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MATHEMATICAL MODELLING OF AXONAL CORTEX CONTRACTILITY

D. ANDRINI1, V. BALBI2, G. BEVILACQUA3, G. LUCCI3, G. POZZI4, AND D. RICCOBELLI4

Abstract. The axonal cortex is composed of a regular structure of F-actin and spectrin able
to contract thanks to myosin II motors. Such an active tension is of fundamental importance
in controlling the physiological shape of axons. Recent experiments show that axons modulate
the contraction of the cortex when subject to mechanical deformations, exhibiting a non-trivial
coupling between the hoop and the axial active tension. However, the underlying mechanisms
are still poorly understood. In this paper, we propose a continuum model of the axon based on
the active strain theory. By using the Coleman-Noll procedure, we shed light on the coupling
between the hoop and the axial active strain through the Mandel stress tensor. We propose a
qualitative analysis of the system under the simplifying assumption of incompressibility, showing
the existence of a stable equilibrium solution. In particular, our results show that the axon
regulates the active contraction to maintain a homeostatic stress state. Finally, we propose
numerical simulations of the model, using a more suitable compressible constitutive law. The
results are compared with experimental data, showing an excellent quantitative agreement.

Statement of Significance. The mechanics of cortical contractility in axons is still poorly
understood. Unraveling the mechanisms underlying axial and hoop stress generation in the
cortex will give insight on the active regulation of axon diameter. The understanding of this
phenomenon may shed new light on the physical causes of axonal morphological degeneration as
a consequence of neurodegenerative diseases, viral infections, and traumatic brain injuries.

1. Introduction

Axons are fundamental structures of neurons whose purpose is the transmission of electro-
chemical signals to neighbouring cells. The inner part, called axoplasm, is the cytoplasm of axons
and contains several organelles and microtubules. The latter are cross-linked together forming a
network which gives the axoplasm an elastic behaviour. The axoplasm is surrounded by a coating,
called cortex, composed of F-actin, namely polymer microfilaments made of actin, interconnected
together by myosin II molecular motors and spectrin. In particular, the actin cortex can actively
contract thanks to the action of myosin II. The interplay between the microtubule network and
the cortical actomyosin machinery aims at maintaining the cylindrical shape of the axon [33].

Many phenomena can alter such a delicate dynamic equilibrium. In particular, the disruption
of the elastic component of the axoplasm during stretch can lead to bulging along the axon, a
process called axonal beading or pearling, a hallmark of neuronal damage [26, 13]. Indeed, axons
can sustain large deformations, up to 100%, if the strain is slowly and progressively imposed [43].
Under such conditions, the elastic deformation can even induce an axial growth of the axon thanks
to the production of new microtubules [47, 9, 8, 32]. Conversely, rapid stretching of the axon can
lead to a damage of the cytoskeleton and to the depolymerisation of microtubules [43, 6].

Axonal beading has been observed as a consequence of several pathological conditions, such
as the Alzheimer’s [40] and Parkinson’s diseases [42], viral infections [24], and multiple sclerosis
[31]. There is increasing evidence that all these conditions result in structural damage of the
cytoskeleton. Indeed, it has been shown that axonal beading can be explained by a mechanical
instability triggered by both the reduction of axoplasm stiffness and the active contraction of
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the actin cortex [36]. Therefore, unveiling the mechanism underlying cortical contraction is of
utmost importance to understand how axons maintain their structural stability and to prevent
their degeneration.

Experimental observations show that actin filaments are arranged in a geometrically regular
pattern, forming circles spaced at a constant distance of 180 nm-190 nm along the axonal length,
interconnected by spectrin and myosin II [45]. Such a microstructural organisation suggests that
the actin cortex can generate an active tension in both the axial and the circumferential direction.
Recent experiments have linked hoop contractility to the self-regulation of the axon diameter
following an externally imposed axial stretch, microtubule depolymerisation or myosin II disruption
[18, 12]. In these works, the authors suggest that such changes may be induced by the compressive
force exerted on the axoplasm by the active contraction of the cortex [18]. Furthermore, an active
diameter reduction is observed when axons are axially stretched, suggesting a coupling between
axial and hoop active tensions. However, the nature of such a coupling is still not understood.

In this paper, we use tools of Continuum Mechanics to investigate the non-trivial coupling
between the axial and circumferential active contractions and we show that the cortex contractility
induces a compression in the axoplasm. The paper is organised as follows: in Section 2, we propose a
continuum model of the axon. By using the active strain approach and the Coleman-Noll procedure,
we obtain the evolution equations for the coupled hoop and axial active stretches. In Section 3,
we assume the axon to be incompressible and we show that the above mentioned equations reduce
to a simple dynamical system that can be easily studied analytically. In Section 4, we assume
a more appropriate compressible behaviour and we numerically approximate the mathematical
model. We then compare quantitatively our numerical results with experimental results available
in the literature. Finally, in Section 5, we discuss the main outcomes of the paper together with
some important concluding remarks.

2. Mathematical model

The aim of this Section is to construct a mathematical model of actin cortex contraction and to
investigate the coupling between the axial and the circumferential contractility using the framework
of Continuum Mechanics.

2.1. Notation and kinematics. We model the axon as a continuum body with reference config-
uration

Ω0 =
{
X ∈ E3 | R ∈ [0, Ro], Θ ∈ [0, 2π], Z ∈ R

}
,

where R, Θ, Z are the Lagrangian cylindrical coordinates of the material point

X = (R cosΘ, R sinΘ, Z)

belonging to the three dimensional Euclidean space E3, with (ER, EΘ, EZ) being the correspond-
ing vector basis. Due to the slenderness of the axon we assume the reference domain to be infinite
along EZ .

The axon is composed of an inner part Ω0a and an outer coating Ω0c, representing the axoplasm
and the actin cortex, respectively. More explicitly, we define

Ω0a = {X ∈ Ω0 | 0 ≤ R < Ri} ,
Ω0c = {X ∈ Ω0 | Ri ≤ R ≤ Ro} ,

where Ri is the internal radius of the axoplasm.
Let φ : [t0, t1]×Ω0 → E3 be the motion of Ω0, so that x = φ(t, X) is the actual position vector

of point X at time t. We denote by r, θ, z the coordinate of x in a cylindrical reference frame
where (er, eθ, ez) is the corresponding vector basis.

Let F = Gradφ be the deformation gradient. To model the active contraction of the cortex, we
use the active strain approach [5, 20]. This method was first developed to model muscle contraction
[25, 41, 30, 37] and has been recently used to model axonal contractility [19, 36]. We then assume
a multiplicative decomposition of the deformation gradient as follows

F = FeFa ,

where Fe and Fa account for the elastic and the inelastic active distortion, respectively. The tensor
Fa describes the contractility of the cortex and has to be constitutively prescribed (see Figure 1).
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Figure 1. Representation of the multiplicative decomposition of the deformation
gradient F = FeFa.
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Figure 2. Micro-structure of the axon: in the cortex, the actin filaments are
arranged in rings around the circumference of the axon. The myosin II motors
both connect the actin rings and run along the length of the axon, creating a
coupled contraction in the circumferential and the longitudinal directions.

We also denote by J, Je, and Ja the determinants of the tensors F, Fe, and Fa, respectively, repre-
senting the local change of volume induced by the relative distortion field.

As shown in Figure 2, the cortex of the axon has a highly organised structure whereby the F-actin
rings, arranged along the circumference of the axon, are connected by the myosin II motors [12].
The myosin motors also run along the longitudinal direction and generate an axial contraction.
Spectrin filaments contribute to the structural integrity and the elasticity of axons. Given this
specific micro-structural organisation of the cortex, we can reasonably assume that

(1) Fa =
1

aΘaZ
ER ⊗ER + aΘEΘ ⊗EΘ + aZEZ ⊗EZ ,

for X ∈ Ω0c, where aΘ and aZ are the active stretches along the circumferential and the axial
direction, respectively. In this way, the active strain tensor accounts for a pure remodelling of the
cortex [17], i.e. Ja = 1, without any volume modification (contrary to growth/resorption).

As already discussed, the active contraction is localised in the cortex. Hence, we model the
axoplasm as a passive elastic material by setting Fa = I. As for the cortex, we assume that the
reference configuration Ω0c corresponds to a relaxed condition in which all the active fibers are fully
extended. Hence, a further reciprocal sliding of the actin and myosin filaments cannot take place
without generating mechanical stress. Mathematically, this conditions translates into a unilateral
constraint which forces the active stretches to be less than one, namely, aΘ, aZ ≤ 1.
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2.2. Balance equations and boundary conditions. In this Section, we specify the balance
laws of the model. First, we enforce the balance of the linear momentum. In the absence of
external body forces and by neglecting inertia, the balance of linear momentum reduces to the
following equation

(2) DivP = 0 ,

where P is the first Piola-Kirchhoff stress tensor and Div represents the divergence in material coor-
dinates. Equivalently, the balance of the linear momentum can be recast in the actual configuration
as follows

(3) divT = 0 ,

where T is the Cauchy stress tensor and div is the divergence operator in the actual reference
frame. The Cauchy stress is related to P through the relation

(4) T = J−1PFT

For later convenience, we also introduce the Mandel stress tensor, defined as

(5) M = FT
e PF

T
a = JFT

e TF
−T
e ,

which is another measure of the stress commonly used in the theory of plasticity [29, 22].
The balance equations are complemented by proper boundary and interface conditions. We

assume that the external boundary of the axon is free of traction, therefore

(6) PN = 0 where R = Ro,

where N is the outward normal in the initial configuration. We also enforce the continuity of
displacement and traction at the interface between the cortex and the axoplasm, namely

(7)


lim

R→R−
i

u = lim
R→R+

i

u,

lim
R→R−

i

PN = lim
R→R+

i

PN .

Since the actin cortex is made of an active material, we must describe the active process un-
derlying its contraction by introducing additional balance equations. Specifically, the active strain
tensor (1) introduces two additional kinematic variables: aΘ and aZ . Changes in aΘ and aZ de-
scribe the microstructural reorganisation of the actin cortex. In particular, the cortex can undergo
remodelling as a result of external stimuli, such as the presence of ATP molecules. By following
the theory developed in [16], we model such external stimuli by introducing two scalar fields, BΘ

and BZ . These fields play the role of external forces that drive cortical contractility in the hoop
and in the axial direction, respectively. We label BΘ and BZ as external remodelling (or active)
stresses.

Such external remodelling stresses induce an inelastic distortion of the material, i.e. the actin
filaments undergo a microstructural reorganisation. The response of the material to the external
stimuli (e.g. how much and how fast the actin filaments contracts in the presence of a given
concentration of ATP) depends on how the cortex is organized. This material property is modeled
by the scalars CΘ and CZ , representing the resistance of the cortex to the contraction in the hoop
and in the axial direction. On the one hand, BΘ and BZ represent the action of external entities.
On the other hand, CΘ and CZ are called internal remodelling (or active) stresses.

By following [16], we prescribe a balance between the remodelling stresses that drive the cortex
contractility as follows

(8)
{
BΘ = CΘ,

BZ = CZ .

In the next section, we provide the constitutive equations for the materials and the evolution laws
for the active stretches.
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2.3. Thermodynamics restrictions and Coleman-Noll procedure. In the following, we use
the so-called Coleman-Noll [11] procedure, which is based on the Clausius-Duhem inequality, and
we derive the constitutive and evolution laws. Specifically, we postulate the existence of a strain
energy density function Ψ and, following [16], we write the Clausius-Duhem inequality

(9)
ˆ
P
Ψ̇ dV ≤

ˆ
P
P : Ḟ dV +

ˆ
P∩Ω0c

[
CΘ

ȧΘ
aΘ

+ CZ
ȧZ
aZ

]
dV,

where P is a subdomain of Ω0. The superposed dot denotes the time derivative, and A : B =
tr(ATB). We remark that the last integral in (9) represents the power of the internal remodelling
forces and is performed on P ∩ Ω0c, since only the cortex can actively contract.

By following the principle of equipresence [44], we postulate that the constitutive relations for
Ψ, CΘ, CZ , and P depend on the same kinematic quantities. Here, we assume that

Ψ = Ψ(X, F, aj , ȧj) , Cj = Cj(X, F, aj , ȧj) , P = P(X, F, aj , ȧj) ,

where j = Θ, Z.
Under such assumptions, we can rewrite (9) as follows

(10)
ˆ
P

(
∂Ψ

∂F
− P

)
: Ḟ dV +

ˆ
P∩Ω0c

∑
j=Θ, Z

(
∂Ψ

∂aj
aj − Cj

)
ȧj
aj

dV +

ˆ
P∩Ω0c

∂Ψ

∂ȧj
äj dV ≤ 0 ,

which must hold for any admissible process [11, 34]. Thus, from the arbitrariness of Ḟ and äj , we
obtain

(11) P =
∂Ψ

∂F
,

∂Ψ

∂ȧj
= 0,

where the first relation is the classic expression of the first Piola-Kirchhoff stress tensor of a
hyperelastic material, while the second one states that the energy Ψ is independent of ȧΘ and ȧZ .

By considering every admissible ȧj , j = Θ, Z, we can further enforce the Clausius-Duhem
inequality (10). We then find that a constitutive law for CΘ and CZ satisfying (10) is given by1

(12) Cj =
∂Ψ

∂aj
aj + µcτj

ȧj
aj

+ Γj ,

where µc is the shear modulus of the cortex and τj is the characteristic time of axonal contractility.
The additional variable Γj is the reactive term which enforces the unilateral constraint aj ≤ 1
and plays the role of a Lagrange multiplier. Γj can be physically interpreted as the force which
prevents the actin and myosin filaments from sliding on each other beyond a certain threshold.
More specifically, Γj satisfies the following relations

(13)
{
Γj(aj − 1) = 0,

Γj ≥ 0.

We observe that Γj is zero whenever aj ̸= 1. By using (8) and (12), we get

(14) ȧj =
aj
µcτj

(
Bj −

∂Ψ

∂aj
aj − Γj

)
.

If aj = 1, i.e. we are on the boundary of the unilateral constraint aj ≤ 1, and ȧj |t=t0
= 0, from

(14) we get

Γj = Bj −
∂Ψ

∂aj
aj ,

which holds whenever Γj ≥ 0, namely when Bj ≥ aj∂Ψ/∂aj . Conversely, if Bj < aj∂Ψ/∂aj , from
(14) we observe that ȧj |t=t0

is negative, therefore aj(t) < 1 in a right neighborhood of t0. In
summary, when aj = 1 the reactive term Γj is given by

(15) Γj = max

{
0, Bj −

∂Ψ

∂aj
aj

}
.

1We stress that the restrictions on CΘ and CZ depend on the power of the remodelling forces postulated in (9).
For an extensive discussion see [21], §14. In addition we remark that the dissipative term in (12) is just one of the
admissible choices compatible with the Clausius-Duhem inequality, see [4].
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By following the active strain approach [25, 41], we now use the multiplicative decomposition
of the deformation gradient. Let Ψ0 be the strain energy density of the passive material, we define
the active free energy density as

(16) Ψ(X, F, aΘ, aZ) = Ψ0(X, FF−1
a ).

With the newly defined energy density in the equation above, from (11) we get

(17) P =
∂Ψ0

∂Fe
F−T
a .

By using (16), we obtain

(18)
∂Ψ

∂aj
= −M :

(
∂Fa

∂aj
F−1
a

)
, with M = FT

e

∂Ψ0

∂Fe
,

where M is the Mandel stress tensor defined in (5). By introducing the tensors

IΘ = EΘ ⊗EΘ −ER ⊗ER, IZ = EZ ⊗EZ −ER ⊗ER,

and by combining (1) with (18), we get

(19)
∂Ψ

∂aj
aj = −M : Ij .

Thus, by substituting (19) into (14) and by enforcing (15), we finally get

(20) ȧj =


aj
µcτj

(Bj +M : Ij) , if aj < 1 or Bj < −M : Ij ,

0, otherwise,

where again j = Θ, Z.
The evolution equations (20) for aΘ and aZ can be used to provide a physical interpretation

of the external remodelling stress in (8). Similarly to the growth processes studied in [16, 4], BΘ

and BZ represent the external forces that drive the active contraction of the cortex. Moreover, we
observe that when the linear combinations of the Mandel stress components M : IΘ and M : IZ are
equal to −BΘ and −BZ , respectively, the system is in chemo-mechanical equilibrium. Therefore,
BΘ and BZ can be regarded as the equilibrium, or homeostatic, stresses towards which the system
is led.

Despite sharing many similarities with the growth models developed in [4], our approach has
the following unique features. First, the active strain tensor is isochoric, namely Ja = 1. The effect
of such a restriction is that the Mandel stress appears in (20) in place of the Eshelby stress (see
for instance equations (2.24) and (3.2) in [4]). Secondly, Fa is not a generic tensor with positive
determinant but belongs to the subset described by (1). Thus, only a particular combination of
the Mandel stress components are involved in the evolution equations (20).

A similar approach has been recently adopted by Dehghany et al. in [14] to model F-actin
contractility in axons. In their work, the authors used an approach inspired by smooth muscles
models, such as those developed by Stålhand et al. in [39]. Our model considers a more general
form for the active strain tensor. Instead of being prescribed a priori, the active strains aΘ and aZ
are initially decoupled and their coupling is later provided by the Coleman-Noll procedure, through
the Mandel stress tensor. In particular, the assumption of a linear relationship between aΘ and
aZ such as aZ = βaΘ can lead to some issues (for instance, the tensor Fa cannot be equal to the
identity when β ̸= 1). The a priori assumption aΘ = aZ is thoroughly analszed in the following and
we refer to it as the monoparametric approach. Furthermore, the theoretical framework presented
in this Section is based on the balance equations proposed by DiCarlo and Quiligotti in [16] and
allows us to clarify the key role of the Mandel tensor in regulating the stress distribution within
the axon.

2.4. Symmetry assumptions. Experimental evidence [18] suggests that changes in axonal exter-
nal radius are invariant along EZ . We therefore assume the axon deformation to be axisymmetric
by enforcing the following simplified kinematics

(21) φ(t, X) = r(t, R)er + λZez ,
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with λ ∈ (0, +∞) being the imposed axial stretch along Z. Thus, the deformation gradient reads

(22) F =
∂r

∂R
er ⊗ER +

r

R
eθ ⊗EΘ + λez ⊗EZ ,

where r(t, R) = R + u(t, R) with u representing the radial displacement. Under the assumption
(21), the balance of linear momentum (2) takes the following form

(23)
dPRR

dR
+

PRR − PΘΘ

R
= 0,

where PRR and PΘΘ are the radial and the hoop components of the first Piola-Kirchhoff stress
tensor, respectively. In terms of the Cauchy stress tensor the balance reads as follows

(24)
dTrr

dr
+

Trr − Tθθ

r
= 0,

where Trr and Tθθ are the radial and hoop components of T. The balance of linear momentum
must be solved with respect to the radial displacement u, either in material or spatial coordinates.
Moreover, u must satisfy the homogeneous Dirichlet boundary conditions u(t, 0) = 0 to ensure the
continuity of the deformation field along the Z axis. By enforcing (21), the boundary condition
(6) reduces to the scalar equation

(25) PRR|R=Ro
= 0,

or, equivalently, in the actual configuration

(26) Trr|r=ro
= 0,

where ro = r(t, Ro). Equation (23) endowed with the above mentioned boundary condition should
be coupled with (20) to completely describe the axon dynamics.

3. Qualitative analysis: the incompressible case

In the following, we analyse the evolution equations (20) for the particular case where the axon is
treated as an incompressible medium. Such a simplified assumption allows us to provide analytical
predictions on the existence and stability of the equilibrium solutions of (20).

To impose the incompressibility constraint, we require that

Je = detFe = 1

which, combined with the expression of the active strain tensor (1), implies that J = detF = 1 as
well. The enforcement of the incompressibility constraint can be done by introducing a Lagrange
multiplier p. More explicitly, we can introduce the extended strain energy density

(27) Ψext(X,F, aΘ, aZ , p) = Ψ(X,F, aΘ, aZ)− p(J − 1),

and then proceed as in the previous section, by replacing Ψ by Ψext (see [17] for details). In
particular, the Piola-Kirchhoff stress reads as follows

P =
∂Ψ0

∂Fe
F−T
a − pF−T .

The Cauchy and the Mandel stress tensors can be computed by using (4) and (5) to obtain the
following constitutive equations

T =
∂Ψ0

∂Fe
FT
e − pI, M = FT

e

∂Ψ0

∂Fe
− pI.

As a constitutive choice, we assume that both the cortex and the axoplasm are made of incom-
pressible neo-Hookean materials, i.e.

(28) Ψ0(Fe) =
µ

2
(Fe : Fe − 3) , µ =

{
µa, R < Ri,

µc, R ≥ Ri,

where µa and µc represent the shear moduli of the axoplasm and of the cortex, respectively, and are
both positive constants. By using the constitutive assumption (28), we get the following expression
for the Cauchy and the Mandel stress tensors

(29) T = µFeF
T
e − pI, M = µFT

e Fe − pI.
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We look for a radially symmetric solution in the form of (21) and we use the incompressibility
constraint J = 1 to get the following relation

r(t, R) = R/
√
λ,

so that (22) becomes

(30) F =
1√
λ
(er ⊗ER + eθ ⊗EΘ) + λez ⊗EZ .

By using the balance of linear momentum (24), we get

p(r) = k1, 0 ≤ r < ri ,(31)

p(r) = k2 +

(
a4Θa

2
Z − 1

)
µc log(r)

a2Θλ
, ri ≤ r < ro ,(32)

where ri = r(t, Ri), while k1 and k2 are constants and can be determined by using the interface
and the boundary conditions (7) and (26), as follows

k1 =
µa

λ
+

µc [log(ri)− log(ro)] (a
4
Θa

2
Z − 1)

a2Θλ
,(33)

k2 =
µc
[
a2Za

4
Θ + log(ro)− a2Za

4
Θ log(ro)

]
a2Θλ

.(34)

The radial component of the Cauchy stress Trr evaluated at the interface r = ri can be computed
by combining (29)-(34) as follows

(35) Trr(ri) = −µc

λ

(a4Θa
2
Z − 1) [log(ri)− log(ro)]

a2Θ
.

Thus, by using the expression of the Mandel stress tensor (29) and (30), the evolution equations
(20) reduce to the following dynamical system

(36)


ȧΘ =

aΘ
µcτΘ

(
BΘ +

µc(1− a4Θa
2
Z)

λa2Θ

)
,

ȧZ =
aZ
µcτZ

(
BZ +

µc
(
λ3 − a2Θa

4
Z

)
λa2Z

)
,

where the first equation holds whenever aΘ < 1 or the right-hand side is negative, otherwise
ȧΘ = 0. Similarly, the second equation holds if either aZ < 1 or the corresponding right-hand side
is negative, otherwise ȧZ = 0.

3.1. Stability of the equilibria. Throughout the rest of the paper, we will focus on the case
where BΘ = BZ = B < 0 is spatially constant, so that the external remodelling stresses are homo-
geneous and share the same value. As we will show in the following, we require B to be negative
so that the cortex actively contracts. Moreover, since we are interested in uniaxial stretching of
the axon, we focus on the range λ ≥ 1.

By setting ȧΘ = ȧZ = 0, we look for equilibrium solutions of (36). By subtracting the two
equations, we get

(37) a2Θ =
a2Z
λ3

.

We can then substitute (37) into the second of equation (36) which gives the following condition
to find the equilibria of the system

(38) f(aZ) = µca
6
Z −Bλ4a2Z − µcλ

6 = 0.

We recall that B < 0 and λ ≥ 1, therefore the function f in (38) is strictly increasing and takes
values of opposite sign at the endpoints of the interval [0, 1] whenever

(39)
B

µc
<

1− λ6

λ4
.

Hence, if such condition is satisfied, then the system has a unique equilibrium solution (āΘ, āZ).
In particular, āZ is obtained from (38) and āΘ = āZ/λ

3/2 is given by (37).
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Figure 3. Homeostatic active stretches āΘ (solid lines) and āZ (dashed lines)
plotted against the applied stretch λ. The curves are obtained from (37), (38),
and (42) for B/µc = −2,−1.6,−1.2,−0.8,−0.4.

To evaluate the stability of the equilibrium solutions, we compute the Jacobian matrix of the
system (36) as follows

(40) J =


a2ΘλB − µc(1− 3a2Za

4
Θ)

λµc
τΘa

2
Θ −2aZa

3
Θ

λτΘ

−2a3ZaΘ
λτZ

a2ZλB − µc(λ
3 − 3a4Za

2
Θ)

λµcτZa2Z

 .

A direct computation shows that, for all the admissible values of aΘ and aZ , we have tr J < 0
and det J > 0. Then, the equilibrium solution (āΘ, āZ) is asymptotically stable.

On the other hand, if (39) does not hold, i.e.

(41)
B

µc
≥ 1− λ6

λ4
,

we set āZ = 1, so that the first equation of (20) admits the equilibrium solution

(42) āΘ =
1√
2

√√√√√B2

µ2
c
λ2 + 4 +

Bλ

µc
,

which always lies in (0, 1). Finally we need to check that BZ + M : IZ ≥ 0, so that āZ = 1 is a
stationary solution of (20). It can be easily verified that such a condition is equivalent to (41).
Moreover, such an equilibrium is always stable since the component J11 of the Jacobian matrix
(40) is negative.

The existence of asymptotically stable equilibria of (20) implies that, depending on the initial
conditions, the system evolves towards the equilibrium points āΘ and āZ . These equilibrium values
represent the homeostatic active stretches of the axon.

In Figure 3, we plot the stationary solutions āΘ and āZ against the applied stretch λ, for different
values of B. Starting from the same value for λ = 1, the two active stretches āΘ and āZ exhibit
opposite behaviours as λ increases. On the one hand, āΘ decreases with λ, leading to a stronger
contraction in the circumferential direction which is generated by the actin molecular motors. On
the other hand, aZ increases until it reaches 1.

We remark that, when āZ < 1, the radial component of the Cauchy stress at the interface r = ri
(in equation (35)), evaluated at the equilibrium, can be written as follows

(43) T rr(ri) = BΘ log

(
Ro

Ri

)
,

which is independent from the applied stretch λ. Thus, as the axon is axially stretched, the cortex
undergoes remodelling to maintain a constant compression in the axoplasm.
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Figure 4. Monoparametric approach. (a) Homeostatic active stretch a versus
the applied stretch λ. The value of a is computed by using (54). (b) Radial stress
at the interface calculated from (45) for Ri/Ro = 0.8. In both cases, the curves
are obtained with B/µc = −2,−1.6,−1.2,−0.8,−0.4.

3.2. Monoparametric active stretch. In [14], the authors directly prescribe a coupling between
aΘ and aZ , by assuming a linear relation between the two active stretches. In our case, by enforcing
aΘ = aZ = a we get

(44) Fa =
1

a2
ER ⊗ER + a(I−ER ⊗ER).

The corresponding evolution equation for the active stretch a can be obtained by repeating the
procedure exposed in Section 2. Similarly to the stability analysis performed in this Section, we
find a single asymptotically stable equilibrium, as detailed in A. At the equilibrium, the radial
stress at the interface is instead given by

(45) T rr(ri) =
µc(ā

6 − 1)

λā2
log

(
Ro

Ri

)
.

As shown in Fig. 4a, we observe that a is an increasing function of the axial stretch λ. Eventually,
for large enough values of λ, the axon behaves as a passive material when a reaches 1. Differently,
our approach predicts an opposite behaviour for the hoop active stretch, as reported in Figure 3.
Such differences have important consequences on the stress distribution within the axon. While
in our model the compression of the axoplasm is independent of λ, as shown in equation (43),
in the monoparametric approach the radial stress at the interface relaxes as we increase λ and,
eventually, becomes zero, see Figure 4b. This behaviour is the main drawback of such approach
since, as we will show in the next Section, axons actively decrease their radius upon stretching
thanks to axoplasm compression.2

4. Active regulation of axon diameter

In this Section, we investigate the role of cortex contractility in activly regulating the axon
diameter. We then use experimental data from the literature to validate our numerical model. We
use data from [18], where the authors performed experiments on embryonic drosophila axons and
measured the variations in the diameter as a consequence of chemo-mechanical manipulations. In
particular, different drugs were used to test the mechanical contribution of specific constituents:
nocodazole was applied to depolymerise microtubules, while cytochalasin D was used to disrupt
F-actin. The effect of these drugs on the axon is depicted in Figure 5. Axons were then rapidly
stretched and elongated by 20% from their initial length. To highlight the effect of each drug on
the axon diameter, the authors also compared treated axons with control (untreated) axons.

In order to replicate the experimental results, we relax the simplified assumption of incompress-
ibility (see Section 3). To capture the effect of the active contractility on the axon radius, we thus
rely on numerical simulations and we obtain approximate solutions of the mathematical model.
We then upgrade our model to include the effect of the different drugs on the mechanical response
of the axon.

2In the experiments of Fan et al. [18], the axial stretch is applied fast. We remark that if the towing is slow
enough, axial stretch induces both an axial and radial growth of the axon [23].
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Nocodazole Control Cytochalasin D

Figure 5. Effect of drugs on the axon structure: red lines represent actin fila-
ments while blue circles indicate microtubules. With respect to the control case
(center), nocodazole depolymerises microtubules (left) leading to a reduction of
the axon diameter, while cytochalasin D reduces the number of the actin filaments
(right) and the axon can expand.

4.1. Damage. Experimental evidence shows that the axon stiffness decreases when samples are
exposed to nocodazole and cytochalasin D [33]. We model the structural damage of the axon by
introducing a scalar field α : [t0, t1] × Ω0 → [0, 1] that describes the percentage of solid material
depolymerised by the action of the drug or during the stretch. The free energy for the damaged
axon can then be written as

(46) Ψ(F, α) = (1− α)Ψ0(FF
−1
a ),

where Ψ0 is the strain energy density of the passive, sound axon. Initially, the axon is not damaged
and therefore

α(t = 0, X) = 0.

When nocodazole is applied, the actin cortex is not affected and only the microtubule network
is damaged. Therefore, we propose the following simple phenomenological law for the damage of
the axoplasm, which describes an exponential degradation

(47) α(t, X) =

{
α∞

n (1− e−t/τn), R < Ri,

0, R > Ri.

Here, α∞
n is a constant associated to the percentage of microtubules depolymerised in an infinite

amount of time, while τn is the characteristic time for the action of nocodazole.

Symbol Parameter description Range Value Reference

Ro Axon radius [1.45 µm, 1.90 µm] 1.5µm [18]
Ro −Ri Cortex thickness [0.1µm, 0.5 µm] 0.3µm [27, 19]

µc Cortex shear modulus [0.1 kPa, 10 kPa] 1 kPa [15, 7, 19, 46]
µa Axoplasm shear modulus [0.1 kPa, 10 kPa] 1 kPa [15, 7, 19, 46]
Λc Cortex I Lame’s coefficient [0.21 kPa, +∞] 100 kPa [19, 14, 46]
Λa Axoplasm I Lame’s coefficient [0, 0.29 kPa] 0.1 kPa [19, 14]
B0 External remodelling stress — −1.6 kPa Estimated
τ Active contraction characteristic time ∼ 10min 11.7min [18]
τn Nocodazole characteristic time [8.5min, 83.4min] 20min [13]
τc Cytochalasin D characteristic time ∼ 10min 10min [38, 18]
α∞

n Nocodazole damage — 0.65 Estimated
α∞

c Cytochalasin D damage — 0.9 Estimated
αs Stretch induced damage — 0.1/0.75 Estimated

Table 1. Values of parameters involved in the model. The stretch induced dam-
age has been set equal to 0.75 in the control case and when cytochalasin D is
applied. In the case of nocodazole treated axons, the parameter is decreased to
0.1 since the axoplasm is already damaged. With the exception of [19], the cortex
is frequently treated as an almost incompressible medium, thus we have chosen a
high value for Λc.
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When cytochalasin D is applied, the contractility of the cortex is reduced and the actin filaments
are depolymerised, thus damaging the elastic response of the cortex [38]. Therefore, similarly to
nocodazole, we assume that the damage field α follows the law below

(48) α(t, X) =

{
0, R < Ri,

α∞
c (1− e−t/τc), R > Ri,

where α∞
c and τc play the same role as α∞

n and τn in (47). Furthermore, we postulate that
cytochalasin D also reduces the contractility of the actin cortex by modulating the homeostatic
stress in (8). For sake of simplicity, we take BΘ = BZ = B and we also assume that the contraction
in the circumferential and axial direction share the same characteristic time, i.e. τΘ = τZ = τ in
(20). Here, we postulate that the reduction of the external remodelling stress due to damage writes
as follows

B(t, X) = (1− α(t, X))2 B0,

where B0 denotes the homeostatic stress in the intact axon.
In [18], Fan and co-authors observed that, when loads are removed, the final radius is smaller

than the initial one. The authors concluded that this phenomenon was induced by the damage
of the axoplasm. Indeed, a fast axial stretch can induce microtubule depolymerisation [43]. We
model this phenomenon by introducing an instantaneous damage in the axoplasm, i.e. we increase
α(t, X) by adding a constant αs for R < Ri.

4.2. Constitutive assumptions. For sake of simplicity, we neglect any anisotropy induced by
the orientation of microtubules or actin filaments. We assume that both the axoplasm and the
cortex are made of a compressible neo-Hookean material. We therefore write the strain energy as
follows

(49) Ψ0(Fe) =
µ

2
(Fe : Fe − 2 log Je − 3) +

Λ

2
(log Je)

2,

where µ and Λ are the Lamé coefficients of the intact axon. The axoplasm and the cortex are
homogeneous, so that the Lamé coefficients are piecewise constant within the domain

µ =

{
µa, R < Ri,

µc, R > Ri,
Λ0 =

{
Λa, R < Ri,

Λc, R > Ri.

In the next Section, we propose a numerical scheme to discretise the model.

4.3. Initial conditions. In the experiments reported in [18], the axons are in their equilibrium
state at the initial instant of time. Thus, we set λ = 1 and

α|t=0 = 0,

u|t=0 = u0,

aΘ|t=0 = aΘ0,

aZ |t=0 = aZ0,

as initial conditions, where u0, aΘ0, and aZ0 are the stationary solutions of (20) and (23). Such
equilibrium state has to be determined by means of numerical computations.

4.4. Numerical implementation. Here, we detail the numerical implementation of the prob-
lem under the cylindrical symmetry assumptions discussed in Section 2.4. Since the problem is
independent of Z, we consider a cylindrical portion of the axon as follows

B0 = {X ∈ Ω0 | 0 < Z < 1}.
The strain energy of B0 is given by

(50) W(u) =

ˆ
B0

Ψ(F, α) dV =

ˆ R0

0

2πRΨ(F, α) dR,

where we have used the cylindrical symmetry assumed in (21) and Ψ is defined in (46). The
function u : (0, Ro) → R satisfies the balance of linear momentum (23) and makes the functional
(50) stationary (see [10] for details), i.e.

(51) δW(u)[v] = 0 ∀v ∈ V,
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Figure 6. Unstretched axons (λ = 1). Plots are reported for each treatment
scenario: control (orange), nocodazole (blue) and cytochalasin (green). (a) Com-
parison between the numerical result (continuous lines) and the experimental data
reported in [18] (dashed lines) for the evolution of external radius. The latter is
normalised with respect to r0, the radius of the axon at equilibrium. The shaded
regions indicate error bar in standard deviation relatively to the experimental
data. (b) Plots of aΘ (continuous lines) and aZ (dashed lines) averaged over the
cortex sectional area. (c) Evolution of radial stress Trr at the interface r = ri,
normalised with respect to the undamaged shear modulus of the cortex.

where v is a real scalar function on the interval (0, Ro). Specifically, the functional space V is
defined as

V = {v ∈ H1(0, Ro) | v(0) = 0},
where H1(0, Ro) is the space of square-integrable function over (0, Ro) admitting a square-integrable
weak derivative. For details see [35].

The spatial computational domain (0, Ro), is subdivided into 500 elements. The time step
of the simulations is ∆t = 0.3 minutes. We approximate the radial displacement field u with
continuous piece-wise linear functions, while the active stretches aΘ and aZ are discretised by
means of piece-wise constant functions.

We solve the equation (51) at each timestep, while the time integration of the evolution equations
(20) is performed by using an explicit Euler scheme. The numerical algorithm is implemented using
the Python library FEniCS [2, 28]. We use PETSc as linear algebra back-end. In particular, the
variational formulation (51) is computed by means of the automatic differentiation tools provided
by UFL [3]. Our numerical code can be accessed in [1].

4.5. Results of the simulations. In the following, we present and discuss the results of the
numerical simulations. First, we analyse the effect of drugs in unstretched axons (i.e. λ = 1).
Then, in accordance with the experimental procedure proposed in [18], we impose an elongation of
the axon up to 20% of its initial length (i.e. λ = 1.2) and analyse its effect following a one-hour-long
exposure to drugs.

We refer to Table 1 for details on the choice of the model parameters.

4.5.1. Effect of drugs on unstretched axons. First, we remark that untreated axons maintain the
initial equilibrium state since they are not damaged.

In all the cases, the active contraction of the cortex induces a compressive stress on the axoplasm.
The depolymerisation of microtubules due to nocodazole leads to a reduction of the radius and
modifies the cortical stress state. Interestingly, the active remodeling forces induce a progressive
decrease of aΘ to restore the equilibrium state, as shown in Figure 6b. On the other hand, the
axial active stretch aZ does not undergo significant variations. The increase in the circumferential
contraction results into a greater compression exerted by the cortex on the axoplasm (i.e. Trr at the
interface is negative and decreases, as shown in Figure 6c). In summary, the reduction of the axonal
radius following nocodazole exposure is due to the coupling between microtubule depolymerisation
and the circumferential active contraction. The longitudinal active stretch instead features an
imperceptible deviation from the equilibrium configuration.
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Figure 7. Uniaxial stretch (λ = 1.2). Plots are reported for each treatment
scenario: control (orange), nocodazole (blue) and cytochalasin (green). (a) Com-
parison between the numerical result (continuous lines) and the experimental data
reported in [18] (dashed lines) for the evolution of external radius. The latter is
normalised with respect to r60, the radius of the axon at t = 60 minutes, imme-
diately after stretch. The shaded regions indicate error bar in standard deviation
relatively to the experimental data. (b) Plots of aΘ (continuous lines) and aZ
(dashed lines) averaged over the cortex sectional area. (c) Evolution of radial
stress Trr at the interface r = ri, normalised with respect to the shear modulus of
the sound cortex.
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Figure 8. Monoparametic approach: plot of the dimensionless radius r/r60
(where r60 is the radius of the axon at t = 60 minutes, immediately after stretch)
as a function of time in the case of uniaxial stretch (λ = 1.2). The numerical re-
sults (continuous lines) are compared with the experimental data reported in [18]
(dashed lines) for axons treated with nocodazole (blue), cytochalasin (green), and
some untreated axons (orange). The shaded regions indicate error bar in standard
deviation relatively to the experimental data. The monoparametric approach fails
to reproduce the experimental data.

Finally, cytochalasin D is responsible for a disruption of actin filaments in the cortex and the
reduction of cortical remodeling stress. As a consequence, both the active stretches aΘ and aZ
undergo a substantial increment which makes them close to 1 after one hour. In this case, the
axoplasm behaves as a nearly passive material and the stress is almost completely relaxed (see
Fig. 6c).

4.5.2. Uniaxial stretch. We first consider the control case, i.e. the stretching of an untreated
axon. The radius significantly reduces in time, as shown in Figure 7a. This is the result of cortex
remodelling: while aZ increases to balance the tension due to the axial stretch, aΘ decreases,
i.e. the active hoop contraction increases (see Figure 7b). Such a microstructural reorganisation
increases axoplasm compression, as shown in Figure 7c. The changes in the axon diameter are
amplified by the axoplasm damage, induced by the fast stretch.



MATHEMATICAL MODELLING OF AXONAL CORTEX CONTRACTILITY 15

Stretch Nocodazole Control Cytochalasin D
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Figure 9. Actual transverse section of the axon for λ = 1 (top) and λ = 1.2
(bottom) at t = 60min and t = 90min, respectively. In each transverse section,
on the left we plot the dimensionless radial stress profile Trr/µc, while on the
right half we highlight the actual configurations of the axoplasm and of the cortex,
represented as the blue and the red areas, respectively.

The dynamics of nocodazole-treated axons under uniaxial stretching is similar, although the
induced thinning is less pronounced when compared to the control case. We remark that axons
treated with nocodazole are already damaged when stretch is applied. Therefore, less microtubules
are depolymerised as a result of the deformation, and the initial state is closer to the final equilib-
rium state, as depicted in Figure 7b. Instead, the evolution of aZ is almost the same in both cases.
Qualitatively similar trends are also observed in Figure 7c where we plot the radial stress Trr at
the interface as a function of time: radius reduction is correlated with an increased compression of
the axoplasm.

Finally, we consider the stretching of axons exposed to cytochalasin D. In Figure 7a, we see that
the radius is almost constant in time after the deformation. Indeed, as shown in Figure 7b, both
the active stretches are close or equal to 1, so that the cortex behaves as nearly passive material.
The constant diameter as result of F-actin depolymerisation supports our conjecture. In order
to maintain a homeostatic stress state during stretching, the cortex actively reorganise itself and
induces changes in the axon diameter.

In Section 3.2, based on the analysis performed in the incompressible case, we argued that
imposing a priori a linear relation between the circumferential and the axial active stretches is
not suitable to reproduce the experimental data in the case of the uniaxially stretched axon. This
remains true also under the more realistic hypothesis of a compressible axon. Indeed, in Figure 8,
we plot the dynamics of the axonal radius in all the three cases (control, nocodazole and cytocalasin
D-treated axons). The derivation of the evolution equation used in this numerical simulation is
detailed in A. From Figure 8, we see that the monoparametric model fails to fit the experimental
curves and the reasons for that qualitatively rely on the considerations discussed in Section 3.2.

To better visualise how the stress profile affects the shape of the axon, in Figure 9 we show the
actual transverse section at the final instant of time. Here, we plot the nondimensionalised radial
stress Trr/µc. We observe that thinning of axons appears to be correlated with cortex thickening.

5. Discussion and concluding remarks

In this work, we have proposed a continuum model to predict the active contraction of the
axonal cortex when the axon is subjected to chemo-mechanical stimuli.

By modelling the axon as a continuum hyperelastic body, we have used the active strain approach
to describe cortex contractility. The active contraction of the cortex is regulated by an extra balance
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law motivated by the work of DiCarlo and Quiligotti on growth [16]. In particular, equation (8)
describes the equilibrium between the action of external active forces (modeled by BΘ and BZ) and
the resistance of the material to remodelling, which we have called internal remodelling stresses and
labelled as CΘ and CZ . We have then obtained thermodynamically consistent constitutive laws by
following the Coleman-Noll procedure. We have extended the standard dissipation inequality for
elastic bodies under isothermal conditions to account for the power of the cortex active contraction.
More specifically, we have obtained the classic constitutive equation for the Piola-Kirchhoff stress
tensor and some constitutive restrictions on CΘ and CZ . A simple admissible choice for the internal
remodelling stresses is provided by (12).

By using such constitutive laws, the remodelling balance law in (8) becomes the system of
differential equations in (20). This system regulates the time evolution of the hoop and axial
components of the active stretch. Such equations exhibit some key features if compared with
models of stress-modulated growth for biological tissues [16, 4]. Indeed, as can be seen in Eq.
(20), the system evolves towards a steady state. Specific combinations of the Mandel stress tensor
components associated to such equilibrium state are uniform throughout the cortex, namely M :
Ij = −Bj . Thus, the axon reacts to external chemo-mechanical stimuli by regulating the active
contraction to target a homeostatic stress state.

We have then assumed the axon to be incompressible. In this context, the evolution equations
reduce to the nonlinear dynamical system (36). Through a linear stability analysis, we have
proved the existence of a single asymptotically stable solution associated to the above mentioned
homeostatic state.

Then, by using a more suitable compressible constitutive model, we have implemented numerical
simulations of axon dynamics in FEniCS and validated our numerical results with the experiments
reported in [18]. In our simulations we have modelled the equilibrium behaviour of the axon
followed by a uni-axial deformation of 20% stretch. We have reproduced three scenarios: a)
control case, b) the disruption of F-actin filaments when axons are exposed to cytochalasin D and
c) the depolymerisation of microtubules following the application of nocodazole. In our numerical
model, the effect of the drugs is accounted for by introducing a damage function that modifies the
energy functional, as we have discussed in Section 4.1. Moreover, since in the in vitro experiments
the axons are pulled at a high strain rate [18], we have assumed that microtubules are further
damaged during the axial deformation [43].

The numerical results for all 3 scenarios are in excellent quantitative agreement with the experi-
mental results, as shown in Figures 6-7. Indeed, the diameter progressively increases when F-actin
filaments are disrupted, while a decrease of the transverse section area with respect to the control
case is observed when microtubules are depolymerised. We have shown that the diameter of axons
is regulated by the compressive stress applied on the axoplasm by the cortex. Diameter reduction
appears to be correlated with a thickening of the axonal cortex, as shown in Figure 9.

Our results support the hypothesis of a coupled mechanism between the axial and hoop active
stretches [18]. The cortex undergoes a microstructural reorganisation to modulate its stress state
and regulates axon diameter by compressing the axoplasm. Understanding such mechanism may
represent a preliminary step towards a better understanding of the physical causes which underlie
axon morphological degeneration as a consequence of neurodegenerative diseases, viral infections,
and traumatic strain injuries [13, 36].

Future works will focus on the analysis of such systems that, when subjected to displacements,
break their axial symmetry. Furthermore, it would be interesting to study the effect of morpho-
logical changes of the axon on its ability to transmit electro-chemical signals.
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Appendix A. Monoparametric active stretch

In the following, we discuss the case of a single active stretch parameter, where the tensor Fa is
given by (44).

In such case, the balance equations (8) for the remodelling stresses reduce to a single equation,
namely B = C. The Clausius-Duhem (9) inequality reduces toˆ

P
Ψ̇ dV ≤

ˆ
P
P : Ḟ dV + 2

ˆ
P∩Ω0c

C
ȧ

a
dV.

By performing analogous computations to those in Section 2, we find

(52)


P =

∂Ψ0

∂Fe
F−T
a ,

2C = µcτ
ȧ

a
−M : Î+ Γ ,

where
Î = EΘ ⊗EΘ +EZ ⊗EZ − 2ER ⊗ER,

and Γ is the reactive term that enforce the unilateral constraint a ≤ 1. Similarly to (20), the
evolution equation for the active stretch reads as follows

(53) ȧ =

{ 1

µcτ

(
2B +M : Î

)
a, if a < 1 or 2B < −M : Î,

0, otherwise.

The evolution equation (53) is valid for a compressible constitutive laws and it is used to obtain
Figure 8. As done in Section 3, the derivation of the constitutive laws is done by replacing Ψ with
Ψext, which is defined in (27). In particular, the expression of (53) is also valid in the incompressible
case.

A.1. Incompressible case. In the following, we study (53). Similarly to Section 3, the axon is
assumed to behave as an incompressible neo-Hookean material. The corresponding strain energy
density is (28). By assuming cylindrical symmetry as in (21), the differential equation (53) admits
an equilibrium ā. Indeed, we have an equilibrium solution with ā < 1 if

(54) f(a) = 2µca
6 − 2Bλa2 − µc

(
λ3 + 1

)
= 0.

Since f(0) < 0, f ′(a) > 0 for B ≤ 0, and f(a) → +∞ as a → +∞, there exists one and only one
ā > 0 such that f(ā) = 0. Such a root is acceptable if ā < 1, and this holds whenever f(1) > 0. It
is straightforward to prove the asymptotic stability of ā. Otherwise, if f(1) ≤ 0, then 2B +M : Î
is non-negative for a = 1 and the equilibrium solution is ā = 1.

To compute the stress components, we need to explicitly obtain the expression for p. By setting
aΘ = aZ = a in (31)-(32), we get

p(r) = k̂1, 0 ≤ r < ri ,

p(r) = k̂2 +
(a6 − 1)µc log(r)

λa2
, ri ≤ r < ro.

By enforcing the boundary and the interface conditions, (26) and (7) respectively, we find the two
constants

k̂1 =
µa

λ
+

µc

λ

(a6 − 1) [log(ri)− log(ro)]

a2
,

and

k̂2 =
µc
(
a6 + log(ro)− a6 log(ro)

)
λa2

.
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