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The Reduced Basis Multigrid scheme for the
Virtual Element Method

Paola F. Antonietti, Silvia Bertoluzza, Fabio Credali

Abstract We present a non-nested W-cycle multigrid scheme for the lowest or-
der Virtual Element Method on polygonal meshes. To avoid the implicit definition
of the Virtual Element space, which poses several issues in the computation of
intergrid operators that underpin multigrid methods, the proposed scheme uses a
fully-conforming auxiliary space constructed by cheaply computing the virtual basis
functions via the reduced basis method.

Introduction

The virtual element method (VEM) was introduced more than a decade ago as
a generalization of the finite element method on general polytopal meshes [1].
One of the main features of VEM is that the underlying discrete space is defined
implicitly. Indeed, the basis functions are themselves solutions of a local differential
problem in each mesh element. Such a local partial differential equation (PDE)
is generally not solved explicitly, and the VEM discrete problem is defined using
suitable polynomial projectors and stabilization terms. However, this construction
presents some drawbacks: for instance, a wrong choice of the stabilization term may
pollute the results [2]. From the algebraic solver perspective, the design of geometric
multigrid schemes is non-trivial since the Virtual Element spaces are non-nested
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even if built on a sequence of nested meshes, and the injection operator cannot
be defined by simple pointwise evaluation of basis functions at points located in
the interior of the elements [3]. To overcome the issues mentioned above, methods
for reconstructing the virtual basis functions [4, 5, 6] have been introduced in the
literature.
This work aims to exploit the reduced basis Virtual Element Method (rbVEM) we

introduced in [4] to construct a geometric W-cycle multigrid scheme for the lowest
order virtual element method on non-nested meshes. To the best of our knowledge,
this is the first work to exploit the efficient computation of the virtual basis function
to design a multigrid algorithm for the ℎ-version of VEM.
We consider the standard virtual element formulation for the Poisson problem

and the rbVEM space as an auxiliary tool for constructing the intergrid opera-
tors between mesh levels. In particular, we define the prolongation operator as the
𝐿2−projection [7] between rbVEM spaces on different levels, without the need of
modifying the original discrete problem. We present numerical tests showing that
the convergence factor of our new scheme is independent of the resolution of the
underlying fine mesh. We also show that our algorithm is independent of the number
of reduced basis functions employed for constructing the auxiliary rbVEM space.
A forthcoming work will address a detailed convergence analysis for the proposed
method, as well as the design of V-cycle schemes.

1 Model problem and Virtual Element discretization

Weconsider theweak formulation of the Poisson equationwith homogeneousDirich-
let boundary conditions in a two-dimensional convex polygonal domain Ω ⊂ R2,
which reads: given 𝑓 ∈ 𝐿2 (Ω), find 𝑢 ∈ 𝐻10 (Ω) such that

A(𝑢, 𝑣) = (∇𝑢,∇𝑣)Ω = ( 𝑓 , 𝑣)Ω ∀𝑣 ∈ 𝐻10 (Ω), (1)

where the notation (·, ·)Ω indicates the scalar product in 𝐿2 (Ω).
We discretize our problem by considering the virtual element method. Let Tℎ be a

generic polygonal tessellation of Ω made of disjoint star-shaped polygonal elements
𝐾 with diameter ℎ𝐾 . The size of Tℎ is denoted by ℎ = max𝐾 ∈Tℎ ℎ𝐾 . The local virtual
element space [1] of degree one is defined as 𝑉 (𝐾) = {𝑣 ∈ 𝐻1 (𝐾) : 𝑣 |𝜀 ∈ P1 (𝜀)
∀𝜀 ∈ 𝜕𝐾, Δ𝑣 = 0 in 𝐾}, and the global discrete space is then obtained by gluing all
local spaces by continuity

𝑉 (Tℎ) = {𝑣 ∈ 𝐻10 (Ω) : 𝑣 ∈ 𝑉 (𝐾) ∀𝐾 ∈ Tℎ}.

We observe that a function 𝑣 ∈ 𝑉 (𝐾) is uniquely identified by its values at the 𝑁
vertices of 𝐾 , which are a unisolvent set of degrees of freedom. Moreover, accuracy
is guaranteed since P1 (𝐾) ⊂ 𝑉 (𝐾).



The Reduced Basis Multigrid scheme for the Virtual Element Method 3

In order to solve Equation (1) by means of a geometric multigrid algorithm,
we consider a sequence of quasi-uniform tessellations {T𝑗 }𝐽𝑗=1 with mesh sizes ℎ 𝑗
satisfying the constraint 𝐶 ℎ 𝑗−1 ≤ ℎ 𝑗 ≤ ℎ 𝑗−1, for a positive constant 𝐶. Moreover,
{T𝑗 }𝐽𝑗=1 are not-nested. We do not assume that meshes are nested, as the nestedness
of the meshes does not imply that of the corresponding spaces. We then seek for the
virtual element approximation of 𝑢 at the finest level grid 𝐽:

find 𝑢𝐽 ∈ 𝑉 (T𝐽 ) such that A𝐽 (𝑢 𝑗 , 𝑣𝐽 ) = ( 𝑓𝐽 , 𝑣𝐽 )Ω ∀𝑣𝐽 ∈ 𝑉 (T𝐽 ). (2)

The discrete bilinear form A𝐽 is defined as

A𝐽 (𝑢𝐽 , 𝑣𝐽 ) =
∑︁
𝐾𝐽 ∈T𝐽

A𝐾𝐽

𝐽
(𝑢𝐽 , 𝑣𝐽 )

A𝐾𝐽

𝐽
(𝑢𝐽 , 𝑣𝐽 ) = (∇Π∇𝑢𝐽 ,∇Π∇𝑣𝐽 )𝐾𝐽

+ 𝑆𝐾𝐽

𝐽
((Id − Π∇)𝑢𝐽 , (Id − Π∇)𝑣𝐽 ),

where Π∇ is the elliptic projection operator onto P1 (𝐾𝐽 ) solving

(∇𝑣𝐽 − ∇Π∇𝑣𝐽 ,∇𝑞)𝐾𝐽
= 0 ∀𝑞 ∈ P1 (𝐾𝐽 ),

∫
𝜕𝐾𝐽

Π∇𝑣𝐽 𝑑𝑠 =

∫
𝜕𝐾𝐽

𝑣𝐽 𝑑𝑠,

and 𝑆𝐾𝐽

𝐽
is the semi-positive definite bilinear form defined as

𝑆
𝐾𝐽

𝐽
(𝑤𝐽 , 𝑣𝐽 ) =

𝑁∑︁
𝑖=1

𝑤𝐽 (x𝑖)𝑣𝐽 (x𝑖),

with x1, . . . , x𝑁 being the vertices of 𝐾𝐽 ∈ T𝐽 . Finally, the discrete right hand side
is defined in terms of the 𝐿2 projection onto constants Π00 as

( 𝑓𝐽 , 𝑣𝐽 )Ω =
∑︁
𝐾𝐽 ∈T𝐽

(Π00 𝑓 , 𝑣𝐽 )𝐾𝐽
.

Eq. (2) can be reformulated in terms of operators as 𝐴𝐽𝑢𝐽 = 𝑓𝐽 .

2 The reduced basis multigrid algorithm

In this section we design a W-cycle non-nested multigrid algorithm to solve Eq. (2).
A key ingredient for the construction of the method are the intergrid operators. Since
𝑉 (T𝑗−1) ⊄ 𝑉 (T𝑗 ), a good choice of prolongation operator is the 𝐿2 projection [7]
𝐼
𝑗

𝑗−1 : 𝑉 (T𝑗−1) → 𝑉 (T𝑗 ) defined, for 𝑣 𝑗−1 ∈ 𝑉 (T𝑗−1), as

(𝐼 𝑗
𝑗−1𝑣 𝑗−1, 𝑤 𝑗 )Ω = (𝑣 𝑗−1, 𝑤 𝑗 )Ω ∀𝑤 𝑗 ∈ 𝑉 (T𝑗 ).
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Clearly, due to the implicit definition of the virtual element spaces, the quantities
above are not fully computable through the degrees of freedom. We thus consider
the rbVEM space introduced in [4], whose basis functions are explicitly constructed
and have the same degrees of freedom as the original VEM space. For a generic
element 𝐾 𝑗 ∈ T𝑗 , the rbVEM is defined as

𝑉 rb (𝐾 𝑗 ) = P1 (𝐾 𝑗 ) ⊕𝑊 rb (𝐾 𝑗 ), (3)

where 𝑊 rb (𝐾 𝑗 ) ⊂ span{𝑒 rb
𝑀,𝑖
, 𝑖 = 1, . . . , 𝑁} is such that 𝑤 rb

𝑗
=

∑𝑁
𝑖=1 w𝑖𝑒 rb𝑀,𝑖 ∈

𝑊 rb (𝐾 𝑗 ) if and only if Π∇ (∑𝑁
𝑖=1 w𝑖𝑒𝑖) = 0, with {𝑒𝑖}𝑁𝑖=1 being the shape functions

of 𝑉 (𝐾 𝑗 ). The functions 𝑒 rb𝑀,𝑖 are an approximation of the virtual element basis
functions computed by means of the reduced basis method with complexity, i.e. the
dimension of the reduced basis space, equal to 𝑀 . In addition, the space 𝑊 rb (𝐾 𝑗 )
is constructed to be A−orthogonal to P1 (𝐾 𝑗 ). Given 𝑣 𝑗 ∈ 𝑉 (𝐾 𝑗 ), its counterpart
𝑣 rb
𝑗

∈ 𝑉 rb (𝐾 𝑗 ) is constructed as 𝑣 rb𝑗 = Π∇𝑣 𝑗 + 𝑣⊥𝑗 , where 𝑣⊥𝑗 ∈ 𝑊 rb (𝐾 𝑗 ) is the linear
combination 𝑣⊥

𝑗
=
∑𝑁
𝑖=1 (𝑣 𝑗 (x𝑖) − Π∇𝑣 𝑗 (x𝑖))𝑒 rb𝑀,𝑖 . Given 𝑣 𝑗 , 𝑤 𝑗 ∈ 𝑉 (𝐾 𝑗 ) and their

counterparts 𝑤 rb
𝑗
, 𝑣 rb
𝑗
∈ 𝑉 rb (𝐾 𝑗 ), we set

A𝐾 𝑗

𝑗
(𝑤 rb𝑗 , 𝑣 rb𝑗 ) = (∇Π∇𝑤 𝑗 ,∇Π∇𝑣 𝑗 )𝐾 𝑗

+ 𝑆𝐾 𝑗

𝑗
(𝑤⊥

𝑗 , 𝑣
⊥
𝑗 )

= (∇Π∇𝑤 𝑗 ,∇Π∇𝑣 𝑗 )𝐾 𝑗
+ 𝑆𝐾 𝑗

𝑗
((Id − Π∇)𝑤 𝑗 , (Id − Π∇)𝑣 𝑗 )

= A𝐾 𝑗

𝑗
(𝑤 𝑗 , 𝑣 𝑗 ).

We then solve Eq. (2) in the original VEM space, by employing the newly introduced
rbVEM as a support for computing intergrid operators. Given 𝑣 rb

𝑗−1 ∈ 𝑉
rb (T𝑗−1), we

define the prolongation operator 𝐼 𝑗
𝑗−1 : 𝑉

rb (T𝑗−1) → 𝑉 rb (T𝑗 ) as

(𝐼 𝑗
𝑗−1𝑣

rb
𝑗−1, 𝑤

rb
𝑗 )Ω = (𝑣 rb𝑗−1, 𝑤

rb
𝑗 )Ω ∀𝑤 rb𝑗 ∈ 𝑉 rb (T𝑗 ), (4)

while the restriction operator 𝐼 𝑗−1
𝑗
: 𝑉 rb (T𝑗 ) → 𝑉 rb (T𝑗−1) is defined as its adjoint

(𝐼 𝑗−1
𝑗
𝑤 rb𝑗 , 𝑣

rb
𝑗−1)Ω = (𝑤 rb𝑗 , 𝑣 rb𝑗−1)Ω ∀𝑣 rb𝑗−1 ∈ 𝑉

rb (T𝑗−1). (5)

In our scheme, the prolongation and restriction operators between the VEM spaces
𝑉 (T𝑗−1), 𝑉 (T𝑗 ) inherit their definition from (4) and (5), respectively. We point

Algorithm 1Multigrid W-cycle iteration
Initialize 𝑢0 ∈ 𝑉 (T𝐽 ):
for 𝑘 = 0, 1, . . . do
𝑢𝑘+1 = MGW (𝐽 , 𝑓𝐽 , 𝑢𝑘 , 𝑚1, 𝑚2);
𝑢𝑘 = 𝑢𝑘+1;

end for
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out that the scalar product on the left hleft-handof (4), which involves functions
in 𝑉 rb (T𝑗 ), can be efficiently computed by exploiting the properties of the reduced
basis method [4]. On the other hand, the scalar product at the right right-handinvolves
functions defined on two different mesh levels and requires the computation of the
intersection betweenT𝑗 andT𝑗−1, as commented in [7]. Twomeshes can be efficiently
intersected if a bounding box technique is employed to detect cell-by-cell interactions.
As a smoothing scheme, we choose the Richardson iteration. Given 𝑉★(T𝑗 ) the dual
space of 𝑉 (T𝑗 ), let 𝐴 𝑗 : 𝑉 (T𝑗 ) → 𝑉★(T𝑗 ) be the operator defined as

(𝐴 𝑗𝑤, 𝑣)Ω = A 𝑗 (𝑤, 𝑣) ∀𝑤, 𝑣 ∈ 𝑉 (T𝑗 ),

and let Λ 𝑗 ∈ R denote the maximum eigenvalue of 𝐴 𝑗 , for 𝑗 = 2, . . . , 𝐽. The
smoothing scheme is then defined as 𝐵 𝑗 = Λ 𝑗 Id 𝑗 , 𝑗 = 2, . . . , 𝐽. The W-cycle

Algorithm 2Multigrid W-cycle scheme: one iteration at level 𝑗 ≥ 1
if 𝑗 = 1 then

MGW (1, 𝑔, 𝑧0, 𝑚1, 𝑚2) = 𝐴−11 𝑔.
else

Pre-smoothing:
for 𝑖 = 1, . . . , 𝑚1 do

𝑧 (𝑖) = 𝑧 (𝑖−1) + 𝐵−1
𝑗
(𝑔 − 𝐴 𝑗 𝑧

(𝑖−1) );
end for

Coarse grid correction:
𝑟 𝑗−1 = 𝐼

𝑗−1
𝑗

(𝑔 − 𝐴 𝑗 𝑧
(𝑚1 ) );

𝑒 𝑗−1 = MGW ( 𝑗 − 1, 𝑟 𝑗−1, 0, 𝑚1, 𝑚2);
𝑒 𝑗−1 = MGW ( 𝑗 − 1, 𝑟 𝑗−1, 𝑒 𝑗−1, 𝑚1, 𝑚2);
𝑧 (𝑚1+1) = 𝑧 (𝑚1 ) + 𝐼 𝑗

𝑗−1𝑒 𝑗−1;

Post-smoothing:
for 𝑖 = 𝑚1 + 2, . . . , 𝑚1 +𝑚2 + 1 do

𝑧 (𝑖) = 𝑧 (𝑖−1) + 𝐵−1
𝑗
(𝑔 − 𝐴 𝑗 𝑧

(𝑖−1) );
end for

MGW ( 𝑗 , 𝑔, 𝑧0, 𝑚1, 𝑚2) = 𝑧 (𝑚1+𝑚2+1) .
end if

iteration for computing 𝑢𝐽 is summarized in Algorithm 1, where 𝑢0 ∈ 𝑉 (T𝐽 ) denotes
a suitable initial guess, and where 𝑚1, 𝑚2 ∈ N denote the number of pre- and post-
smoothing steps, respectively. We observe that MGW (𝐽, 𝑓𝐽 , 𝑢𝑘 , 𝑚1, 𝑚2) represents
the approximate solution obtained after one iteration of the non-nested W-cycle,
which is defined by the recursive procedure described in Algorithm 2. Indeed, the
W-cycle is defined by induction: given the general problem of finding 𝑧 ∈ 𝑉 (T𝑗 )
satisfying

𝐴 𝑗 𝑧 = 𝑔 (6)
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for 𝑗 ≥ 2 and 𝑔 ∈ 𝐿2 (Ω), then MGW ( 𝑗 , 𝑔, 𝑧0, 𝑚1, 𝑚2) is the approximate solution
of (6) obtained after one multigrid iteration with initial guess 𝑧0 ∈ 𝑉 (T𝑗 ) and 𝑚1, 𝑚2
smoothing steps. Clearly, on the coarsest level 𝑗 = 1, the problem is solved exactly.

Remark 1 In this work, we are using the spaces𝑉 rb (T𝑗 ), 𝑗 = 1, . . . , 𝐽 as an auxiliary
tool for computing intergrid operators. At the same time, the discrete problem is
formulated in the standard virtual element space 𝑉 (T𝐽 ). We observe that, if the
reduced basis stabilization introduced in [4] is considered, then Eq. (2) can be
reformulated in 𝑉 rb (T𝐽 ), so that A𝐽 (𝑤rb𝐽 , 𝑣

rb
𝐽
) = A(𝑤rb

𝐽
, 𝑣rb
𝐽
) for 𝑤rb

𝐽
, 𝑣rb
𝐽
∈ 𝑉 rb (T𝐽 ).

We thus obtain a discrete formulation in the fully-conforming rbVEM space, and our
multigrid scheme remains unchanged.

3 Numerical results

In this section, we present numerical tests to assess the performance of the proposed
multigrid scheme.We setΩ = (0, 1)2, and we consider the sets of non-nested meshes
shown in Figure 1. The finest meshes (Level 4) are made of 512 (Set 1), 1024 (Set 2),
2048 (Set 3) and 4096 (Set 4) elements. We remark that each mesh was generated
independently of the others. Moreover, the ratio between the numbers of elements of
a coarse mesh and of the corresponding finemesh is equal to 1/4. In the following, we
report the iteration counts needed to reduce the relative residual below the tolerance
𝑡𝑜𝑙 = 10−8. We also compute the convergence factor

𝜌𝐽 = exp
(
1

𝑛𝑖𝑡 ,𝐽
log

‖|r𝑛𝑖𝑡,𝐽 ‖|
‖r0‖|

)
,

where 𝑛𝑖𝑡 ,𝐽 is the iteration count for reducing the error below the considered tolerance
by means of theW-cycle scheme with 𝐽 levels (𝐽 = 2, 3, 4), while r𝑛𝑖𝑡,𝐽 and r0 are the
final and initial residual vectors, respectively. In all our tests, we set 𝑚1 = 𝑚2 = 𝑚.
We first assess the independence of the multigrid scheme from the number 𝑀 of
reduced basis functions employed to construct the shape functions of the space
𝑊 rb (𝐾 𝑗 ) in (3). By looking at Table 1, it is clear that the value of 𝑀 does not affect
the convergence of the proposed scheme: indeed, for fixed 𝑚 and for a fixed number
of levels 𝐽, the iteration count is the same for 𝑀 = 1 and 𝑀 = 50. For the next test,
we thus set𝑀 = 1. The second test studies the convergence properties of ourW-cycle
scheme. In Table 2, we report both the convergence factor and the iteration count
for all sets of meshes by varying the number 𝑚 of pre- and post-smoothing steps.
It is clear that the convergence factor does not depend on the mesh size ℎ. Indeed,
for fixed 𝐽 = 2, 3, 4 and 𝑚 = 3, 6, 8, the convergence factor is roughly constant. This
fact implies that the iteration counts needed by the W-cycle to reduce the residual
below the given tolerance are independent of the resolution of the underlying mesh.
Moreover, as 𝑚 increases, the convergence factor decreases.
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Fig. 1 Sets of non-nested grids employed for numerical tests.

Table 1 Iterations count of the W-Cycle multigrid as a function of 𝑚. Comparison in terms of the
number of reduced basis functions used to build the auxiliary space: 𝑀 = 1 vs 𝑀 = 50.

W-cycle, Richardson smoother, 𝑡𝑜𝑙 = 10−8

Set 1 Set 2
2 levels 3 levels 4 levels 2 levels 3 levels 4 levels

M 1 50 1 50 1 50 1 50 1 50 1 50
𝑚 = 3 8 8 9 9 8 8 8 8 8 8 8 8
𝑚 = 6 7 7 7 7 6 6 6 6 6 6 6 6
𝑚 = 8 6 6 5 5 5 5 6 6 5 5 5 5

Set 3 Set 4
2 levels 3 levels 4 levels 2 levels 3 levels 4 levels

M 1 50 1 50 1 50 1 50 1 50 1 50
𝑚 = 3 8 8 8 8 8 8 8 8 8 8 8 8
𝑚 = 6 6 6 6 6 6 6 6 6 6 6 6 6
𝑚 = 8 5 5 5 5 5 5 5 5 5 5 5 5

4 Conclusions

We introduced a non-nested W-cycle multigrid scheme for the lowest order virtual
element method based on the rbVEM auxiliary space introduced in [4]. Numerical
tests showed that the W-cycle multigrid scheme is scalable and that its convergence
factor does not depend on the number of reduced basis functions used to construct
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Table 2 Convergence factor 𝜌 and iterations count of the W-Cycle multigrid as a function of 𝑚.
The auxiliary space is constructed using a single reduced basis function.

W-cycle, Richardson smoother, 𝑡𝑜𝑙 = 10−8, 𝑀 = 1

Set 1 Set 2
2 levels 3 levels 4 levels 2 levels 3 levels 4 levels

𝑚 = 3 0.0958 (8) 0.1174 (9) 0.0964 (8) 0.0843 (8) 0.0896 (8) 0.0991 (8)
𝑚 = 6 0.0564 (7) 0.0515 (7) 0.0408 (6) 0.0428 (6) 0.0364 (6) 0.0392 (6)
𝑚 = 8 0.0306 (6) 0.0246 (5) 0.0217 (5) 0.0310 (6) 0.0204 (5) 0.0199 (5)

Set 3 Set 4
2 levels 3 levels 4 levels 2 levels 3 levels 4 levels

𝑚 = 3 0.0805 (8) 0.0825 (8) 0.0942 (8) 0.0977 (8) 0.0796 (8) 0.0984 (8)
𝑚 = 6 0.0369 (6) 0.0308 (6) 0.0384 (6) 0.0418 (6) 0.0323 (6) 0.0397 (6)
𝑚 = 8 0.0229 (5) 0.0174 (5) 0.0196 (5) 0.0211 (5) 0.0128 (5) 0.0188 (5)

the auxiliary space. A forthcoming paper will present an exhaustive convergence
analysis of the proposed method, as well as extensions to the V-cycle algorithm and
the application of smoothing schemes other than the Richardson iteration.
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