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The Reduced Basis Multigrid scheme for the
Virtual Element Method

Paola F. Antonietti, Silvia Bertoluzza, Fabio Credali

Abstract We present a non-nested W-cycle multigrid scheme for the lowest or-
der Virtual Element Method on polygonal meshes. To avoid the implicit definition
of the Virtual Element space, which poses several issues in the computation of
intergrid operators that underpin multigrid methods, the proposed scheme uses a
fully-conforming auxiliary space constructed by cheaply computing the virtual basis
functions via the reduced basis method.

Introduction

The virtual element method (VEM) was introduced more than a decade ago as
a generalization of the finite element method on general polytopal meshes [1].
One of the main features of VEM is that the underlying discrete space is defined
implicitly. Indeed, the basis functions are themselves solutions of a local differential
problem in each mesh element. Such a local partial differential equation (PDE)
is generally not solved explicitly, and the VEM discrete problem is defined using
suitable polynomial projectors and stabilization terms. However, this construction
presents some drawbacks: for instance, a wrong choice of the stabilization term may
pollute the results [2]. From the algebraic solver perspective, the design of geometric
multigrid schemes is non-trivial since the Virtual Element spaces are non-nested
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even if built on a sequence of nested meshes, and the injection operator cannot
be defined by simple pointwise evaluation of basis functions at points located in
the interior of the elements [3]. To overcome the issues mentioned above, methods
for reconstructing the virtual basis functions [4, 5, 6] have been introduced in the
literature.

This work aims to exploit the reduced basis Virtual Element Method (roVEM) we
introduced in [4] to construct a geometric W-cycle multigrid scheme for the lowest
order virtual element method on non-nested meshes. To the best of our knowledge,
this is the first work to exploit the efficient computation of the virtual basis function
to design a multigrid algorithm for the A-version of VEM.

We consider the standard virtual element formulation for the Poisson problem
and the roVEM space as an auxiliary tool for constructing the intergrid opera-
tors between mesh levels. In particular, we define the prolongation operator as the
L*—projection [7] between roVEM spaces on different levels, without the need of
modifying the original discrete problem. We present numerical tests showing that
the convergence factor of our new scheme is independent of the resolution of the
underlying fine mesh. We also show that our algorithm is independent of the number
of reduced basis functions employed for constructing the auxiliary roVEM space.
A forthcoming work will address a detailed convergence analysis for the proposed
method, as well as the design of V-cycle schemes.

1 Model problem and Virtual Element discretization

We consider the weak formulation of the Poisson equation with homogeneous Dirich-
let boundary conditions in a two-dimensional convex polygonal domain Q c R?,
which reads: given f € L?(Q), find u € Hé (Q) such that

Au,v) = (Vu,Vo)g = (f,v)a Vv e Hy(Q), (1)

where the notation (-, -)q indicates the scalar product in L?().

We discretize our problem by considering the virtual element method. Let 7, be a
generic polygonal tessellation of €2 made of disjoint star-shaped polygonal elements
K with diameter A . The size of 7, is denoted by & = maxk eq;, hx . The local virtual
element space [1] of degree one is defined as V(K) = {v € H'(K) : v € Pi(g)
Ve € 0K, Av = 0in K}, and the global discrete space is then obtained by gluing all
local spaces by continuity

V(Th) = {v e H)(Q) : ve V(K)VK € Tp}.

We observe that a function v € V(K) is uniquely identified by its values at the N
vertices of K, which are a unisolvent set of degrees of freedom. Moreover, accuracy
is guaranteed since P} (K) c V(K).



The Reduced Basis Multigrid scheme for the Virtual Element Method 3

In order to solve Equation (1) by means of a geometric multigrid algorithm,
we consider a sequence of quasi-uniform tessellations {‘7}}JJ.:1 with mesh sizes h;
satisfying the constraint C hj_; < h; < h;_1, for a positive constant C. Moreover,
{7}}11.:1 are not-nested. We do not assume that meshes are nested, as the nestedness
of the meshes does not imply that of the corresponding spaces. We then seek for the
virtual element approximation of u at the finest level grid J:

find ujy € V(7}) such that ﬂJ(uj,l)J) = (fJ,UJ)Q Yuy € V(7}) (2)

The discrete bilinear form (A is defined as

Aj(uy,vy) = Z AN (ug,0p)
K;eT;
AKX (g 05) = (VIVuy, VI 0))k, + S5 ((1d =11 )y, (1d = TTV)0y),

where ITV is the elliptic projection operator onto P;(K) solving
(VUJ_VHVU],VQ)KJ =0 VqeP(K;), / Vo, ds:/ vy ds,
GKJ aK.l

and Sf’ is the semi-positive definite bilinear form defined as

N
Sfj (wy,vy) = Z wy (Xi)vy(X;),
=1

with X1, ..., Xy being the vertices of K; € 7;. Finally, the discrete right hand side
is defined in terms of the L? projection onto constants 1'[8 as

(fr.v1)a = Z (IO f, 01k, -

K;eT;

Eq. (2) can be reformulated in terms of operators as Ayuy = f;.

2 The reduced basis multigrid algorithm

In this section we design a W-cycle non-nested multigrid algorithm to solve Eq. (2).
A key ingredient for the construction of the method are the intergrid operators. Since
V(T;7-1) ¢ V(7;), a good choice of prolongation operator is the L* projection [7]
I}_l : V(T7-1) = V(7;) defined, for v;_; € V(7;_1), as

(I_jvj-nwpa = (01, w)a  Vw; € V(7).
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Clearly, due to the implicit definition of the virtual element spaces, the quantities
above are not fully computable through the degrees of freedom. We thus consider
the rbVEM space introduced in [4], whose basis functions are explicitly constructed
and have the same degrees of freedom as the original VEM space. For a generic
element K; € 7;, the roVEM is defined as

VP(K;) = Bi(K)) @ WP (K)), 3)
where Wrb(Kj) C span{elrvb}’i, i = 1,...,N} is such that w]r.b = Zf\il Wl-e]rvb}’i €

W™(K;) if and only if TV (LY, wie;) = 0, with {e;}" being the shape functions
of V(K;). The functions e}vt;,l. are an approximation of the virtual element basis
functions computed by means of the reduced basis method with complexity, i.e. the
dimension of the reduced basis space, equal to M. In addition, the space W™ (K )
is constructed to be A—orthogonal to P;(K;). Given v; € V(Kj), its counterpart

v;.b € V®(K;) is constructed as vJ‘.b = 1Vv; + v}, where v € W (K;) is the linear

combination v} = Zf\il(vj(xi) - va]-(xl-))e[r\g’i. Given vj, w; € V(K;) and their
counterparts wjr.b, vjr.b e V(K i), we set
Kj b 1b v v Kioo o1 1
A; (w;”,0;°) = (VITwj, VITv;)k; +S; (wy,v;
= (VIVw;, VIIV0))g, + 857 ((1d = 0V )w;, (1d - IT1V)u))
K,
= ﬂj’(wj,vj)

We then solve Eq. (2) in the original VEM space, by employing the newly introduced
rbVEM as a support for computing intergrid operators. Given er.tjl € Vrb(‘i}_l), we

define the prolongation operator I]]:_ ® Vrb(‘Z;_l) — y (7;) as
It wPa= @R wPa Yol e VO(T)), @)
while the restriction operator / JJ B Vrb(7;) — y (7j-1) is defined as its adjoint
' wP o o= P o) Vol e VO(T). 5)

In our scheme, the prolongation and restriction operators between the VEM spaces
V(7;-1), V(7;) inherit their definition from (4) and (5), respectively. We point

Algorithm 1 Multigrid W-cycle iteration
Initialize up € V (77):
fork=0,1,... do
U1 = MGay (J, fr, ui, mi, mp);
Uk = Ui+l
end for
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out that the scalar product on the left hleft-handof (4), which involves functions
in Vrb(‘7}), can be efficiently computed by exploiting the properties of the reduced
basis method [4]. On the other hand, the scalar product at the right right-handinvolves
functions defined on two different mesh levels and requires the computation of the
intersection between 7; and 7;_1, as commented in [7]. Two meshes can be efficiently
intersected if a bounding box technique is employed to detect cell-by-cell interactions.
As a smoothing scheme, we choose the Richardson iteration. Given V*(7}) the dual
space of V(7;), let A; : V(7;) — V*(7;) be the operator defined as

(Ajw,v)q = Aj(w,v) Yw,v € V(7)),

and let A; € R denote the maximum eigenvalue of A;, for j = 2,...,J. The
smoothing scheme is then defined as B; = A;Id;, j = 2,...,J. The W-cycle

Algorithm 2 Multigrid W-cycle scheme: one iteration at level j > 1

if j = 1 then
MGay (1, g, 20, m1, mp) = Aj'g.
else
Pre-smoothing:
fori=1,...,m; do
20 =200+ Bl (g - A;z07D);
end for

Coarse grid correction:
j—1
ria =107 (g = Ajz™));
ej_1 =MGyw (j—-1,7j_1,0,my,my);
ej_1 =MGay (j—1,rj_1,€j_1,my, my);

ZmHD) = Z0m) ij;lej_u

Post-smoothing:

fori=m1+2,...,m| +m2+1d0
2D =20V 4+ Bl (g - A;27Y);

end for

MGay (J, g, 20, m1, mp) = z"#ma+D)
end if

iteration for computing u; is summarized in Algorithm 1, where uy € V(7;) denotes
a suitable initial guess, and where m,my € N denote the number of pre- and post-
smoothing steps, respectively. We observe that MGy (J, f7, uy, my, my) represents
the approximate solution obtained after one iteration of the non-nested W-cycle,
which is defined by the recursive procedure described in Algorithm 2. Indeed, the
W-cycle is defined by induction: given the general problem of finding z € V(7})
satisfying

Ajz=g (6)
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for j > 2 and g € L*(Q), then MGqy (J, g, 20, m1,m>) is the approximate solution
of (6) obtained after one multigrid iteration with initial guess zo € V(7;) and m, mo
smoothing steps. Clearly, on the coarsest level j = 1, the problem is solved exactly.

Remark 1 In this work, we are using the spaces yt (7;) j=1,...,J as an auxiliary
tool for computing intergrid operators. At the same time, the discrete problem is
formulated in the standard virtual element space V(7). We observe that, if the
reduced basis stabilization introduced in [4] is considered, then Eq. (2) can be
reformulated in V™®(77), so that A, (w}, v?) = A(w},v}) for wT, v € V(7).
We thus obtain a discrete formulation in the fully-conforming roVEM space, and our
multigrid scheme remains unchanged.

3 Numerical results

In this section, we present numerical tests to assess the performance of the proposed
multigrid scheme. We set Q = (0, 1)2, and we consider the sets of non-nested meshes
shown in Figure 1. The finest meshes (Level 4) are made of 512 (Set 1), 1024 (Set 2),
2048 (Set 3) and 4096 (Set 4) elements. We remark that each mesh was generated
independently of the others. Moreover, the ratio between the numbers of elements of
a coarse mesh and of the corresponding fine mesh is equal to 1/4. In the following, we
report the iteration counts needed to reduce the relative residual below the tolerance
tol = 1078, We also compute the convergence factor

x|l

Nit,J lIrolll

Py =exXp )
where n;; ; is the iteration count for reducing the error below the considered tolerance
by means of the W-cycle scheme with J levels (J = 2, 3,4), while r,,,, , and r¢ are the
final and initial residual vectors, respectively. In all our tests, we set m; = my = m.
We first assess the independence of the multigrid scheme from the number M of
reduced basis functions employed to construct the shape functions of the space
W (K ;) in (3). By looking at Table 1, it is clear that the value of M does not affect
the convergence of the proposed scheme: indeed, for fixed m and for a fixed number
of levels J, the iteration count is the same for M = 1 and M = 50. For the next test,
we thus set M = 1. The second test studies the convergence properties of our W-cycle
scheme. In Table 2, we report both the convergence factor and the iteration count
for all sets of meshes by varying the number m of pre- and post-smoothing steps.
It is clear that the convergence factor does not depend on the mesh size 4. Indeed,
for fixed J = 2,3,4 and m = 3, 6, 8, the convergence factor is roughly constant. This
fact implies that the iteration counts needed by the W-cycle to reduce the residual
below the given tolerance are independent of the resolution of the underlying mesh.
Moreover, as m increases, the convergence factor decreases.
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Set 1 Set 3 Set 4

Level 4

Level 3

Level 2

Level 1

Fig. 1 Sets of non-nested grids employed for numerical tests.

Table 1 Iterations count of the W-Cycle multigrid as a function of m. Comparison in terms of the
number of reduced basis functions used to build the auxiliary space: M =1 vs M = 50.

We-cycle, Richardson smoother, tol = 1078

Set 1 Set 2
2 levels 3 levels 4 levels 2 levels 3 levels 4 levels
M 1 50 1 50 1 50 1 50 1 50 1 50
m=73 8 8 9 8 8 8 8 8 8 8 8
m=6 7 7 7 6 6 6 6 6 6 6
m=38 6 6 5 5 5 5 6 6 5 5 5 5
Set 3 Set 4
2 levels 3 levels 4 levels 2 levels 3 levels 4 levels
M 1 50 1 50 1 50 1 50 1 50 1 50
m=3 8 8 8 8 8 8 8 8 8 8 8 8
m=6 6 6 6 6 6 6 6 6 6 6 6 6
m=38 5 5 5 5 5 5 5 5 5 5 5 5

4 Conclusions

We introduced a non-nested W-cycle multigrid scheme for the lowest order virtual
element method based on the roVEM auxiliary space introduced in [4]. Numerical
tests showed that the W-cycle multigrid scheme is scalable and that its convergence
factor does not depend on the number of reduced basis functions used to construct
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Table 2 Convergence factor p and iterations count of the W-Cycle multigrid as a function of m.
The auxiliary space is constructed using a single reduced basis function.

We-cycle, Richardson smoother, rol = 108, M =1

Set 1 Set 2
2 levels 3 levels 4 levels 2 levels 3 levels 4 levels
m=73 0.0958 (8) 0.1174 (9) 0.0964 (8) 0.0843 (8) 0.0896 (8) 0.0991 (8)
m=6 0.0564 (7) 0.0515 (7) 0.0408 (6) 0.0428 (6) 0.0364 (6) 0.0392 (6)
m=38 0.0306 (6) 0.0246 (5) 0.0217 (5) 0.0310 (6) 0.0204 (5) 0.0199 (5)
Set 3 Set 4
2 levels 3 levels 4 levels 2 levels 3 levels 4 levels
m=3 0.0805 (8) 0.0825(8) 0.0942 (8) 0.0977 (8) 0.0796 (8) 0.0984 (8)
m=6 0.0369 (6) 0.0308 (6) 0.0384 (6) 0.0418 (6) 0.0323 (6) 0.0397 (6)
m=38 0.0229 (5) 0.0174 (5) 0.0196 (5) 0.0211 (5) 0.0128 (5) 0.0188 (5)

the auxiliary space. A forthcoming paper will present an exhaustive convergence
analysis of the proposed method, as well as extensions to the V-cycle algorithm and
the application of smoothing schemes other than the Richardson iteration.
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