
MOX-Report No. 72/2022

Novel longitudinal multiple overall toxicity score to
quantify adverse events experienced by patients during
chemotherapy treatment: a retrospective analysis of the

MRC BO06 trial in osteosarcoma

Spreafico, M.; Ieva, F.; Arlati, F.; Capello, F.; Fatone, F.;

Fedeli, F.; Genalti, G.; Anninga, J.; Gelderblom, H.; Fiocco, M.

MOX, Dipartimento di Matematica 
Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

mox-dmat@polimi.it http://mox.polimi.it



Novel longitudinal Multiple Overall Toxicity (MOTox) score 
to quantify adverse events experienced by patients during 

chemotherapy treatment: a retrospective analysis of the MRC 
BO06 trial in osteosarcoma


Marta Spreafico*,1,2,3, Francesca Ieva1,3,4, Francesca Arlati1, Federico Capello1,  
Federico Fatone1, Filippo Fedeli1, Gianmarco Genalti1, Jakob Anninga5,   

Hans Gelderblom6, Marta Fiocco2,7,8

 

1 MOX, Department of Mathematics, Politecnico di Milano, Milan 20133, Italy

2 Mathematical Institute, Leiden University, Leiden, The Netherlands


3 CHRP, National Center for Healthcare Research and Pharmacoepidemiology, Milan 20126, Italy

4 Health Data Science Center, Human Technopole 20157, Milan, Italy


5 Department Solid Tumors, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands

6 Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands


7 Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands

8 Trial and Data Center, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands


* marta.spreafico@polimi.it


Abstract


Aim:  This work is intended to study the evolution of chemotherapy-induced toxicity over treatment, 
introducing a new method for summarize multiple toxic adverse events (AEs), i.e., the longitudinal 
Multiple Overall Toxicity (MOTox) score. A retrospective analysis of patients from MRC BO06/EORTC 
80931 Randomized Controlled Trial for osteosarcoma was conducted.


Methods:  Patients were randomised to six cycles of conventional versus dose-intense regimens of 
doxorubicin and cisplatin. Non-haematological toxicity data were collected prospectively and graded 
according to the Common Terminology Criteria for Adverse Events (CTCAE). The MOTox score was 
defined by condensing the worst AE and the overall toxic condition, including a time dimension. 
Multivariate models were constructed to assess the evolution of high overall toxicity, examining cycle-
by-cycle the impact of personalized characteristics, such as achieved chemotherapy dose, previous 
toxic events, or biochemical factors.


Results: The flexible longitudinal depiction of MOTox score represents the strength of our method. A 
cycle-by-cycle dimension allowed to reconstruct different evolution patterns over treatment, leading 
to informative ramifications on patients’ health statuses. Patient’s toxic history played an important 
role in the quality of life over therapy, showing an autoregressive impact of previous toxicity. 
Conventional regimen had to be preferred to dose-intense one in terms of toxic AEs in the first half of 
the treatment.


Conclusion: This study shows that working in this direction is a difficult but profitable approach.  The 
flexibility of our method, added to a cooperation with medical staff, could lead to improvements in the 
definition of useful tools for health care assessment and treatment planning.
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1.	 Introduction

Osteosarcoma is a malignant bone tumour mainly affecting children and young adults. Although 
osteosarcoma is the most common primary malignant bone cancer, it is a rare disease and has an annual 
incidence of 3-4 patients per million (Smeland et al., 2019). Multidisciplinary management including 
neoadjuvant and adjuvant chemotherapy with aggressive surgical resection (Ritter and Bielack, 2010) or 
intensified chemotherapy (Lewis et al., 2007) has improved clinical outcomes but over the past 40 years 
there have been no further improvements in survival. 


In cancer trial, the relationship between chemotherapy dose and clinical efficacy outcomes are problematic 
to analyse due to the presence of a negative feedback between exposure to cytotoxic drugs and some 
peculiar aspects, such as latent accumulation of chemotherapy-induced toxicity. Toxic Adverse Effects 
(AEs), developed by patients through a chemotherapy cycle, affect subsequent exposure by delaying the 
next cycle or reducing its dosage, representing one of the principal reasons for treatment discontinuation 
(Souhami et al., 1997). The introduction of the Common Terminology Criteria for Adverse Events (CTCAE) 
(U.S. Department of Health and Human Services, 2006) multimodality grading system greatly facilitated the 
standardized reporting of AEs and the comparison of outcomes between trials and institutions (Trotti et al., 
2003). According to CTCAE, AEs range in severity from minor, asymptomatic changes noted on physical 
examination to life-threatening injuries or death (Trotti et al., 2003). CTCAE promoted a more complete 
recognition of toxicities, representing now the predominant set of toxicity criteria for cancer clinical trials 
and scientific meetings (Trotti et al., 2003; Zhang, Chen and Wang, 2016). Characterisation of toxicity is of 
interest to patients and clinicians engaged in shared decision making about a treatment strategy 
(Thanarajasingam et al., 2016). Toxicities are at the same time risk factors for mortality and predictors of 
future exposure levels, representing time-dependent confounders for the effect of chemotherapy on 
patient’s status (Lancia et al., 2019).  Incorporating the dimension of time into analysis of toxicity is also 
important in accurately comparing different chemotherapy regimens or even multiple toxicities from the 
same regimen (Thanarajasingam et al., 2015). For all these reasons, it is extremely important to provide an 
effective tool to assess the evolution of overall toxicity over chemotherapy treatment and to guide the 
diagnosis.


Since patients might have different types and amounts of adverse events, summarising the multiple facets 
of toxicity during treatment and understanding the true extent of toxic burden represent challenging 
problems in cancer research. Due to the complexity of longitudinal chemotherapy data, no uniform 
method exists for summarising the key elements of different AEs data into a concise score of overall risk. 
Toxicity data are usually considered in very simplistic ways in cancer prediction models, where they act as 
fixed maximum toxicity over time (max-time) or maximum grade among events (max-grade) (Trotti et al., 
2007; McTiernan et al., 2012; Thanarajasingam et al., 2015; Thanarajasingam et al., 2016; Zhang, Chen and 
Wang, 2016). Both methods can summarise large volumes of data over time, discarding substantial amount 
of information. On one hand, using the max-time method, also known as the maximum-severity or worst-
grade method (Trotti et al., 2007), event data related to multiple temporal points are summarized into a 
single AE profile by using the worst (highest) grade over the entire treatment period for each toxic event. 
However, this approach treats isolated and repeated episodes in the same way. For example, an isolated 
episode of grade 2 mucositis ulcers during treatment is considered the same as grade 2 chronic mucositis 
ulcers occurring at each cycle, but the second case has a substantial cost to patient's quality of life which is 
not included in the toxicity assessment. On the other hand, the max-grade method summarises all the toxic 
AEs through the maximum grade among all types of events (Trotti et al., 2007). However, this approach 
treats single and multiple episodes in the same way. For example, a patient who suffers a single grade 3 
event and a patient with three separate grade 3 events have the same max-grade, since only one grade 3 
event is counted by the summary. Moreover, both approaches discard valuable information related to 
longer-lasting lower-grade chronic toxicities, adverse event timing or its severity at a given cycle during 
treatment. The inclusion of time-related information could provide a more comprehensive depiction of 
adverse events and their evolution over time (Thanarajasingam et al., 2016). All these aspects are of clinical 

2



relevance and contain valuable information related to patient’s status and quality of life which  could give 
new insights for cancer treatment.


In this framework, alternative methods of longitudinal and graphical adverse event evaluation have been 
proposed (Atherton, 2003; Trotti et al., 2007; Thanarajasingam et al., 2016) but none of them is focused on 
an ongoing analysis to examine the evolution of high overall toxicity over chemotherapy treatment. To 
improve the methods for summarising and quantifying risk in oncology, a new longitudinal Multiple 
Overall Toxicity (MOTox) score is proposed. At each cycle, the developed MOTox score summarises 
multiple CTCAE-graded adverse events, capturing both the overall toxic status and the most severe risk 
event. Then, the evolution of high MOTox scores over cycles is studied using different logistic regression 
models to predict high overall toxicity at the end of the cycle using personalized patterns over time (i.e., 
achieved chemotherapy dose, previous toxicities, biochemical and haematological factors). Two main 
novelties are hence proposed: (i) the introduction of a new method for summarize multiple toxic AEs 
including time-dimension, i.e., the longitudinal MOTox score, and (ii) the cycle-by-cycle analysis of high 
overall toxicity over treatment, using personalized characteristics. Provided that longitudinal data are 
available from drug administrations (doses in mg/m2, biochemical measurements and CTCAE-graded 
toxicity), the procedure presented here is really flexible and appropriate to analyse chemotherapy 
treatments in general. 


To explore how chemotherapy-induced toxicities evolve in patients with high-grade osteosarcoma, a 
retrospective analysis was conducted on MRC BO06/EORTC 80931 Randomized Controlled Trial (Lewis et 
al., 2007) for patients treated with cisplatin (CDDP) and doxorubicin (DOX). CDDP and DOX are cytotoxic 
drugs commonly used in the treatment of various types of human cancers and are characterized by various 
toxic AEs, including nausea and neurotoxicity for CDDP (Gregg et al., 1992; Aldossary, 2019) or 
cardiotoxicity for DOX (Zhou et al., 2001; Zhao and Zhang, 2017). In this framework, longitudinal MOTox 
scores over therapy were computed considering non-haematological toxicity. Then, demographics, 
treatment-related and biochemical characteristics were used to examine high overall toxicity over cycles. 
The performed analyses were finally used to develop an intuitive webapp (http://osteowebapp.prod.s3-
website.eu-central-1.amazonaws.com/) as support tools for clinicians. 


The rest of this article is organized as follows. MRC BO06/EORTC 80931 Randomized Controlled Trial data 
are described in Section 2. Longitudinal MOTox scores and statistical methods are introduced in Section 
3. Results are presented in Section 4. Section 5 ends with a discussion of strengths and limitations of the 
current approach, identifying some developments for future research.


 
2. 	 MRC BO06 Randomized Clinical Trial data


2.1. 	 Patients

Data from the MRC BO06/EORTC 80931 Randomized Clinical Trial (RCT) for patients with non-metastatic 
high-grade osteosarcoma recruited between 1993 and 2002 (Lewis et al., 2007) were analysed. Patients were 
randomized between conventional (Reg-C) and dose-intense (Reg-DI) regimens. Both arms had six cycles of 
the same course of chemotherapy, 25 mg/m2/d for 3 days of doxorubicin (DOX) plus 100 mg/m2 of cisplatin 
(CDDP) as a continuous 24-h infusion on day 1, with different time schedule: in Reg-DI cycles were every 
two weeks, whereas in Reg-C they were every three weeks. Surgery to remove the primary tumour was 
scheduled at week 6 after starting treatment in both arms, that is, after two cycles in Reg-C and after three 
cycles in Reg-DI. Postoperative chemotherapy was intended to resume three weeks after surgery in both 
arms (see Figure 1).  Full details of the trial are reported in Lewis et al. (2007).


The dataset included 497 eligible patients; 19 patients who did not start chemotherapy (13) or reported an 
abnormal dosage (i.e., +25% higher than planned) of one or both agents (6) were excluded. Only patients 
who completed all six cycles within 180 days after randomization were included in the analysis, while 93 
patients who did not complete the therapy and 8 who did not terminate the last cycle within 180 days were 
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excluded. The final cohort of 377 patients included in the analyses (75.9% of the initial sample) is shown in 

Figure 2.


Figure 1. Patients are randomized at baseline to one of the two regimens, with the same anticipated cumulative dose 
(doxorubicin 25 mg/m2/d for 3 days + cisplatin 100 mg/m2 as a continuous 24-h infusion on day 1) but different 
duration (3-weekly vs 2-weekly cycles).


Figure 2. Flowchart of cohort selection.


 
 

2.2. 	 Data

Patients characteristics and treatment-related factors were collected prospectively at each cycle of 
chemotherapy using standardised case-report forms. Baseline information were registered at 
randomization and included age, gender, allocated regimen (Reg-C or Reg-DI), site and location of the 
tumour. Treatment-related information comprehended administered dose of chemotherapy drugs, cycles 
delays, haematological and biochemical parameters, chemotherapy-induced toxicity and histological 
response to pre-operative chemotherapy (Lewis et al., 2007). The resected specimen was examined 
histologically to assess response to pre-operative chemotherapy. Good histological response was defined as 
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Regimen-DI:  6 cycles of DOX+CDDP every 2 weeks (DOX: 75 mg/m2/cycle;  CDDP: 100 mg/m2/cycle) 

Regimen-C:   6 cycles of DOX+CDDP every 3 weeks (DOX: 75 mg/m2/cycle;  CDDP: 100 mg/m2/cycle)  

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

C1 C2 Surgery C3 C4 C5 C6

 Week

122 days 

1 2 3 4 5 6 7 8 9 10 11 12 13

C1 C2 C3 Surgery C4 C5 C6

 Week

87 days 



≥ 90% necrosis in the tumour resected; 10% or more viable tumour after pre-operative chemotherapy was 
defined poor. Levels of renal clearance, alkaline phosphatase, lactate dehydrogenase, calcium and 
magnesium were determined before the beginning of each cycle (i.e., before the drugs administration) 
according to local practice. Blood counts (white blood cells, neutrophils, platelets) were obtained before 
each cycle and at the expected nadir of the course (day 10 of the cycle in Reg-C, day 8 in Reg-DI). Non-
haematological chemotherapy-induced toxicity for nausea/vomiting, mucositis, neurological toxicity, cardiac 
toxicity, ototoxicity and infection were graded according to the Common Terminology Criteria for Adverse 
Events Version 3 (CTCAE v3.0) (U.S. Department of Health and Human Services, 2006), with grades 
ranging from 0 (none) to 4 (life-threatening) (see Table 1). Data on non-haematological toxicity were not 
available for 1.25% of measurements, which were treated as CTCAE 0-grades for clinical indication.


Since delays or chemotherapy dose reductions during treatment were possible in case of toxicity, 
chemotherapy dose at cycle  was analysed as percentage of achieved chemotherapy dose. For each patient 
, it was defined as the percentage of the cumulative drugs administrated up to cycle  divided by the 

cumulative drugs planned up to , that is:


	 	 	 


	 	 	        


where  is the cycle index,  is patient’s surface area in ,  and  are the 
administrated  of doxorubicin and cisplatin, respectively.  


 

3. 	 Methods


3.1. 	 Longitudinal chemotherapy-induced Multiple Overall Toxicity (MOTox) score

The longitudinal chemotherapy-induced Multiple Overall Toxicity (MOTox) score is now introduced. Let  
be the set of different toxicity categories. Let  be the cycle index and  be 

the -th toxicity level for the -th patient at the -th cycle, with . The chemotherapy-induced MOTox 
score for the -th patient at cycle  is defined as:


(1)


The MOTox score is a cycle-dependent longitudinal mean-max index that condensates the information of 
patients’ collateral events in an effective and interpretative way.  It considers the overall collateral effects 
experienced by patient  in the chemotherapy cycle , the mean part, putting a specific stress on the worst-
graded toxicity, the max part. This choice was made to take into account that (i) multiple lower-grade 
chronic toxicities may decrease patient’s quality of life and (ii) huge level in one specific toxicity can cause 
severe effects and permanent consequences for the patient. Considering both aspects, the MOTox score 
can determine increasing ramifications on patients’ health status and quality of life, resulting more 
informative with respect to traditional methods.


The median value of MOTox scores over all the patients in all the cycles, computed as


,


was named global median MOTox value and it was used as a threshold to define a longitudinal binary score 
for high (or low) overall toxicity, as follows:


	 	 (2)
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Table 1. Toxicity coding based on CTCAE (Common Terminology Criteria for Adverse Events) grade v3.0 (U.S. 
Department of Health and Human Services, 2006) for non-haematological chemotherapy-induced toxicity related to 
nausea/vomiting, mucositis, neurological toxicity, cardiac toxicity ototoxicity and infection.


MOTox and high-MOTox scores represent new and interpretative indices to effectively measure patients’ 
overall toxicity status preserving medical interpretability. 


In MRC BO06/EORTC 80931 RCT, non-haematological chemotherapy-induced toxicity related to


• 	 Nausea/vomiting


• 	 Mucositis 


• 	 Infection


• 	 Cardiac toxicity (heart dysfunctions).


• 	 Ototoxicity (hearing loss)


• 	 Neurological toxicity


were registered and graded according to CTCAE scale (see Table 1). Therefore, in our retrospective 
analysis, set  was considered to compute MOTox and high-MOTox 
scores over cycles for each patient, according to Equation (1) and Equation (2).


 

3.2. 	 Statistical analysis

A retrospective analysis to examine prognostic factors for high/low overall toxicity over cycles was 
conducted. Baseline and treatment-related characteristics were examined. A two-sided significance level of 
5% was adopted. R software (R Core Team, 2018) was used for the analysis.


No missing data were registered for baseline information, except for one missed location of the tumour. 
Other predictors presented different level of missingness. Data on non-haematological toxicity were not 
available for 1.25% of measurements, which were treated as CTCAE 0-grade for clinical indication. For 
treatment-related missing values (i.e., histologic response, biochemical and haematological markers), a 
Missing At Random (MAR) assumption was made and missing values were imputed using Multiple 
Imputations by Chained Equations (MICE) algorithm (van Buuren and Groothuis-Oudshoorn, 1999,2011).


At each cycle, the impact of factors on high overall toxicity was examined using multivariate logistic 
regression models and expressed by odds ratios (OR) (McCullagh and Nelder, 1989). An OR>1.0 indicates a 
greater risk of achieving a high overall toxicity in case of a 1-unit increase for numerical characteristics or 

Toxicity GRADE 0 GRADE 1 GRADE 2 GRADE 3 GRADE 4

Nausea/
Vomiting

None Nausea Transient 
vomiting

Continuative 
vomiting 

Intractable 
vomiting

Oral Mucositis No change Soreness / 
erythema

Ulceres: 

can eat solid

Ulcers:  
liquid diet only

Alimentation not 
possible

Infection None Minor infection Moderate 
infection 

Major infection Major infection 
with hypotension

Cardiac toxicity
 No change Sinus 
tachycardia

Unifocal PVC 
arrhythmia

Multifocal PVC Venticular  
tachycardia

Ototoxicity
 No change Slight hearing 
loss

Moderate 
hearing loss

Major hearing 
loss

Complete hearing 
loss

Neurological 
toxicity

None Paraesthesiae Severe 
paraesthesiae

Intolerable 
paraesthesiae

Paralysis

n a u s

or a l

i n f

car

oto

n eur

T = {n a u s, or a l , n eur, car,  oto, i n f }
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compared to the baseline category for categorical ones. Covariates with more than 15% of missing values in 
the original data ​​were not included in the multivariate models. A stepwise backward selection procedure 
was applied to select the best set of covariates at each cycle based on Akaike Information Criterion (AIC). 
Variance Inflation Factor (VIF) was also used to remove non-significant and highly collinear covariates. 
Predictive capacities of models were expressed by sensitivity and specificity metrics and Area Under the 
receiver operating characteristic Curve (AUC) (Fawcett, 2006).


4. 	 Results


4.1. 	 Patient and treatment-related characteristics

Patient characteristics at randomization are shown in Table 2.  Among 377 patients, 229 (60.7%) were males 
and regimen Dose-Intense was allocate in 52.3% of the patients (197). Median age was 15 years (IQR [11; 
18]) and three age groups were defined according to Collins et al. (2013): child (male: 0-12 years; female: 0-11 
years), adolescent (male: 13-17 years; female: 12-16 years) and adult (male: 18 or older; female: age 17 years or 
older). Good histological response was measured in 38.2% of the patients (144) and no response was 
reported for 47 patients (12.5%). A summary of the biochemical and haematological values measured over 
the entire dataset is shown in Table 3. Grades of chemotherapy-induced non-haematological toxicity over 
cycles are reported in Figure 3. Nausea/vomiting was reported at least once over cycles in 97.3% of patients 
(367/377), with a percentage that decreased over cycles from 84.9% in cycle 1 to 52.5% in cycle 6. The 
percentages of patients that reported oral mucositis or infections were more stable over cycles: 
30.5%-43.3% for mucositis, with 78% (294/377) reporting oral AEs at least once, and 23.8%-31.3% for 
infection, with 69% (260/377) reporting infection AEs at least once. Other toxicities were less frequent 
(<25%): ototoxicity was reported at least once in 21.5% (81/377), cardiac toxicity in 14.1% (53/377) and 
neurological toxicity in 11.7% (44/377). 





Figure 3. Bar-plots of chemotherapy-induced toxicity CTCAE grades over cycles (wheat: 0; light-orange: 1; orange: 2; 
red: 3; dark-red: 4). Each panel refers to a different type of toxicity: nausea/vomiting [top-left], mucositis [top-centre], 
infection [top-right], cardiac toxicity [bottom-left], ototoxicity [bottom-centre] and neurological toxicity [bottom-right].
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Table 2. Patients’ characteristics at randomization and histological responses.


Table 3. Descriptive of biochemical and haematological values over the entire dataset.


Baseline characteristic

Patients 377

Age [years]

Median (IQR)

Minimum/maximum

Child

Adolescent

Adult

15 (11; 18)

3/40


109 (28.9%)

154 (40.9%)

114 (30.2%)

Gender

Female

Male

148 (39.3%)

229 (60.7%)

Allocated treatment

Regimen-C

Regimen-DI

180 (47.7%)

197 (52.3%)

Site of tumour

Femur

Fibula

Humerus

Radius

Tibia

Ulna

227 (60.2%)

22 (5.8%)

37 (9.8%)

3 (0.8%)


87 (23.1%)

1 (0.3%)

Location of tumour

Distal

Mid-shaft

Proximal

Missing

217 (57.6%)

11 (2.9%)


148 (39.2%)

1 (0.3%)

Histological Response

Poor 

Good

Missing

186 (49.3%)

144 (38.2%)

47 (12.5%)

Biomarkers Mean (s.d.) Median (IQR) Min/Max

White Blood Count [× 109/L] 7.36 (8.25) 5.00 (3.10; 8.20) 0.10/117

Neutrophils [× 109/L] 4.74 (6.93) 2.60 (1.12; 5.30) 0/83.38

Platelets [× 109/L] 219.8 (157.5) 190 (99; 311) 2/999

Renal Clearance [ml/min/1.73 m2] 112.3 (34.9) 110 (90; 132) 8/396

Alkaline Phosphatase [IU/L] 238.5 (279.1) 162.5 (98.0; 267.2) 14/3680

Lactate Dehydrogenase [IU/L] 447.0 (264.2) 394.0 (298.8; 531.0) 4/4310

Calcium [mmol/l] 2.34 (0.36) 2.35 (2.25; 2.45) 0.21/9.70

Magnesium [mmol/l] 0.71 (0.24) 0.69 (0.57; 0.80) 0.07/3.06
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4.2. 	 Non-haematological longitudinal Multiple Overall Toxicity scores

For each patient  and cycle , non-haematological chemotherapy-induced 
toxicity related to nausea/vomiting ( ), mucositis ( ), neurological toxicity ( ), cardiac toxicity 
( ), ototoxicity ( ) and infection ( ) were considered to compute the MOTox score  through 
Equation (1), with . A summary of the obtained scores over cycles is 
given in Table 4. Obtained MOTox scores ranged between 0 and 6 and their mean values decreased over 
cycles from 2.626 (cycle 1) to 1.953 (cycle 6). The global median MOTox value , i.e., the median value of 
overall toxicity over all the patients in all the cycles, was 2.333. An example of obtained longitudinal MOTox 
scores over cycles for five random patients is shown in Figure 4 (different colours refer to different 
patients). The global mean MOTox value  is reported as solid black line. Different evolution patterns of 
longitudinal MOTox score over cycles are presented: increasing pattern (orange: patient A), decreasing 
pattern (light blue: patient B), isolated severe status (violet: patient C), low-values (blue: patient D) and high-
values (red: patient E) over cycles.


To evaluate which regimens is characterized by higher overall toxicity over cycles, Table 5 reports the 
means of MOTox scores at each cycle  for patients allocated in Reg-DI and Reg-C,  and  
respectively. P-values are related to hypothesis tests concerning the difference between the two 
populations means for large independent samples. In cycles 1-3, mean overall toxicity for patients in Reg-
DI was higher than for those in Reg-C (p<0.05), whereas from cycle 4 the difference was not statistically 
significant. To better characterize these differences, Figure 5 shows the mean values of each non-
haematological toxicity  along with 95% Bonferroni’s confidence intervals 
over cycles, stratified by regimens (purple: Reg-C; pink: Reg-DI).  Each panel refers to a different type of 
toxicity: nausea/vomiting (top-left), mucositis (top-centre), infection (top-right), cardiac toxicity (bottom-
left), ototoxicity (bottom-centre) and neurological toxicity (bottom-right). The biggest contribution to the 
difference in the mean MOTox scores by regimes was given by mucositis (top-centre panel), significantly 
higher in Reg-DI (pink) than in Reg-C (purple) at cycles 2 and 3.


The global median MOTox value  was then used to compute the longitudinal dichotomous low/high 
MOTox scores over cycles according to Equation (2). Table 4 shows the percentages of patients with high 
MOTox score, which decrease from 57.8% (218/377) at cycle 1 to 36.6% (138/377) at cycle 6. There was 
evidence for an association between chemotherapy regimens and high overall toxicity at cycles 2-3 (p-value 
of Chi-squared tests for association < 0.05), confirming results obtained in Table 5. At each cycle, high 
overall toxicity was strongly associated with low/high MOTox at previous cycles. 


Table 4. Longitudinal MOTox and high-MOTox scores characteristics over cycles.


i ∈ {1, . . . ,  377} k ∈ {1, . . . ,  6}
n a u s or a l n eur

car oto i n f OTOXk
i

T = {n a u s, or a l , n eur, car,  oto, i n f }

τ

τ

k ¯OTOXk
DI

¯OTOXk
C

{n a u s, or a l , n eur, car,  oto, i n f }

τ

Toxicity score Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6

MOTox

Median

IQR

Mean (s.d.)

Min/Max

2.667

[2.333; 3.500]

2.646 (1.268)


0/5.667

2.333

[1.167; 3.667]

2.450 (1.414)


0/5.667

2.333

[1.167; 3.500]

2.327 (1.390)


0/5.667

2.333

[1.167; 3.500]

2.297 (1.481)


0/6

2.3333

[1.167; 3.500]

2.284 (1.381)


0/5.833

2.333 

[0; 2.667]


1.953 (1.498)

0/6

High MOTox

0 (low)

1 (high)

159 (42.2%)

218 (57.8%)

189 (50.1%)

188 (49.9%)

198 (52.5%)

179 (47.5%)

193 (51.2%)

184 (48.8%)

204 (54.1%)

173 (45.9%)

239 (63.4%)

138 (36.6%)

Global median MOTox value 2.333τ :   

9



	 	 	  
Figure 4.  Example of different evolution of longitudinal Multiple Overall Toxicity (MOTox) scores over cycles for 
five random patients: increasing pattern (orange: patient A), decreasing pattern (light blue: patient B), isolated severe 
status (violet: patient C), low-values (blue: patient D) and high-values (red: patient E). Solid black line refers to the global 
median MOTox value =2.333.


 

Table 5. Overall toxicity differences between Dose-Intense (DI) and Conventional (C) regimens.  and 
 are the means of MOTox scores at cycle  for patients allocated in Reg-DI and Reg-C, respectively.


    
Figure 5. Mean value of chemotherapy-induced toxicity during cycles along with 95% Bonferroni 
confidence intervals, stratified by the regimens (purple: Reg-C; pink: Reg-C). Each panel refers to a different 
type of toxicity: nausea/vomiting [top-left], mucositis [top-centre], infection [top-right], cardiac toxicity 
[bottom-left], ototoxicity [bottom-centre] and neurological toxicity [bottom-right].


τ

MO To xk
DI

MO To xk
C k

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6

2.552 2.653 2.488 2.240 2.261 1.920

2.782 2.229 2.150 2.359 2.309 1.989

p-value of test 0.045 0.003 0.018 0.437 0.737 0.657

MO To xk
DI

MO To xk
C
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4.3. 	 Multivariate logistic regression models for high overall toxicity over cycles

The evolution of longitudinal high-MOTox score over cycles defined in Equation (2) was analysed through 
multivariate logistic regression models, using a cycle-by-cycle approach. Starting from the second cycle, 
each model analysed high-MOTox at the of the cycle in terms of personalized characteristics and previous 
toxicity levels. Baseline and treatment-related information with less than 15% of missing values in the 
original dataset were considered as possible prognostic factors for toxicity prediction. In particular, among 
haematological and biochemical factors, measurements of neutrophils (N), platelets (PLT), alkaline 
phosphatase (ALP) and calcium (Ca) were considered before the beginning of each cycle (i.e., the 
administration of the course), whereas values of white blood count (WBC) both before administration and 
at the planned nadir of each cycle. Due to the skewed nature of biomarkers levels distributions, 
haematological and biochemical factos were included in the models as difference between the logarithmic 
measure and the logarithmic value measured at randomization. Neutrophils-white blood count ratio 
(NWR), i.e., the neutrophils count dived by the white blood cell count, and neutrophils-platelets score 
(NPS), a three-level systemic inflammation-based score (good: N ≤ 7.5 ×109/L and PLT ≤ 400 ×109/L; 
intermediate: N > 7.5 ×109/L or PLT > 400 x109/L; poor: N > 7.5 x109/L and PLT > 400 ×109/L) (Watt et al., 
2015; Liu et al., 2016), were also included. For each model, multicollinear variables with VIF greater than 5 
were removed. Then, stepwise backward procedures were used to select the best set of covariates according 
to AIC. The selected models were finally fitted on the whole dataset.


Table 6 reports selected covariates, estimated Odds Ratios (ORs) along with 95% Confidence Intervals (CIs) 
and overall performances (i.e., specificity, sensitivity and AUC) of each model. All the models retained a 
similar structure with comparable overall performances: sensitivity and specificity values ranged in 
0.66-0.77, and AUCs were between 0.72 and 0.79. No effect was due to gender, when selected. In cycle 2 
and 3, higher percentage of achieved chemotherapy dose reflected a higher risk for the development of 
high toxicity, especially for patient in Reg-DI (cycle 2). Haematological factors were selected in each model. 
In particular, both PLT before the administration of the course and WBC at nadir had a protective role on 
the risk of having high overall toxicity (OR<1). In particular, an increase in the dynamic difference between 
the logarithmic levels decreased the risk of high toxicity. Patients with previous high MOTox had higher 
risk to experience again high overall toxicity with respect to patients with previous low MOTox (OR>1), 
showing an autoregressive pattern. In particular, toxicity information related to different previous cycles 
were selected and statistically significant in the final models, meaning that global patient’s history – and 
not only the last condition – had impact on his/her quality of life over the therapy. 


The performed analyses were finally used to develop an intuitive webapp (http://osteowebapp.prod.s3-
website.eu-central-1.amazonaws.com/) as support tool for clinicians. The structure of the webapp is 
presented in Appendix A.


5. 	 Discussion

Due to the presence of multiple types of Adverse Events (AEs) with different extents of toxicity burden, to 
study the overall toxicity progression during chemotherapy is a challenging problem in cancer research. 
The development of statistical methods able to deal with the complexity of longitudinal chemotherapy data 
and to provide a uniform procedure for condensing the key elements of AEs data into a score of overall 
risk is necessary and of clinical relevance. This paper uniquely explored the evolution of chemotherapy-
induced toxicity over treatment in patients with osteosarcoma. Data from the MRC BO06/EORTC 80931 
randomized clinical trial were analysed. First, the Multiple Overall Toxicity (MOTox) score was developed to 
improve the methods for summarising and quantifying risk in oncology. Then, the cycle-by-cycle 
longitudinal evolution of high MOTox was analysed using multivariate logistic regression models to predict 
high overall toxicity at the end of the cycle trough dynamic personalized patterns.


Results showed that the inclusion of the cycle-dimension allowed to consider different evolution patterns 
over treatment, leading to more informative ramifications on patients’ health statuses that could better 
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quantify and qualify the effect of AEs on patients’ life with respect to traditional methods (i.e., max-grade 
or max-time). The use of previous personalized characteristics allowed to take into account the 
autoregressive nature of overall toxicity, showing that the last available toxic condition had the highest 
impact for a high MOTox risk but also the global patient’s toxic history plays an important role in patient’s 
quality of life over treatment. Moreover, given that no statistically significant difference in terms of 
mortality rate among regimes resulted from previous studies on the same data (Lewis et al., 2007), the 
analysis showed that the Conventional Regimen has ground to be preferred to the Dose-Intense one, at 
least in terms of induced cumulative toxicities in the first half of the therapy (i.e., up to the third cycle). 


The proposed method represents a novel approach to analyse longitudinal chemotherapy data, designed to 
account for the multiplicity and time dimensions of AEs. Different possibilities for a summarising score 
were initially investigated. The final choice fell on the index presenting the highest accuracy in describing 
and discriminating patients’ condition, i.e. the cycle-dependent longitudinal mean-max MOTox score over 
therapy in Equation (1). Starting from recorded CTCAE grades, the MOTox score summarised multiple 
AEs allowing to (i) capture the global toxic status, (ii) put a specific stress on the most severe collateral 
effect and (iii) incorporate the time-dimension of treatment cycles. In this way, various aspects which could 
cause severe and permanent consequences for the patient, such as worst-graded events or multiple lower-
grade chronic toxicities, and their overall evolution were concomitantly analysed. MOTox and high-MOTox 
scores represent new and interpretative indices to effectively measure patients’ overall toxicity status 
preserving medical interpretability. In particular, they can be intended as a proxy of patient’s quality of life 
and can be used (i) to describe patient’s response to therapy over cycles, (ii) to predict the upcoming overall 
toxicity level given patient’s history and (iii) to drive the clinical decision, trying to reduce the impact of 
therapies in terms of toxic AEs. 


From a modelling point of view, different statistical and machine learning methods for high/low binary 
classification were considered, among others support vector machines or ensemble methods (e.g., random 
forests or XGBoost). More complex methods showed no significant improvements in terms of predictive 
performances with respect to logistic regression models. Therefore, the final choice fell on favouring the 
clinical interpretability offered by the cycle-by-cycle logistic regression outputs, which also allowed to 
provide an easy usable, interpretable and operative support tool for clinicians, i.e., the OsteoWebApp (see 
Appendix A).


This retrospective exploratory analysis has some limitations, mainly due to the data quality and the 
complexity of the problem. Although the toxicity data was recorded using the standardised CTCAE 
grading system, there is a subjective element to assessing non-haematological toxicity and variations 
between individual investigators cannot be controlled. Other factors of potential interest were not 
routinely recorded during the trial, including among others nephrMOToxicity, lymphocytes count or 
tumour size. The analysis was performed on a single RCT in osteosarcoma. An external validation could 
help to verify if the models correctly generalize the problem or if it is necessary to integrate the analysis 
with richer data sources. Furthermore, since this study represents one of the first attempts to analyse 
summarized toxicity data in osteosarcoma using a cycle-by-cycle time perspective, toxicity grades, which are 
in fact categorical variables, have been improperly treated as numerical values that increase as the level of 
toxicity worsened. In this framework, a longitudinal categorical data approach could be developed. This is 
not a trivial task due to the complexity of the problem. Nevertheless, although the results have been 
derived from a single RCT and only non-haematological toxicities, the developed procedure is applicable 
to any cancer treatment and can be tailored according to the needs of the study. Provided that toxicities are 
recorded according to the CTCAE scale or traced back to it, the longitudinal MOTox score represents a 
uniform and general methods to analyse overall toxic risk in oncology, constituting a really flexible 
approach to qualify and quantify the personal behaviours and evolutions of toxic patterns in cancer 
patients.  
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Table 6. Multivariate logistic regression model for each cycle .


 

WBC = white blood count; PLT = platelets; NWR = neutrophils-white blood count ratio; MOTox = overall toxicity. 
When not specified, haematological factors were computed before the administration of the course. 
WBC and PLT are included in the models as difference between the current logarithmic measure and the logarithmic value 
measured at randomization.


k ∈ {2,3, 4,5, 6}

Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6

Covariates ORs 95% CIs ORs 95% CIs ORs 95% CIs ORs 95% CIs ORs 95% CIs

Baseline

Gender (male) 1.458 [0.912; 
2.33]

1.548 [0.967; 
2.478]

Regimen (Reg-DI)

2.379
[1.455; 
3.889]

Treatment-related factors

Achieved dose (%)
1.112

[1.042; 
1.187] 1.056

[1.008; 
1.106]

WBC

1.664
[0.978; 
2.831]

WBC at nadir

0.778
[0.615; 
0.983] 0.701

[0.569; 
0.864] 0.637

[0.499; 
0.813] 0.748

[0.589; 
0.950]

PLT 0.535 [0.375; 
0.765] 0.625

[0.392; 
0.996]

0.629 [0.424; 
0.932]

NWR

0.367
[0.094; 
1.436]

4.439
[2.788; 
7.070] 1.561

[0.968; 
2.516] 1.522

[0.953; 
2.430]

4.429
[2.666; 
6.772] 1.569

[0.972; 
2.532] 1.743

[1.044; 
2.910]

2.701
[1.696; 
4.304] 2.639

[1.664; 
4.186] 1.580

[0.938; 
2.661]

3.718
[2.346; 
5.893] 2.542

[1.523; 
4.244]

3.341
[2.001; 
5.580]

Sensitivity 0.681 0.704 0.674 0.699 0.717

Specificity 0.667 0.661 0.715 0.701 0.766

AUC [95% CI] 0.733  
[0.683; 0.784]

0.743  
[0.694; 0.793]

0.728  
[0.677; 0.780]

0.756  
[0.707; 0.805]

0.787  
[0.737; 0.837]

Previous toxicities 
( )h i gh -MO T o xk

High MOTox ( )k = 2

High MOTox ( )k = 5

High MOTox ( )k = 1

High MOTox ( )k = 3

High MOTox ( )k = 4
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This work opens doors to many further developments, both in the field of statistical methods and in cancer 
research. From a clinical point of view, the interest may lie also in distinguishing extremely high and 
extremely low overall toxicity levels with respect to central areas. Therefore, a possible direction for 
improvements is the refinement of the problem from a binary (low/high MOTox) to a multiclass one. 
However, identifying thresholds to divide MOTox scores into multiple categories is not a trivial task, and it 
requires a proper external validation. From a statistical point of view, toxicity levels may be deeper analysed 
using longitudinal categorical data approaches, such as latent Markov models. In fact, in many applications 
involving longitudinal data, the interest is focused on the evolution of a latent characteristic of a group of 
individuals over time, which is measured by occasion-specific response variables (Bartolucci, Farcomeni 
and Pennoni, 2013,2014). In cancer treatment, this characteristic could be indirectly assessed based on 
registered toxicity levels and could reflect patient’s quality-of-life. The complexity of the problem asks for 
the developments of new methodologies, aimed at analysing more and more appropriately all the peculiar 
aspects of chemotherapeutic treatment.


In the end, our approach constitutes a more complete and flexible longitudinal depiction of 
chemotherapy-induced toxicity than traditional methods, and it can be customised according to the needs 
of the study. Provided that longitudinal data are available from drug administrations (doses in mg/m2, 
biochemical measurements and CTCAE-graded toxicity), the procedure presented here is really flexible 
and appropriate to analyse chemotherapy treatments in general. This study shows that working in this 
direction is a difficult but profitable approach. Its possible generalization to many different settings, added 
to a cooperation with medical staff, could lead to improvements in the definition of useful tools for health 
care assessment and treatment planning.
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Appendix


A. 	 OsteoWebApp

The OsteoWebApp, available at http://osteowebapp.prod.s3-website.eu-central-1.amazonaws.com/, is a 
practical support tool developed to help clinicians in their daily practice. It allows for a personalized 
prediction of high overall toxicity over cycles, starting from the models estimated in Session 4.3. It runs on 
top of Amazon Web Services (https://aws.amazon.com/it/), executing the R code related to the models in 
Table 6. Thanks to its intuitive interface, the webapp is easy to use, scalable and complete in the 
information it provides.


An example of the user interface, showing the inputs and results for model related to cycle 2, is reported in 
Figure 6. The top bar shows the cycle of chemotherapy of interest. The main form asks a series of 
information, depending on the variables selected for each cycle. The “Predict Toxicity Index” button in blue 
allows to get the results of the prediction, which are provided in terms of probability of develop a high 
overall toxicity level. Results are shown in 20 seconds. Sensitivity and specificity of each model are also 
reported. As a practical example, Figure 6 shows that a patient in Reg-DI with high-MOTox at cycle 1, a 
cumulative administrated dose of 350 mg/m2 (which corresponds to a 100% of achieved dose), WBC values 
of 7.65 [×109/L] at randomization and of 3.9 [×109/L] at nadir has 73.5% of probability to be in high-MOTox 
status at the end of cycle 2.





Figure 6. Example of user interface for OsteoWebApp.
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