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Abstract
This study investigates the assessment of perceived academic stress and its impact on students’ mental health by
employing advanced psychometric and statistical models. A dataset of 9,000 university students was analyzed using
Item Response Theory (IRT), specifically the Four-parameter Nested Logistic Regression Model (4PLnRM), to estimate
latent parameters that quantify well-being across nine stress-related domains. Linear and mixed-effects models were
applied to identify the most relevant socio-demographic, psychosocial and academic risk factors, highlighting the
strong influence of economic conditions, exam backlog, and academic self-perceptions. To further validate these
measures, Random Forest classification models were trained to identify students at different levels of psychological
vulnerability psychological risk, demonstrating that latent parameters are effective predictors of distress and well-
being.distress. Additionally, Exploratory Factor Analysis (EFA) on self-reported mental health symptoms psychological
symptoms revealed four interpretable latent factors—anxiety, depression, motivational block, and somatization—used
in subsequent clustering to classify students into low, medium, and high-risk groups. Across methods, consistent
associations emerged between risk classes and demographic variables such as gender, age, academic performance,
and economic satisfaction. The results emphasize the value of latent psychometric modeling for identifying stress
mechanisms and developing targeted interventions aimed at improving the academic climate and supporting students’
mental health.
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Introduction
The assessment of mental health has long represented a
central theme in psychological and social science research,
yet developing objective tools that can reliably capture
the psychological and physical well-being of individuals
and groups remains a complex challenge. In this context,
Item Response Theory (IRT) models constitute a widely
used approach for analyzing response patterns derived
from Likert-scale questionnaires, as they allow researchers
to capture the latent nuances that characterize subjective
perception.

In this study, we propose the use of the Four-parameter
Nested Logistic Regression Model (4PLnRM), an advanced
extension of the IRT family, with the aim of more accurately
modeling the complexity of data collected through a
questionnaire on perceived academic stress, administered
at the Politecnico di Milano. The analysis pursues two
main objectives: first, to estimate latent parameters that
quantify students’ well-being; and second, to identify the key
academic stressors influencing their university experience.

The results are then integrated into a classification
model based on Random Forest, designed to detect student
subgroups at increased risk. In this way, the work goes
beyond a purely methodological evaluation and offers an
applied perspective, highlighting how specific parameters
can contribute both to understanding stress mechanisms and

to developing targeted interventions to improve the academic
climate and support students’ mental health.

Finally, in the last section an analysis will be conducted
using Exploratory Factor Analysis (EFA) models, based on
a subset of the dataset that investigates the presence of
certain psychological symptoms among students. The factor
scores from the model will be used to perform a clustering
of students and categorize them into risk classes, in order
to investigate once again whether there are demographic
differences and variations in the potential risk categories
under study.
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Dataset presentation
The dataset we aim to create is inspired by the study
conducted in Bedewy and Gabriel (2015). This study
provides a comprehensive framework for understanding
the various sources of academic stress among university
students, which is crucial for developing a dataset that
accurately captures the factors contributing to stress in
academic environments.

The primary motivation behind creating this dataset is
to build upon the findings of Bedewy and Gabriel (2015),
who identified key factors that contribute to academic
stress among university students. Their study developed
the Perception of Academic Stress Scale (PAS), which
categorizes stress into main factors:

1. Pressures related to academic expectancies: This
includes stress related to high expectations from
teachers and parents, as well as competitive peer
pressure.

2. Perceptions of workload: This factor encompasses
stress due to excessive academic workload

3. Academic Self-Perceptions: This involves students’
confidence in their academic abilities, their future
career prospects, and their ability to make academic
decisions.

4. Academic satisfaction: This factor relates to stress
caused by limited time for classes, homework, and
relaxation.

5. Life quality and personal well-being:These are
very important and sensible questions related to the
personal perception of the quality of life

6. Social support and personal relationship:this factor
relates to how big is the support from family, students
and professors.

7. University climate:This factor encompasses the
questions related to the university climate and the
competition within it.

8. Motivation towards study: This factor investigates
how motivated an individual is to study, and to what
extent they value academic challenge and pressure.

9. Stress, psychological disturb, academic difficulties:
these are the most sensible questions and this section
of the dataset will be used later as output.

These factors were identified as the most significant
contributors to academic stress, and they provide a solid
foundation for structuring the dataset. By organizing the
dataset around these macro-categories, we can ensure that
it captures the most relevant and impactful sources of stress,
as identified by Bedewy and Gabriel (2015).

Moreover, the study highlights the importance of
considering both academic and non-academic factors when
assessing stress among students. Indeed, consistent with
previous research by Brand and Schoonheim-Klein (2009),
stress is described as a multifactorial construct shaped by
socio-cultural, environmental, and psychological factors.

The datset was designed by Dr. Elena Mazza from the
Polipsi area of the Polytechnic University of Milan. After
thorough cleaning, the dataset consists of 9000 rows and 243
columns and they are all categorical data, with a lot of Likert-
type scales and demographic/potential risk factors. As for the

Likert scales, the response value 5 will always correspond to
the most positive possible answer (e.g., ’very good’), while
1 will represent the worst. In this way, the value assigned
to the highest response category is standardized. This initial
data collection paints a concerning picture regarding the
mental health of students, highlighting the need for a
deeper understanding of the factors that most significantly
contribute to stress. Consequently, identifying these factors
and proposing interventions becomes crucial for improving
the overall university experience (considering that a state of
well-being also positively impacts academic performance).
Below are some key findings and examples of questions of
the questionary:

• I am satisfied with my degree program.
• In many respects, my life is close to my ideal.
• I am satisfied with my life.
• I am proud to be a student of this university.
• I enjoy challenges.
• I am confident that I will succeed in my future career.

Figure 1. Histogram of Psychological well-being question

Figure 2. Histogram of Physical well-being question
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Item Response Theory Models

The central feature of Item Response Theory (IRT) is
the specification of a mathematical function relating the
probability of an examinee’s response on a test item to an
underlying ability. In the 1940s and 1950s, the emphasis was
on the normal-ogive response function, but for statistical and
practical reasons this function was replaced by the logistic
response function in the late 1950s. Today, IRT models
using logistic response functions dominate the measurement
field as (Van der Linden and Hambleton 1997) said
in their Handbook of Modern Item Response Theory. Long
experience with tools like thermometers or speedometers
may suggest that measurement is a direct numerical reading
from a device. However, this is not the case for educational
and psychological (Lord and Novick (1968) ). Our dataset
contains a lot of columns, so a lot of information about each
person. The objective of this chapter is to create a score
capable of best capturing the general psycho-physical state
of the subject.

IRT: key concepts

In psychometrics, the columns of a dataset corresponding
to the questions in a questionnaire are usually referred to
as items. Parametric IRT models are based on two main
concepts:

• the latent parameter θi, associated with each subject
who completes the questionnaire;

• the item difficulty parameter ai, where i = 1, . . . , n
indexes the items.

The latent parameter θ was originally conceived as a
measure of a subject’s ability (Rasch (1960)) to correctly
answer items in a multiple-choice test. In the context of
psychometric questionnaires, however, θ can be interpreted
more broadly. For example, it may reflect how happy or sad a
person is, depending on the type of items considered (Bech et
al. (1992),Cressie and Holland (1983)). In our case, a subject
with a high θ value can be interpreted as an indicator of better
overall psycho-physical well-being. Practically speaking, a
higher θ corresponds to a greater probability of selecting
higher values on the rating scale (e.g., choosing “5” to
indicate a very positive state).

The item parameter ai, on the other hand, represents the
difficulty of an item. In ability tests, a higher value means
a more difficult question. In psychometric contexts, where
there is no longer a “correct” or “incorrect” answer, this
interpretation is less direct. Here, ai can be understood as
how demanding it is for subjects to endorse higher response
categories on item i.

Since our goal is to develop a reliable measure of stress,
we must select the model that best fits the data and then
estimate the latent parameter θ, which will serve precisely as
our stress quantifier. There are many ways to construct such a
score, but IRT models capture information that, for example,
a simple average of responses cannot, thanks to their more
sophisticated treatment of the problem.

Four Parameter Nested Logistic Regression
Model
The model used in this study will be the
Four Parameter Nested Logistic regression Model
(4PLnRM). The reasons for using this model are its
performances mainly explained by the factors that other
simpler models did not consider (Chalmers (2012),Storme
et al. (2019), Suh and Bolt (2010) ). In order to understand
how this model adapts to our data we first need to introduce
the Four parameter logistic regression model, suited
for dichotomous data.

Four Parameter Logistic Regression Model
The 4PL model is an extension of the 3-Parameter Logistic
regression model (3PL); both these models are used for
dichotomous (so 0 and 1 ) kind of data for ability tests,
where one category corresponds to the correct answer to the
item i.

In the 3PL, probability of responding correctly (let us say
1) for item i by a subject with ability θ is given by:

P (X = 1 | θ) = g + (1− g)
1

1 + exp (−a(θ − d))

where the lower asymptote g (the guessing parameter)
represents the probability that an examinee with extremely
low ability will correctly answer an item with difficulty a
(Harvey and Hammer, 1999).

But the 3PL model might severely penalize a high-ability
student who makes a careless error on an easy item (Barton
and Lord 1981; Rulison and Loken 2009). More specifically,
in the 3PL IRT model the upper asymptote of 1 assigns a
probability of 0 to a high-ability student failing to answer an
easy item correctly (Loken and Rulison 2010).

Barton and Lord (1981) (1981) introduced an upper
asymptote parameter u, which represents an upper bound for
P (θ), with the respect to very high values of θ.

In fact, for each subject j, we now express the probability
of responding 1 to item i as:

P (X = 1 | θ) = g + (u− g) · 1

1 + exp (−a(θ − d))

The IRT models for dichotomous data are structured so
that a highly skilled subject, that is, with a very high θ,
answers the item correctly (X = 1) with probability

P (X = 1 | θ) ≈ 1

Conversely, a subject with a very low θ has probability

P (X = 1 | θ) ≈ 0

However, now we consider the possibility that a subject
with a very high or low θ may respond differently than
expected to the item.

Specifically:
- For θ → ∞, P (X = 1 | θ) → u and no longer 1.
- For θ → −∞, P (X = 1 | θ) → g and no longer 0.
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How it works
In the four-parameter nested logistic regression model
(4PLnRM) with a nominal component, the probability of
selecting a given response category is divided into two cases.
First, let us denote the fifth category (h = 5) as the key
category, which in the context of a Likert-type scale can
be interpreted as the highest level of agreement (“strongly
agree”). The probability of endorsing this key category
follows a four-parameter logistic (4PL) curve:

P (X = 5 | θ) = g + (u− g)
1

1 + exp[−a(θ − d)]
,

where a is the discrimination parameter, d is the location
(or difficulty) parameter, g is the lower asymptote, and u is
the upper asymptote. This component governs the likelihood
that an individual fully endorses the highest category as a
function of the latent trait θ.

If the response does not fall into the key category,
that is, if h ∈ {1, 2, 3, 4}, then the probability is modeled
through a nominal model. In this case, the overall probability
of selecting a distractor category is weighted by the
complement of the 4PL trace line, i.e. 1− P (X = 5 | θ),
and then multiplied by the nominal model probability for that
category:

P (X = h | θ) = [1− P (X = 5 | θ)] · P nominal(X = h | θ),
h ∈ {1, 2, 3, 4}. (1)

The nominal probability is given by

P nominal(X = h | θ) = exp(akm−1(aθ + δhk))∑H−1
m=0 exp(akm(aθ + δmk))

,

h ∈ {1, 2, 3, 4}. (2)

where δhk are the step parameters of the nominal model
and H − 1 is the number of non-key categories (in this case,
H − 1 = 4). This structure ensures that the choice among
the distractor categories is modeled according to an item
response framework appropriate for polytomous data.

Figure 3. Example of probability curves with 4PL

In summary, the nested model operates in two stages: first,
a 4PL function determines the probability of endorsing the
highest category; second, conditional on not endorsing this
category, the nominal model specifies how the probability
mass is distributed across the remaining categories. This
allows us to assume that a subject with a high θ can answer a
category different than 5 with a probability different from
0; this allows for a more precise estimation of the latent
parameter because, in the psychometric context, nothing
guarantees that a subject with a high value of the latent
parameter will necessarily choose response category 5 for all
the questionnaire items, since, for example, they might not
feel comfortable in certain areas of the urban environment.

Application of the 4PLnRM model
Previously, the division of the dataset into stress subcate-
gories was introduced, for each of which specific question-
naire items were selected. For each of these divisions, the
4PL model was applied separately in order to obtain from
each the latent parameter; these parameters will serve as the
variables indicating how ’happy’ or not a subject is within
each subcategory. In practice, an individual with a high value
of theta in the category ’Academic self-perception’ will tend
to experience academic life in a positive way.

The reason for applying the models separately rather than
to the dataset as a whole is that the goal is to investigate
how different domains—such as academic aspects, family
sphere, or urban environment—affect the overall health of
students. In fact, several questions in the questionnaire aim to
investigate, in a more general way, how a subject feels; these
belong to the subcategory ’Stress, psychological discomfort,
academic difficulties’. The latent parameter estimated in this
subcategory will be the ’general’ quantifier of individuals’
happiness, on which further studies will be conducted to
identify the main risk factors that influence it.

The result is therefore a new dataset with columns
corresponding to the 9 latent parameters estimated by the
4PL model for each student, each associated with one of the
9 subcategories identified in the questionnaire.

Linear Models: which are the most relevant
stress factors?
The choice to use linear models (LM) to explain the general
well-being of the students was made with the aim of having
models that are simple to understand but, at the same
time, provide significant results. Subsequently, Linear mixed
models (LMM) will be employed to identify which grouping
factors (such as gender, age, work-related stress, etc.) have
the greatest influence on the student stress.

The output of the model corresponds to the latent param-
eter associated with the stress subcategories: Psychological
distress, Academic difficulties (category number 5), and
Life quality and personal well-being (category number 9).
Specifically, this parameter was estimated by merging the
two subcategories that included the most general questions
on personal mental health and perceived stress. Therefore,
the dependent variable of the linear model can be regarded
as the most appropriate measure of individuals’ overall stress
levels.
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To better understand how linear models will be applied,
it is first necessary to clarify the variables included in the
dataset to be used.

Table 1. Categorical variables of interest

Variable Description

country Two levels: Italy, foreign stu-
dent

home condition Three levels: commuter, out-of-
town, local student

age Range of age of belonging
sex Sex of the subject
degree kind triennale Three levels: ING

(engineering), DES (design),
ARC (architecture) for
bachelor’s degree

average exams Range of exams’ averages
exams condition Specifies if a student is up-to-

date with exams (5 levels)
economic stress Level 1: good economic condi-

tion, 0 otherwise

Table 2. Latent parameters estimated by the 4PL model

Category Latent parameter

1: Pressures related to
academic expectancies

θacademic-expect

2: Perceptions of work-
load

θworkload

3: Academic Self-
Perceptions

θacademic-perc

4: Academic satisfaction θsatisfaction
5: Life quality and per-
sonal well-being

θwellbeing

6: Social support and
personal relationship

θsocial-support

7: University climate θclimate
8: Motivation towards
study

θmotivation

9: Stress, psychological
disturb, academic diffi-
culties

θstress

Best models and results
Below, we present the models with the variables that proved
to be the most relevant with respect to the designated output,
θstress-wellbe.

• Linear Model

θstress-wellbe = β0 + β1 θacademic perception + β2 θacademic expect

+ β3 θworkload + β4 θsocial support + β5 θsatisfaction

+ β6 θmotivation + β7 αeconomic condition + εi
(3)

εi ∼ N(0, σ2) (4)

R2
adjusted = 0.632 (5)

Figure 4. Random intercept plot Mod 3

Estimate t value p-val
(Intercept) -0.166 -9.392 < 2e−16∗∗∗

θacademic perception 0.322 35.313 < 2e−16∗∗∗

θacademic expect 0.142 15.499 < 2e−16∗∗∗

θworkload 0.172 21.550 < 2e−16∗∗∗

θsocial support 0.166 21.177 < 2e−16∗∗∗

θsatisfaction 0.092 10.744 < 2e−16∗∗∗

θmotivation 0.259 26.489 < 2e−16∗∗∗

θeconomic condition 0.215 11.314 < 2e−16∗∗∗

Table 3. Regression meaningful results

As we can observe, very high values of R2 are
obtained, indicating that the macro-categories
significantly influence the overall stress score
as we expected from the study of Bedewy and
Gabriel (2015). Additionally, the residuals are
homoschedastic. As expected, these stress factors
correlate positively with the score and are all
statistically significant, although those related to the
environment and university climate have a slightly
less significant impact. Moreover the economic
self-perception factor is very impactfull on the output
of the model.

• Linear Mixed Models with random intercept.

Some of the possible risk variables or demographic
data had several categories to be taken into account;
the goal is to verify whether, in some cases, a pattern
emerges in the value of the random intercept when
adding such variables to the mixed linear model. The
model included all latent parameters of the categories
that proved to be relevant in the previous linear
model, so that the variables presented below, even if
they contribute only a small proportion of explained
variability (PVRE), are still relevant for the purposes
of the study.

Linear Mixed model with native country as a
grouping factor
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Figure 5. Random intercept plot country of origin

θstress-wellbe = β1 θacademic perception + β2 θacademic expect

+ β3 θworkload + β4 θsocial support

+ β5 θsatisfaction + β6 θmotivation

+ bcountry,0j + ϵij

bcountry,0j ∼ N(0, σ2
b ),

εij ∼ N(0, σ2).
(6)

PVRE = 0.018

Although the PVRE index is not particularly high,
differences emerge across categories of the grouping
factor: Italian students generally achieve higher scores,
while Asian students appear to face greater difficulties.
The reasons for this trend cannot be determined with
certainty, but it nonetheless represents a relevant
factor in our analysis. South American students show
a positive random intercept, although the confidence
interval is quite wide. This suggests that, overall,
they have integrated fairly well into the university;
however, a larger sample size would be advisable to
confirm this trend.

Linear Mixed Model with exam condition as a
grouping factor.

θstress-wellbe = β1 θacademic perception + β2 θacademic expect

+ β3 θworkload + β4 θsocial support

+ β5 θsatisfaction + β6 θmotivation

+ bexam,0j + ϵij

bexam,0j ∼ N(0, σ2
b ),

εij ∼ N(0, σ2).
(7)

PVRE = 0.054

Figure 6. random intercept plot exams condition

Figure 7. Random intercept plot exams average

Here, the PVRE is not as low as in other cases,
standing at a solid 5.4%. Four categories, remain
significant: students who are up to date with their
exams (showing a positive effect), those with 1–2
backlogged exams (slightly positive effect), and those
with more than three backlogged exams (showing a
negative effect). Students close to withdrawal also
score lower, although their confidence interval is quite
wide. Overall, having backlogged exams appears to
strongly influence students’ stress levels.

Linear Mixed Model with grades average (avg) as
random intercept.

θstress-wellbe = β1 θacademic perception + β2 θacademic expect

+ β3 θworkload + β4 θsocial support

+ β5 θsatisfaction + β6 θmotivation

+ bavg,0j + ϵij

bavg,0j ∼ N(0, σ2
b ),

εij ∼ N(0, σ2).
(8)

PVRE = 0.012

Once again, we do not observe a high PVRE, but a
growing trend can be noticed with the grade point
average, highlighting that the academic situation (in
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Figure 8. Frequency of the number of disturbs among students

this case the grade point average) turns out to be a
relevant factor when it comes to student stress.

Conclusion over the risk-factors

Classification of student at-risk
A substantial part of the dataset consists derives from a
survey assessing psychological symptoms that students may
have experienced over the past 12 months for a period of
at least two consecutive weeks. Fourteen symptoms were
investigated: “Lack of interest”, “Sadness/depression”, “Low
self-esteem”, “Sleep problems”, “Tension/anxiety”, “Panic
attacks”, “Avoidance/escapism”, “Unexplained pain”, “Low
concentration”, “Repetitive thoughts”, “Appetite problems”,
“Mood swings”, “Self-harm”, “Suicidal thoughts”.

The frequency with which such symptoms were reported
is very high. To provide an overview, the following figure
shows the response frequency distribution:

The purpose of this part of the study is to use the
latent parameters of the IRT models, previously discussed,
as inputs for classification models in order to identify the
students most at risk. Three risk classes were therefore
created:

• LOW risk: students with fewer than 2 symptoms
• MEDIUM risk: students who reported between 3 and

5 symptoms
• HIGH risk: students with more than 5 symptoms

The objective is therefore to understand how the latent
parameters, particularly in this study those from the
4PLnRM model, are able to “identify” students in significant
difficulty or at least serve as an early warning signal.

The classifier used is a random forest which, in
addition to its excellent predictive power, provides the
variable importance score, once again useful to understand
which factors most strongly affect the recurrence of these
symptoms.

The model and consideration
The first model presented takes as input the same dataset
used for the linear models and, as output, the vector
containing the students’ risk class as previously defined.

Figure 9. Random intercept plot Mod 4

Considering the large size of the dataset, it was split into
80% training and 20% testing; on the training set, both
hyperparameter tuning of the model (ntry = 2, 4, 6, 8) and
cross-validation were performed simultaneously to identify
the best one.

mtry Accuracy Kappa
2 0.5721 0.3569
4 0.5829 0.3734
6 0.5789 0.3672
8 0.5789 0.3673

Table 4. Accuracy and Kappa over the train set

HIGH LOW MEDIUM
HIGH 375 53 182
LOW 54 359 157

MEDIUM 152 115 204
Table 5. Confusion matrix of the test set

Statistic HIGH LOW MEDIUM
Sensitivity 0.6454 0.6812 0.3757
Specificity 0.7804 0.8123 0.7590
Pos Pred Value 0.6148 0.6298 0.4331
Neg Pred Value 0.8021 0.8446 0.7127
Prevalence 0.3519 0.3192 0.3289
Detection Rate 0.2271 0.2174 0.1236
Detection Prevalence 0.3695 0.3452 0.2853
Balanced Accuracy 0.7129 0.7467 0.5674

Table 6. Statistics of the model

Conclusions on the model
The goal of this section was to verify whether the latent
parameters estimated by the 4PLnRM model are able
to identify and distinguish at-risk individuals from those
at lower risk. It is important to note that, within the
context of this study, the definition of “at-risk” is not
unequivocal: a definitive classification would have required
expert evaluation to objectively determine each student’s
actual level of risk. Nevertheless, a good proxy is the number
of symptoms experienced over the past year.
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As shown, the latent parameters provide an effective
tool for discriminating individuals at higher risk. Overall,
the model’s performance is good, though not exceptional,
since—as one might expect—it struggles to clearly
distinguish individuals in the “MEDIUM” class from those
in the other two classes, particularly from the “HIGH”
group. On the other hand, the model very accurately
separates the two most distant classes, with a remarkably
low error rate. This highlights how the latent parameters
indeed carry meaningful information about the individuals’
emotional state. This finding is further supported by the
model’s importance plot, which shows that these parameters
rank higher than exogenous factors such as gender or
age—variables that are typically considered relevant in linear
models.

Exploratory Factoral Analysis

introduction
As has become clear so far, in psychometrics it is often
difficult to define an objective measurement scale capable
of quantifying levels of discomfort/stress in a subject,
and subsequently identifying the main risk factors. This
section, however, focuses on symptoms experienced over
the last 12 months for a prolonged period, with the aim
of grouping students into risk classes that are not based
merely on the number of symptoms, as was the case in
the section devoted to classifying at-risk students. The idea
here is to start from something more ’concrete’ from a
psychological perspective—such as the presence of a specific
symptom—and then investigate whether there are significant
differences within the population in the various previously
listed risk factors (sex, age, economic condition ecc..).
The method adopted for this analysis is Exploratory Factor
Analysis (EFA), which, in addition to being widely used
in the psychometric field (Brunner (2023),Finch (2023)),
is suited to handling dichotomous data (i.e., the dataset of
symptoms).

Short theory recap
In this case, the input to the model consists of the sub-
dataset containing the k = 14 columns corresponding to the
questionnaire items representing different domains of mental
health symptoms, listed in the classification model.

The factor analysis model may be written as follows.
Independently for j = 1, . . . , n subjects, let

zj = ΛFj + ej

where zj is a k × 1 observable random vector ( zj1 = 1 if
subject j has the disturb 1, otherwise), Λ is a k × p matrix of
constants,

Λ =


λ11 λ12 · · · λ1p

λ21 λ22 · · · λ2p

...
...

. . .
...

λk1 λk2 · · · λkp


and Fj (for factor) is a p× 1 latent random vector with

covariance matrix Φ.

Figure 10. Scree-plot

The k × 1 vector of error terms ej is independent of Fj ;
it has expected value zero and covariance matrix Ψ, which is
almost always assumed to be diagonal.

There are no intercepts, and E(Fj) = 0. A multivariate
normal assumption for Fj and ej is common.

The λij values will be called factor loadings. They are
essentially regression coefficients linking the factors to the
observed variables.

The number of factors (symbolized here by p) is a
fundamental property of a factor analysis model. For
example, it determines the number of parameters.

It is typically very important to subject-matter experts, too.
You can always get their attention by asking if something
they are talking about is uni-dimensional. For example:
is creativity uni-dimensional? Are political attitudes uni-
dimensional (primarily just left-right)? In market research,
how about attitudes toward a particular product category? In
a classical factor analysis, the number of common factors
is generally not known in advance; it is determined in an
exploratory manner.

The first guiding principle is a piece of wisdom Kaiser
(1960), who pointed out that for the typical problem
involving human behavior or any other complex system,
there are probably hundreds of common factors.

Including them all in the model is out of the question. The
objective should be to come up with a model that includes
the most important factors for the variables in the study, and
captures the essence of what is going on.

Simplicity is important. Other things being more or less
equal, the fewer factors the better.

Model application and results
The focus of this section is therefore to understand
how the model behaves with our data, the number of
factors selected, and their tangible interpretation, possibly
supported by the results. Following a consultation with Dr.
Filomena Di Sanzio and Dr. Elena Mazza from the Polipsi
Department of the Politecnico di Milano, an analysis based
on the scree-plot, p = 4 latent factors seemed to be the
most appropriate choice to balance the amount of variability
explained by the model and the interpretability of the factors.
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Figure 11. Factor Loadings

Also reported are the factor loadings obtained from the
model ( 11)

The factor loadings are the correlations between the
observable variables and the factors. In particular, the
correlation between observed variable i and factor j is λij .
The square of λij represents the reliability of observed
variable i as a measure of factor j.

The higher the value of a certain factor loading on a given
symptom, the stronger the connection with that factor; for
example, Factor 1 is strongly related to the component of
tension/anxiety, but also fairly related to panic attacks and
low self-esteem. Based on the results, we also provided
a plausible and meaningful interpretation of these latent
factors:

• MR1 = Anxiety symptomatology
• MR2 = Depressive symptomatology
• MR3 = Motivational block
• MR4 = Somatization

This is very positive because it was possible to assign
a concrete meaning to the latent factors considered in our
analysis, which is therefore useful to consolidate the work
carried out.

Clustering analysis on EFA latent factor
scores
Similarly to what happens in a Principal Component
Analysis (PCA), in Exploratory Factor Analysis (EFA) it is
also possible to project the data into the space of the latent
factors and compute the corresponding factor scores. These
scores represent the position of each subject with respect
to the estimated factors, thus allowing for a reduction in
data dimensionality and a more compact representation of
information.

The factor scores indicate the position of each subject
along the latent factors estimated by the model. In particular,
high and positive values reflect a strong presence of the
factor in the subject, while low or negative values indicate a
placement in the opposite direction of the factor continuum.
In general, the distance from zero reflects the intensity with
which the factor manifests in the subject.

Figure 12. Cluster visualization on dimensionally reduced data
(from 4 → 3)

This procedure, in addition to enabling a dimensionality
reduction (from 14 to 4), makes it possible to work with
data in a continuous domain, which is often advantageous
when performing cluster analysis. In fact, it is not always
possible to obtain satisfactory groupings when dealing with
dichotomous data.

Several clustering methods were tested, and the reported
result represents a compromise between cluster performance
(measured through the silhouette score index), methodolog-
ical clarity, and finally, a reasonable number of clusters. It
is important to note that these clusters correspond to ’risk
classes’ into which the subjects will be divided, so it may be
reasonable to renouncing a little bit of performance to get a
better interpretation.

Results
For clarity, the clustering presented was carried out on
a dataset of factors score of dimension n× p (n =
number of subjects and p = 4 latent factors). The method
that best satisfied the desired requirements was a hierarchical
clustering with Manhattan distance and the average linkage
method.

Silhouette score 0.473
Number of clusters 3
Cluster 1 size 545
Cluster 2 size 4656
Cluster 3 size 3057

Table 7. Clustering results: Silhouette score, number of
clusters, and cluster sizes.

Three hypothetical risk classes appear to be a reasonable
subdivision of students based on psychological symptoms,
while maintaining a satisfactory clustering score that rules
out a random aggregation of the data.

Furthermore, to further test the effectiveness of the
clustering, we report a heatmap of symptom prevalence
across the three groups in Figure 13.
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Figure 13. Symptomatic prevalences within clusters

Figure 14. Differences in age and sex

From the heat map, it can be inferred that the clusters are
divided into three risk categories:

• Cluster 2 (low risk) → students with few symptoms
• Cluster 3 (medium risk)→ students with several

symptoms
• Cluster 1 (high risk) → students with many symptoms,

including the most severe ones (self-harm and suicidal
thoughts)

At a practical level, it can therefore be stated that the
cluster analysis generates three student groupings with a
meaningful interpretation, distinguishing them into high,
medium, and low risk.

Differences in the demographic factors
Once the validity and meaningfulness of the groupings
obtained from the cluster analysis on the EFA scores have
been established, it is natural to ask whether there are
differences in the demographic and potential risk factors
considered in the linear models; this would help corroborate
them as relevant factors influencing students’ mental health.
The results are reported in the heatmaps (figures 14 15 16).

How the graphs should be read: For the category Exam
condition 16, for example, the rows represent the groups
and the columns represent the risk factor categories. The
important aspect is not the percentage itself but the difference
between the clusters.

Figure 15. Differences in economic condition satisfaction and
exam’s average

Figure 16. Differences in exam condition

For instance, consider the percentage difference between
Cluster 1 and Cluster 2 in the following categories:

• “I am up to date with exams”
• “I still have to take 3 or more exams from previous

academic years”

There is clear difference among the two groups: in the
Cluster 2 the percentage of students up to date with exams
is high while is low on Cluster 1, while the students that
still have to take 3 or more exams from previous academic
years are clearly more prevalent in the first. Very significant
differences can also be observed in the economic factor (the
percentage of satisfaction between groups increases as we
move toward the lower-risk class: 72→82→91) and in the
grade-point average, but there are differences also among
the age-classes (a bigger prevalence of older students in the
high risk class). With regard to gender, Cluster 1 is much
more balanced between males and females, whereas Cluster
2 is predominantly composed of males (this could imply that
females are slightly more at risk compared to males).

In conclusion, in this part of the analysis we started
from a more tangible and concrete psychological dimension,
namely the symptoms experienced in the last 12 months for
a period of at least two weeks, in order to group students into
three risk classes. In doing so, very significant differences
emerged among these groups in the various demographic
factors analyzed in the previous parts of the study, revealing
several consistencies with what had previously been found:
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economic condition, exam backlog, and grade point average
are factors that strongly impact students’ mental health.

Conclusions

The primary objective of this study was to develop
reliable quantifiers capable of capturing the degree of stress
experienced by students and, consequently, to identify which
demographic or potential stress-related factors most strongly
influence it. The 4PLnRM model, thanks to its ability
to capture different patterns of responses, provides these
parameters (namely, the latent parameter θ).

The effectiveness of these parameters is further supported
by the classification model based on Random Forests,
which takes as input the estimated θ values in the various
subcategories of stress, and as output an objective measure
of distress, namely the number of psychological symptoms
experienced during the last year for a prolonged period.
These were grouped into three categories: high, medium, and
low risk.

The classifier clearly shows, through the importance
measure, the key role played by these latent parameters,
in addition to the fact that its performance is highly
satisfactory (especially in distinguishing high-risk from low-
risk individuals). Therefore, beyond being a valid tool for
building a classifier, these parameters also prove to be a
reliable measure when it comes to quantifying the degree of
distress in a subject undergoing such a questionnaire.

In conclusion, this evidence supports and strengthens
the findings obtained from linear models: while linear
approaches provide a more theoretical explanation, they
alone cannot guarantee effectiveness in measuring stress
levels among subjects. With greater confidence, we can
therefore state that both economic and academic components
play a crucial role in the mental health spectrum of students.

Finally, to gain an additional different perspective, the
EFA analysis and the clusterings derived from the factor
scores clearly show very significant differences within the
population with respect to the same risk factors, across the
three identified classes, thus further consolidating the results
found in the previous sections. Moreover, rather significant
differences also emerge in factors such as gender and age,
although these differences are less pronounced compared to
the other categories mentioned above.

These factors should thus be strongly taken into account
when attempting to improve the overall academic experience
at the university.
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