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Abstract

The detection and localization of possible diseases in crops are usually
automated by resorting to supervised deep learning approaches. In this
work, we tackle these goals with unsupervised models, by applying three
different types of autoencoders to a specific open-source dataset of healthy
and unhealthy pepper and cherry leaf images. CAE, CVAE and VQ-VAE
autoencoders are deployed to screen unlabeled images of such a dataset, and
compared in terms of image reconstruction, anomaly removal, detection and
localization. The vector-quantized variational architecture turns out to be the
best performing one with respect to all these targets.
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1 Introduction

In the last decades, the agricultural sector has been developing new technologies
to maximize the efficiency of available soil resources in order to tackle several
issues. Instances are the increasing demand for food due to the growth of the world
population [7], as well as the impact of practices which are detrimental for the
ecosystem [10]. In these contexts, precision agriculture has recently attracted a lot
of interest since playing a significant role in the development of advanced techniques
that optimize the soil productivity in a sustainable way [39, 20]. The general goal
is to preserve the stability of the ecosystem while fostering the reuse of the soil
for future produce. The strong interest in this new way of conceiving agriculture
justifies the spread of innovative start-ups, of services devoted to eco-friendly
practices, and of software solutions which allow farmers to accurately estimate
yields on a simple smartphone or tablet (see, for instance, [2, 3, 4, 5]). In particular,
the availability of higher-quality measurements, offered by advanced in field-sensors
as well as by satellite or drone data, supported the proposal of breakthrough software
solutions using modern deep learning algorithms [15, 19, 9, 36, 30].

In this paper, we focus on the detection of possible diseases in crops. Anomaly
detection in plants represents a pivotal procedure in agriculture since an early de-
tection of the disease enables a timely intervention to prevent the anomaly from
spreading to the rest of the plant. Additionally, a precise disease localization allows
confining the use of pesticides and other treatments to small strategically selected
areas of the plant. This minimizes the negative impact of aggressive chemicals on
the whole surrounding ecosystem.
Traditionally, the detection of the diseases is carried out manually. This is a time-
consuming task and turns out to be expensive in terms of human resources. The
development of advanced technologies as well as modern devices has recently of-
fered the possibility to perform disease detection in a more efficient and affordable
way by automating the process. For instance, computer vision turns out to be instru-
mental in analyzing large quantities of images collected by drones in a short time,
such as photographs of healthy and diseased leaves in crops [1]. Among the several
computer vision techniques, machine learning (ML) methods, with a focus on deep
learning (DL) techniques, showed great potentiality in accurately discriminating
healthy from unhealthy leaves through suitable classification procedures.

In the supervised learning framework, the DL models need to be fed with
a large volume of training images in order to thoroughly span all classes in the
dataset [11, 14]. In particular, in the leaf detection context, during the training
phase a supervised DL method deals with healthy and unhealthy leaf classes in
order to offer an accurate classification. This turns into a not so feasible practice
due to the limited availability of images of leaves affected by diseases.
The importance of the selected dataset is confirmed by several contributions in the
literature. For instance, in [22] the authors train a convolutional neural network
(CNN) to identify 14 crop species and 26 diseases to conclude that only training
DL models on increasingly large image datasets allows guaranteeing a reliable
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crop diagnosis. In [8], the authors investigate the sensitivity characterizing the
supervised learning of CNN models to the accuracy of the data. In particular, it is
highlighted that the lack of conformity across different data samples can severely
impact the generalizability of CNNs in accurately classifying diseased and healthy
leaves.

The idea behind unsupervised DL procedures for anomaly detection is to carry
out the training only on the healthy part of the dataset in order to accurately repro-
duce non-anomalous samples, while minimizing the risk of false negatives [27].
Once validated, the DL model is deployed for anomaly detection on unlabeled im-
ages. If the sample is characterized by a reconstruction error below a threshold,
very likely it belongs to the same distribution as the training data, and it is thus
classified as non-anomalous. Vice versa, if the reconstruction error is large, the data
sample is very probably generated from a distribution different from the training
data, and the sample is thus classified as anomalous.
DL models generally used for unsupervised anomaly detection are convolutional
autoencoders (CAEs) [37, 23], which are commonly exploited also for anomaly
localization (see, e.g., [35, 38]).

As a third alternative, contributions where supervised and unsupervised ap-
proaches are combined are available in the literature. For instance, in [33] the
authors use an unsupervised CAE model to derive relevant features from images
of leaves, and then feed them into support vector machine (SVM) models for clas-
sification. Similarly, in [13] unsupervised learning techniques, such as principal
component analysis and K-means, are employed to recover the informative features
of samples of tomato leaves. Then, the extracted characteristics are classified by
resorting to supervised ML approaches, such as SVM, CNN and K-nearest neigh-
bors.

In this work, we apply unsupervised learning CAE models to detect and localize
leaf diseases. Up to our knowledge, this type of data is still scarcely analyzed in the
literature with unsupervised DL approaches. Goal of the paper is to compare the
performance of three different CAE architectures, namely standard CAEs, convolu-
tional variational autoencoders (CVAEs), vector-quantized variational autoencoders
(VQ-VAEs), on the PlantVillage dataset, which collects images of healthy and dis-
eased leaves of several species. The three models are assessed in terms of image
reconstruction and anomaly removal, detection and localization.
The paper is organized as follows. Section 2 details the three convolutional au-
toencoders. Section 3 focuses on the workflow adopted for the anomaly detection,
while providing the main features of the considered image samples. In Section 4,
we gather more technical information concerning the data preprocessing, the model
setup, hardware and software specifics. Section 5 discusses the reliability and the
performance of the three compared architectures, with a specific emphasis both on
the reconstruction of the images and on the anomaly detection/localization. Fi-
nally, some conclusions are drawn in the last section, together with possible future
developments.
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2 Convolutional autoencoders

In this section, we describe the convolutional autoencoder (CAE) architecture to-
gether with two recent improved stabilized variants, namely the convolutional vari-
ational autoencoders (CVAEs) and the vector-quantized variational autoencoders
(VQ-VAEs).

CAE models can be considered as a dimensionality reduction technique, since
they allow extracting essential features from image data to enable an effective
compression with a minimal loss of information. The architecture of a CAE model
consists of three main components: an encoder, a stack of fully connected layers
(latent space), and a decoder. A schematic representation of a CAE is provided in
Figure 1.

Figure 1: Architecture of a convolutional autoencoder.

An image is generally represented as a three-dimensional (3D) tensor of size
(𝐻,𝑊,𝐶), where 𝐻 and 𝑊 denote the number of pixels in height and width,
respectively, while 𝐶 is the number of channels (i.e., the depth) of the tensor.
An RGB image has three channels, thus resulting into a tensor of size (𝐻,𝑊, 3).
Hereafter, we will adopt a vector in R𝑁 as a representation of an RGB image
equivalent to such a tensor, with 𝑁 = 3𝑁𝑐 and 𝑁𝑐 = 𝐻𝑊 the number of pixels per
channel.
An RGB image xin ∈ R𝑁 represents the standard input to a CAE encoder, which
is assembled as a convolutional neural network (CNN) architecture that alternates
convolutional with downsampling (average-pooling or max-pooling) layers in order
to compress the input image [24]. The encoder transforms an input RGB image into
a 3D tensor of size (�̃�, �̃�, �̃�), with �̃� < 𝐻, �̃� < 𝑊 , and �̃� > 3. The encoder action
is mathematically represented by a nonlinear operator 𝐸 such that xenc = 𝐸 (xin),
with xenc the compressed image.
The encoded image is successively mapped into the latent space, namely xlat =

𝐿 (xenc), with 𝐿 a nonlinear operator.
Finally, the re-elaborated compressed image xlat is fed into the decoder, which
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restores the information lost at the highest attainable fidelity. The decoder is
constructed as a CNN architecture that alternates convolutional with upsampling
layers in order to progressively re-expand the image up to the original size. The
decoder is mathematically represented by a nonlinear operator 𝐷, which computes
the final CAE output as an RGB image xout = 𝐷 (xlat).
The nonlinear operators 𝐸 , 𝐿 and 𝐷 are selected as regression models. We denote
by w1 ∈ R𝑁1 , w2 ∈ R𝑁2 , and w3 ∈ R𝑁1 the vectors gathering the corresponding
regression coefficients. As a consequence, the generic actions in Figure 1 can be
particularized as

xenc = 𝐸w1 (xin), xlat = 𝐿w2 (xenc), xout = 𝐷w3 (xlat),

with

𝐸w1 : R𝑁1 × R𝑁 → R𝑁lat , 𝐿w2 : R𝑁2 × R𝑁lat → R𝑁lat , 𝐷w3 : R𝑁1 × R𝑁lat → R𝑁 ,

where 𝑁lat = �̃��̃��̃� < 𝑁 . The overall action of the CAE can be expressed in a
compact form by introducing the vector w =

[
w1,w2,w3

]𝑇 ∈ R𝑁param collecting
all the regression coefficients, with 𝑁param = 2𝑁1 + 𝑁2, and the nonlinear operator
𝐶w : R𝑁param × R𝑁 → R𝑁 defined by

𝐶w(xin) = 𝐷w3 (𝐿w2 (𝐸w1 (xin))) = xout. (1)

The training of the CAE over a set of input images {xin} aims at compressing
and successively decompressing each input image by producing an approximation
xout, with a minimal loss of information with respect to xin. To this goal, the loss
function, coinciding with the mean-square error

LCAE(xin, xout; w) = MSE(xin, xout; w) = E
[
∥xin − xout∥2] , (2)

is minimized by varying w ∈ R𝑁param , with E[·] the expected value and ∥ · ∥ the
Euclidean norm. In particular, such a minimization is carried out over succes-
sive batches of data and by using batched stochastic optimization with automatic
differentiation [29].

2.1 Convolutional variational autoencoders

CAEs may suffer from overfitting during the training. CVAE models offer an im-
provement of convolutional autoencoders, by properly regularizing such a phase. In
particular, the peculiar difference between CAE and CVAE models lies in the defi-
nition of the latent space. Standard CAE models encode the input as a deterministic
vector in the latent space and feed the decoder with an analogous type of data. On
the contrary, CVAEs encode the input according to a distribution D of a continuous
variable defined over the latent space, and the decoder is fed with a sample from
that distribution. In general, we choose D as a multi-variate Gaussian distribution
characterized by a mean, 𝝁enc, and by a diagonal variance matrix, whose entries
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Figure 2: Architecture of a convolutional variational autoencoder.

are gathered in the vector Σenc. According to a CVAE architecture, vectors 𝝁enc
and Σenc are computed by two separate encoders (see Figure 2).

To provide a mathematical formalization of such a process, we introduce vectors
w𝑚1 , w𝑣1 ∈ R𝑁1 collecting the coefficients associated with the regression encoders
𝐸w𝑚

1
, 𝐸w𝑣

1
: R𝑁1×𝑁 → R𝑁lat , for the mean and the variance, respectively, such that

𝝁enc = 𝐸w𝑚
1
(xin), Σenc = 𝐸w𝑣

1
(xin), (3)

with xin ∈ R𝑁 the input image, and 𝑁lat = �̃��̃��̃� < 𝑁 , the dimension of the latent
space.
The output of the encoder, 𝝁enc and Σenc, are fed into the latent space that computes
the latent vector

xlat = 𝐿N (𝝁enc, Σenc) (4)

by randomly sampling the multi-variate Gaussian distribution N(𝝁enc, Σenc), with
𝐿N : R𝑁lat × R𝑁lat → R𝑁lat the operator associated with the latent space.
Finally, the sample xlat is passed to the decoder, represented by the regression
operator 𝐷w3 : R𝑁1×𝑁lat → R𝑁 , to generate the reconstructed image

xout = 𝐷w3 (xlat), (5)

with w3 the vector of the regression coefficients characterizing the decoder.
The overall action of the CVAE model can be expressed in a compact form by

introducing the vector w =
[
w𝑚1 ,w

𝑣
1 ,w3

]𝑇 ∈ R𝑁param collecting all the regression
coefficients, with 𝑁param = 3𝑁1, and the nonlinear operator 𝐶w : R𝑁param × R𝑁 →
R𝑁 defined by

𝐶w(xin) = 𝐷w3 (𝐿N (𝐸w𝑚
1
(xin), 𝐸w𝑣

1
(xin))) = xout. (6)
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The involvement of a continuous variable in the CVAE model leads to add
a term related to the multi-variate Gaussian distribution N(𝝁enc, Σenc) to the loss
function in (2). Thus, the training is performed by minimizing the new loss function

LCVAE(xin, xout; w) = E
[
∥xin − xout∥2] + 𝐷KL

(
N(𝜇enc, Σenc),N(0, 𝐼)

)
, (7)

with 𝐷KL the so-called Kullback-Leibler (KL) divergence [18]. We observe that
the new contribution in (7) plays the role of a regularizing term by measuring
the discrepancy between the distribution returned by the encoder, N(𝜇enc, Σenc),
and a standard Gaussian distribution, N(0, 𝐼). For more details about the CVAE
architecture, we refer the reader to [17].

When the training data is limited, using a regularization defined in a continuous
space as in (7) may introduce a strong bias, which results into a severe under-
fitting with significant performance deterioration. To overcome this issue, new
autoencoding architectures have been developed, as discussed in the following.

2.2 Vector-quantized variational autoencoders

VQ-VAE models offer a solution to the biasing effect triggered when the training
data is small, by replacing the continuous regularization in (7) with a new term
defined in a discrete space. In particular, this space is characterized by a set of
𝐾 learnable vectors, {e𝑖}𝐾𝑖=1, called codebook, with e𝑖 ∈ R�̃� . The encoded vector
xenc = 𝐸w1 (xin) ∈ R𝑁lat , with 𝑁lat = �̃��̃��̃�, is remapped into a 3D tensor of size
(�̃�, �̃�, �̃�) and then cut into longitudinal threads following the third dimension,
creating a total of �̃��̃� fibers, x𝑠enc ∈ R�̃� , for 𝑠 = 1, . . . , �̃��̃� . For each fiber, the
vector in the codebook {e𝑖}𝐾𝑖=1 which is closest to x𝑠enc is detected. This phase can
be formalized by the minimization

𝑧𝑠𝑞 (xenc) = e𝑝 = argmin
e𝑖

| |x𝑠enc − e𝑖 | | 𝑠 = 1, . . . , �̃��̃�, (8)

where 𝑧𝑠𝑞 (xenc) ∈ R�̃� coincides with the quantized representation of the thread x𝑠enc
(see Figure 3). The threads 𝑧𝑠𝑞 (xenc) are eventually aggregated to yield the vector
zlat
𝑞 ∈ R𝑁lat .

We mathematically represent all the operations employed to convert the encoded
vector xenc into zlat

𝑞 by the nonlinear operator 𝐿q : R𝑁2×R𝑁lat → R𝑁lat , with q ∈ R𝑁2

the vector collecting the corresponding regression coefficients. Finally, vector zlat
𝑞

is passed to the decoder for the final image reconstruction. Thus, the overall action
of the VQ-VAE model can be expressed in a compact form by introducing the
vector w =

[
w1, q,w3

]𝑇 ∈ R𝑁param collecting all the regression coefficients, with
𝑁param = 2𝑁1 + 𝑁2, and the nonlinear operator 𝐶w : R𝑁param ×R𝑁 → R𝑁 , such that

𝐶w(xin) = 𝐷w3 (𝐿q(𝐸w1 (xin))) = xout. (9)

An illustration of the VQ-VAE architecture is provided in Figure 4.
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Figure 3: Illustration of the quantization of the encoded vector in terms of the
codebook.

Figure 4: Architecture of a vector-quantized variational autoencoder.

The training of a VQ-VAE model includes the codebook as well as the model
learning through a backpropagation process. Similarly to the loss function of
CVAE, the training of the VQ-VAE model is carried out by iteratively minimizing
a loss function consisting of a reconstruction error enriched by a regularizing term.
In particular, the regularization coincides with the codebook learning, which is
performed by the minimization in (8).
In particular, the codebook learning is characterized by a bidirectional problem,
namely learning codebook vectors {e𝑖}𝐾𝑖=1 that align to the encoder outputs, and
learning encoder outputs {𝑧𝑠𝑞 (xenc)}�̃��̃�𝑠=1 that align to the codebook vectors [32, 34].
To solve this issue, the regularization term in (8) is thus replaced by

𝑧𝑠𝑞 (xenc) = argmin
e𝑖

{
| |𝑠𝑔[x𝑠enc] − e𝑖 | |2 + 𝛽 | |x𝑠enc − 𝑠𝑔[e𝑖] | |2

}
𝑠 = 1, . . . , �̃��̃�, (10)
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which combines the so-called codebook alignment loss, | |𝑠𝑔[x𝑠enc] − e𝑖 | |, with the
codebook commitment loss, | |x𝑠enc − 𝑠𝑔[e𝑖] | |, with 𝑠𝑔[·] the stop gradient operator
and 𝛽 a hyperparameter to be properly tuned. The right-hand side in (10) implements
an alternate direction minimization procedure, the stop gradient excluding the tensor
it is applied to from the backpropagation.
To sum up, the training of the VQ-VAE model is performed by the minimization of
the loss function

LVQ−VAE(xin, xout; w) = E
[
∥xin − xout∥2] + ||𝑠𝑔[xenc] − 𝑧𝑞 (xenc) | |2

+ 𝛽 | |xenc − 𝑠𝑔[𝑧𝑞 (xenc)] | |2.
(11)

For more details about the definition and utilization of the stop gradient operator
and on VQ-VAEs, we refer the reader to [34].

3 Unsupervised anomaly detection with convolutional au-
toencoders

Unsupervised DL-driven detection and localization of anomalies often resort to
CAE models to search for patterns in input data that do not conform to images free
from defects [27, 35, 23]
To this goal, we train a CAE model only with images without anomalies. Once the
CAE architecture is trained, the model is given unlabeled images. This means that
the images exhibiting a defect will be reconstructed by removing the anomaly. The
reconstruction error between the input and the output image is calculated and used
to determine whether the image is affected by an anomaly or is not. In particular,
if the reconstruction error is below a user-defined threshold, the input image is
classified as free from defects. Otherwise, the image is classified as anomalous.
Furthermore, the localization of the anomaly is carried out by analyzing the areas
of the image where the pixel-wise reconstruction error is relevant (see Figure 5 for
such a workflow particularized to a leaf dataset).

This approach has been employed to classify sets of data in diverse contexts
[27, 23], although, up to the authors’ knowledge, not in anomaly detection of leaves
in smart agriculture applications. In this section, we aim at bridging this gap by
complementing the current literature, which is essentially based on supervised DL
approaches [33, 22, 8, 28], with an unsupervised technique.

For this task, we consider the dataset PlantVillage, which is freely available
online in different versions. In more detail, we employ the dataset in the Mohanthy
repository [21], which, in addition to the original pictures, contains preprocessed
images, such as grayscale transformation and background removal.
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Figure 5: Schema of the proposed unsupervised DL methodology for leaf disease
detection and localization.

The dataset consists of 54314 images of healthy and diseased leaves tagged
into 38 different categories based on species and illness. Table 1 presents the
dataset composition in terms of crop and disease type, and corresponding number
of images.

Among the available species, in this work, we focus on cherry and pepper leaves
(see Figures 6 and 7 for some samples).

Figure 6: Sample images of healthy (first and second from left) and diseased (first
and second from right) cherry leaves.

4 Verification

We numerically assess the performance of the convolutional autoencoders in Sec-
tion 2 when applied to the context detailed in Section 3.
A cross-comparison among CAEs, CVAEs and VQ-VAEs is carried out in terms of
image reconstruction and detection and localization of leaf anomalies.
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Crop Disease Number of images

Apple

Apple Scab 630
Black Rot 621
Cedar Apple Rust 275
Healthy 1654

Blueberry Healthy 1502

Cherry Powdery Mildew 1052
Healthy 854

Corn

Cercospora 513
Common Rust 1192
Nothern Leaf Blight 1162
Healthy 985

Grape

Black Rot 1180
Esca 1383
Blight 1076
Healthy 423

Orange Haunglongbing 5507

Peach Bacterial Spot 2297
Healthy 360

Pepper Bacterial Spot 997
Healthy 1478

Potato
Early Blight 1000
Late Blight 1000
Healthy 152

Raspberry Healthy 371
Soybean Healthy 5090
Squash Powdery Mildew 1835

Strawberry Leaf Scorch 1109
Healthy 456

Tomato

Bacterial Spot 2127
Early Blight 1000
Late Blight 1909
Leaf Mold 952
Septoria Leaf Spot 1771
Spider Mites 1676
Target Spot 1404
Yellow Leaf Curl Virus 373
Mosaic Virus 5357
Healthy 1591

Table 1: PlantVillage dataset composition.
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Figure 7: Sample images of healthy (first and second from left) and diseased (first
and second from right) pepper leaves.

4.1 Data preprocessing

Data preprocessing is a fundamental phase of many machine learning and data
mining approaches which manipulates, deletes and integrates the original data in
order to improve the performance of the selected model.

Concerning the cherry and pepper datasets selected in the previous section, we
essentially resort to resizing and data augmentation [31].
Since we perform an accelerated training by GPU hardware, we resize each input
RGB image to 256×256 pixels in order to cope with memory limitations of the GPU
device. Data augmentation is employed since DL models require large volumes of
data for accuracy reasons. To increase the number of images available for training,
we resort to the following transformations on the original data:

• image flipping: an image is mirrored around its horizontal or vertical axis1;

• image rotation: an image is rotated in a clockwise or counterclockwise
direction given a rotation angle 𝜃. Since the models accept only squared
images, the possible rotation angles are 90◦, 180◦ and 270◦.

The two datasets are split into 3 different subsets, to be used for training, vali-
dation and testing (see Table 2 for more details). The training dataset is composed
by only healthy leaves images, which are used to optimize the DL models by min-
imizing the loss functions in (2), (7), and (11), respectively. The validation is
successively adopted to identify the best model among CAE, CVAE e VQ-VAE
in terms of reconstruction of both healthy and unhealthy leaf images. Finally, the
testing dataset consists of pictures of the two classes of cherry and pepper leaves,
the goal of this phase being the detection and the localization of leaf anomalies.

4.2 Model setup

We provide the architectural and training setup of the CAE, CVAE and VQ-VAE
models. In particular, the three networks share the same architecture for the encoder
and decoder parts, while being characterized by a different latent space configura-
tion.

1The image flipping around the vertical axis is also known as flopping
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Training set Validation set Test set
Healthy Healthy Healthy Diseased

cherry 681 85 85 85
pepper 1134 113 113 113

Table 2: Dataset splitting used for training, validation and test.

4.2.1 CAE architecture and training setup

The CAE takes in input an image with size (𝐻,𝑊,𝐶) = (256, 256, 3) and passes
it to the encoder. The encoder is composed by 5 convolutional layers and 5 max-
pooling layers for downsampling, that return a tensor of size (4, 4, 64).
The downsampled tensor is then passed to the layers that define the latent space. The
first one is a flatten layer that transforms the three-dimensional tensor into a vector
xenc with 1024 entries. The encoded vector is fed to two fully connected layers,
each of them reducing the length of the vector by a factor of 8, so that the vector
eventually matches the size of the latent space with 16 entries. In reverse, another
pair of fully connected layers increases the size of the vector, each by a factor of 8,
yielding the vector xlat matching the original size (i.e., 1024 entries). The vector is
then passed to a view layer that reshapes it into a three-dimensional tensor of size
(4, 4, 64) and then fed to the decoder, which consists of 5 convolutional and of 5
upsampling layers. The output xout with size (𝐻,𝑊,𝐶) = (256, 256, 3) is finally
generated.
The ReLU activation function is used for all the convolutional and deconvolutional
layers, except for the output layer, where the sigmoid activation function is employed
to ensure that the pixel values are within the range [0, 1].

The CAE training is performed over 200 epochs by resorting to Adam algorithm
[16], with a learning rate of 10−3 for the optimization.

4.2.2 CVAE architecture and training setup

Since the encoder of the CVAE resorts to a probability distribution to describe the
input data, the latent space performs the so-called reparametrization trick in order
to generate a sample from such a distribution to be eventually passed to the decoder.
The CVAE decoder has the same architecture as for the CAE model, and starting
from xlat reconstructs the new image xout with size (𝐻,𝑊,𝐶) = (256, 256, 3).

The training is performed with the same optimizer and learning rate as for
the CAE, although relying only on 100 epochs due to the increased computational
complexity of the DL model.

4.2.3 VQ-VAE architecture and training setup

The input image, with size (𝐻,𝑊,𝐶) = (256, 256, 3), is passed to the encoder
which is composed by 3 convolutional layers without any max-pooling layer for
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downsampling. A tensor of size (4, 4, 64) is thus produced. Each thread of
size (1, 1, 64) of the tensor is replaced by the closest vector of the codebook for
quantization. The codebook size is (𝐾, �̃�) = (512, 64), meaning that the discrete
space of the codebook is made of 512 vectors, each with 64 entries.
The quantization of the latent space yields a tensor with size (4, 4, 64) which is
provided as an input to the decoder constituted by 3 convolutional layers without
any upsampling layer.

The training phase is performed with the same optimizer and learning rate as
for the previous two DL models, by resorting to only 50 epochs due to a further
increase in the computational cost of the VQ-VAE architecture.

4.3 Hardware & Software Specifics

The numerical results presented in this work are obtained with the hardware and
OS specifics in Table 3.

PC model Lenovo ThinkPad P14s
CPU Intel® Core™ i7-10510U CPU @ 1.80GHz × 8
RAM 16 GB DDR4-3200
GPU NV138 / Mesa Intel® UHD Graphics (Integrated)
OS Ubuntu 20.04 LTS 64bit

Table 3: Hardware and software specifications.

The DL models are built and trained using the well-known neural network
library Pytorch [26, 6], which enables a seamless remapping of the tensors from
CPUs to GPUs for hardware accelerated training.

5 Discussion

In this section, we compare the three considered autoencoders in terms of recon-
struction and classification of both healthy and anomalous leaves, as well as disease
localization. These three skills are mutually related. Indeed, the capability of a
model to accurately reproduce a non-anomalous image and to clean the defects on
the diseased leaves is crucial in view of a reliable classification and localization.

5.1 Reconstruction and anomaly removal performance

We compare the predictive performance of the CAE, CVAE, VQ-VAE models
to reconstruct anomalous and normal samples in the test portion of the dataset
(see Table 2) for cherry and pepper leaf images. The metric used to quantify the
accuracy of the reconstruction is the MSE, whose values - scaled by a 103 factor
- are collected in Table 4 and Table 5 (second-fourth column). The discrepancy Δ

between the MSE values for healthy and diseased samples is also provided in both
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tables.
As expected by the architecture of the three models, we can rank VQ-VAE as the
best performing architecture, followed by CAE and CVAE, independently of the
considered leaf species. Moreover, we can appreciate how the VQ-VAE yields
larger values for Δ. This emphasizes the separation of the two classes, with a
consequent improvement in terms of leaf classification.

dataset CAE CVAE VQ-VAE CAE-TE CVAE-TE
healthy 2.1766 4.8256 1.2380 2.1577 4.6332
diseased 2.1988 5.0732 2.0052 2.1739 4.6441

Δ 0.0222 0.2476 0.7672 0.0162 0.0109

Table 4: Reconstruction accuracy for the cherry dataset: comparison among CAE,
CVAE and VQ-VAE in terms of MSE.

dataset CAE CVAE VQ-VAE CAE-TE CVAE-TE
healthy 4.1029 6.2846 1.1674 3.9961 6.1512
diseased 4.7811 6.3255 1.8971 4.4350 6.2846

Δ 0.6782 0.0409 0.7297 0.4389 0.1334

Table 5: Reconstruction accuracy for the pepper dataset: comparison among CAE,
CVAE and VQ-VAE in terms of MSE.

Since CAEs, CVAEs, VQ-VAEs take different times to train due to the specific
complexity, we carry out a further comparison in order to consider such a mismatch.
On average, VQ-VAE takes 4 times the training time required by CAE and CVAE,
independently of the considered dataset. This is highlighted in Table 6 that shows
the total training time (in minutes) measured as the median over 10 different runs
for the three models.

dataset CAE CVAE VQ-VAE
cherry 43 49 188
pepper 56 61 220

Table 6: Training time in minutes for cherry and pepper datasets.

Thus, the three DL networks are compared for a fixed computational training time,
TE, that we select as the time required by VQ-VAE to complete 50 epochs (fourth
column in Table 6). The MSE associated with this investigation is provided in
Table 4 and Table 5 (fifth-sixth column). Despite the increased number of exploited
epochs, both CAE and CVAE slightly improve the accuracy, while VQ-VAE remains
the best performing model both in terms of reconstruction and of class separation.

To corroborate the performed investigation from a qualitative viewpoint, we
consider the 4 images of healthy and unhealthy pepper and cherry leaves in Table
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7 (first row).
When images of healthy leaves are provided as an input, the autoencoders are
expected to reproduce the original image as accurately as possible. Although CAE
and CVAE can recover the main characteristics of the leaf, such as color and shape,
both the models are unable to reproduce the details at the fine scale, such as veins,
chromatic differences and edges (second and third row, first and third column). On
the contrary, the VQ-VAE model reproduces the images at a higher resolution, thus
outperforming the other two architectures. In fact, now the chromatic differences
of the veins of the leaves as well as the detail of the edges are clearly visible in the
reconstructed image (fourth row, first and third column).

When images of unhealthy leaves are provided as an input, the autoencoder
is expected to maintain the shape of the leaf while cleaning the surface from the
alterations due to the disease (anomaly removal). We notice that the CAE and
CVAE architectures mildly alter the shape of the leaf and lose each detail at a fine
scale (second and third row, second and fourth column). On the contrary, VQ-VAE
architecture faithfully reproduces the shape of the leaf as well as the details at a
fine scale. Besides being more accurate, the VQ-VAE model has also enhanced
generalizability properties. While accuracy and generalizability are both strongly
desired in an autoencoder for image reconstruction, generalizability may actually
be counterproductive in the context of anomaly removal. In fact, an effective
generalizable autoencoder may accurately reconstruct the anomaly along with all
the other features of the input image. This issue is acknowledged also by other
works in the literature, especially for data where the anomaly covers a very small
surface of the image [12].
The generalizability phenomenon is partially observed in the results in Table 7
(fourth row, second and fourth column), where the reconstructed images exhibit a
certain heterogeneity in the color distribution. As a matter of fact, the MSE error
for the diseased leaves in Tables 4 and 5 is lower for the VQ-VAE with respect to
the two other architectures.

To sum up, we can conclude that the VQ-VAE represents the best performing
model as far as image reconstruction and anomaly removal are concerned.

5.2 Leaf anomaly detection

In this section, we address the classification between healthy and unhealthy leaves
by resorting to anomaly detection. In particular, to quantify the detection capability
characterizing the considered unsupervised architectures, we resort to the AUC-
ROC score, so that higher values of such a quantity reveal a better classification
of the model. We observe that an accurate classification strictly depends on the
reconstruction property of the selected DL method.
In Table 8 we provide the values of the AUC-ROC score for the three consid-
ered models. CAE and CVAE architectures better distinguish healthy leaves from
unhealthy ones on the cherry dataset than on the pepper dataset (second-third
columns). This is likely due to different anomalies of the diseases that affect the
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Table 7: Reconstruction and anomaly removal: comparison among CAE, CVAE
and VQ-VAE on both cherry and pepper healthy and diseased leaves.

dataset CAE CVAE VQ-VAE CAE-TE CVAE-TE
cherry 0.965 0.946 0.983 0.968 0.941
pepper 0.892 0.819 0.936 0.888 0.844

Table 8: Anomaly detection: comparison among CAE, CVAE and VQ-VAE in
terms of AUC-ROC score.

two types of plants. In particular, the uniform distribution of the disease over the
whole cherry leaf facilitates a clear distinction between the input (striped) unhealthy
and the reconstructed (completely cleaned) images. This results into a good sep-
arability of the healthy and unhealthy classes and enables a reliable classification
when using CAEs and CVAEs.

In the previous section, VQ-VAE proved to be characterized by enhanced gener-
alizability properties. This is confirmed by the MSE values in Tables 4 and 5 which
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are lower for the VQ-VAE when compared with CAE and CVAE (2.50 and 3.33
times lower for the pepper dataset). Despite the superior generalizability feature,
VQ-VAE outperforms CAEs and CVAEs in terms of leaf classification due to the
highest separation capability, corroborated by the values of the discrepancy Δ in
the tables.

Also in the anomaly detection context, we perform a cross-comparison among
the three models for a time equivalent training phase. The value of the AUC-ROC
score associated with this analysis is provided in the last two columns of Table 8.
Similarly to the reconstruction and anomaly removal verification, we can remark
that the performance of both CAE-TE and CVAE-TE models do not significantly
change by varying the number of epochs. Also in this investigation, VQ-VAE still
represents the most reliable method.

5.3 Leaf anomaly localization

As a last check, we assess the anomaly localization capability of the CAE, CVAE
and VQ-VAE models. With this regard, the performance is a direct consequence of
the reconstruction properties discussed in Section 5.1, the localization step being
carried out moving from the distribution of the reconstruction error.

In Table 9, we show such an error for both the healthy and unhealthy leaf samples
in Table 7. We adopt a yellow-to-blue color map, after normalizing the images so
that the reconstruction error ranges in [0, 1]. The anomaly localization provided
by CAE and CVAE turns out to be rather unpractical. Indeed, all the details (such
as, veins, edges, chromatic differences) at the fine scale which are missed during
the reconstruction are highlighted as an error, analogously to the actual anomalies.
This undesirable behavior is particularly evident in the CVAE outputs. On the
contrary, the high quality guaranteed by VQ-VAE in sharply reconstructing the
small-scale features and in mildly recovering the anomalies leads to confine the
error to the edges and to the veins for the healthy samples, and to the actual defects
for the diseased leaves (we refer to Figure 8 for a high-contrast post-processing
of the VQ-VAE reconstruction error for the diseased cherry and pepper leaves in
Table 9).

These considerations allow us to conclude that, when applied to PlantVillage
dataset, VQ-VAE models perform better with respect to CAE and CVAE, also in
terms of anomaly localization.

6 Conclusions and future work

The employment of unsupervised DL techniques on the PlantVillage dataset al-
lowed us to compare the performance of standard autoencoders, such as CAE and
CVAE model, with the more sophisticated VQ-VAE architecture, when applied to
healthy and unhealthy leaves. The investigation focused on 2 out of the 14 different
plant species included in the dataset, namely cherry and pepper leaves affected by
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Table 9: Anomaly localization: comparison in terms of reconstruction error among
CAE, CVAE and VQ-VAE on both cherry and pepper healthy and diseased leaves.

Figure 8: Anomaly localization: comparison between the original image and the
high-contrast reconstruction error for the VQ-VAE model, cherry (first and second
from left) and pepper (first and second from right) leaves.

powdery mildew and bacterial spot, respectively. A cross-comparison among the
three autoencoders has been carried out in terms of: i) image reconstruction for
both normal and anomalous samples, ii) anomaly removal from diseased leaves, iii)
anomaly detection, iv) anomaly localization.
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The results in Section 5 show that VQ-VAEs have a superior predictive perfor-
mance than CAEs and CVAEs in the autoencoding task (see Table 7), which also
reflects into a more accurate image classification of healthy and unhealthy leaves
(see Table 8). The improved generalizability of the VQ-VAE models leads to a
significant reduction of the reconstruction error on every image (see Tables 4, 5 and
9). This might potentially be counterproductive in the context of anomaly detection
because it may reduce the capability of the model to separate images belonging to
different classes. This possible risk has already been addressed in other contexts,
such as [12]. However, for the specific dataset studied in this work, the gap between
the reconstruction errors of the VQ-VAE on healthy and unhealthy images is sig-
nificantly wider than for CAEs and CVAEs (see Tables 4 and 5), thus allowing the
VQ-VAE to retain a superior capacity in accurately separating images of healthy
leaves from images of unhealthy leaves.

Future work will be dedicated to apply methodology recently proposed in other
contexts [25] to plant anomaly detection. These approaches combine supervised
and semi-supervised DL methods to address situations where readily accessible
large-scale unlabeled data may contain both known and unknown anomalies,
As a further development of interest, we consider the issue of miss detection of
the anomaly due to a highly generalizable autoencoder that accurately reconstructs
both normal and anomalous data. The outcome of this future effort will increase
the robustness of current DL techniques for anomaly detection.
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