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The Social Growth Index:

Measuring Socioeconomic Resilience

at the Municipal Level in Italy

Abstract

This study introduces the Social Growth Index (SGI), an integrated framework
for assessing socioeconomic resilience at the municipal level across Italy. The SGI
builds on the idea that a territory is resilient if it can sustain long-term growth
despite exposure to external shocks—both positive, such as large-scale public
investments under the National Recovery and Resilience Plan (PNRR), and neg-
ative, such as the COVID-19 pandemic. These events represent structural tests
for local systems, revealing their ability to adapt, recover, and convert temporary
disturbances into lasting development trajectories.
Using harmonized data for 2010–2022, the SGI integrates three standard-
ized variables—GDP density (GDP per m2), GDP per capita, and population
density—that jointly capture productive intensity, individual prosperity, and
demographic vitality within a consistent spatial structure.
To obtain the SGI, we design a methodological framework integrating Fixed Rank
Kriging (FRK) for the spatial downscaling of Gross Domestic Product (GDP)
with Copeland aggregation for multi-criteria ranking. FRK enables spatially
coherent GDP estimates at fine resolution, while the Copeland method aggregates
municipalities’ relative performance without imposing arbitrary weights.
Results reveal a persistent North–South divide, with higher resilience levels in
Northern and Central Italy and lower values in Southern, Sicilian, and inland
Sardinian areas. Temporal analysis indicates structural persistence in highly
resilient urban and industrial systems alongside localized improvements around
regional capitals. Comparison with ISTAT’s Municipal Fragility Index (IFC)
exhibits consistency among indicators measuring intersecting economic aspects.
Future extensions include developing a spatio-temporal FRK model and incor-
porating additional drivers—such as employment, innovation, and environmental
sustainability—to enhance temporal coherence and policy relevance.

Keywords: Socioeconomic Resilience, Copeland Method, Fixed Rank Kriging, Spatial
Downscaling, Social Growth Index, Territorial Disparities
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1 Introduction and Literature Review

In economic and regional sciences, resilience is commonly defined as the ability of
territories to resist, absorb, and recover from external shocks while maintaining long-
term growth trajectories (Martin, 2010; Pendall et al., 2010; Bristow, 2014). This
interpretation extends the ecological foundations of resilience (Holling, 1973; Folke,
2006), integrating them with spatial and institutional dimensions relevant to human
settlements and economic systems. More recent studies emphasize that resilience is not
a static property but a dynamic process reflecting both resistance to disruption and
the capacity for structural transformation (Davoudi, 2012; Simmie and Martin, 2010).

A large body of empirical research has sought to operationalize resilience through
composite indicators. The OECD (OECD, 2014) and the European Commission
(European Commission, DG REGIO, 2020) emphasize its multidimensional nature,
encompassing economic, social, demographic, and environmental components. At the
European level, indices such as the Regional Economic Resilience Index (Faggian et al.,
2018) and the Resilience Capacity Index (Foster, 2007) combine economic performance
with social and infrastructural indicators. In Italy, ISTAT’s Municipal Fragility Index
(IFC, Indice di Fragilità Comunale) (ISTAT, 2023a) provides a complementary view
by mapping local vulnerabilities in demographic structure, education, labor, and social
cohesion.

Several other frameworks have been developed internationally. The City Resilience
Index by Arup (Arup International Development, 2015) integrates dimensions of
health, well-being, governance, and environment, while the Baseline Resilience Indi-
cators for Communities (Cutter et al., 2014) and the Community Disaster Resilience
Index (Peacock et al., 2010) focus on social, economic, environmental, and institu-
tional capacities related to disaster risk. The Economic Resilience Index proposed by
Rose and Krausmann (Rose and Krausmann, 2013) adopts a more strictly economic
perspective, yet may underrepresent social and institutional aspects that are crucial
for adaptive capacity. In Italy, Graziano and Rizzi (Graziano and Rizzi, 2016) pro-
posed a framework that separates vulnerability and resilience dimensions, allowing a
dynamic interpretation of causes and responses, although data heterogeneity limits its
applicability across all territories.

From this literature, two main challenges emerge. First, the availability and com-
parability of data across spatial and temporal scales are often limited, hindering
consistent and reproducible assessments of resilience. Socioeconomic indicators are
frequently collected at heterogeneous administrative levels, updated at irregular inter-
vals, or defined according to different methodological standards, making cross-regional
and longitudinal comparisons difficult (OECD, 2014; Eurostat, 2018). Such inconsis-
tencies in data collection and harmonization frameworks represent a key limitation for
reproducible territorial analyses, as highlighted by international statistical institutions,
which emphasize the need for coherent spatial and temporal definitions of indicators
to enable meaningful comparison across administrative boundaries. As a result, many
studies remain confined to regional or provincial analyses, since harmonized data at
the municipal level are rarely available. Among the few indices produced at this finer
scale, the IFC (ISTAT, 2024) developed by ISTAT represents a valuable reference;
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however, it does not explicitly account for spatial dependence between municipali-
ties and is available only for the years 2018, 2019, and 2021. This limits its ability
to capture how local conditions evolve over time and how inter-municipal dynamics
contribute to resilience or fragility within broader territorial systems. Second, most
existing indices and empirical frameworks neglect the spatial interdependence that
characterizes socioeconomic phenomena (Briguglio et al., 2009). Local territories are
not isolated entities but are interconnected through flows of labor, capital, and inno-
vation that generate spatial spillovers and regional interdependencies. Ignoring these
relationships can obscure how shocks propagate through space and how clusters of
vulnerability or resilience emerge, ultimately reducing the explanatory and policy
relevance of resilience assessments.

Recent advances in spatial statistics have introduced multiscale spatial modeling
and frameworks capable of more effectively capturing territorial heterogeneity (Cressie
and Wikle, 2015; Zammit-Mangion and Cressie, 2021). Among these, the Fixed Rank
Kriging (FRK) approach has proven particularly suitable for socio-economic applica-
tions, as it enables the disaggregation of aggregate indicators—such as GDP—onto
finer spatial units while preserving statistical coherence (Sainsbury-Dale et al., 2024).

Based on this literature, the present study proposes the Social Growth Index
(SGI), a composite measure that integrates the FRK-estimated GDP at the munic-
ipal level with demographic information and aggregates results using the Copeland
method (Saari and Merlin, 1996). By employing FRK, the SGI explicitly accounts
for spatial dependence in economic structures, ensuring that GDP estimates for each
municipality are informed by the behavior of neighboring areas. This spatial coher-
ence represents a key methodological advance compared to existing indices — such
as ISTAT’s IFC — that, while valuable, do not explicitly model inter-municipal rela-
tionships. The SGI therefore provides a complementary perspective, capturing how
resilience emerges within interconnected local systems rather than isolated adminis-
trative units. Its aggregation through the Copeland method provides an interpretable
and transparent framework that can be easily understood and applied by policy mak-
ers and other stakeholders. Indeed, we compared SGI with IFC to assess its empirical
consistency and demonstrate its relevance for territorial policy analysis and resilience.

The remainder of the paper is structured as follows. Section 2 describes the data
sources, coverage, and harmonization procedures. Section 3 presents the methodolog-
ical framework, including index construction, the FRK downscaling model, and the
Copeland aggregation. Section 4 reports the main results and comparison with the
IFC, while Section 5 concludes with policy implications, limitations, and perspectives
for future research.

2 Data

This section describes the datasets and the harmonization procedures employed in
the analysis, ensuring transparency and reproducibility of the results. All informa-
tion comes from publicly accessible and open-source repositories maintained by official
statistical institutions, namely Eurostat (2023a), ISTAT (2023b), and the Italian Min-
istry of Economy and Finance (MEF, 2025). The resulting data set covers the period
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2010–2022 and integrates three key socioeconomic variables—Gross Domestic Product
(GDP), GDP per capita and Population—selected for their central role in measuring
local economic performance and individual well-being.

Data on GDP at constant prices (base year 2015) was retrieved from Eurostat’s
data set Economy at regional level (code nama 10r 3gdp), which provides harmonized
annual regional accounts for all NUTS 2 and NUTS 3 regions of the European Union
(Eurostat, 2023a). The population refer to the resident population as of 1 January
of each year and were obtained from the official municipal registers published by
ISTAT (2023b). All datasets are distributed under open-data licenses, consistent with
the transparency and reuse principles adopted by Eurostat and ISTAT. Data were
collected September 2025 and are fully aligned with the 2021 NUTS classification
(Regulation EU 2016/2066).

The observation period spans from 2010 to 2022, providing thirteen annual cross-
sections that capture both long-term structural dynamics and short-term shocks,
including the socioeconomic effects of the COVID-19 pandemic. The geographical cov-
erage encompasses the entire Italian territory, comprising 20 NUTS 2 regions and 107
NUTS 3 provinces, which were later downscaled to 7,901 municipalities (Local Admin-
istrative Units, LAU). Each observation corresponds to a unique spatial–temporal pair
(i, t), where i denotes the administrative unit and t the reference year. GDP and GDP
per capita are expressed in millions of euros at constant 2015 prices, while Population
represents the resident stock as of 1 January of each year.

To ensure comparability over time and across space, all variables were harmonized
through a rigorous multi-step preprocessing pipeline. Monetary quantities were first
converted into constant 2015 euros by deflating nominal GDP values using regional
price indices (deflators) at the NUTS 2 level, following the methodological guidelines
of the Eurostat (2013). This procedure was necessary because neither Eurostat nor
ISTAT directly provide real (inflation-adjusted) GDP series at the provincial level.
The use of regional deflators ensures internal coherence with the European System
of Accounts and allows for spatially consistent comparisons of real economic activity
across provinces and over time. Administrative boundaries were then harmonized with
the 2021 NUTS revision and the official ISTAT geometries, guaranteeing spatial align-
ment across all years. GDP per capita for each municipality and year was computed
according to:

GDP per capitai,t =
GDPi,t

Populationi,t
, (1)

where GDPi,t represents real GDP and Populationi,t the resident population of admin-
istrative unit i in year t. As GDP data are not directly available at the municipal
scale, local estimates were obtained using the FRK spatial downscaling model, which
interpolates GDP values from higher administrative levels while capturing spatial
dependence and heterogeneity in the economic structure.

Additionally, area-based indicators were computed to enhance spatial compara-
bility across territories of different sizes. GDP density (GDP/Area) and population
density (Population/Area) were derived using the official ISTAT territorial surface
data (in m2) (ISTAT, 2023c). These transformations allow for meaningful compar-
isons of economic performance and demographic concentration across heterogeneous
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spatial units, providing a coherent empirical foundation for the subsequent modeling
of municipal-level indicators and for the construction of the Social Growth Index.

3 SGI Index Construction

The construction of the Social Growth Index (SGI) builds on the idea that a ter-
ritory is resilient if it can sustain long-term growth despite exposure to external
shocks—both positive (large-scale public investments under the Piano Nazionale di
Ripresa e Resilienza (PNRR)), and negative (the COVID-19 pandemic). These events
represent structural tests for local systems, revealing their capacity to adapt, recover,
and convert temporary disturbances into lasting development trajectories.

The SGI is designed to capture this multidimensional nature of territorial resilience
by integrating economic performance, demographic activity, and individual well-being
within a consistent analytical framework. The index assumes that a territory can be
considered resilient if it maintains or improves its capacity for growth and adaptation
over time, regardless of the type of external shock it faces.

To operationalize this concept, three variables were selected that jointly describe
the main dimensions of socioeconomic resilience: GDP, GDP per capita, and Popula-
tion. These variables provide complementary perspectives on the functioning of local
systems. GDP measures the productive capacity of an area, GDP per capita reflects
the average level of prosperity experienced by residents, and Population expresses the
demographic scale and potential of the local community.

GDP represents the total monetary value of goods and services produced within
an economy over a specific period. It remains the most widely used indicator of eco-
nomic performance, reflecting both the productive capacity and the cyclical dynamics
of a system. As highlighted by the International Monetary Fund (Fund, 2020), GDP
provides a comprehensive picture of aggregate output, although it does not directly
measure social welfare or income distribution. The World Bank (Bank, 2022) stresses
that GDP captures the scale of economic activity, serving as a benchmark for inter-
national comparisons and policy evaluation. Similarly, the Organisation for Economic
Co-operation and Development (OECD) (OECD, 2014) frames GDP growth as one of
the pillars of economic resilience, since regions with higher productive capacity tend
to better withstand and recover from adverse shocks. In the context of resilience, GDP
is therefore interpreted as an indicator of the overall functioning of the local economy,
measuring the ability to generate output and sustain economic cycles despite external
disturbances.

GDP per capita (GDPpc) is defined as the ratio between the total GDP of a
territory and its resident population. It provides a synthetic measure of the average
economic output available per inhabitant and is widely used as a proxy for the material
standard of living of a community (International Monetary Fund, 2023; World Bank,
2024; Eurostat, 2023b). In practice, GDPpc allows meaningful comparisons across
territories of different size, complementing total GDP (which reflects productive scale)
and Population (which reflects demographic capacity). A higher GDPpc is typically
associated with greater economic resources available on average to residents, and thus
with higher potential levels of well-being and resilience. At the same time, GDPpc
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has important limitations: it does not account for income distribution, non-market
activities, environmental costs, or other dimensions of quality of life (OECD, 2020). For
this reason, international organizations often interpret it as one pillar of socioeconomic
assessment, to be complemented by other dimensions when evaluating well-being or
resilience (United Nations Development Programme, 2024).

Population measures the number of people residing in a given administrative unit.
While simple in definition, it provides critical information on the demographic health
and vitality of a community. Population size and dynamics are central to understand-
ing resilience, as they influence the capacity of a territory to sustain local services,
maintain labor supply, and foster social capital (OECD, 2023; United Nations, Depart-
ment of Economic and Social Affairs, Population Division, 2022). In regional studies,
population growth is often interpreted as a signal of attractiveness and socio-economic
vitality, whereas population decline or rapid ageing pose risks to long-term resilience
(OECD, 2021). In this context, a stable or expanding population base supports local
service provision, intergenerational knowledge transfer, and economic adaptability.
Conversely, demographic shrinkage or rapid ageing can undermine welfare sustainabil-
ity, reduce market size, and exacerbate vulnerability to external shocks (UN-Habitat,
2022). Within this analytical framework, Population acts as a proxy for human cap-
ital and social potential, completing the economic dimensions of the index with a
demographic perspective.

The three variables—GDP, GDP per capita, and Population—are conceptually
interconnected and together define the structural balance between economic output,
individual prosperity, and demographic resources. Their relationship is expressed by
the fundamental identity (World Bank, 2024; Eurostat, 2023b):

GDP = GDP per capita× Population. (2)

This relationship correctly expresses the total output of an area as the product
of individual productivity and the number of residents. However, when comparing
administrative units of very different sizes—such as large urban areas versus small
municipalities—absolute values of GDP and Population are not directly comparable,
as they scale with the size of the territory. To obtain measures that allow a meaningful
comparison between territories, we normalize each term of the equation by the surface
area of the administrative unit (in m2). Dividing both sides by the same quantity
yields to:

GDP

Area
= GDP per capita× Population

Area
. (3)

We define the formal indicator GDP Density = GDP/Area. This transformation
introduces three interpretable and spatially comparable indicators: (1) GDP/Area,
representing the economic density or the amount of economic output generated per
unit of land; (2) GDP per capita, capturing the average wealth or productivity per
resident; and (3) Population/Area, indicating the population density or concentration
of human capital.
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Expressing the identity in area-normalized terms enables a consistent assessment
of territories with heterogeneous size and structure. This ensures that differences in
economic performance and demographic intensity are analyzed on a comparable spa-
tial scale. This transformation thus provides a coherent foundation for subsequent
analyses of socioeconomic resilience, which depend not only on total magnitudes but
also on the spatial concentration and intensity of economic and demographic phenom-
ena. These normalized variables form the empirical basis of the Social Growth Index,
which integrates economic scale, individual prosperity, and demographic strength into
a coherent and spatially consistent measure of local resilience and long-term growth
potential.

After deriving spatially consistent measures of GDP density, individual wealth,
and demographic concentration, the final step involves aggregating these three dimen-
sions into a single, interpretable measure of territorial performance. To this end,
the Copeland method (Saari and Merlin, 1996) is adopted, providing a transpar-
ent and non-parametric approach to synthesize multidimensional information without
imposing arbitrary weights.

The Copeland method is a well-established procedure in social choice theory and
multi-criteria decision analysis, designed to produce an ordinal ranking based on
pairwise comparisons among units. Its main advantage lies in evaluating relative per-
formance across multiple criteria while maintaining interpretability and robustness to
scale differences.

Let A = {a1, . . . , an} denote the set of n municipalities, each evaluated on the
criteria set L = {l1, l2, lr} with size r. For each ordered pair of municipalities (ai, ak),
we define the dominance function:

S(i, k) =
∑
l∈L


+1, if ail > akl,

0, if ail = akl,

−1, if ail < akl.

(4)

The resulting score S(i, k) represents the number of dimensions in which municipal-
ity i outperforms municipality k. Summing across all comparisons yields the Copeland
score for unit i:

Ci =
∑
k ̸=i

S(i, k), (5)

which captures the overall dominance of municipality i within the system. Higher
Ci values indicate stronger relative performance, interpreted here as higher levels of
socioeconomic resilience.

The resulting copeland score, denoted as the Social Growth Index (SGI), expresses
the relative socioeconomic resilience of each municipality, integrating productive
capacity, individual prosperity, and demographic vitality into a unified measure.

This procedure establishes the conceptual framework for evaluating local resilience
through the Social Growth Index. Yet, because official GDP data are observed only
at regional and provincial levels, an additional modeling step is necessary to infer
municipal-scale estimates. The following section describes the spatial downscaling
process based on the Fixed Rank Kriging model, which enables the estimation of
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GDP for all Italian municipalities while preserving statistical coherence across spatial
hierarchies.

3.1 Fixed Rank Kriging

To investigate economic resilience at the municipal level, we perform a downscaling
of GDP density data (GDP per unit area) observed at the provincial and regional
levels to a municipal scale. The core of the methodology is the Fixed Rank Kriging
(FRK) (Cressie and Johannesson, 2008), a hierarchical spatial mixed-effects framework
designed to model multiscale and non-stationary processes of Gaussian data. Following
the formulation in (Sainsbury-Dale et al., 2024), we implement a FRK model which
accomodates the non-Gaussian nature of GDP density data.

Specifically, we consider as observations the GDP density values for all provinces
and regions across Italy, denoted by Zi for i = 1, . . . ,m, wherem is the total number of
observed spatial units. Since GDP densities are strictly positive, we assume that they
are independent and distributed according to a Gamma, conditionally on a hidden
process Y controlling their means and modeled within the FRK framework.

The process Y is constructed as a mixed effect model defined over a computational
grid of n units, referred to as Basic Area Units (BAUs), covering the entire Italian
spatial domain D. Let {sj}nj=1 denote the centroids of the BAUs. The process Y is
then specified as

Y (sj) = t(sj)
⊤α+ ν(sj) + ξ(sj), j = 1, . . . , n, (6)

where:

- t(sj) ∈ Rq is a vector of q observed covariates at location sj (e.g., population,
employment, financial indicators),

- α ∈ Rq is a vector of regression coefficients to be estimated,
- ν(sj) is a zero-mean, spatially structured, random effect capturing “medium to
large-scale” spatial correlation,

- ξ(sj) is a zero-mean “fine-scale” error term.

Model (6) captures the fixed effects of known predictors by means of the term
t(·)⊤α while the residual spatial heterogeneity, which cannot be explained through
the covariates, is represented by the combined process ν(·) + ξ(·).

To model (ν(s1), ..., ν(sn))
⊤ we use a Spatial Random Effects (SRE) representation:

ν(sj) = Φ(sj)
⊤η =

r∑
ℓ=1

ϕℓ(sj) ηℓ, j = 1, . . . , n,

where η = (η1, . . . , ηr)
⊤ is a zero-mean Gaussian random vector whose precision

matrix Q ∈ Rr×r has fixed rank, and Φ(·) = (ϕ1(·), . . . , ϕr(·))⊤ denotes a set of
predefined spatial basis functions defined on D. In this work, we select a Gaussian
basis system spanning two spatial resolutions, enabling the model to better capture
multiscale structure and nonstationary spatial variation. Moreover, as in (Sainsbury-
Dale et al., 2024), the precision matrix Q is sparsely parametrized and block-diagonal
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so that coefficients of basis functions belonging to different levels are independent.
Finally, we assume the fine-scale errors ξ(s1), ..., ξ(sn) to be independent and identi-
cally distributed Gaussian with zero mean and variance σ2

ξ ; moreover these errors are

independent of (ν(s1), ..., ν(sn))
⊤.

Let Φ denote the matrix of basis functions Φ(·) = (ϕ1(·), . . . , ϕr(·))⊤ evaluated at
locations {sj}nj=1 of the BAUs. The variance-covariance matrix of (Y (s1), ..., Y (sn))

⊤is
thus:

Φ⊤Q−1Φ+ σ2
ξI.

Fig. 1: The diagram illustrates the hierarchical structure of the Fixed Rank Kriging
framework. The lowest level consists of the computational grid of Basic Areal Units
(BAUs). The intermediate layers shows the heterogeneous observational supports, or
footprints; for example, the case of the Sicily region highlights how provincial and
regional data may overlap. The uppermost layer corresponds to the prediction support,
here represented by municipalities.

We now define the mean process µ = (µ(s1), ..., µ(sn))
⊤ of the GDP densities

evaluated at the level of the BAUs, by setting

g(µ(sj)) = Y (sj), j = 1, ..., n

where the link function g is set to be the logarithm. Let µZ = (µZ1
, ..., µZm

)⊤ denote
the vector obtained by aggregating the BAU means µ(s1), ..., µ(sn) at the level of the
m observed units (i.e., provinces and regions); in fact, define CZ ∈ Rm×n to be the
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linear operator (a non-random matrix) mapping µ to µZ , whose entries are such that
BAUs are aggregated consistently with the administrative geometry.

The model is completed by assuming that, given the latent µ spatial process,
the observations Zi’s are conditionally independent, each Zi being conditionally dis-
tributed according to a Gamma with rate parameter ψ, shape parameter ψ ∗µZi , and
therefore mean µZi .

Thus, the model becomes:

g(µ(sj)) = t(sj)
⊤α+Φ(sj)

⊤η + ξ(sj), j = 1, . . . , n,

η ∼ Nr(0, Q
−1)

ξ(s1), ..., ξ(sn) ∼i.i.d. N1(0, σ
2
ξ ) (7)

µZ = CZµ

Zi|µZ ∼ Gamma(ψ ∗ µZi
, ψ) i = 1, . . . ,m

The resulting unknown parameters, to be estimated using the methods and the algo-
rithms provided in (Sainsbury-Dale et al., 2024), are θ = (α⊤, Q, σ2

ξ , ψ)
⊤, which

determine the fixed effects, the covariance of the vector η, and the variance of the
ξ(sj)’s.

Let us finally conclude this section by stressing how the FRK model described in
(7) embodies the hierarchical structure of spatial levels illustrated in Figure 1 and
briefly summarized below:

1. Observed data layers: corresponds to the areal GDP density data, possibly charac-
terized by heterogeneous and overlapping supports across multiple administrative
levels. In the FRK terminology these are called footprints;

2. Computational grid layer: consists of the Basic Areal Units. This layer represents
the highest-resolution grid, where the latent spatial process controlling the means
of GDP densities is defined. Indeed, this process is hidden and cannot be directly
observed, as both data and covariates are aggregated over the coarser lattice of
administrative units;

3. Prediction layer: corresponds to the set of municipalities, where predictions are
obtained by integrating the means of GDP densities estimated on the BAUs.

In the next Section, we incorporate the FRK algorithm depicted above in (3.1)
into the general framework for constructing municipal indicators, applying it to the
dataset presented in Section 2.

4 Results

We apply the Fixed Rank Kriging methodology described in the previous section to
downscale the spatial indicator GDP Density defined in (3), by exploiting spatial
multiscale dependence. Our dataset is constituted by province-level GDP data as
observed values and municipality-level covariates as predictors. The selected covariates
are: (i) Population size (ISTAT), representing the total number of residents in each
municipality; and (ii) Income per capita (MEF), defined as the ratio between the total
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declared income of residents and the number of taxpayers within each municipality.1

Both covariates are available at the municipal level for the entire period of analysis and
were selected for their economic relevance, interpretability, and spatial completeness.
The correlation between the two predictors decreases over time, ranging from 0.258
in 2010 to 0.195 in 2022, suggesting that they capture complementary aspects of local
socioeconomic structure.

The choice of FRK is motivated not only by its computational tractability but also
by its ability to represent the spatial dependence structure typical of socioeconomic
phenomena. The spatial smoothing inherent in FRK enables the reconstruction of
unobserved GDP values at the municipal level in a principled manner, informed by
neighbouring areas and by the selected covariates. This step bridges the data gap
between observed provincial GDP and the finer municipal scale, providing spatially
coherent and economically interpretable estimates that form the empirical basis of
the SGI. The FRK model yields continuous spatial predictions of GDP density as
defined in (3) (i.e., GDP per unit of surface area), capturing the underlying productive
intensity across the territory. The nominal GDP of each municipality is subsequently
obtained by multiplying the predicted density values by the corresponding municipal
surface area.

In our analysis, we employ a computational grid of n = 13,170 Basic Areal Units
(BAUs) with a 5 km cell size and 81 Gaussian-shaped basis functions distributed over
two resolution levels. The simulations are performed in R using the package FRK v2
(Zammit-Mangion and Cressie, 2021), specifically designed for handling non-Gaussian
data (Sainsbury-Dale et al., 2024).

Figures 2a and 2b display, respectively, the spatial distribution of FRK-estimated
GDP density (GDP per m2) and nominal GDP for the reference year 2022. The spatial
pattern of GDP density reveals pronounced territorial heterogeneity: the highest values
are concentrated in major metropolitan and industrial areas—such as Milan, Turin,
Bologna, and Rome—while peripheral and inner regions exhibit markedly lower levels.
The nominal GDP distribution follows a similar gradient, confirming the internal
coherence between extensive (total GDP) and intensive (GDP per m2) measures of
economic activity.

1According to the Italian Ministry of Economy and Finance (MEF — Dipartimento delle Finanze), income
per capita corresponds to the average taxable income per resident taxpayer, derived from annual income
tax declarations (Modello Unico, 730, Certificazione Unica).

11



Estimated GDP density

(a) GDP density (GDP per m2).

Estimated nominal GDP

(b) Nominal GDP (million €).

Fig. 2: Spatial distribution of FRK-estimated GDP density and nominal GDP at the
municipal level (year 2022).

The two indicators convey complementary perspectives: nominal GDP reflects the
overall economic scale and is naturally higher in large urban centers such as Milan,
Rome, Turin, Bologna, and Naples; in contrast, GDP density highlights the intensity
of production relative to land area, revealing how smaller municipalities surrounding
major cities—particularly around Milan, Bologna, and Florence—often display high
productivity per unit of land despite lower aggregate GDP levels. This contrast under-
scores the different spatial meanings of the two indicators and anticipates their role
within the SGI framework: GDP density will be used directly as one of the key vari-
ables, while nominal GDP will serve as the basis for computing GDP per capita, thus
linking economic and demographic dimensions of resilience.

Building on the conceptual framework introduced in Section 3, we compute the
SGI of each Italian municipality as its rank position in the ordering derived from
the Copeland scores. Municipalities are compared according to the criteria L =
{GDP density, GDP per capita, Population density}; see (4).

The Copeland method is a transparent and non-parametric procedure widely used
in multi-criteria analysis. In our setting, the Copeland score is computed with respect
to the joint set of criteria L. Lower Copeland scores identify municipalities with lower
resilience, whereas higher scores denote progressively better resilience conditions. The
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resulting SGI therefore provides a synthetic and interpretable representation of the
relative socioeconomic resilience of Italian municipalities.

Figure 3 illustrates the spatial distribution of the SGI for the years 2010 and 2022,
highlighting a persistent territorial gradient across the Italian peninsula. As depicted
in the 2010 map on the left, the highest-resilience municipalities—corresponding to the
top decile of the Copeland scores distribution—were predominantly located in North-
ern and Central Italy, particularly across Lombardy, Emilia-Romagna, Veneto, and
Tuscany, whereas Southern regions, together with parts of Sicily and inland Sardinia,
exhibited systematically lower scores. The 2022 map on the right confirms the per-
sistence of this North–South divide, although several localized improvements emerge
around medium-sized urban systems and regional capitals such as Bari, Cagliari, and
Catania. The continued concentration of high-SGI municipalities in Northern Italy,
which constitutes the most resilient part of the country, reflects a structural and
persistent territorial advantage rooted in long-standing economic and demographic
conditions. At the same time, upward transitions observed in several intermediate
areas indicate emerging patterns of local adaptation and recovery, particularly in ter-
ritories that historically exhibited lower resilience levels, many of which are located in
Southern Italy.
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Social Growth Index (SGI)

2010 2022

Fig. 3: Spatial distribution of the Social Growth Index (SGI) at the municipal level in
2010 (left) and 2022 (right). The indicator is displayed in deciles: darker green areas
correspond to the Maximum resilienc class (top decile), while orange and red areas
represent the Minimum resilience class (bottom decile). The comparison highlights
the persistent North–South divide, with localized improvements emerging in selected
areas of Southern Italy.

To further investigate temporal evolution, we analyze changes in the SGI and the
associated spatial autocorrelation patterns. Figure 4 compares the variation in munic-
ipal SGI between 2022 and 2010 with the corresponding clusters of spatial association
identified through the Local Indicator of Spatial Association (LISA) (Anselin, 1995).

We examine the difference between the SGI deciles for the years 2010 and 2022,
denoted as ∆SGI = Decile2022 −Decile2010. The spatial distribution of ∆SGI exhibits
a clear regional pattern. Several municipalities in Northern Italy, particularly in the
North-East and parts of Emilia–Romagna, record improvements in their SGI decile
(green areas), while many municipalities in Central and Southern Italy display declines
(red areas), consistent with long-standing structural vulnerabilities. Local gains are
nonetheless visible around selected regional capitals and coastal areas of Apulia,
Calabria, and Sicily, suggesting processes of targeted economic and demographic
adjustment.
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The LISA clusters confirm that these variations are spatially structured rather
than random. Low–Low clusters identify groups of municipalities jointly experienc-
ing significant declines in SGI, while High–High clusters correspond to areas where
improvements are spatially concentrated. High–Low and Low–High configurations cap-
ture spatial outliers whose local trajectories diverge from those of the surrounding
municipalities. Overall, the evidence suggests that resilience dynamics in Italy evolve
through interconnected spatial systems rather than isolated municipal changes.

∆ SGI (2022–2010) LISA Clusters

Fig. 4: Spatial variation and local spatial autocorrelation of the Social Growth Index
(SGI) at the municipal level. The left panel reports the change in SGI deciles between
2010 and 2022 (∆SGI), where red shades indicate a shift toward lower resilience
deciles (worsening conditions) and green shades denote movement toward higher
resilience deciles (improvement). The right panel displays the corresponding LISA
clusters of spatial association (Anselin, 1995). Low–Low clusters identify neighbouring
municipalities jointly experiencing significant declines in resilience, while High–High
clusters highlight areas of shared improvement. High–Low and Low–High configura-
tions indicate spatial outliers, where local dynamics differ from those of surrounding
municipalities.

4.1 Comparison with the Municipal Fragility Index (IFC)

To assess the interpretative consistency of the SGI, we compare it with the Municipal
Fragility Index (IFC) developed by ISTAT, which is available for the years 2018, 2019,
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and 2021. Figure 5 displays the decile maps of both SGI and IFC, with more resilient
areas represented in green and more fragile areas in red.

The IFC measures municipal fragility: higher values indicate higher fragility, and
the index is provided in deciles. The first decile, which includes the lowest 10% of IFC
values, corresponds to the municipalities that are least fragile, shown in dark green
in Figure 5. Conversely, the SGI is a measure of resilience: higher SGI values indicate
higher municipal resilience. For comparability, we also use a decile representation. In
this case, the first decile, which includes the lowest 10% of SGI values, identifies the
least resilient municipalities, highlighted in dark red in Figure 5.

Taken together, the two indices offer complementary perspectives on territorial con-
ditions. The SGI captures the intensity and balance of local economic and demographic
structures, whereas the IFC reflects structural vulnerabilities and socio-demographic
weaknesses. A consistent spatial pattern emerges from the comparison.

Social Growth Index and Municipal Fragility Index

SGI 2018 IFC 2018

Fig. 5: Spatial comparison between SGI and IFC for 2018. Northern and Central Italy
exhibit higher resilience, whereas Southern regions display lower resilience.

Indeed, the spatial comparison highlights a strong concordance between the SGI
and IFC representations of Italian territorial conditions. Both measures consistently
identify the same macro-patterns: municipalities in Lombardy, Emilia–Romagna, and
Veneto show the highest resilience levels, while Southern regions, inland Sardinia,
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and parts of Sicily display lower resilience. These results confirm the persistence of
long-standing socio-economic disparities across Italian territories.

Fig. 6: Correlation matrix between the SGI deciles and the IFC deciles for the years
2018–2021. The IFC series is available only for 2018, 2019, and 2021. The highlighted
block shows the cross-index correlation (r ≈ −0.6), indicating a significant negative
relationship between the two measures of resilience.

The correlation matrix in Figure 6, derived from decile values for both SGI and IFC,
further supports the agreement between the two indices. Both indices exhibit strong
temporal stability, with intra-index correlations exceeding 0.9. Moreover, consistent
cross-index correlations emerge. When computing correlations across deciles, values
around −0.6 are obtained, as expected given that the SGI measures resilience and
the IFC measures fragility. All pairwise correlations are significant at the 0.001 level,
confirming that the observed associations are robust and unlikely to occur by chance.

Overall, these findings indicate that the SGI provides a coherent and synergic
representation of territorial well-being within the Italian context.

5 Discussion and Conclusions

This study introduced an integrated framework for assessing socioeconomic resilience
at the municipal level across Italy, combining spatial statistical modeling with multi-
criteria aggregation methods. The proposed approach leverage on Fixed Rank Kriging,
used for the spatial downscaling of GDP, and the Copeland ranking method, to syn-
thesize multiple indicators into a coherent and interpretable ordinal measure. Through
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this integration, the study addresses one of the main challenges in resilience anal-
ysis—namely, the lack of harmonized, fine-grained data capable of reflecting both
spatial dependence and multidimensional socioeconomic structures. The resulting
Social Growth Index (SGI) provides a synthetic, spatially consistent representation
of territorial resilience, capturing how economic performance, demographic vitality,
and individual prosperity jointly contribute to a territory’s capacity to adapt and sus-
tain growth over time. By leveraging FRK’s ability to infer local economic patterns
from aggregated data and Copeland’s transparent ranking mechanism, the SGI estab-
lishes a reproducible and policy-relevant framework for comparing resilience across
municipalities and tracking its evolution within broader regional systems.

The results revealed a persistent spatial divide in resilience across Italy. Northern
and Central municipalities consistently exhibit higher SGI scores, reflecting diversified
and productive economies, whereas Southern regions, parts of Sicily, and inland Sar-
dinia remain characterized by lower resilience levels. Temporal comparisons between
2010 and 2022 confirmed both the structural persistence of resilient urban and indus-
trial areas and localized improvements around regional capitals and medium-sized
urban systems.

The comparison with the Municipal Fragility Index IFC supported the ability of
SGI to depict municipalities resilience. Spatial maps and correlation analysis showed
how SGI is a parsimonious yet capable measure of territorial well-being. Whereas the
IFC emphasizes vulnerability and socio-demographic weakness, the SGI highlights
local economic and demographic strengths, providing a forward-looking measure of
growth potential and adaptive capacity. Moreover, unlike the IFC—which is currently
available only for three cross-sections (2018, 2019, and 2021)—the SGI can be com-
puted for the entire 2010–2022 period at the municipal level. Its construction relies
exclusively on harmonized variables (GDP, GDP per capita, and population) that
are systematically released by Eurostat and ISTAT, making the index replicable and
easily extendable to other spatial contexts. In principle, the same methodological
framework could be applied to the European scale, using Eurostat regional accounts
(GDP at NUTS-2 and NUTS-3 levels) as the upper-layer observations for downscaling
and local resilience assessment.

Despite its robustness and reproducibility, the proposed framework presents some
notable limitations. The main constraint lies in the ordinal nature of the SGI: in fact,
it allows for consistent comparisons of positions between territories and years, but
not for the direct measurement of how much resilience changes over time in absolute
terms. This limits the possibility of quantifying temporal variations in resilience
intensity and of expressing them as pure numerical differences.

Moreover, while the spatial disaggregation of GDP through FRK improves the
territorial granularity of economic information, it currently relies on year-by-year esti-
mations. Future developments could extend this approach toward a spatio-temporal
FRK model, allowing for the joint estimation of GDP across both space and time and
a more coherent reconstruction of resilience trajectories.

Overall, the Social Growth Index provides a robust and interpretable framework
for monitoring territorial resilience, bridging economic and demographic dimensions
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within a unified spatial model. Its consistency with national fragility measures sug-
gests that the SGI can serve as a valuable complement for public policy evaluation,
regional planning, and the allocation of development resources. Further research will
integrate additional drivers, such as employment, innovation, or environmental sus-
tainability, and explore advanced frameworks to enhance the temporal consistency and
interpretability of resilience assessments.
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Martin, R.L.: Regional economic resilience and recessionary shocks: The role of eco-
nomic structure and policy. Cambridge Journal of Regions, Economy and Society
3(1), 27–44 (2010)

20

https://ec.europa.eu/eurostat/statistics-explained/index.php/Glossary:GDP_per_capita_in_purchasing_power_standards
https://ec.europa.eu/eurostat/statistics-explained/index.php/Glossary:GDP_per_capita_in_purchasing_power_standards
https://www.imf.org/external/pubs/ft/fandd/basics/gdp.htm
https://www.imf.org/external/pubs/ft/fandd/basics/gdp.htm
https://www.imf.org/en/Publications/fandd/issues/Series/Back-to-Basics/gross-domestic-product-GDP
https://www.imf.org/en/Publications/fandd/issues/Series/Back-to-Basics/gross-domestic-product-GDP
https://www.istat.it/comunicato-stampa/indice-di-fragilita-comunale-ifc/
https://www.istat.it/comunicato-stampa/indice-di-fragilita-comunale-ifc/


MEF: Banche dati e statistiche fiscali comunali. https://www1.finanze.gov.it/
finanze3/analisi stat/index.php. Dipartimento delle Finanze, Open Data (2025)

OECD: Economic Resilience in OECD Regions. Organisation for Economic Co-
operation and Development, Paris (2014)

OECD: Measuring Regional and Local Well-being for Policy Making. OECD Publish-
ing, Paris (2014). Discusses challenges in harmonising data across territorial levels
and time for regional well-being indicators.

OECD: How’s Life? 2020: Measuring Well-being. OECD Publishing, Paris (2020)

OECD: OECD Regions and Cities at a Glance 2021. OECD Publishing, Paris (2021)

OECD: Demographic Change and Regional Resilience. OECD Publishing, Paris
(2023). Accessed: 2025-09-25

Peacock, W.G., et al.: Advancing the resilience of coastal localities: Developing, imple-
menting, and sustaining the use of coastal resilience indicators: A final report.
Hazard Reduction and Recovery Center, Texas A&M University (2010)

Pendall, R., Foster, K.A., Cowell, M.: Resilience and regions: Building understanding
of the metaphor. Cambridge Journal of Regions, Economy and Society 3(1), 71–84
(2010)

Rose, A., Krausmann, E.: An economic framework for the development of a resilience
index for business recovery. International Journal of Disaster Risk Reduction 5,
73–83 (2013)

Sainsbury-Dale, M., Zammit-Mangion, A., Cressie, N.: Modeling Big, Heterogeneous,
Non-Gaussian Spatial and Spatio-Temporal Data Using FRK. Journal of Statistical
Software 108(10), 1–39 (2024)

Saari, D.G., Merlin, V.R.: The copeland method: I. relationships and the dictionary.
Economic Theory 8(1), 51–76 (1996)

Simmie, J., Martin, R.: The economic resilience of regions: towards an evolutionary
approach. Cambridge Journal of Regions, Economy and Society 3(1), 27–43 (2010)

UN-Habitat: World Cities Report 2022: Envisaging the Future of Cities. https://
unhabitat.org/wcr/. Accessed: 2025-09-25 (2022)

United Nations, Department of Economic and Social Affairs, Population Divi-
sion: World population prospects 2022. Technical report, United Nations (2022).
Accessed: 2025-09-25

United Nations Development Programme: Human development report 2023/2024 —
technical notes. Technical report, United Nations Development Programme (2024).

21

https://www1.finanze.gov.it/finanze3/analisi_stat/index.php
https://www1.finanze.gov.it/finanze3/analisi_stat/index.php
https://unhabitat.org/wcr/
https://unhabitat.org/wcr/


Accessed: 2025-09-25

World Bank: GDP per capita (current US$) — World Development Indicators. https:
//data.worldbank.org/indicator/NY.GDP.PCAP.CD. Accessed: 2025-09-25 (2024)

Zammit-Mangion, A., Cressie, N.: FRK: An R package for spatial and spatio-temporal
prediction with large datasets. Journal of Statistical Software 98(4), 1–48 (2021)

22

https://data.worldbank.org/indicator/NY.GDP.PCAP.CD
https://data.worldbank.org/indicator/NY.GDP.PCAP.CD


copeland_decile_2010_2022 Click here to access/download;Figure;copeland_decile_2010_2022.png

https://www2.cloud.editorialmanager.com/soci/download.aspx?id=416586&guid=6e4970a4-5882-43bc-ab22-1ead2173783c&scheme=1
https://www2.cloud.editorialmanager.com/soci/download.aspx?id=416586&guid=6e4970a4-5882-43bc-ab22-1ead2173783c&scheme=1


frk-hierarchy Click here to access/download;Figure;frk-hierarchy.png

https://www2.cloud.editorialmanager.com/soci/download.aspx?id=416587&guid=04f8b273-f151-4cd3-975e-b05098f20008&scheme=1
https://www2.cloud.editorialmanager.com/soci/download.aspx?id=416587&guid=04f8b273-f151-4cd3-975e-b05098f20008&scheme=1


gdp_density_maps Click here to access/download;Figure;gdp_density_maps.png

https://www2.cloud.editorialmanager.com/soci/download.aspx?id=416588&guid=cab14762-e8e2-4170-827e-5df09e03b2ba&scheme=1
https://www2.cloud.editorialmanager.com/soci/download.aspx?id=416588&guid=cab14762-e8e2-4170-827e-5df09e03b2ba&scheme=1


gdp_nominal_map Click here to access/download;Figure;gdp_nominal_map.png

https://www2.cloud.editorialmanager.com/soci/download.aspx?id=416589&guid=50e4701e-2c04-422f-8a97-b7b22631c416&scheme=1
https://www2.cloud.editorialmanager.com/soci/download.aspx?id=416589&guid=50e4701e-2c04-422f-8a97-b7b22631c416&scheme=1


mappe_sgi_ifc_2018 Click here to access/download;Figure;mappe_sgi_ifc_2018.png

https://www2.cloud.editorialmanager.com/soci/download.aspx?id=416590&guid=013a2405-90a6-42e7-a0bc-074ef8f8ed0a&scheme=1
https://www2.cloud.editorialmanager.com/soci/download.aspx?id=416590&guid=013a2405-90a6-42e7-a0bc-074ef8f8ed0a&scheme=1


matrice_correlazione Click here to access/download;Figure;matrice_correlazione.png

https://www2.cloud.editorialmanager.com/soci/download.aspx?id=416591&guid=497d4040-af4b-47f1-9591-64d04a3ced24&scheme=1
https://www2.cloud.editorialmanager.com/soci/download.aspx?id=416591&guid=497d4040-af4b-47f1-9591-64d04a3ced24&scheme=1


sgi_delta_lisa_side_by_side Click here to access/download;Figure;sgi_delta_lisa_side_by_side.png

https://www2.cloud.editorialmanager.com/soci/download.aspx?id=416592&guid=89ec6f64-8ec4-4c2e-9db7-c26061f6084f&scheme=1
https://www2.cloud.editorialmanager.com/soci/download.aspx?id=416592&guid=89ec6f64-8ec4-4c2e-9db7-c26061f6084f&scheme=1


  

manuscript LaTeX

Click here to access/download
Attachment to Manuscript

manuscript.tex

https://www2.cloud.editorialmanager.com/soci/download.aspx?id=416645&guid=c0333d1a-cb5f-4f3b-a653-ee208d1e16ed&scheme=1


MOX Technical Reports, last issues

Dipartimento di Matematica

Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

Greco, M.; Milan, G.; Ieva, F.; Secchi, P.

The Social Growth Index: Measuring Socioeconomic Resilience at the Municipal Level in Italy

69/2025 Marino, F.; Guagliardi, O.; Di Stazio, F.; Mazza, E.; Paganoni, A.M.; Tanelli, M.

Measuring Academic Stress and Well-Being in Higher Education: A Psychometric Study

68/2025 Leimer Saglio, C. B.; Corti, M.; Pagani, S.; Antonietti, P. F.

A novel mathematical and computational framework of amyloid-beta triggered seizure dynamics

in Alzheimer's disease

Leimer Saglio, C. B.; Corti, M.; Pagani, S.; Antonietti, P. F.

A novel mathematical and computational framework of amyloid-beta triggered seizure dynamics

in Alzheimer's disease

67/2025 Antonietti, P.F.; Corti, M.; Gómez S.; Perugia, I.

Structure-preserving local discontinuous Galerkin discretization of conformational conversion

systems

66/2025 Speroni, G.; Mondini, N.; Ferro, N.; Perotto, S.

A topology optimization framework for scaffold design in soilless cultivation

65/2025 Pottier, A.; Gelardi, F.; Larcher, A.; Capitanio, U.; Rainone, P.; Moresco, R.M.; Tenace, N.;

Colecchia, M.; Grassi, S.; Ponzoni, M.; Chiti, A.; Cavinato, L.

MOSAIK: A computational framework for theranostic digital twin in renal cell carcinoma

64/2025 Celora, S.; Tonini, A.; Regazzoni, F.; Dede', L. Parati, G.; Quarteroni, A.

Cardiocirculatory Computational Models for the Study of Hypertension

63/2025 Panzeri, S.; Clemente, A.; Arnone, E.; Mateu, J.; Sangalli, L.M.

Spatio-Temporal Intensity Estimation for Inhomogeneous Poisson Point Processes on Linear

Networks: A Roughness Penalty Method

62/2025 Rigamonti, V.; Torri, V.; Morris, S. K.; Ieva, F.; Giaquinto, C.; Donà, D.; Di Chiara, C.;

Cantarutti, A.; CARICE study group

Real-World Effectiveness of Influenza Vaccination in Preventing Influenza and Influenza-Like

Illness in Children 


	qmox70-copertina
	mox-2025112494959
	qmox70-terza_di_copertina



