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ABSTRACT

This study employs multilevel propensity score techniques in an innovative analy-
sis pipeline to assess the impact of hybrid teaching – a blend of face-to-face and
online learning – on student performance within engineering programs at Politec-
nico di Milano. By analyzing students’ credits earned and grade point average, the
investigation compares outcomes of students engaged in hybrid teaching against
those solely in face-to-face instruction that precedes the Covid-19 pandemic. Tai-
lored multilevel models for earned credits and grade point averages are fitted onto
meticulously constructed dataframes, e↵ectively minimizing potential biases stem-
ming from variables such as gender, age at career initiation, previous academic track,
admission test scores, and student origins across the two groups. The methodology
accounts for variations across distinct educational programs and investigates dis-
parities among them. Our findings suggest marginal overall disparities in student
performance, indicating, on average, a subtle inclination toward a modest rise in
earned credits and a slight decrease in grade point averages among those exposed to
hybrid teaching. The use of multilevel models to analyze data within the same in-
stitution revealed that the impact of hybrid teaching on students’ performances can
vary significantly across di↵erent engineering programs, providing valuable insights
into its e↵ectiveness in diverse educational contexts.

Abbreviations: PS, Propensity Score; EP, Engineering Program; PoliMi, Politec-
nico di Milano
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1. Introduction

The implementation of hybrid teaching (Linder, 2017; Miller, Sellnow, & Strawser,
2021), allowing students flexibility in attending either face-to-face or online classes,
has gained significant prevalence in educational institutions. This trend is especially
notable in response to the Covid-19 pandemic that broke out in early 2020 (Desh-
mukh, 2021; Elkhatat & Al-Muhtaseb, 2021). The literature reports various benefits
of hybrid teaching, including increased student engagement and improved learning
performance. According to Shehzadi et al. (2021), a notable degree of innovation in
e-learning significantly enhances both students’ overall satisfaction and the univer-
sity’s brand image. Hybrid teaching o↵ers greater flexibility in attending lessons and
accessing courses, allowing more students to benefit from the same resources and
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catering to a wider diversity of students, including working adults, by providing en-
hanced flexibility in scheduling (Beatty, 2019; K. C. Li, Wong, Kwan, Wu, & Cheung,
2022; Raes, Detienne, Windey, & Depaepe, 2020; Raes, Vanneste, et al., 2020). On
the other hand, Sarno (2020) outlines the potential of remote learning to exacerbate
educational inequalities, particularly for individuals lacking digital devices or internet
access. Additionally, Lechner et al. (2020) emphasizes the adverse impact of cam-
pus closures on students’ stress levels, leading to an increase in alcohol consumption.
Feedback from academics regarding reduced motivation, engagement, and interaction
among specific students attending online classes underscores the important role of
self-discipline within the hybrid teaching area (Kohnke & Moorhouse, 2021; K. C. Li
et al., 2022). Although these innovative teaching methods have ensured uninterrupted
education during the pandemic, a debate persists regarding their pros and cons when
compared to conventional face-to-face classroom lectures. Understanding the impact
of hybrid teaching on student performance holds significant importance for educa-
tional institutions, as it guides informed decisions regarding its implementation and
e↵ectiveness.

The main objective of this paper is a comprehensive assessment of the impact of
hybrid teaching on the academic performance of first-semester bachelor’s degree engi-
neering students at Politecnico di Milano (PoliMi). By quantifying students’ academic
achievements in terms of credits earned within the European Credit Transfer and Ac-
cumulation System (ECTS) and Grade Point Average (GPA), we aim to compare the
academic performance of students who experience hybrid teaching1 with those who ex-
clusively receive face-to-face instruction2. Additionally, our examination encompasses
information related to Engineering Programs (EPs) in which students are enrolled.

This study builds upon two critical findings in the existing literature. First, as
highlighted in Masci, Cannistrà, and Mussida (2023), the first semester of a student’s
academic career can be highly informative and predictive of their ultimate success at
university. Focusing on the first semester of the first academic year allows us to gain a
deeper understanding of students’ performance at the beginning of their careers, o↵er-
ing valuable insights into their future academic performance. Furthermore, research by
Cannistrà, Masci, Ieva, Agasisti, and Paganoni (2022) and Masci, Ieva, and Paganoni
(2022) demonstrated that the dynamics among EPs can vary significantly, emphasiz-
ing the need to incorporate this variability in our analysis. Assessing the e↵ectiveness
of hybrid teaching across various EPs provides valuable insights for shaping future
educational practices. Moreover, this analysis holds particular significance in light of
the impact of the dropout rate on the Italian Higher Education system, as highlighted
in previous studies (Bacci, Bartolucci, Grilli, & Rampichini, 2017; OECD, 2016). Our
evaluation of academic performance during this critical period, comparing face-to-face
and hybrid teaching, will help identify the most e↵ective teaching methods and inform
strategies to reduce dropout rates.

To mitigate potential confounding bias inherent in nonrandomized observational
data (Austin, 2011) as the administrative records of PoliMi, given the impractical-
ity (and ethical considerations) of randomly allocating students to hybrid teaching,
we employ Propensity Score (PS) weighting and matching techniques within a mul-
tilevel framework (Arpino & Cannas, 2016; Arpino & Mealli, 2011; Chang & Stuart,
2022; F. Li, Zaslavsky, & Landrum, 2013; Rosenbaum & Rubin, 1983). Specifically,
we propose a method utilizing multilevel PS weighting to assess the impact of hybrid

1
Referred to as the treated group.

2
Referred to as the control group.
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teaching on the performance of students attending di↵erent EPs, investigating dis-
parities among them. Consequently, we establish two distinct mixed models for the
outcomes ECTS and GPA. These models are fitted to dataframes in which the con-
founding bias introduced by variables like gender, age at career start, previous study
type and results, admission test scores, and student origins has been mitigated. This
is achieved by creating more comparable groups between treated and control subjects.

Acknowledging the cluster structure is widely recognized in the literature as essen-
tial for mitigating bias, regardless of the method employed for computing propensity
scores. Theoretical literature, primarily prevalent in the medical field, consistently ad-
vocates for the incorporation of cluster information both in propensity score estimation
and outcome analysis, often using multilevel models (Arpino & Cannas, 2016; Arpino
& Mealli, 2011; Chang & Stuart, 2022; F. Li et al., 2013).

Several studies have investigated the fluctuations in students’ academic performance
within higher education during the Covid-19 pandemic emergency. Positive changes
were observed in Spain (Gonzalez et al., 2020; Iglesias-Pradas, Hernández-Garćıa,
Chaparro-Peláez, & Prieto, 2021), Germany (Hansen, Struth, Thon, & Umbach, 2021),
Turkey (Yakar, 2021), the US (Supriya et al., 2021), and Australia (Loton, Parker,
Stein, & Gauci, 2020). Conversely, no variations were noted in Belgium (Blondeel,
Everaert, & Opdecam, 2021), Egypt (El Said, 2021), and another US study (Kronenfeld
et al., 2021). Meanwhile, negative changes were documented in Italy (De Paola, Gioia,
& Scoppa, 2022), Malaysia (Tan, 2020), and in other German (Witt, Klumpp, & Beyer,
2021) and US (Bird, Castleman, & Lohner, 2022; Orlov et al., 2021) studies. However,
none of these studies account for the hierarchical structure stemming from EPs within
universities, and none of them consider the aftermath of the pandemic waves, where
a new balance between online and face-to-face instruction was established.

In summary, this study adds to the current body of literature by presenting a
comprehensive analytical approach that ultimately furnishes empirical findings and
quantifies the influence of hybrid teaching on student performance within di↵erent
EPs of the same institution (PoliMi, Italy). Through the application of statistical
methodologies such as propensity score techniques and incorporation of the clustering
structure generated by the EPs, our goal is to provide valuable insights that can
guide decision-making and enhance tailored educational strategies in a time marked
by dynamic shifts in teaching methodologies.

The structure of the paper is as follows: We begin by describing the data and
the variables of interest (Section 2). We then outline the methodology, including the
estimation of propensity scores, PS weighting, and PS matching techniques within a
multilevel setting (Section 3). Next, we present the results obtained from the analysis,
focusing on the estimated average controlled di↵erences and the covariate balance
achieved through matching and weighting procedures (Section 4). Finally, we discuss
the implications of our findings and conclude with recommendations for future research
and educational practice (Section 5).

2. Dataset description

The PoliMi dataset contains administrative details regarding the academic careers of
students who were enrolled in Bachelor’s degree programs in Engineering at PoliMi
between the academic years of 2010/2011 and 2021/2022 (12 years span period). The
university systematically gathers data on students’ personal characteristics, such as
gender, age, residency, citizenship, the fee bracket they belong to - which serves as
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an indicator of socio-economic status - and which Engineering Program (EP) is at-
tended. For each student, the ECTS and GPA obtained in each semester are recorded.
Additionally, the PoliMi collects information on students’ educational background, in-
cluding their high school track, final grades, and performance on the admission test,
representing their first academic achievement3. Due to privacy considerations, we are
unable to disclose the specific names of the EPs and can only refer to them by their
anonymized codes (EP01-EP19).

Our primary interest lies in capturing the e↵ects of hybrid teaching on the ECTS
and GPA (outcome variables) earned by students, across di↵erent EPs. Balancing
the treated and control groups in terms of students characteristics will help mitigate
potential biases, attain more accurate estimates, and delve deeper into the dispari-
ties among the various EPs. In this perspective, a preliminary analysis revealed both
positive and negative e↵ects of hybrid teaching across di↵erent EPs.

Our analysis starts by narrowing down the time frame of the PoliMi dataset.
Since students who received hybrid teaching are limited to those enrolled in the first
semesters of the academic years 2020/2021 and 2021/2022, we have limited cases. To
ensure a balanced representation of students who received hybrid teaching and those
who exclusively had in-presence teaching, we opt to restrict the analysis to the aca-
demic years ranging from 2017/2018 to 2021/2022, encompassing both endpoints. This
decision is aimed at ensuring a fair and balanced comparison. By doing so, we also
strive to minimize the potential influence of hidden unmeasured confounding variables,
such as teacher replacements or changings in the study programs, thus enhancing the
validity of our findings. The selected dataset includes a cohort of 32411 students who
were enrolled between the academic years 2017/2018 and 2021/2022. Within this co-
hort, we create the binary variable hybrid teaching, which indicates the type of
teaching delivered in the first semester (i.e., the treatment), standing on the year of
enrollment of each student.

The comprehensive list and description of the variables used in the analysis can
be found in Table 1. We denote with “pre-treatment covariates” the student’s level
information collected at the beginning of his/her academic career.

Several pre-processing steps are also performed. Firstly, only students who remained
enrolled beyond the initial 60 days are included in the analysis (95.47% of the total).
This exclusion criterion accounts for cases where students may have temporarily en-
rolled at PoliMi while awaiting admission to other university programs or promptly
decided to withdraw due to mismatched expectations. Additionally, to address varia-
tions in grading systems for students who took their high school diploma before 1999,
the highschool grade variable is rescaled to a maximum value of 100, ensuring con-
sistency across all observations. Students with a missing value in the admission score
are excluded (3.7%).

Furthermore, the three continuous variables admission score,
career admission age and highschool grade are rescaled to mean zero and
standard deviation 1.

The pre-processed dataset contains 29745 students, among which 12039 received
treatment hybrid teaching (i.e., the 40.47%). Descriptive statistics for outcomes and
pre-treatment covariates after data pre-processing are reported in Table 2. The table
provides separate statistics for the two categories of the hybrid teaching variable.
For a more detailed inspection, Figures 1-8 in Supplementary Materials allow for an
examination of the distributions of PoliMi’s variables across the di↵erent EPs.

3
Personal identifiers were removed by the data collectors to ensure anonymity in the dataset.

4



3. Methods

This section briefly reviews the fundamentals of propensity score within a multilevel
framework (Subsection 3.1). The sequential steps and statistical models employed in
this study are described in the so-called pipeline of the analysis (Subsection 3.2).

3.1. Basics of Propensity Score within a Multilevel Setting

Within a two-level framework, let k = 1, ..., nh be the units within the h-th cluster, with
h = 1, ..., H and

P
h nh = n. Let Uhk be a vector of unit-level observed covariates, Vh

a vector of cluster-level observed covariates (the index k in the subscript is omitted
since V is constant within clusters) and define Xhk = (Uhk,Vh). Let Yhk be the
observed outcome for each unit k in cluster h and Zhk 2 {0, 1} the binary variable
indicating whether unit k in cluster h is assigned to the treatment (Zhk = 1) or control
group (Zhk = 0).

Two di↵erent approaches can be employed when dealing with nonrandomized ob-
servational data: controlled descriptive comparison and causal comparisons (Leite et
al., 2015; F. Li et al., 2013). In the first case, the assignment is to a nonmanipulable
state defining membership to treated and control groups, and the objective is an un-
confounded comparison of observed outcomes between the two groups4. In the second
case, the assignment is to a potentially manipulable intervention, and the objective is
to estimate a causal e↵ect by comparing potential outcomes under treatment versus
control in a common set of units5.

Within a descriptive comparison, which is the most suitable approach for our study,
the population Average Controlled Di↵erence (ACD) is defined6 as

⇡ACD = EX[E(Yhk|Xhk, Zhk = 1)� E(Yhk|Xhk, Zhk = 0)] (1)

where the outer expectation is with respect to the marginal distribution of X in the
combined population7. The Propensity Score (PS) is defined as

ehk = e(Xhk) := Pr(Zhk = 1|Xhk) 8h, k . (2)

The overlap assumption 0 < e(X) < 1 is required and means that the study population
is restricted to values of covariates for which there can be both control and treated
units. The utility of the PS lies in the fact that it is a balancing score (i.e., the
distribution of the considered pre-treatment covariates, conditional on the PS, are

4
Examples include comparing outcomes among di↵erent racial populations or patients treated in di↵erent

years, as in the case of the PoliMi dataset.

5
Examples include evaluating the treatment e↵ect of a drug, therapy, or policy on specific outcomes.

6
We carry the pedices h and k in the notation to underline the hierarchical structure, even though not strictly

necessary.

7
For completeness, we precise that for a causal comparison, the population Average Treatment E↵ect (ATE)

can be defined as ⇡ATE = E[Yhk(1)� Yhk(0)] where Yhk(0) and Yhk(1) are the unit’s two potential outcomes,

defined under the Stable Unit Treatment Value Assumption. Under unconfoundedness, i.e., no unmeasured

confounders, (Yhk(0), Yhk(1)) ? Zhk |Xhk, we can further assume ⇡ACD = ⇡ATE.
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balanced across treatment groups (Rosenbaum & Rubin, 1983)) and the following
holds

E

Zhk Yhk

ehk
� (1� Zhk)Yhk

1� ehk

�
= ⇡ACD . (3)

Thus the ACD can be estimated given the PS estimation. This will be addressed in
the next sections.

3.2. Pipeline of the Analysis

The pipeline of the analysis, graphically displayed in Figure 1, is the following: after
a preliminary analysis (Subsection 3.2.1), we estimate the PS for clustered data (Sub-
section 3.2.2), we perform the PS weighting and estimate the ACD (3.2.3) and, lastly,
we implement the PS matching and outcome analysis (3.2.4).

3.2.1. Preliminary Analysis

As an initial step, we identify both individual- and cluster-level potential confounding
variables that might introduce bias to the treatment e↵ect, to ensure a robust and
accurate data comparison (Thoemmes & West, 2011). Then, we assess the degree of
bias between the two groups (treated vs control). To this aim, we perform (i) an
explorative analysis by carefully checking whether the distributions of the identified
potential confounding covariates display significant di↵erences across the two groups
over the clusters by making use of boxplots and stacked barplots. To quantify the
bias, we employ (ii) the Standardized Mean Di↵erence (SMD) (Austin, 2011)8. The
SMD quantifies the di↵erence between two group means for one or more variables,
serving as a balance measure for individual covariates. Its standardized nature allows
for comparisons across variables with varying scales.

A specific covariate is considered imbalanced between the treated and control groups
if its SMD exceeds 0.1. This threshold serves as a useful indicator for identifying
variables that might introduce bias and compromise the comparability between the
two groups.

3.2.2. PS Estimation for Clustered Data

PS can be estimated using various statistical methods (Thoemmes & West, 2011). In
this study, we focus on the logistic regression model and, more specifically, on its lin-
ear mixed model extension. We examine a Generalised Linear Mixed Model (GLMM),
also referred in the literature as Random-e↵ects Model, for estimating the probability
of being treated given the identified confounders, which incorporates a prior normal
distribution on the cluster-specific e↵ect (i.e., the random intercept). The model for-
mulation for the GLMM is as follows:

logit(ehk) = ⌘h +Uhk� +Vh� (4)

where ⌘h ⇠ N (0,�2
⌘) is the random intercept, and � and � are vectors of coe�cients

for the individual- and cluster-level covariates, respectively. The PS definition in Eq.
(2) becomes ehk = e(Xhk) := Pr(Zhk = 1|Xhk, ⌘h).

8
Computed through the R package tableone (Yoshida, Bohn, & Yoshida, 2020).
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While some studies propose the use of a Fixed-e↵ects Model (Arpino & Cannas,
2016; Arpino & Mealli, 2011; Chang & Stuart, 2022; F. Li et al., 2013), which involves
introducing fixed cluster-specific intercepts, we deem it inappropriate for two main
reasons. First and foremost, the fixed-e↵ects approach assumes all observations to
be independent and, given the enrollments of students within di↵erent EPs, this is
hardly verified. Second, this approach would imply a large number of parameters to
be estimated, encompassing the 19 dummies that would identify the EPs.Estimating
such a large number of parameters would pose challenges and statistical instability.
Therefore, we choose to address the GLMM described earlier, which is better suited
to address the hierarchical structure of the data and capture variations across the
clusters.

For a benchmark analysis, we also take into account a more naive Marginal Logis-
tic Model (MLM) or Single-level Model, where all units are pooled before parameter
estimation, ignoring the clustering structure. In fact, it is well acknowledged in the
literature that neglecting the hierarchical structure can lead to increasingly biased
estimates of the PSs within clusters. This bias arises because all estimated PSs are
derived from the same model. As a result, achieving covariate balance within clusters
using a MLM becomes challenging, and residual bias in treatment e↵ects is likely to
persist (Thoemmes & West, 2011). By comparing the outcomes obtained under both
approaches, we can assess the impact of accounting for clustering e↵ects on the esti-
mation of PSs and subsequent analysis in terms of bias reduction. This comparison
will provide valuable insights into the presence and extent of bias when the hierarchi-
cal structure is not considered, highlighting the necessity of incorporating it to obtain
more reliable and accurate treatment e↵ect estimates. The model formulation for the
MLM is as follows:

logit(ehk) = ⌘ +Uhk� +Vh� (5)

where ⌘ is an intercept and, as before, � and � are vectors of coe�cients for the
individual- and cluster-level covariates, respectively.

3.2.3. PS Weighting and the ACD Estimation

Weighting is a statistical technique that involves assigning a di↵erent weight to
each observation in a dataset, typically computed using the PSs. We make use of
Horvitz–Thompson (HT) inverse-probability weights to adjust for confounding bias,
defined as whk = 1

ehk
for units with Thk = 1 and whk = 1

1�ehk
for units with Thk = 0.

Within our multilevel setting, we then compute the population ACD defined in Eq.
(1) by means of nonparametric (i) Marginal and (ii) Clustered Estimators (Hirano,
Imbens, & Ridder, 2003). Specifically,

(i) The Marginal Estimator is computed as the di↵erence of the weighted over-
all means of the outcome between the treatment and control groups, ignoring
clustering:

⇡̂
ma =

P
h,k Zhk Yhk whkP

h,k Zhk whk
�

P
h,k(1� Zhk)Yhk whkP

h,k(1� Zhk)whk
; (6)
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(ii) The Clustered Estimator first estimates the cluster-specific treatment e↵ects as

⇡̂h =

Pnh

k=1
Zhk Yhk whkPnh

k=1
Zhk whk

�
Pnh

k=1
(1� Zhk)Yhk whkPnh

k=1
(1� Zhk)whk

and then computes their weighted average to estimate the overall treatment
e↵ect:

⇡̂
cl =

P
hwh ⇡̂hP
hwh

where wh =
nhX

k=1

whk. (7)

Standard errors of these nonparametric estimators are computed through bootstrap
by resampling the clusters (F. Li et al., 2013). The cluster-specific ⇡̂h are analyzed.

3.2.4. PS Matching and Outcome Analysis

PS matching involves creating sets of matched individuals, consisting of both treated
and control subjects, who have similar PS values. The goal is to balance the distribu-
tion of confounding variables between the treatment and control groups, making them
more comparable.

We perform the PS matching as follows. We focus on the greedy nearest neighbour
matching, which is one of the most common types of matching used (Thoemmes & Kim,
2011; Zakrison, Austin, & McCredie, 2018). This approach involves examining the list
of treated units and selecting the most similar eligible control unit to be paired with
each of them in a “greedy” way (i.e., each pairing is determined without considering
how other units are or will be paired). We set a caliper9 of 0.2. Moreover, we focus on
matching without replacement, meaning that each selected control unit is not returned
to the population before the next selection is made. In this way, we do not introduce
dependence among observations, and weights due to the use of replacement do not
need to be included in the models.

In the multilevel setting, the matching process can be carried out using two dis-
tinct approaches: Within-Cluster (WC) and Across-Clusters (AC). In WC matching,
the matching focuses on units within the same cluster, whereas AC matching involves
matching across the entire sample, regardless of cluster membership10. Given that the
PSs are estimated through a GLMM that considers the hierarchical structure, we opt
for WC matching, which facilitates achieving balance on individual-level covariates
within each cluster. In the comparison scenarios where we employ a MLM for comput-
ing the PS, we utilize AC matching. AC matching necessitates a joint PS estimation
model to ensure the comparability of PSs across clusters. It is essential to note that
while AC matching accomplishes balance across observed covariates within the entire
matched dataset, it might not achieve balance on individual-level covariates within
each cluster (Thoemmes & West, 2011).

After the matching is performed, we proceed with the so-called Outcome Analysis,
in which the balance in the post-matching datasets is assessed through the computa-
tion of the SMDs as explained in Subsection 3.2.1, and two di↵erent mixed models

9
Which means that the closest control unit is selected for each treated unit within a range of 0.2 standard

deviations based on the estimated propensity score and the treated unit is excluded from further analysis if no

suitable control unit is found within this range.

10
The R packageMatching (Sekhon, 2011) o↵ers the functions Match andMatchby for conducting the matching

process.
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for the outcomes are fitted. Specifically, given the hierarchical structure of the PoliMi
dataset described in Section 2, since we are interested in capturing the heterogeneity
of treatment e↵ects across clusters, we allow the slope associated with the treatment
variable to vary across clusters (Chang & Stuart, 2022). The literature suggests that
incorporating the hierarchical structure in either the PS estimation or the outcome
analysis stages can significantly reduce bias and the least bias is reached when in-
corporated in both stages (Chang & Stuart, 2022; F. Li et al., 2013; Su & Cortina,
2009). Since in our analysis we deal with ECTS and GPA, as described in Section 2, we
fit two di↵erent models, one for each outcome. Specifically, the ECTS variable in its
nature does not follow a normal distribution, but rather lends itself to be transformed
into multiple ordered categories. On the other hand, the GPA variable follows a normal
distribution. Thus, for the ordinal outcome variable ECTS, we employ a Cumulative
Link Mixed Model (CLMM), which extends the traditional logistic mixed regression
and captures the cumulative probabilities of each category along the ordered scale
(Christensen, 2018). Instead, for the normally distributed outcome GPA, the Linear
Mixed Model (LMM) is employed (Raudenbush & Bryk, 2002). The CLMM and LMM
formulations are as follows:

(i) Cumulative Link Mixed Model (CLMM). For each level j, j = 1, . . . , J of the
ordinal response Yhk, the cumulative probability of being in level j or lower is
modeled through

P (Yhk  j) = logit(↵j � (⌘h + Zhk⌫h +Uhk� +Vh�)) 8h, k (8)

being ↵j the threshold parameter for category j, ⌘h and ⌫h the random inter-
cept and slope, respectively, with (⌘h, ⌫h)0 ⇠ N (0,⌃⌘⌫), � and � the vectors of
coe�cients for the individual- and cluster-level covariates.

(ii) Linear Mixed Model (LMM). The normal response Yhk is modeled through

Yhk = ⌘h + Zhk⌫h +Uhk� +Vh� + ✏hk (9)

being ⌘h and ⌫h the random intercept and slope, respectively, with (⌘h, ⌫h)0 ⇠
N (0,⌃⌘⌫), � and � the vectors of coe�cients for the individual- and cluster-level
covariates and ✏hk ⇠ N (0, �2✏ ).

For completeness, we perform the whole Outcome Analysis also on the original and
weighted datasets, and we compare the results.

4. Results

This section revisits the pipeline presented in Section 3.2 and discusses the results.

4.1. Preliminary Analysis

In the exploratory analysis, we identify the potential confounding variables, referred to
as pre-treatment covariates in Table 1, by examining their distributions. In Supplemen-
tary Materials, specifically in Figures 3-8, we observe variations in the distributions of
these covariates across di↵erent EPs upon the introduction of hybrid teaching. These
variations manifest as both positive and negative e↵ects or di↵erences in proportions.
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We need to specify that for GPA outcome models we retain only students with GPA
greater than zero. Students with a zero or missing value for GPA, who are the 20.04%
of the sample, are excluded and the numerosity of the PoliMi dataset decreases from
29745 to 23785. The excluded students are the ones whose ECTS value is also zero,
indicating that they have not successfully passed any exams. Thus, from now on, we
deal with two di↵erent dataframes: PoliMi (N=29745) and PoliMi GPA (N=23785).
The PS Estimation, Weighting and Matching will be performed separately on each of
the two dataframes, to ensure a balance in the pre-treatment covariate distribution in
both cases. This careful exclusion is crucial for maintaining the accuracy of the GPA
values and serves to di↵erentiate the two analyses, attributing distinct meanings to
each of them.

We thus compute the SMDs for each variable and for both dataframes, represented in
red in Figure 2 (“Original” is the acronym to be considered in the legend). In both the
cases of PoliMi and PoliMi GPA, the SMD for highschool grade and origins exceeds
0.1. This indicates an imbalance between the treated and control groups concerning
these covariates. Such imbalance can potentially introduce bias when comparing the
groups and addressing it is essential to ensure the validity and reliability of our analysis.

In light of the results obtained from this preliminary analysis and our overarching
goal to bolster the comparability of the two groups across di↵erent EPs by compre-
hensively considering all available student data, we choose to integrate all accessible
covariates in the estimation of the PS.

4.2. PS Estimation for Clustered Data

We estimate the PSs through both the GLMM and the MLM (for comparison) intro-
duced in Section 3.2.2 for both the PoliMi and PoliMi GPA datasets. The estimated
coe�cients are reported in Table 3. The random intercepts obtained through GLMMs
are displayed in Figure 3.

In the last row of Table 3, we report the Variance Partition Coe�cient (VPC)11,
an index commonly computed in the multilevel model framework, to quantify the
portion of the unexplained variability in the response given to the grouping level
(EPs)(Goldstein, Browne, & Rasbash, 2002). Although the calculated proportions are
relatively low, they are not negligible, indicating significant variations in the probabil-
ity of receiving hybrid teaching across EPs. Furthermore, as indicated by the Akaike
Information Criterion (AIC) reported in the penultimate row of Table 3, the GLMM
outperforms the MLM for both PoliMi and PoliMi GPA datasets. This suggests that
a more accurate estimation of the PSs is achieved when considering the hierarchical
structure. All models consistently show that gender, prior educational background,
place of origin, and high school grades exhibit significant associations with the prob-
ability of receiving hybrid teaching. Additionally, for PoliMi GPA, both age and ad-
mission scores are also found to play a role. According to Figure 3, the random inter-
cepts’ ordering and range for the GLMM fitted both on the PoliMi and PoliMi GPA
datasets exhibit similarities. These similarities indicate consistent patterns across both
datasets and o↵er valuable insights into how EPs influence the probability of receiving
treatment (hybrid teaching=1), especially considering that the random intercepts
associated with the EPs span into the [-0.5, 0.5] interval. It’s worth noting that there
are minor discrepancies in the positions of specific EPs between the plots in panels (a)

11
Computed as

�2
⌘

�2
⌘+⇡2/3

, where �2
⌘ is the random intercept variance.
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and (b).
The distributions of the PSs obtained from each of the two models and dataframes

are reported in Figure 4. As expected, the distribution of the propensity scores com-
puted for students with hybrid teaching=0 (in the legend denoted as “delivered
teaching type: face-to-face”) is slightly shifted to the left of 0.5. Notably, in all cases,
there is a small peak shifted to the right, close to 1. This suggests that these students
have a very high propensity for being in the hybrid teaching group, as they actually
do. When a MLM is employed, both the treated and control groups exhibit a higher
peak around 0.5 compared to a smoother peak observed when a GLMM is used. This
discrepancy in peak shape between the two models reflects di↵erences in the estimated
PSs.

4.3. PS Weighting and ACD estimation

The estimation of ACD is performed after calculating the HT inverse-probability
weights using the PSs. The ACD is computed using the formulas in Eq.s (6) and
(7). We recall that for the dataset PoliMi we consider Yhk = ECTShk and for the
dataset PoliMi GPA we consider Yhk = GPAhk.

Table 4 reports the estimated ACDs, together with their standard errors, computed
through bootstrap resampling of the clusters (Chang & Stuart, 2022; F. Li et al., 2013).
Both the marginal and clustered estimators yield similar results, and the choice of the
PS model does not appear to have a substantial impact on the estimated ACDs. The
absolute values of the estimated ACDs are very low, indicating a small impact of hybrid
teaching on the outcomes. Specifically, ACD results indicate a positive e↵ect of hybrid
teaching on the gained ECTS and a negative e↵ect on the GPA. The analysis suggests
that students who experienced hybrid teaching were able to gain approximately 0.2
ECTS more than their counterparts who studied before the introduction of hybrid
teaching, but their GPA was approximately 0.1 points lower. This observation may
be attributed to the possibility that hybrid teaching is e↵ective in helping students
pass their exams but may not significantly contribute to achieve higher academic
results. A more in-depth examination of this result can be conducted across EPs in
Figure 6, which illustrates the clustered estimator ⇡̂h for each dataframe and PS model
employed. The plot reveals substantial heterogeneity across EPs. For instance, in panel
(a), EP11 and EP03 exhibit di↵erent trends compared to EP08 and EP05, while in
panel (b), EP14 shows contrasting patterns to EP07 and EP12. It is noteworthy that
the impact of hybrid teaching appears to vary across di↵erent EPs, suggesting that our
hypothesis, which posits that hybrid teaching is e↵ective in helping students pass their
exams but may not significantly contribute to achieve higher academic results, should
be examined on a case-by-case basis. This indicates that the e↵ect of hybrid teaching
is not consistent across all EPs. Moreover, the di↵erences between the GLMM and
MLM models for PS estimation are minimal when examining ⇡̂h, except for slightly
higher estimates when MLM is used.

Furthermore, SMDs are computed after weighting the dataset through HT inverse
probability weights. Results are displayed in Figure 2 through yellow and green lines
for MLM and GLMM, respectively employed for the estimation of the PSs. In this case,
not all the variables reach a value of SMD lower than 0.1. The SMDs of the most unbal-
anced variables in PoliMi dataset in panel (a), such as highschool grade, origins,
and admission score, decrease after weighting. However, highschool grade remains
above the threshold of 0.1, regardless of the PS estimation model used. In the case
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of PoliMi GPA in panel (b), the SMDs of highschool grade and origins decrease,
while the SMD of previous studies slightly increases, exceeding 0.1. This suggests
that the imbalance has not been adequately corrected.
Given the obtained results, we proceed to the next subsection where we conduct a PS
Matching analysis.

4.4. PS Matching and Outcome models

In this section, we delve into the process of PS Matching. In Figure 2, we visually assess
the changes in the SMDs of the covariates before (red line) and after matching without
replacement (light blue lines, according to whether a GLMM or an MLM was used for
the PS computation). All the variables reach a value of SMD lower than 0.1, meaning
that a good covariate balance in the dataframe is reached and indicating that the
matching procedure e↵ectively reduces bias and enhances the comparability between
the treated and control groups. It is worth noting that despite the use of di↵erent PS
estimation models, the outcomes remain consistent and robust, further supporting the
reliability of these findings. This figure also represents the scenario in which match-
ing with replacement is considered (purple and fuchsia lines for MLM and GLMM,
respectively), which reaches comparable results to the case without replacement.

We proceed by fitting the CLMM and LMM for the outcomes on the matched
datasets without replacement, given that the SMDs results outperform the other
methods and we do not want to introduce dependence among observations through
matching with replacement. We here specify that prior to any analysis involving
the outcomes, GPA is made normally distributed through a univariate Box-Cox
transformation (estimated transformation parameter equal to 0.85, i.e., the ob-
servations are spread). Given that the variable ECTS is not normally distributed,
as shown in panel (a) of Figure 5, the ordinal variable ECTS cat is created by
dividing the continuous variable ECTS into the following four quantile groups:
[0, 9) (N=7738), [9, 21) (N=10094), [21, 29) (N=5751) and [29, 50) (N=6162).
ECTS cat is represented through a bar plot in panel (b) of Figure 5. Thus,
for the CLMM in Eq. (8), we consider Yhk = ECTS cathk and Xhk = Uhk =⇥
admission scorehk, career admission agehk, highschool gradehk, genderhk,

previous studieshk, originshk
⇤
. For the LMM in Eq. (9), we con-

sider Yhk = GPAhk (Box-Cox transformed) and Xhk = Uhk =⇥
1, admission scorehk, career admission agehk, highschool gradehk, genderhk,

previous studieshk, originshk
⇤
.

In Table 5, we present the estimated parameters for the CLMM and LMM fitted
respectively on PoliMi and PoliMi GPA. In both cases, we consider the PSs estimated
through both MLM and GLMM. Firstly, we observe that the AICs are lower when a
GLMM is employed. This consistently suggests that a more accurate fit is achieved
when the hierarchical structure is considered in the computation of the PSs. Moreover,
we report the average random e↵ects variances (µ2

⌘⌫)
12. For the two LMMs for the GPA

we also provide the variance �
2
✏ of ✏hk in Eq. (9) and the Proportion of Variability

explained by Random E↵ects (PVRE)13, which allows to disentangle the variability
between students from that between EPs. In this case, we can conclude that almost

12µ2
⌘⌫ = d11 + 2 d12 hybrid teaching + d22 hybrid teaching2, where ⌃⌘⌫ =


d11 d12
d21 d22

�
is the variance

covariance matrix of the random e↵ects in Eq.s (8) and (9) and the overline stands for the average.

13
PVRE =

µ2
⌘⌫

µ2
⌘⌫+�2✏

.
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the 15% of unexplained variability among students is captured by the random e↵ects,
i.e., a joint e↵ect of the EP (random intercept) and hybrid teaching (random slope).

Concerning the coe�cients, the impacts of admission score, gender=Male,
origins=Foreigner, highschool grade on ECTS cat and GPA are pos-
itive and significant. Viceversa, previous studies=Classical and
origins=Milanese have negative and significant impact on both ECTS cat
and GPA. Moreover, career admission age, previous studies=Others and
previous studies=Technical have negative and significant impact on ECTS cat,
while a positive impact on GPA (all significant except previous studies=Technical).
Neither origins=Offsite nor hybrid teaching are significant.

The latter result should be interpreted in conjunction with the findings presented
in Figure 7. This figure provides a visual representation of the random intercept and
slope estimates for each EP in the outcome models fitted after PS matching with-
out replacement. Interestingly, while hybrid teaching does not emerge as significant
when included in the model as a fixed covariate, di↵erences become evident when it
is analyzed as a random slope, with variations observed across di↵erent EPs. These
models not only enables us to predict student performances, whether in terms of ECTS
or GPA, but they also o↵er valuable insights into the contribution of di↵erent EPs to
these academic outcomes. By including hybrid teaching as a random slope, we can
discern how it interacts with specific EPs, shedding light on whether its e↵ect varies
across programs. This deeper understanding is crucial for the optimization of teaching
methods within specific EPs.

Moreover, if the cluster-specific ⌘̂h and ⌫̂h in Figure 7 are compared to the results
obtained for ⇡̂h in Figure 6, similarities can be observed among ⇡̂h and ⌫h (the random
slope across EPs of hybrid teaching), especially in terms of extreme contributions.
Specifically, for PoliMi dataset and models for ECTS cat (in panel (a) of Figure 6 and
panels (a) and (b) of Figure 7), extreme positive contributions for both ⇡̂h and ⌫h are
EP03, EP06 and EP15, extreme negative contributions are EP05, EP08, EP18, EP14 and
EP12. For PoliMi GPA dataset and models for GPA (in panel (b) of Figure 6 and panels
(c) and (d) of Figure 7), extreme positive contributions for both ⇡̂h and ⌫h are EP09,
EP14 and EP03, extreme negative contributions are EP07 and EP12.

In Supplementary Materials, we report the results obtained from the fit of the
models for outcomes both on the original (Table 1 and Figure 9) and weighted (Table
2 and Figure 10) datasets.

5. Discussion

The objective of this study is to investigate the impact of hybrid teaching on the
academic achievements of engineering students at PoliMi during the first semester
of their first academic year. We aim to quantify this impact while considering the
potential variations across di↵erent programs. To achieve comparability between the
students who received hybrid teaching and those who did not, we employ PS weighting
and matching techniques, extended to account for the hierarchical structure present in
the data given by EPs. Specifically, we compute the PSs for each student, representing
their probability of receiving hybrid teaching, with a multilevel model and we compare
the result with the “baseline” marginal model. We then apply weighting and matching
techniques, the former to weight the dataset accounting for the estimated probabilities
and the latter to form balanced groups by selecting students with similar characteristics
while discarding those who di↵er significantly.

13



Our study o↵ers valuable contributions to the literature. First, it acknowledges the
hierarchical structure stemming from the EPs, a factor often overlooked in prior re-
search, providing a deeper understanding of hybrid teaching’s impact. Second, it places
in the post-pandemic educational landscape, recognizing the evolving balance between
online and face-to-face instruction. Third, it follows an approach that combines both
weighting and matching techniques within multilevel propensity score analysis, o↵er-
ing a comprehensive examination that maximizes the strengths of each method. By
filling these gaps in existing research, our study provides insights into the complexities
of hybrid teaching and serves as a reference for future investigations in the field.

In terms of PSs and the ACD values, the hierarchical and classical frameworks yield
similar results, indicating that taking into account the hierarchical structure does not
significantly alter the estimates. The fact that results remain consistent across frame-
works adds robustness to our findings. Nonetheless, the hierarchical framework allows
us to attribute a random intercept and the estimated ACD to each EP, providing a
more granular understanding of the impact of hybrid teaching within di↵erent aca-
demic contexts and investigating the heterogeneity within the same university. This
information can be valuable for institutions in making informed decisions and tailoring
their educational strategies based on each program’s specific needs and characteris-
tics. In summary, our findings suggest that, after achieving balance between the two
groups, there are minimal di↵erences on average in terms of ECTS and GPA. On av-
erage, students exposed to hybrid teaching tend to show a slight increase in gained
ECTS but a slight decline in GPA. Nonetheless, evidences reveal that these e↵ects
exhibit considerable variation within the university across di↵erent programs. Results
obtained through matching appear more robust than those obtained through weight-
ing, as the standardized mean di↵erences of the covariates between the treated and
control groups are lower after matching. The matching procedure successfully achieves
covariate balance, particularly for variables such as highschool grade and origins.
While hybrid teaching does not exhibit statistical significance when treated as a fixed
covariate in the models for outcomes, its influence becomes conspicuous when analyzed
as a random slope, unveiling variations across distinct programs. These models not
only facilitate the prediction of student performance but they also yield insights into
the unique contributions of di↵erent EPs to these academic outcomes. By integrating
hybrid teaching as a random slope, we gain a deeper understanding of its interac-
tion with specific EPs, shedding light on whether its e↵ects diverge among programs
and holding significant implications for the refinement of tailored teaching approaches
within individual EPs.

The obtained results could be attributed to various social and structural factors. The
introduction of hybrid teaching was a direct response to the unprecedented challenges
posed by the Covid-19 pandemic, requiring significant adaptations in teaching methods
and examination formats. These adaptations may have influenced the learning expe-
rience, including potential factors such as faster-paced lectures, an increased reliance
on slide-based presentations, and modifications to examination procedures aimed at
mitigating concerns about academic integrity, which might have made the exams more
di�cult. These changes, while necessary, could have impacted student performance,
potentially leading to less di�culties for them in passing the exams (which would ex-
plain the positive ACD for the ECTS), while more di�culties in getting higher grades
(which would explain the negative ACD for the GPA).

However, it is important to acknowledge several limitations in our analysis. Firstly,
our models for propensity score estimation do not incorporate EP-level covariates.
The inclusion of such covariates could provide additional insights and potentially
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strengthen the results obtained within the hierarchical framework. Secondly, we do
not account for potential structural di↵erences in the admission tests and high school
final exams across the years, which may influence our findings. Lastly, our study com-
bines data from the academic years 2020/2021 and 2021/2022, despite the potential
di↵erences between these periods due to the evolving nature of educational practices.
Future research could explore these di↵erences more comprehensively to gain a deeper
understanding of the evolving e↵ects of hybrid teaching.

In conclusion, our study reveals that hybrid teaching at Politecnico di Milano, across
various engineering programs, has a limited impact on academic achievements, though
with considerable variability observed among the programs. Utilizing propensity score
weighting and matching techniques, we have identified only marginal disparities in
ECTS and GPA between hybrid and face-to-face teaching cohorts. On average, these
disparities tend to manifest as negative for GPA and positive for the gained ECTS.
These findings provide valuable insights for institutions considering the adoption of
hybrid teaching. It underscores the importance of factoring in elements such as exami-
nation formats and student support mechanisms when transitioning to hybrid teaching
models. Future research can extend our findings by exploring additional variables and
assessing long-term e↵ects.
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Table 1.: An overview of the PoliMi dataset variables included in our analysis.

Variable Description Type

Outcome variables

- ECTS ECTS gained on 1st semester of 1st year Natural number [0, 50]

- GPA Grade average in 1st semester of 1st year Real number [18, 30]

Treatment indicator

- hybrid teaching Binary indicator for the treatment Categorical {0,1}

Pre-treatment covariates

- admission score PoliMi entrance test’s admission score Real number [10, 100]

- career admission age Student’s age at enrollment Natural number [18, 65]

- highschool grade Diploma grade Natural number [60, 100]

- origins Student’s geographic origins Categorical {Commuter, Milanese, Offsite, Foreigner}
- gender Student’s gender Categorical {Female, Male}
- previous studies Type of attended highschool Categorical {Scientific, Classical, Technical, Others}

Grouping variable

- engineering program Engineering Program (EP) Categorical {EP01, EP02,..., EP19}

19



Table 2.: Descriptive statistics for outcomes and pre-treatment covariates after data
pre-processing, according to the delivered teaching.

Variable hybrid teaching=0 hybrid teaching=1

Type Name Mean (sd) Mean (sd)

Numerical

ECTS 16.5 (11.3) 17.9 (11.0)

GPA
a

23.8 (3.04) 23.9 (3.01)

admission score �0.031 (0.99) 0.046 (1.01)

career admission age 0.011 (1.01) �0.016 (0.98)

highschool grade �0.109 (0.95) 0.161 (1.05)

Category Frequency Frequency

Categorical

origins

Commuter
b

68.7% 68.5%

Milanese 23.4% 22.0%

Offsite 6.3% 4.9%

Foreigner 1.6% 4.6%

gender
Female

b
24.2% 24.9%

Male 75.8% 75.1%

previous studies

Scientific
b

76.0% 76.9%

Classical 4.9% 4.5%

Technical 14.8% 13.9%

Others 4.3% 4.7%

a
Students with GPA=0 or missing were excluded from the computation of Mean (sd). b

Reference

category.
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Table 3.: Coe�cients estimated through the fitting of an MLM and a GLMM on PoliMi
and PoliMi GPA for the PS Estimation.

PoliMi PoliMi GPA

PS by MLM PS by GLMM PS by MLM PS by GLMM

�0 (Intercept) �0.519 (0.027)
⇤⇤⇤ �0.427 (0.058)

⇤⇤⇤ �0.523 (0.030)
⇤⇤⇤ �0.453 (0.055)

⇤⇤⇤

�1 (admission score) �0.016 (0.013) 0.019 (0.014) �0.071 (0.016)
⇤⇤⇤ �0.047 (0.017)

⇤⇤

�2 (career admission age) 0.015 (0.013) 0.012 (0.013) 0.053 (0.020)
⇤⇤

0.047 (0.020)
⇤

�3 (gender=Male) 0.104 (0.029)
⇤⇤⇤

0.072 (0.031)
⇤

0.119 (0.032)
⇤⇤⇤

0.010 (0.034)
⇤⇤

�4 (previous studies=Classical) �0.190 (0.058)
⇤⇤ �0.203 (0.058)

⇤⇤⇤ �0.227 (0.066)
⇤⇤⇤ �0.244 (0.067)

⇤⇤⇤

�5 (previous studies=Others) 0.223 (0.073)
⇤⇤

0.184 (0.074)
⇤

0.337 (0.092)
⇤⇤⇤

0.310 (0.094)
⇤⇤⇤

�6 (previous studies=Technical) �0.130 (0.037)
⇤⇤⇤ �0.193 (0.038)

⇤⇤⇤ �0.181 (0.043)
⇤⇤⇤ �0.237 (0.044)

⇤⇤⇤

�7 (origins=Foreigner) 2.197 (0.107)
⇤⇤⇤

2.265 (0.109)
⇤⇤⇤

2.586 (0.148)
⇤⇤⇤

2.645 (0.151)
⇤⇤⇤

�7 (origins=Milanese) 0.048 (0.029) . 0.063 (0.030)
⇤

0.056 (0.033) . 0.062 (0.033) .
�8 (origins=Offsite) �0.205 (0.055)

⇤⇤⇤ �0.251 (0.063)
⇤⇤⇤ �0.270 (0.061)

⇤⇤⇤ �0.270 (0.070)
⇤⇤⇤

�9 (highschool grade) 0.471 (0.016)
⇤⇤⇤

0.487 (0.016)
⇤⇤⇤

0.541 (0.020)
⇤⇤⇤

0.563 (0.020)
⇤⇤⇤

Observations 29745 29745 23785 23785

AIC 38876.29 38794.60 31232.16 31166.70

VPC - 0.014 - 0.011

. p-value<0.1;
⇤
p-value<0.05;

⇤⇤
p-value<0.01;

⇤⇤⇤
p-value<0.001
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Table 4.: Marginal and Clustered Estimators for the ACD quantification when PS
Weighting is performed, together with standard error.

Yhk = ECTShk - PoliMi Yhk = GPAhk - Polimi GPA

PS by MLM PS by GLMM PS by MLM PS by GLMM

⇡̂ma
(std error

a
) 0.068 (0.143) 0.143 (0.146) �0.125 (0.043) �0.133 (0.044)

⇡̂cl
(std error

a
) 0.361 (0.133) 0.175 (0.136) �0.099 (0.043) �0.130 (0.043)

a
Standard error is computed across 500 bootstrap samples.
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Table 5.: Coe�cients estimated through the fitting of a CLMM and a LMM after PS
Matching without replacement.

CLMM for ECTS cat [PoliMi] LMM for GPA [PoliMi GPA]

PS by MLM PS by GLMM PS by MLM PS by GLMM

�0 (Intercept) - - 23.712 (0.237)
⇤⇤⇤

23.631 (0.235)
⇤⇤⇤

�1 (admission score) 0.525 (0.011)
⇤⇤⇤

0.518 (0.011)
⇤⇤⇤

0.867 (0.018)
⇤⇤⇤

0.847 (0.018)
⇤⇤⇤

�2 (career admission age) �0.241 (0.014)
⇤⇤⇤ �0.238 (0.014)

⇤⇤⇤
0.116 (0.021)

⇤⇤⇤
0.110 (0.022)

⇤⇤⇤

�3 (gender=Male) 0.121 (0.023)
⇤⇤⇤

0.149 (0.023)
⇤⇤⇤

0.178 (0.036)
⇤⇤⇤

0.202 (0.037)
⇤⇤⇤

�4 (previous studies=Classical) �0.656 (0.043)
⇤⇤⇤ �0.644 (0.044)

⇤⇤⇤ �0.220 (0.071)
⇤⇤ �0.208 (0.072)

⇤⇤

�5 (previous studies=Others) �0.402 (0.054)
⇤⇤⇤ �0.477 (0.056)

⇤⇤⇤
0.626 (0.094)

⇤⇤⇤
0.451 (0.097)

⇤⇤⇤

�6 (previous studies=Technical) �0.401 (0.027)
⇤⇤⇤ �0.381 (0.027)

⇤⇤⇤
0.026 (0.046) 0.051 (0.047)

�7 (origins=Foreigner) 0.790 (0.090)
⇤⇤⇤

1.009 (0.095)
⇤⇤⇤

2.060 (0.158)
⇤⇤⇤

2.486 (0.162)
⇤⇤⇤

�7 (origins=Milanese) �0.121 (0.023)
⇤⇤⇤ �0.132 (0.023)

⇤⇤⇤ �0.241 (0.037)
⇤⇤⇤ �0.205 (0.037)

⇤⇤⇤

�8 (origins=Offsite) 0.016 (0.051) 0.072 (0.052) 0.118 (0.083) 0.180 (0.083)
⇤

�9 (highschool grade) 0.761 (0.013)
⇤⇤⇤

0.773 (0.014)
⇤⇤⇤

1.016 (0.020)
⇤⇤⇤

1.071 (0.021)
⇤⇤⇤

�10 (hybrid teaching) �0.063 (0.063) �0.064 (0.061) �0.019 (0.140) 0.017 (0.141)

↵j (Threshold coe�cient)

1 — 2 �1.348 (0.189) �1.329 (0.182)

2 — 3 0.511 (0.189) 0.534 (0.182)

3 — 4 1.731 (0.189) 1.763 (0.182)

AIC 106546.97 104862.83 177420.50 175212.70

�2✏ - - 7.6412 7.6650

Average random e↵ects variance µ2
⌘⌫ 0.7358 0.7081 1.4094 1.4012

PVRE - - 0.1557 0.1546

p-value<0.1;
⇤
p-value<0.05;

⇤⇤
p-value<0.01;

⇤⇤⇤
p-value<0.001
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Figure 1.: Summary of the pipeline of the analysis.
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(a) PoliMi (b) PoliMi GPA

Figure 2.: Piecewise continuous lines represent the SMDs (x-axis) across the pre-
treatment variables (y-axis) when di↵erent data-preprocessing methods are em-
ployed (legend). The computation is performed separately for Polimi (panel (a)) and
Polimi GPA (panel (b)) datasets.
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(a) PoliMi (b) PoliMi GPA

Figure 3.: Random intercept for each EP (y-axes) for the GLMM fitted for the PS
Estimation on the two dataframes.
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(a) MLM - PoliMi (b) GLMM - PoliMi

(c) MLM - PoliMi GPA (d) GLMM - PoliMi GPA

Figure 4.: Histograms of the PSs distributions obtained for di↵erent models [MLM in
panels (a) and (c) versus GLMM in panels (b) and (d)] and datasets [PoliMi in panels
(a) and (b) versus PoliMi GPA in panels (c) and (d)].
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(a) ECTS (b) ECTS cat

Figure 5.: Representation of the distributions of ECTS in panel (a) and ECTS cat in
panel (b).
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(a) ⇡̂h in PoliMi (b) ⇡̂h in PoliMi GPA

Figure 6.: ⇡̂h across EP (y-axes) depending on whether the PS Model was a MLM
(blue) or a GLMM (red), for the two dataframes PoliMi (panel (a)) and PoliMi GPA
(panel (b)).
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(a) CLMM for ECTS cat in PoliMi - PS estimated

through MLM

(b) CLMM for ECTS cat in PoliMi - PS estimated

through GLMM

(c) LMM for GPA in PoliMi GPA - PS estimated

through MLM

(d) LMM for GPA in PoliMi GPA - PS estimated

through GLMM

Figure 7.: Random intercept and slope for each EP (y-axes) for the outcome models
fitted after PS Matching for di↵erent PS estimation models [MLM in panels (a) and
(c) versus GLMM in panels (b) and (d)] and datasets/outcome models [PoliMi/CLMM
in panels (a) and (b) versus PoliMi GPA/LMM in panels (c) and (d)].
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1. Figures for the preliminary analysis

Explorative analysis of the covariates can be assessed in Figures 1-8.

2. Comparison with other models for outcomes

The estimated coe�cients of the outcome models fitted prior any PS correction are

reported in Table 1, while random intercepts and slopes are displayed in Figure 9.

The estimated coe�cients of the models for outcomes after weighting are reported in

Table 2, and the random intercepts for EPs and slopes (e.g., hybrid teaching) are

depicted in Figure 10. Results are close to the ones presented in Figure 9. Also, by

comparing the random slope results with the ranking induced by ⇡̂h in Figure 6 in

Section 4.2, similarities can be observed, especially in terms of extreme contributions.

The coe�cients obtained from the outcome models before and after weighting (Tables

1 and 2) show some changes. After weighting, all regressors, except hybrid teaching,
are significant level 1%.
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Table 1.: Coe�cients estimated through the fitting of a CLMM and a LMM prior PS

correction.

CLMM for ECTS cat [PoliMi] LMM for GPA [PoliMi GPA]

Coe↵ (std error) p-value Coe↵ (std error) p-value

�0 (Intercept) - - 16.107 (0.145)
⇤⇤⇤

�1 (admission score) 0.523 (0.014)
⇤⇤⇤

0.511 (0.014)
⇤⇤⇤

�2 (career admission age) �0.248 (0.017)
⇤⇤⇤

0.080 (0.017)
⇤⇤⇤

�3 (gender=Male) 0.105 (0.028)
⇤⇤⇤

0.106 (0.028)
⇤⇤⇤

�4 (previous studies=Classical) �0.664 (0.053)
⇤⇤⇤ �0.136 (0.055)

⇤

�5 (previous studies=Others) �0.283 (0.069)
⇤⇤⇤

0.575 (0.074)
⇤⇤⇤

�6 (previous studies=Technical) �0.403 (0.034)
⇤⇤⇤

0.046 (0.036)

�7 (origins=Foreigner) 0.483 (0.086)
⇤⇤⇤

0.500 (0.085)
⇤⇤⇤

�7 (origins=Milanese) �0.149 (0.027)
⇤⇤⇤ �0.138 (0.028)

⇤⇤⇤

�8 (origins=Offsite) �0.033 (0.058) 0.102 (0.059) .
�9 (highschool grade) 0.814 (0.016)

⇤⇤⇤
0.618 (0.015)

⇤⇤⇤

�10 (hybrid teaching) �0.033 (0.058) 0.036 (0.081)

↵j (Threshold coe�cient)

1 — 2 �1.300 (0.180)

2 — 3 0.554 (0.180)

3 — 4 1.721 (0.180)

Observations 29745 23785

AIC 70561.24 93625.43

�2✏ - 2.9736

Average random e↵ects variance µ2
⌘⌫ 0.6742 0.4823

PVRE - 0.1395

. p-value<0.1;
⇤
p-value<0.05;

⇤⇤
p-value<0.01;

⇤⇤⇤
p-value<0.001
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Table 2.: Coe�cients estimated through the fitting of a CLMM and a LMM after PS
Weighting.

CLMM for ECTS cat [PoliMi] LMM for GPA [PoliMi GPA]

PS by MLM PS by GLMM PS by MLM PS by GLMM

�0 (Intercept) - - 16.111 (0.130)
⇤⇤⇤

16.114 (0.129)
⇤⇤⇤

�1 (admission score) 0.546 (0.009)
⇤⇤⇤

0.547 (0.009)
⇤⇤⇤

0.516 (0.014)
⇤⇤⇤

0.516 (0.014)
⇤⇤⇤

�2 (career admission age) �0.301 (0.012)
⇤⇤⇤ �0.308 (0.012)

⇤⇤⇤
0.030 (0.016) . 0.028 (0.016) .

�3 (gender=Male) 0.074 (0.020)
⇤⇤⇤

0.072 (0.020)
⇤⇤⇤

0.074 (0.029)
⇤⇤⇤

0.071 (0.029)
⇤

�4 (previous studies=Classical) �0.602 (0.038)
⇤⇤⇤ �0.591 (0.038)

⇤⇤⇤ �0.085 (0.057) �0.075 (0.057)

�5 (previous studies=Others) 0.272 (0.044)
⇤⇤⇤

0.334 (0.043)
⇤⇤⇤

0.983 (0.066)
⇤⇤⇤

1.016 (0.066)
⇤⇤⇤

�6 (previous studies=Technical) �0.335 (0.024)
⇤⇤⇤ �0.331 (0.024)

⇤⇤⇤
0.098 (0.037)

⇤⇤
0.097 (0.037)

⇤⇤

�7 (origins=Foreigner) �0.309 (0.055)
⇤⇤⇤ �0.373 (0.055)

⇤⇤⇤ �0.191 (0.078)
⇤ �0.244 (0.077)

⇤⇤

�7 (origins=Milanese) �0.189 (0.019)
⇤⇤⇤ �0.194 (0.019)

⇤⇤⇤ �0.179 (0.028)
⇤⇤⇤ �0.181 (0.028)

⇤⇤⇤

�8 (origins=Offsite) 0.191 (0.039)
⇤⇤⇤

0.195 (0.038)
⇤⇤⇤

0.353 (0.055)
⇤⇤⇤

0.373 (0.055)
⇤⇤⇤

�9 (highschool grade) 0.560 (0.009)
⇤⇤⇤

0.544 (0.009)
⇤⇤⇤

0.435 (0.013)
⇤⇤⇤

0.427 (0.013)
⇤⇤⇤

�10 (hybrid teaching) 0.048 (0.065) 0.049 (0.066) 0.079 (0.081)
⇤⇤⇤

0.077 (0.081)

↵j (Threshold coe�cient)

1 — 2 �1.239 (0.164) �1.236 (0.163)

2 — 3 0.542 (0.164) 0.539 (0.163)

3 — 4 1.684 (0.164) 1.678 (0.163)

AIC 144635.73 145124.93 95538.27 95686.75

�2✏ - - 6.212 6.235

Average random e↵ects variance µ2
⌘⌫ 0.5952 0.4011 0.3951 0.3487

PVRE - - 0.0606 0.0596

. p-value<0.1;
⇤
p-value<0.05;

⇤⇤
p-value<0.01;

⇤⇤⇤
p-value<0.001
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Figure 1.: Distribution of ECTS covariate across EPs according to delivered teaching

type (hybrid teaching).
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Figure 2.: Distribution of GPA covariate across EPs according to delivered teaching

type (hybrid teaching).
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Figure 3.: Distribution of admission score covariate across EPs according to deliv-

ered teaching type (hybrid teaching).
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Figure 4.: Distribution of career admission age covariate across EPs according to

delivered teaching type (hybrid teaching).
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Figure 5.: Distribution of highschool grade covariate across EPs according to deliv-

ered teaching type (hybrid teaching).
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Figure 6.: Distribution of origins covariate across EPs according to delivered teaching

type (hybrid teaching).
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Figure 7.: Distribution of gender covariate across EPs according to delivered teaching

type (hybrid teaching).
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Figure 8.: Distribution of previous studies covariate across EPs according to deliv-

ered teaching type (hybrid teaching).
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(a) CLMM - Outcome is ECTS cat (b) LMM - Outcome is GPA

Figure 9.: Random intercept and slope for each EP (y-axes) for the model fitted prior

PS correction.
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(a) CLMM for ECTS cat in PoliMi - PS estimated

through MLM

(b) CLMM for ECTS cat in PoliMi - PS estimated

through GLMM

(c) LMM for GPA in PoliMi GPA - PS estimated

through MLM

(d) LMM for GPA in PoliMi GPA - PS estimated

through GLMM

Figure 10.: Random intercept and slope for each EP (y-axes) for the outcome models

fitted after PS Weighting.
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