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di Bergamo, Italy

-MOX– Modellistica e Calcolo Scientifico
Dipartimento di Matematica “F. Brioschi”

Politecnico di Milano
via Bonardi 9, 20133 Milano, Italy

christian.vergara@polimi.it
2 -Department of Bioengineering, Politecnico di Milano, Italy

-CILEA (Consorzio Interuniversitario Lombardo per l’Elaborazione e l’Automazione),
Segrate, Italy

3 -Dept. of Mathematics and Computer Science, Emory University, Atlanta, GA, USA
-MOX– Modellistica e Calcolo Scientifico

Dipartimento di Matematica “F. Brioschi”
Politecnico di Milano

via Bonardi 9, 20133 Milano, Italy

alessandro.veneziani@polimi.it
4 Department of Bioengineering, Politecnico di Milano, Italy

5 Institute of Clinical Physiology CNR, Pisa, Italy
6 -Institute of Clinical Physiology CNR, Pisa, Italy

- Ca’ Granda Niguarda Hospital, Milan, Italy

Keywords: Flow rate estimation, Doppler measurements, Womersley number,
Sensitivity Analysis, Coronary flow reserve

AMS Subject Classification: 62G99

Abstract

In Ponzini et al. (2006) a new approach has been proposed for estimat-
ing in a reliable way blood flow rate from velocity Doppler measurements.
In that paper, basic features of the approach and some “in silico” test cases
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were furnished. Here, we give more insights of this approach by perform-
ing a sensitivity analysis of the formulae relating blood flow rate to blood
velocity. In particular we analyze their sensitivity to the physiological pa-
rameters in comparison with the standard formula proposed in Doucette et
al. (1992). A first glance at “in vivo” validation of the formulae is given
too.

1 Introduction

The correct estimation of blood flow rate Q through a vascular surface is a ma-
jor issue in clinical practice, since it could give important informations about
the cardiovascular state of a patient. This can be pursued with a good preci-
sion by using invasive approaches, such as the Electromagnetic flow meter (see,
e.g., Kolin et al. 1968, Elfverson and Larsson 1983) or by considering a mean
value across a heart cycle with the transit time coronary thermodilution (see,
e.g., De Bruyne et al. 2003). Even if these techniques allow to measure di-
rectly the flow rate, their difficulty and invasiveness discourage their clinical
use. For these reasons, the current elective approach for blood flow analysis
is based on the Doppler technique (Intravascular Doppler velocimetry analysis,
see, e.g, Doucette et al. 1992). Available highly accurate velocity measures at
different positions of a vessel make this approach attractive for many clinical
applications, such as during catheterisation, in percutaneous transluminal coro-
nary angioplasty (PTCA) and for the determination of coronary flow rate (see,
e.g., Kajiya et al. 1987, Johnson et al. 1989, Iliceto et al. 1991, Marcus et al.
1982, Wilson et al. 1985, McGinn et al. 1990, Savader et al. 1997, Doucette et
al. 1992). However, Doppler velocimetry analysis cannot measure directly the
flow rate. The latter has to be indirectly estimated starting from other available
measures.

As a matter of fact, if Γ denotes a section of a vascular district at hand, flow
rate Q through Γ is defined as

Q =

∫

Γ
ρu · ndγ, (1)

where ρ is the blood density (hereafter assumed to be constant), u the blood
velocity and n the normal unit vector. In principle, the whole velocity field u on
Γ is needed for estimating Q. However, equation (1) can be rewritten in terms
of the mean velocity value U as

Q = ρUA (2)

where A denotes the area of section Γ. Unfortunately, mean velocity U is not
available from measures. On the other hand, Doppler velocimetry analysis pro-
vides good measures of the maximum velocity VM on Γ. Equation (2) requires
therefore to be accompained with an appropriate formula relating mean velocity
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U to the maximum one VM . In current clinical practice, as proposed in Doucette
et al. (1992), it is usually assumed

U =
VM

2
. (3)

This equation stems from the hypothesis of a parabolic spatial profile for the
velocity. For this reason, in the sequel equation (3) will be referred to as parabolic
formula. Striclty speaking this formula assumes that blood flow is quasi-static,
laminar and Newtonian in a rectilinear cylindrical vessel (see Nichols et al.,
2005). These assumptions, where at each instant a steady profile is associated
with the instantaneous flow rate, is far to be fullfilled in real situations (see e.g.
Robertson et al. 2001, Perktold et al. 1998, Shehada et al. 1993, Ferrari et al.
2006). In particular, it has been pointed out by different authors the relevance
of blood flow pulsatility on the velocity profiles (Womersley 1955, Hale et al.
1955, Nichols et al. 2005). If we denote by D the vessel diameter, ν the blood
viscosity and f the frequency of blood impulse, the adimensional index

W =
D

2

√

2πf

ν

called Womersley number, is used for quantifying the pulsatility of the flow. The
higher the value of W the more the assumption of parabolic velocity profile is
incorrect (see, e.g., Porenta et al. 1999, Jenni et al. 2000, Jenni et al. 2004,
Ferrari et al. 2006, Ponzini et al. 2006). In Ponzini et al. (2006) improved blood
flow rate estimates from maximum velocity have been devised by exploiting
Computational Fluid Dynamics (CFD) results. The basic idea was to generalize
equation (3), by introducing an explicit dependence on the Womersley number
of the mean velocity:

U = g(VM , W ), (4)

where g is a suitable function. For this reason in the sequel formula (4) will
be referred to as Womersley-based formula. The quantitative determination of
function g(VM , W ) in Ponzini et al. (2006) has been carried out by performing
about 200 numerical simulations in cylindrical geometries, for different values of
the flow rate (prescibed as boundary conditions) and of the Womersley number.
Flow rate boundary conditions are prescribed without any biased arbitrary as-
sumption of the velocity profile, according to a mathematical approach recently
proposed in Formaggia et al. (2002), Veneziani and Vergara (2005 and 2007). A
non-linear least squares approach has been then used for fitting the results (see
also Pennati et al. 1996 and 1998). This allows to obtain the parameters for
the identification of formula g. Preliminary validation in Ponzini et al. (2006)
has been based on in silico test cases, i.e. on numerical simulations performed
in cases different from the ones used for fitting formula (4). These results show
that the new formula improves blood flow rate estimation with respect to (3).
In some cases the improvements are remarkable.
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In this paper we continue the investigation of this approach through a sen-
sitivity analysis of the formula with respect to the velocity and to the diameter.
We show that formula (4) has stability features comparable with (3), apart for
values of the Womersley number included in the range (2.7, 3.1). For this rea-
son, we modify formula (4) in this range in order to reduce its sensitivity and
we check that this modification does not affect the overall accuracy.

Parabolic and Womersley-based formulae are then applied to a clinical dataset
retrieved from the database of the CNR Clinical Physiology Institute of Pisa.
These early results show that the Womersley-based formula provide a better
agreement with the clinical expectations.

2 Sensitivity Analysis

2.1 Material and Methods

For the sake of accuracy, in Ponzini et al. (2006) three ranges of the Womersley
number are considered and associated with three different formulae:











Q = ρπD2

4 g1(VM , W ) = ρ1
2

πD2

4 VM (1 + a1W
b1) for 0 < W ≤ 2.7,

Q = ρπD2

4 g2(VM , W ) = ρ1
2

πD2

4 VMb2 arctan(a2W ) for 3.1 ≤ W ≤ 15,

Q = ρπD2

4 wg1(VM , W ) + ρπD2

4 (1 − w)g2(VM , W ) for 2.7 < W ≤ 3.1.
(5)

Here, a1, a2, b1 and b2 are the parameters determined by the fitting procedure
and w = w(W ) is a weight function mixing the formulae for low and high values
of W respectively. More precisely, we set (see Ponzini et al. 2006)

{

a1 = 0.00417, b1 = 2.95272
a2 = 1.00241, b2 = 0.94973

,

and

w(W ) = e
(W−2.7)2

(W−2.7)2−0.42 . (6)

Since formulae (5) establish a dependence of the flow rate on the Womersley
number W , they are able to describe in a more realistic way different blood
flow regimes. We point out that for W = 0, that is in steady conditions, we
recover the parabolic formula (see (5)1). However, for the same reason they are
also more delicate in terms of sensitivity from the data, being estimates possibly
polluted by error on maximum velocity VM , diameter, frequency and viscosity
measures. On the contrary, parabolic formula (3) is independent of frequency
and viscosity. This means that error in measuring these parameters do not affect
the estimate. On the other hand, the same formula is unable to account for flow
rate modifications induced by a physical change of viscosity or pulsatility, as we
have pointed out previously.

In order to evaluate sensitivity on measurements errors of formulae (5) in
comparison to (3) , we introduce in Appendix an index λ, called amplification
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factor. If y(x) is the quantity to be estimated depending on the measurable
quantity x, the amplification factor reads

λ =
y′(x)

y(x)
x, (7)

where y′ denotes the first derivative of y(x) with respect to x. The amplification
factor quantifies the sensitivity of the quantity y on the measure x. Big values
of λ means that small perturbations on x (due for example to an error in the
measurement) could lead to big perturbations in the estimate y. We point out
that the sensitivity of the estimate has not to be confused with its accuracy, that
is how this estimate y is “close” to the real value yex.

Hereafter, we focus our attention on the dependence of our formulae on
the measure of the maximum velocity and of the diameter, which are those
parameters in formula (5) likely most operator-dependent (while the maximum
velocity is the only parameter appearing in formula (3)).

Sensitivity to VM . All the proposed formulae depend linearly on VM , i.e. are
in the form

Q = c(W )VM

where c(W ) is a function of the Womersley number (and in particular a costant
for the parabolic formula (3)). By resorting to (7), we have for all the formulae
considered here

λ =
c(W )

c(W )VM
VM = 1. (8)

Sensitivity of the formulae to maximum velocity measures is therefore the same.
A possible error δ on this measure in both cases affects flow rate estimates, with
a perturbation of the same order of δ.

Sensitivity to D. Sensitivity on D is even more critical with respect to the
operator skillness and experience. Let us consider the different cases at hand
separately.

1. Parabolic formula: in this case we have from (3)

λparabolic =
ρDVM

4
ρ
2

D2

4 VM

D = 2. (9)

2. Womersley-based formula for small Womersley numbers: by algebraic ma-
nipulation we have

λg1 = 2 + b1
a1W

b1

1 + a1W b1
. (10)

3. Womersley-based formula for large Womersley numbers:

λg2 = 2 +
a2W

(1 + a2
2W

2) arctan(a2W )
. (11)
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4. Womersley-based formula for intermediate Womersley numbers¡: in this
case computations are made more difficult by the presence of the weight
function w that depends on D through the Womersley number. Let us
introduce the following notation:

λ12 =
wg′1

(1 − w)g2
D, λ21 =

(1 − w)g′2
wg1

D, λw =
w′

w
D, λw12 =

(g1 − g2)w
′

g2
D.

Then, it is possible to verify that

λg3 = 2 +

(

1

λ−1
1 + λ−1

12

+
1

λ−1
2 + λ−1

21

+
1

λ−1
w + λ−1

w12

)

. (12)

2.2 Forward and backward analysis of perturbations

In this section, starting from theoretical considerations, we provide an applica-
tion of the results of the sensitivity analysis in order to improve the estimate of
the flow rate. In particular, we will show that a perturbation on the measure-
ment of the maximum velocity in a suitable range, leads to a better estimate of
the flow rate.

The impact of errors on the computation of a quantity of interest y regarded
as a function of the data x can be represented as in Fig. 2. The solid line cor-
responds to the exact calculation of yex in x. Approximation procedures affect
the result, so that the real process (represented by the dashed line) leads to an
approximated value yapp(x). Perturbations on the data on the x-axis change the
results, leading to ypert(x) = yapp(x + δ). We could try to investigate if a per-
turbation on the data could induce an improvement on the final result. In other
words, we look for a perturbation δ that compensates the approximation of the
process. The interplay between approximation of results and data perturbations
is a classical topic of the so called backward analysis (see e.g. Higham 1996).
The answer to this question is strictly related to the definition of amplification
factor. Actually, we look for δ > 0 such that

|yex − yapp(x + δ)| < |yex − yapp(x)|.

By exploiting equation (16) in the Appendix and assuming that x > 0, yapp >
0, y′app > 0 (and then λ > 0) and that the approximation process is affected by
a constant bias such that yapp(x) < yex, the latter inequality becomes

yapp(x) − yex < yex − yapp(x + δ) ≃ yex − yapp(x)

(

1 + λ
δ

x

)

⇒ 2(yapp(x) − yex) < −
λ δyapp(x)

x
< 0

Then, the previous inequality is solved by

δ <
2(yex − yapp)x

λ yapp(x)
. (13)

In conclusion, a perturbation on the data small enough in fact improves the
final estimate.
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2.3 Results and Discussion

Sensitivity to D. In Fig. 1 we illustrate the stability index λ of the parabolic
and Womersley-based formulae as a function of W . We observe that for W ≤ 2.7
and W ≥ 3.1, Womersley-based formulae are slightly more sensitive, as was to
be expected since these formulae actually depends on the Womersley number,
that in turn depends on the diameter. In particular, for W < 2.7 the sensitivity
increases with the Womersley number, while for W > 3.1 it decreases with W .
In this range, the increment of λ is in any case less than 13% of the index of
parabolic formula.

On the contrary, for 2.7 < W < 3.1, we observe that the amplification factor
increases up to 68% with respect to the index of parabolic formula. This stems
from the fact that in this range of the Womersley number, our formula is given
by a weighted linear combination of g1 and g2. In the superimposition of the
effects the amplification factor is affected by the sum of the two contributions.
In order to reduce the sensitivity of the “weighted” Womersley-based formula,
we modify the weight function w(W ) in (5). In particular, we propose the linear
function

w(W ) =
3.1 − W

0.4
. (14)

From the mathematical viewpoint, this choice introduces a less regular func-
tion. Indeed, the Womersley-based formula over the entire range of physiolog-
ical ranges of Womersley numbers will be only continuous, with discontinuous
derivate. However, it reduces the sensitivity to D of the Womersley-based for-
mula in the range W = (2.7, 3.1), as shown in Fig. 1, since it features a slope
smaller than with the weight (6). The amplification factor reduces to 38% more
than the one of parabolic formula.

It is important to outline that, while the stability of the Womersley-based
formula with weight (14) is greatly improved, the accuracy is mantained. This
is confirmed by numerical results referring to the same in silico validation test
cases considered in Ponzini et al. (2006). We apply the original and the modified
Womersley-based formulae (given by weights (6) and (14), respectively) to the
brachial flow wave test case. The results in Tab. 2, show that the accuracy of
the Womersley-based formula is not worsened.

To be more concrete, we detail some examples of clinical relevance (in all the
examples we set ν = 0.035 Poise).

1) Coronary vessel: Let us consider the measure of flow rate in a coronary
vessel. We assume that the diameter of such a district is D = 2mm. In basal

conditions, frequency f = 1Hz, consequently W = 1.34. For example if the di-
ameter error is 10%, the perturbation induced by the parabolic formula amounts
to 20%, while from (10) it follows that the perturbation of the Womersley-based
formula amounts to 20.6%.

If we assume that adenosine is administered, we have f = 3Hz corresponding
to W = 2.32. In this case the perturbation of the Womersley-based formula
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amounts to 22.8%.
2) Brachial artery: Let us consider the brachial artery: in this case, a pos-

sible value of the diameter is D = 4.2 mm and then the Womersley number
in basal conditions (f = 1Hz) is W = 2.81. In this case we have refer to the
weighted formula (5)3, with (14). With a 10% error in the diameter measure, the
perturbation of the Womersley-based formula is 37.4% (20% for the parabolic
formula).

3) Femoral artery: Here we can assume D = 10mm. In basal conditions we
have W = 6.69 and the perturbation of the Womersley-based formula amounts
to 21.0%, while under adenosine we have W = 11.60 and the perturbation is
20.5%, versus the 20% of the parabolic formula.

Overestimation of the measures. It is worth noting that clinical evidence (see,
e.g., Ferrari et al. 2006) suggests that parabolic formula underestimates the real
flow rate, Qex > Qparabolic. In other words, there is a systematic error with a con-
stant bias (i.e. Qex−Qparabolic > 0 constantly). Referring to the section Forward
and backward analysis of perturbations, in our application the datum x is the
diameter or the maximum velocity, whereas the calculation yapp is the estimate
of the flow rate. Moreover, we remark that x > 0, yapp > 0 (if we focus on down-
stream fluxes) and y′app > 0 for construction. This means that we can apply (13).
For example, using one of the in silico test case shown in Ponzini et al. 2006,
we have VM = 4421.0 mm/s, D = 1.2 mm, Qex = 10000mm3/s, Qparabolic =
9876 mm3/s, W = 1.737. From (8), (9) and (13), it follows that a measure of
the maximun velocity satisfing δ < 111.02 mm/s and a measure of the diameter
satisfing δ < 0.015 mm, leads to a better estimate of the flow rate. In this case,
as remarked in the previous subsection, perturbations on the measures could at
some extent compensate the intrinsic error of parabolic formula. More precisely,
we have that small positive perturbations on the measures of VM and D can
improve the flow rate estimate based on (3). This has an immediate practi-
cal consequence: when different measures of VM or D are available it is worth

retaining the largest one, since small overestimations can partially balance the
errors intrinsic to the parabolic formula.

In the case of Womersley-based formulae, there is no available experimental
evidence of a constant bias in flow rate evaluation, so it is not possible at the
moment to give any practical suggestions. Numerical in silico results presented in
Ponzini et al. (2006 and 2008) suggest however that also this formula features a
constant underestimation (even if sensibly reduced with respect to the Doucette’s
results as will be illustrated in Sect. 3). If these results will be confirmed by in

vivo validation, then the indication moving towards an overestimated value of
the maximum velocity and of the diameter will apply to the Womersley-based
formula as well.
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3 Some steps to “in vivo” validation

Validation of (5) in Ponzini et al. (2006) was based on CFD results, by perform-
ing numerical simulations in geometries and regimes different from the ones used
for fitting the formulae. In Ponzini et al. (2008) Womersley-based formulae have
been applied to Y-graft bypass. The advantage of in silico test cases is that pre-
scription and comparison of data is completely under control. Results obtained
in this way show that Womersley-based formulae can significantly improve flow
rate estimates in comparison with parabolic formula.

Next step is in vivo validation. In what follows we provide a first clinical
application of the Womersley-based formula. We point out that this application
is just a first preliminary, even if it is an important step in that direction.

Among all the clinical flow rate applications, we have focused on catheter-
based Doppler ultrasound velocimetry analysis for the measurement of the coro-
nary flow reserve (CFR). This application is one of the most relevant in clinical
application (see Gould et al. 1974, McGinn et al. 1990, Doucette et al. 1992).
In particular, the CFR has been intensively used to assess coronary vasomotric-
ity in patients with coronary artery disease (CAD) (see Sambuceti et al. 1997).
CFR is known to be defined as the ability of coronary vessels to increase blood
flow adjusting it for the myocardium demands for oxygen and energy. CFR
can be defined as the ratio between the flow rate QS measured in a coronary
vessel during maximal vasodilatation and the flow rate QR measured in resting
conditions, that is

CFR =
QS

QR
. (15)

Therefore, CFR could represent a clinical diagnostic and prognostic index con-
cerning the coronary vessel inhability to increase flow proportional to increases
in myocardial metabolic demand.

We have applied the Womersley-based formula in a blind fashion, to 13 pa-
tients (with or without idiopathic dilated cardiomyopathy) of the database of
CNR of Pisa, Italy (see Neglia et al. 2007 for details). Patients with idiopathic
dilated cardiomyopathy have been chosen since they have shown impaired CFR
at positron emission tomography measurements (see Neglia et al. 2002). In par-
ticular, in order to compute the flow rate QS , adenosine has been administered
to these patients.

Using these data, CFR has been estimated using the parabolic and the
Womersley-based formula for the computation of the flow rates in (15).

We observe that no ad hoc data acquisition has been needed in order to
evaluate the flow rates (and then the CFR) using the Womersley-based formula.
An important feature of this formula is actually that it can be used from data
commonly measured in the clinical practice.

As shown in Table 1 and in Fig. 3, Womersley-based formula provides an
higher value of the estimate of the CFR, with the respect to the one performed
by the parabolic formula, in all the patients but one (patient n. 11). We observe
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that this patient is the only one such that the Womersley number is smaller
under adenosine rather then at rest. This is due to the fact that for this patient
heart rate is slower under adenosine than in resting conditions.

In particular, the mean value of the CFR obtained with the parabolic formu-
lae is 2.56 ± 0.75, while the one obtained with the Womersley-based formula is
2.65±0.85. This is a good result, in view of the established tendency of parabolic
formula to underestimation.

Moreover, in Table 1 the relative differences between the two CFR estimates
(ε) are shown. The mean value of ε related to the first 8 patients with idiopathic
dilated cardiomyopathy is 2.53% ± 2.42%, while the mean value in the healthy
patients is 3.55% ± 4.98%. From these results, Womersley-based formula seems
to introduce a more significant correction in healthy patients. Because of the
small sample size, the two groups are still not well separated.

Data collected so far are however not enough for the construction of a sta-
tistically significant data set. Starting from promising results obtained here, we
plan to enlarge our data base, in particular including cases with high Womer-
sley number, namely those observed in vessels with larger diameter than that
of coronary arteries. In fact, in the present study, formula (5) was applied to
arterial vessels with small Womersley numbers. Formula (5) will further improve
accuracy of CFR calculation when applied to clinical conditions characterized
by elevated heart rates, such as pacing tachycardia, or by medium and large
vessels.
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Patient W CFR CFR ε
basal/adenosine based on (3) based on (5)

1 2.88/3.19 3.75 4.06 7.64%
2 3.00/3.15 2.25 2.32 3.02%
3 3.53/4.00 2.68 2.75 2.55%
4 2.05/2.44 1.53 1.57 2.55%
5 2.54/2.49 1.55 1.55 0.0%
6 3.24/3.58 3.61 3.68 1.90%
7 2.49/2.73 1.75 1.78 1.69%
8 2.13/2.34 2.28 2.30 0.87%

9 2.68/3.32 1.70 1.92 11.46%
10 2.33/2.54 2.04 2.07 1.45%
11 2.68/2.44 2.84 2.79 -1.79%
12 2.07/2.41 3.52 3.59 1.95%
13 3.00/3.41 3.88 4.07 4.67%

Table 1: CFR estmated with formula (3) and (5) from the data collected at the
CNR Clinical Physiology Instiute, Pisa, and relative difference ε =(CFR based
on (5)-CFR based on (3))/ CFR based on (5)

Ed Ew Ewmod

W=2.868 18.42% 9.52% 8.03%
W=3.049 18.17% 2.77% 3.33%

Table 2: In silico validation: comparison between the relative errors obtained
with formulae (3) (Ed), (4) with weight (6) (Ew) and (4) with weight (14)
(Ewmod)
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Figure captions

Figure 1 Amplification factor λ for Parabolic and Womersley-based formulae
as a function of the Womersley number W . Dashed line: index for the
original formula featuring the exponential weight function (6) for Womers-
ley numbers in the range 2.7 < W < 3.1. Solid line: index for the modified
formula with the linear weight (14).

Figure 2 Abstract representation of forward and backward impact of data per-
turbations. Improvement on the result obtained by an approximated pro-
cess can be the result of a perturbation on the data.

Figure 3 Estimation of the CFR obtained with the parabolic and with the
Womersley-based formula: the patients with idiopathic dilated cardiomy-
opathy (1-8) and the healthy ones (9-13) are separated by the dashed line.
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Appendix
Let us consider a generic function y = y(x). Suppose that x could be subject

to perturbations δ possibly induced by measurements errors. Our goal is to
evaluate the ratio between the relative errors, namely

λ =

y(x+δ)−y(x)
y(x)

δ
x

=
y(x + δ) − y(x)

y(x)

x

δ
.

Let us rearrange the latter equation in the following way

λ =
y(x + δ) − y(x)

δ

δ

y(x)

x

δ
=

y(x + δ) − y(x)

δ

x

y(x)
.

Now, if we denote by y′(x) the derivative of y with respect to x and let δ tends
to 0, we finally obtain

λ =
y′(x)

y(x)
x.

This amplification factor states the impact of a perturbation on x on the re-
sult y(x). In the context of numerical analysis, this index is sometimes called
condition number of y(x). Observe that from the definition we have for δ small

y(x + δ) ≃ y(x)

(

1 + λ
δ

x

)

. (16)
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