Adaptive simulations of the inviscid isentropic vortex at different res-
olutions with a maximum C ≈ 0.1, Cu ≈ 0.1, relative errors for the density, the
velocity and the pressure in L2 norm with k = 1.
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a) b)

Figure 1: Adaptive simulation of the inviscid isentropic vortex benchmark: a)
computational mesh at t = Tf , b) contour plot of the density at t = Tf .

6.2 Sod shock tube problem

Even though the proposed method is particularly well suited for low Mach
number flows, we have also tested its behaviour also in a situation in which
shock waves occur. For this purpose, we have first considered the classical
Sod shock tube problem for an ideal gas proposed in [38] and also discussed
in [13]. It consists of a right-moving shock wave, an intermediate contact
discontinuity and a left-moving rarefaction fan. In this higher Mach number
regime it is more appropriate to use the Local Lax-Friedrichs flux (LLF),
defined by setting

λ(n,1) = max

(∥∥∥u(n,1)+
∥∥∥+

1

Ma
c(n,1)+ ,

∥∥∥u(n,1)−
∥∥∥+

1

Ma
c(n,1)−

)
λ(n,2) = max

(∥∥∥u(n,2)+
∥∥∥+

1

Ma
c(n,2)+ ,

∥∥∥u(n,2)−
∥∥∥+

1

Ma
c(n,2)−

)
where c =

√
γ pρ is the speed of sound.

The presence of different discontinuities requires the use of a monotonic
scheme to avoid undershoots and overshoots. It is well known that using
Q0 finite elements in combination with LLF and explicit time integration
that complies with the monotonicity constraints discussed in [16, 23, 22]
guarantees the monotonicity of the solution. Hence, a way to obtain mono-
tonic results is to project the numerical solution onto the Q0 subspace for
each element in which a suitable jump indicator exceeds a certain threshold.
Similar projections onto low order components of the solution are also used
in several monotonization approaches, see e.g. [14]. However, since in the
proposed scheme only the density is treated in a full explicit fashion, in order
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to avoid an excessive complication in the structure of the resulting method
we choose to apply this Q0 projection strategy only for the density vari-
able, without introducing monotonization for the velocity and the pressure.
While we are aware that this is not sufficient to guarantee full monotonicity,
the derivation of a fully monotonic IMEX scheme goes beyond the scope of
this work and we do not investigate this issue further here. Therefore, the
results in this Section are to be interpreted merely as a first stress test of
the proposed scheme at higher Mach number values.

We use a smoothness indicator based on the jump of the density across
two faces. More in detail, we define for each element K the quantity

ηK =
∑

Γ∈EK

∥∥ρ+ − ρ−
∥∥2

2,Γ

where EK denotes the set of all faces belonging to cell K and ‖·‖ represents
the standard L2 norm on Γ. Table 18 highlights the setting of the problem
in terms of initial conditions and position of the initial discontinuity. We
consider a 2D domain (−0.5, 0.5) × (0, 0.1) in order to test the ability of
the method to capture one-dimensional waves also on multi-dimensional
grids. The other component of the velocity is initialized to 0 and periodic
boundary conditions are imposed in the transverse direction y. The mesh
is composed by 500 × 50 elements and the time step is chosen in such a
way that the maximum Courant number C ≈ 0.07, while the maximum
advective Courant number Cu is around 0.06. Figure 2 shows the results
for the density, the velocity and the pressure at t = 0.2 compared with the
exact solution. One can easily notice that the discontinuities are located at
the right position and that the post-discontinuity values are correct.

ρL uL pL ρR uR pR xd
1 0 1 0.125 0 0.1 0

Table 18: Initial left and right states for Sod shock tube problem. xd denotes the
position of the initial discontinuity

a) b) c)

Figure 2: Sod shock tube problem at t = 0.2, comparison with exact solution, a)
density, b) velocity, c) pressure
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We have also considered the same problem in the case of the van der
Waals EOS, taking a = b = 0.5 as proposed in [13]. All the other parameters
are the same as in the previous case. Figure 3 shows the results for the
density, the velocity and the pressure at t = 0.2. Again, a good agreement
between the numerical results and the exact solution is observed for all the
quantities, also in the case of a real gas equation of state.

a) b) c)

Figure 3: Sod shock tube problem at t = 0.2, comparison with exact solution, a)
density, b) velocity, c) pressure

6.3 2D Lid-driven cavity

We consider now the classical 2D Lid-driven cavity test case. The computa-
tional domain is the box Ω = (0, 1)×(0, 1) which is initialized with a density
ρ = 1 and a velocity u = 0. The flow is driven by the upper boundary, whose
velocity is set to u = (1, 0)T , while on the other three boundaries a no-slip
condition is imposed. We set Re = 100 and Ma2 = 10−5. The advantage of
the proposed scheme is that the allowed time step is more than 100 times
larger compared to that of a fully explicit scheme. Indeed, the time-step
chosen is such that the maximum advective Courant number Cu is around
0.12, while the maximum Courant number C is around 49. The streamlines
are shown in Figure 4 and highlight the formation of the main recirculation
pattern. A comparison of the horizontal component of the velocity along
the vertical middle line and of the vertical component of the velocity along
the horizontal middle line with the reference solutions in [17, 41] is also
presented.
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a) b)

Figure 4: Computational results for the 2D lid-driven cavity, a) streamlines, b)
comparison with the solutions in [17] and in [41]. Blue dots denote the results in
[17], red crosses the results in [41] and the black line our numerical results.

a) b)

Figure 5: Computational results for the 2D lid-driven cavity with k = 2, a) stream-
lines, b) comparison with the solutions in [17] and in [41]. Blue dots denote the
results in [17], red crosses the results in [41] and black line our numerical results.

We note a reasonable agreement between the different solutions, even
though there is a still visible discrepancy between our results and the ref-
erence ones. Since the solution in [41] is obtained using third degree poly-
nomials, in order to further improve the results, we consider also the case
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k = 2. For this higher order approximation we note that our results fit very
well both the reference solutions.

We have also tested the h−adaptive version of the same algorithm, using
a refinement criterion based on the vorticity. More specifically, we define

ηK = diam (K) ‖∇ × u‖2,K

as local indicator. We start from a uniform Cartesian with 16 elements
along each direction. We allowed refinement for 5% of the elements with
largest indicator values and coarsening for 30% of the elements with the
smallest indicator values. The minimum element diameter allowed is H =
1
64 , while the maximum element diameter is H = 1

16 . Figure 6 reports the
computational mesh at steady state and the computed streamlines. One
can easily notice that the local refinement criterion is able to detect and
to automatically enhance the resolution in the zones where vortices appear,
as well as along the top boundary of the domain. For a more quantitative
view, in Figure 7, we compare again the components of the velocity along the
middle lines and, moreover, the absolute difference between the velocities of
the fixed mesh and adaptive simulations is plotted over the whole domain,
showing that no substantial loss of accuracy has occurred with a reduction
of around 25% of the required computational time.

a) b)

Figure 6: Adaptive simulation for the 2D lid-driven cavity, a) mesh at steady state,
b) streamlines.
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a) b)

Figure 7: Adaptive simulation for the 2D lid-driven cavity, a) comparison with the
solutions in [17] and in [41]. Blue dots denote the results in [17], red crosses the
results in [41] and black line our numerical results, b) difference for velocity magni-
tude between the fixed grid simulation and the adaptive simulation (interpolated
to the fixed grid).

6.4 Cold bubble

In this Section, we consider a test case proposed in [34], in which gravity
effects are also taken into account. This problem will also serve as a first
benchmark for the application of the method to the case of real gases equa-
tion of state. The computational domain is the rectangle (0, 1000)×(0, 2000)
and the initial condition is represented by a thermal anomaly introduced in
an isentropic background atmosphere with constant potential temperature
θ0 = 303. We recall that the potential temperature is defined for an ideal
gas as

θ = T

(
p0

p

) γ−1
γ

where p0 is a reference pressure. The perturbation potential temperature θ
′

defines the initial datum, given by

θ
′

=

{
A if r ≤ r0

A exp
(
− (r−r0)2

σ2

)
if r > r0

with r2 = (x− x0)2 + (y − y0)2 and x0 = 500, y0 = 1250, r0 = 50, σ =
100 and A = −15. Moreover, we set Re = 1000, Fr = 1

9.8 and Ma2 =
10−5. Notice that we have employed a larger value of the Reynolds number
with respect to the original configuration in [34]. Concerning the boundary
conditions, wall boundary conditions are imposed at all the boundaries.
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Therefore, we set ρ− = ρ+,u− = u+ − 2 (u+ · n+)n+ and ρ+E+ = ρ−E−,
which reduces to

p− = (γ − 1)

(
1

γ − 1
p+ +

1

2
Ma2ρ+u+ · u+ − 1

2
Ma2ρ−u− · u−

)
.

It is worth to notice that the computation of p− necessary to impose the
wall boundary conditions clearly depends on the specific equation of state.
In order to enhance the computational efficiency, we employ again mesh
h−adaptivity tool, as refinement indicator the gradient of the potential
temperature, since this quantity allows to identify the cold bubble. More
specifically, we set

ηK = ‖∇θ‖∞,K
as local indicator and we allow to refine when ηK exceeds a certain threshold
and to coarsen below another threshold. The initial computational grid is
composed by 50× 100 elements and we allowed up to two local refinements
only, so as to keep under control the advective Courant number. The time
step is taken equal to 0.08, yielding to a maximum Courant number C ≈ 5.6
and a maximum advective Courant number Cu ≈ 0.24.
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a) b)

c) d)

Figure 8: Cold bubble in an isentropic atmosphere, deviation from the basic-state
of the potential temperature for adaptive simulation at: a) t = 50, b) t = 100, c)
t = 150, d) t = 200.
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a) b)

c) d)

Figure 9: Cold bubble in an isentropic atmosphere, computational grid for adaptive
simulation at: a) t = 50, b) t = 100, c) t = 150, d) t = 200.

39



Figure 8 shows the deviation of the potential temperature from θ0 at
t = 50, t = 100, t = 150 and t = 200. The qualitative behaviour is the one
expected, since the bubble falls and deforms, gradually developing Kelvin-
Helmholtz type instabilities. Three fixed-point iterations on average for each
stage were required. It is worth to point out that a reduction in computa-
tional time of around 30% with respect to a full resolution grid has been
obtained. We also show in Figure 9 the evolution of the mesh during the
simulation; as one can easily notice, the refinement criterion is able to track
the bubble and the final mesh consists of 19181 elements instead of the 80000
elements of the full resolution mesh.

6.5 Non ideal gas

In this Section, we investigate the ability of the proposed scheme to deal
with different equations of state. We first consider the van der Waals equa-
tion (8) with R = 287.05, a = 11000 and b = 0.0005, leading to an average
compressibility factor z ≈ 0.83. We want to employ again the mesh adaptiv-
ity procedure in order to enhance the computational efficiency. However, for
non-ideal gas equations of state, the definition of a potential temperature is
not trivial. It can be proven, after some calculations reported in Appendix
B, that the quantity β = log(T ) − 2 (γ − 1) atanh (2ρb− 1) is constant in
an isentropic process for the van der Waals EOS. Therefore, we consider
it as the counterpart of the potential temperature and the local refinement
indicator for each element is defined by

ηK = ‖∇β‖∞,K .

The same remeshing procedure described in the previous Section is then
employed also in this case. Figure 10 shows the contour plots of the tem-
perature at t = 50, t = 100 and t = 150; the qualitative behaviour is in
agreement with the ideal gas case, even though the Kevin Helmholtz insta-
bility seems to appear earlier. We also report in Figure 11 the evolution
of the computational grid: one can easily notice that, also in this case, the
criterion is able to automatically detect the bubble.

40



a) b) c)

Figure 10: Cold bubble test case, contour plot of the temperature for adaptive
simulation using van der Waals equation of state at: a) t = 50, b) t = 100, c)
t = 150.

a) b) c)

Figure 11: Cold bubble test case, evolution of the mesh for adaptive simulation
using van der Waals equation of state at: a) t = 50, b) t = 100, c) t = 150.

Finally, let us consider now the Stiffened Gas equation of state (SG-
EOS) (10) with q = 0 and π = 18000 in order to obtain again an average
compressibility factor z ≈ 0.83. In this case it can be shown (see Appendix B
for further details) that the quantity which remains constant in an isentropic
process is δ = p+π

ργ and again we use its gradient as local refinement indicator.

41



Figure 12 shows the contour plots of the temperature at t = 50, t = 100 and
t = 150, while Figure 13 reports the evolution of the computational grid at
the same instants. The qualitative behaviour in this case is more similar
to the one obtained in Section 6.4 and we note again that the refinement
criterion is able to automatically track the bubble. Both the simulations also
in this case required an average of 3 fixed-point iterations for each stage.

a) b) c)

Figure 12: Cold bubble test case, contour plot of the temperature for adaptive
simulation using SG-EOS at: a) t = 50, b) t = 100, c) t = 150.

a) b) c)

Figure 13: Cold bubble test case, evolution of the computational grid for adaptive
simulation using SG-EOS at: a) t = 50, b) t = 100, c) t = 150.
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6.6 Warm bubble

Up to now we have checked the method in absence of heat conduction. Let
us consider now the test case proposed in [10] of a rising warm bubble.
The domain is the square box Ω = (−0.5, 1.5) × (−0.5, 1.5) with periodic
boundary conditions on the lateral boundaries and wall boundary conditions
on the top and on the bottom of the domain. The initial temperature
corresponds to a Gaussian profile

T (x, 0) =


386.48 if r > rb

p0

R

(
1−0.1e

r2

σ2

) if r ≤ rb

where r = |x− xb| is the distance from the center xb = (0.5, 0.35)T , rb =
0.25 is the radius and σ = 2. We set p0 = 105 and R = 287. Moreover,
following [10], we consider:

Re = 804.9 Pr = 0.71 Fr ≈ 0.004 Ma ≈ 0.01.

The grid is composed by 120 elements along each direction and the time step
is such that the maximum Courant number C ≈ 118 and the maximum value
of advective Courant number Cu is around 0.03. Figures 14,15 and 16 show
the results at t ∈ {10, 15, 20} both in terms of contours and plots along
the same specific cuts along x−axis chosen in [10]. All the results are in
good agreement with the reference ones and, also in this case, we are able
to recover the Kelvin-Helmholtz instability.
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Figure 14: Warm bubble test case, results at t = 10. From bottom to top: tem-
perature, horizontal velocity and vertical velocity.
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Figure 15: Warm bubble test case, results at t = 15. From bottom to top: tem-
perature, horizontal velocity and vertical velocity.
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Figure 16: Warm bubble test case, results at t = 20. From bottom to top: tem-
perature, horizontal velocity and vertical velocity.
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7 Conclusions and future perspectives

We have proposed an efficient, h−adaptive IMEX-DG solver for the com-
pressible Naiver-Stokes equations with general equation of state. The solver
combines ideas from the discretization approaches in [11, 13, 20, 29] and pro-
poses an improvement in the choice of the free parameter employed by the
explicit part of the IMEX scheme described in [20]. The resulting method
achieves full second order accuracy also including viscous terms and imple-
ments an h−adaptive approach in the framework of the numerical library
deal.II. A number of physically based adaptation criteria have been pro-
posed, which allow to exploit the full efficiency of the adaptive technique
also for real gas simulations. A number of numerical experiments validate
the proposed method and show its potential for low Mach number problems.
In future work, we plan to extend the scheme to multiphase flows and to
demonstrate its potential for application to atmospheric flows.
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A Stability and monotonicity of the ex-

plicit time discretization

In this Appendix we study the stability and monotonicity of the explicit
part of the IMEX scheme applied in the paper. We recall that the Butcher
tableaux for the explicit part of the method is given by

0 0
γ γ 0
1 1− α α 0

1
2
− γ

4
1
2
− γ

4
γ
2

In [20], the choice α = 7−2γ
6 was made to maximize the stability region of

the resulting scheme, but this coefficient is indeed a free parameter and can
also be chosen in different ways, as long as stability is not compromised. In
order to identify possible alternative choices, we perform an analysis using
the concepts introduced in [28], [23], [16] (see also the review in [22]). A
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similar analysis for the implicit part of the IMEX scheme was carried out in
[7], to which we refer for a summary of the related theoretical results. We
then define

A =

 0 0 0
γ 0 0

1− α α 0

 bT =
[

1
2 −

γ
4

1
2 −

γ
4

γ
2

]
with γ = 2−

√
2. We define for ξ ∈ R the quantities

A(ξ) = A (I − ξA)−1 bT (ξ) = bT (I − ξA)−1

e(ξ) = (I − ξA)−1 e ϕ(ξ) = 1 + ξbT (I − ξA)−1 e (51)

where I is the 3× 3 identity matrix and e is a vector whose all components
are equal to 1. Therefore, for the specific scheme, we obtain

A(ξ) =

 0 0 0
γ 0 0

1 + α (γξ − 1) α 0



bT (ξ) =

1
4 [2 + γ (−1 + ξ (4− γ + 2α (γξ − 1)))]

1
4 [2 + γ (2αξ − 1)]

γ
2


e(ξ) =

 1
1 + γξ

1 + ξ + αγξ2


ϕ(ξ) = 1 + ξ +

ξ2

2
+
(

3− 2
√

2
)
αξ3

A method with tableaux
(
A, bT

)
is absolutely monotone at ξ ∈ R if A(ξ) ≥ 0,

bT (ξ) ≥ 0, e(ξ) ≥ 0 and ϕ(ξ) ≥ 0 elementwise; moreover the radius of
absolute monotonicity is defined for all ξ in −r ≤ ξ ≤ 0 as

R(a, b) = sup
[
r|r ≥ 0, A(ξ) ≥ 0, bT (ξ) ≥ 0, e(ξ) ≥ 0, ϕ(ξ) ≥ 0

]
.

Figure 17 shows the behaviour of the radius of absolute monotonicity as α
varies, along with the behaviour of the stability region along the imaginary
axis. As already mentioned before, α = 7−2γ

6 was chosen originally to max-

imize the stability region, but in this case R = 2
√

2−3
2+
√

2
≈ 0.05, so that the

region of absolute monotonicity is quite small. After some manipulations,
it can be shown that the region of absolute stability is given by

S =
{
z ∈ C :

∣∣1 + z + αγz2
∣∣ < 1

}
.
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The alternative value α = 0.5 maximizes the region of absolute monotonicity
without compromising too much the stability. The impact of this alternative
choice on numerical results is discussed in Section 6.

a) b)

Figure 17: Analysis of the explicit part of IMEX scheme: a) Radius of absolute
monotonicity as function of α, b) Size of stability region along the imaginary axis
as α varies.

B Isentropic processes for real gases

The potential temperature is an important thermodynamic quantity in den-
sity driven flows and can be easily derived for the ideal gas equation of
state. In case of real gases, however, the derivation of quantities with simi-
lar properties is less straightforward. In this Appendix we analyze isentropic
processes for the non-ideal equations of state considered in the work, for the
purpose of deriving analogous quantities that are conserved under isentropic
transformations. Let us recall the first law of thermodynamics

de = Tds− pdv = Tds+
p

ρ2
dρ (52)

where s denotes the specific enthalpy. If we divide by T the previous rela-
tionship, we obtain

1

T
de = ds+

p

ρ2T
dρ (53)

which in an isentropic process reduces to

1

T
de− p

ρ2T
dρ = 0. (54)

Thanks to (9) we then obtain :

R

(γ − 1)T
dT − aρ2 + p

ρ2T
dρ = 0. (55)

The EOS can be rewritten as [44]

T =

(
p+ aρ2

)
(1− ρb)

ρR
. (56)
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If we substitute (56) into (55), we obtain

R

(γ − 1)T
dT − R

ρ (1− ρb)
dρ (57)

which can then be integrated to yield

R

γ − 1
log(T )− 2R atanh (2ρb− 1) = const (58)

or, equivalently,

log(T )− 2 (γ − 1) atanh (2ρb− 1) = const. (59)

The same computations can be repeated for the SG-EOS. Thanks to (11),
we obtain for an isentropic process

R

(γ − 1)T
dT − π

ρ2T
dρ− p

ρ2T
dρ = 0. (60)

Since T = p+π
ρR , we obtain

R

(γ − 1)T
dT − R

ρ
dρ = 0, (61)

which by integration yields

R

γ − 1
log(T )−R log(ρ) = const. (62)

Thanks to the properties of the logarithm, we can rewrite

log

(
T

ργ−1

)
= const (63)

and therefore
T

ργ−1
= const (64)

which is equivalent to
p+ π

ργ
= const. (65)
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